logo
Alauda Container Platform
English
简体中文
English
简体中文
logo
Alauda Container Platform
导航

产品概览

架构
发版日志

安装

概览

安装准备

前提条件
下载
节点预处理
安装
global 集群灾难恢复

升级

概览
升级前准备
升级 global 集群
升级业务集群

用户界面

灵雀控制台

概览
访问 Web 控制台
Customizing the Web Console
自定义左侧导航

CLI 工具

ACP CLI (ac)

Getting Started with ACP CLI
配置 ACP CLI
ac 和 kubectl 命令的使用
管理 CLI 配置文件
使用插件扩展 ACP CLI
AC CLI 开发者命令参考
AC CLI 管理员命令参考
violet CLI

配置

功能开关配置

集群

概览
不可变基础设施

节点管理

概览
向本地集群添加节点
管理节点
节点监控

托管集群

概述

导入集群

概览
导入标准 Kubernetes 集群
导入 OpenShift 集群
导入 Amazon EKS 集群
导入 GKE 集群
导入华为云 CCE 集群(公有云)
导入 Azure AKS 集群
导入阿里云 ACK 集群
导入腾讯云 TKE 集群
注册集群

公有云集群初始化

网络初始化

AWS EKS 集群网络初始化配置
AWS EKS 补充信息
华为云 CCE 集群网络初始化配置
Azure AKS 集群网络初始化配置
Google GKE 集群网络初始化配置

存储初始化

概览
AWS EKS 集群存储初始化配置
华为云 CCE 集群存储初始化配置
Azure AKS 集群存储初始化配置
Google GKE 集群存储初始化配置

如何操作

导入集群的网络配置
获取导入集群信息
信任不安全的镜像仓库
从自定义命名的网卡采集网络数据
创建本地集群
托管控制平面
集群节点规划
etcd 加密

实用指南

为内置注册表添加外部地址
选择容器运行时
更新公共仓库凭证

备份与恢复

概览
安装
备份仓库

备份管理

ETCD 备份
创建应用备份计划
钩子

恢复管理

运行应用恢复任务
镜像仓库替换

网络

介绍

架构

理解 Kube-OVN
理解 ALB
了解 MetalLB

核心概念

ALB 与 Ingress-NGINX 注解兼容性
Service、Ingress、Gateway API 与 ALB Rule 之间的比较
GatewayAPI

功能指南

创建服务
创建 Ingress
创建域名
创建证书
创建外部 IP 地址池
创建 BGP Peers
配置子网
配置网络策略
创建 Admin 网络策略
配置 Kube-OVN 网络以支持 Pod 多网卡(Alpha)
配置集群网络策略
配置 Egress Gateway
网络可观测性
配置 ALB 规则
集群互联(Alpha)
Endpoint Health Checker
NodeLocal DNSCache

如何操作

准备 Kube-OVN Underlay 物理网络
软数据中心 LB 方案(Alpha)
Underlay 和 Overlay 子网的自动互联
通过集群插件安装 Ingress-Nginx
通过 Ingress Nginx Operator 安装 Ingress-Nginx
Ingress-Nginx 的任务

ALB

Auth
部署 ALB 的高可用 VIP
Header Modification
HTTP 重定向
L4/L7 超时
ModSecurity
TCP/HTTP Keepalive
使用 OAuth Proxy 配合 ALB
通过 ALB 配置 GatewayApi Gateway
在 ALB 中绑定网卡
ALB 性能选择决策
部署 ALB
通过 ALB 将 IPv6 流量转发到集群内的 IPv4 地址
OTel
ALB 监控
CORS
ALB 中的负载均衡会话亲和策略
URL 重写
Calico 网络支持 WireGuard 加密
Kube-OVN Overlay 网络支持 IPsec 加密
DeepFlow 用户指南

故障排除

如何解决 ARM 环境中的节点间通信问题?
查找错误原因

存储

介绍

概念

访问模式与卷模式
核心概念
Persistent Volume

功能指南

创建 CephFS 文件存储类型存储类
创建 CephRBD 块存储类
创建 TopoLVM 本地存储类
创建 NFS 共享存储类
部署 Volume Snapshot 组件
创建 PV
创建 PVCs
使用卷快照

实用指南

通用临时卷
使用 emptyDir
使用 NFS 配置持久存储
第三方存储能力注解指南

故障排除

从 PVC 扩容失败中恢复
机器配置

可扩展性与性能

评估 Global Cluster 的资源
评估业务集群资源
提升大规模 Kubernetes 集群的稳定性
磁盘配置

存储

Ceph 分布式存储

介绍

安装

创建标准类型集群
创建 Stretch 类型集群
架构

核心概念

核心概念

操作指南

访问存储服务
管理存储池
节点特定组件部署
添加设备/设备类
监控与告警

实用指南

配置专用集群用于分布式存储
清理分布式存储

数据容灾

文件存储灾备
块存储灾难恢复
对象存储灾难恢复
更新优化参数
创建 ceph 对象存储用户

MinIO 对象存储

介绍
安装
架构

核心概念

核心概念

操作指南

添加存储池
Monitoring & Alerts

实用指南

数据灾难恢复

TopoLVM 本地存储

介绍
安装

操作指南

设备管理
监控与告警

实用指南

使用 Velero 备份和恢复 TopoLVM 文件系统 PVC

安全

Alauda Container Security

安全性与合规性

合规

介绍
安装 Alauda Container Platform Compliance with Kyverno

使用指南

私有镜像仓库访问配置
Image Signature Verification Policy
使用 Secrets 的镜像签名验证策略
镜像仓库验证策略
容器逃逸防护策略
Security Context Enforcement Policy
网络安全策略
Volume Security Policy

API Refiner

介绍
安装 Alauda Container Platform API Refiner
关于 Alauda Container Platform Compliance Service

用户与角色

用户

介绍

功能指南

管理用户角色
创建用户
用户管理

用户组

介绍

功能指南

管理用户组角色
创建本地用户组
管理本地用户组成员资格

角色

介绍

功能指南

创建角色
管理自定义角色

IDP

介绍

功能指南

LDAP 管理
OIDC 管理

故障排除

删除用户

用户策略

介绍

多租户(项目)

介绍

功能指南

创建项目
管理项目配额
Manage Project
管理项目集群
管理项目成员

审计

介绍

遥测

安装

证书

自动化 Kubernetes 证书轮换
cert-manager
OLM 证书
证书监控

虚拟化

虚拟化

概览

介绍
安装

镜像

介绍

操作指南

添加虚拟机镜像
更新/删除虚拟机镜像
更新/删除镜像凭据

实用指南

使用 KubeVirt 基于 ISO 创建 Windows 镜像
使用 KubeVirt 基于 ISO 创建 Linux 镜像
导出虚拟机镜像
权限说明

虚拟机

介绍

操作指南

创建虚拟机/虚拟机组
虚拟机批量操作
使用 VNC 登录虚拟机
管理密钥对
管理虚拟机
监控与告警
虚拟机快速定位

实用指南

配置 USB 主机直通
虚拟机热迁移
虚拟机恢复
在 KubeVirt 上克隆虚拟机
物理 GPU 直通环境准备
配置虚拟机的高可用性
从现有虚拟机创建虚拟机模板

问题处理

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题
热迁移错误信息及解决方案

网络

介绍

操作指南

配置网络

实用指南

通过网络策略实现虚拟机网络请求控制
配置 SR-IOV
配置虚拟机使用网络绑定模式以支持 IPv6

存储

介绍

操作指南

管理虚拟磁盘

备份和恢复

介绍

操作指南

使用快照

开发者

快速开始

Creating a simple application via image

构建应用

Build application architecture

核心概念

应用类型
Custom Applications
Workload Types
理解参数
理解环境变量
理解启动命令
资源单位说明

命名空间

创建命名空间
导入 Namespace
资源配额
Limit Range
Pod Security Admission
UID/GID 分配
Overcommit Ratio
管理命名空间成员
更新命名空间
删除/移除命名空间

创建应用

Creating applications from Image
Creating applications from Chart
通过 YAML 创建应用
通过代码创建应用
Creating applications from Operator Backed
通过 CLI 工具创建应用

应用的操作与维护

Application Rollout

安装 Alauda Container Platform Argo Rollouts
Application Blue Green Deployment
Application Canary Deployment
状态说明

KEDA(Kubernetes Event-driven Autoscaling)

KEDA 概览
Installing KEDA

实用指南

Integrating ACP Monitoring with Prometheus Plugin
在 KEDA 中暂停自动扩缩容
配置 HPA
启动和停止原生应用
配置 VerticalPodAutoscaler (VPA)
配置 CronHPA
更新原生应用
导出应用
更新和删除 Chart 应用
应用版本管理
删除原生应用
处理资源耗尽错误
健康检查

计算组件

Deployments
DaemonSets
StatefulSets
CronJobs
任务
Pods
Containers
使用 Helm charts

配置

Configuring ConfigMap
Configuring Secrets

应用可观测

监控面板
Logs
实时事件

实用指南

设置定时任务触发规则

镜像

镜像概述

实用指南

Creating images
Managing images

镜像仓库

介绍

安装

通过 YAML 安装
通过 Web UI 安装

使用指南

Common CLI Command Operations
Using Alauda Container Platform Registry in Kubernetes Clusters

S2I

概览

介绍
架构
发版日志
生命周期策略

安装

Installing Alauda Container Platform Builds

升级

升级 Alauda Container Platform Builds

功能指南

Managing applications created from Code

How To

通过代码创建应用

节点隔离策略

引言
架构

概念

核心概念

功能指南

创建节点隔离策略
权限说明
常见问题

GitOps

介绍

安装

Installing Alauda Build of Argo CD
Installing Alauda Container Platform GitOps

升级

Upgrading Alauda Container Platform GitOps
架构

核心概念

GitOps

Argo CD 核心概念

Argo CD Introduction
Application 概念
ApplicationSet 概念
Tool
Helm 概念
Kustomize 概念
Directory 概念
Sync 概念
Health 概念

Alauda Container Platform GitOps 核心概念

介绍
Alauda Container Platform GitOps 的同步及健康检查

功能指南

创建 GitOps 应用

Creating GitOps Application
Creating GitOps ApplicationSet

GitOps 可观测

Argo CD 组件监控
GitOps 应用运维

实用指南

通过 Argo CD Dashboard 集成代码仓库
通过 Argo CD dashboard 创建 Argo CD Application
通过平台创建 Argo CD Application
如何获取 Argo CD 访问信息
故障排查

扩展

概览
Operator
集群插件
上架软件包

可观测性

概览

监控

介绍
安装

架构

监控模块架构
Monitoring Component Selection Guide
Monitor 组件容量规划
核心概念

操作指南

指标管理
告警管理
通知管理
监控面板管理
探针管理

实用指南

Prometheus 监控数据的备份与恢复
VictoriaMetrics 监控数据备份与恢复
从自定义命名的网络接口采集网络数据

调用链

介绍
安装
架构
核心概念

操作指南

查询追踪
查询追踪日志

实用指南

Java 应用无侵入方式接入调用链
与 TraceID 相关的业务日志

问题处理

查询不到所需的调用链
调用链数据不完整

日志

介绍
安装

架构

日志模块架构
日志组件选择指南
日志组件容量规划
概念

操作指南

日志

实用指南

如何将日志归档至第三方存储
如何对接外部 ES 存储集群

事件

介绍
Events

巡检

介绍
架构

操作指南

巡检
Component Health Status

硬件加速器

关于 Alauda Build of Hami
关于 Alauda Build 的 NVIDIA GPU 设备插件

Alauda 服务网格

Service Mesh 1.x
Service Mesh 2.x

Alauda AI

关于 Alauda AI

Alauda DevOps

关于灵雀云 DevOps

Alauda 计量计费

关于 Alauda 成本管理

Alauda 应用服务

概览

介绍
架构
安装
升级

Alauda Database Service for MySQL

关于 Alauda Database Service for MySQL-MGR
关于 Alauda Database Service for MySQL-PXC

Alauda Cache Service for Redis OSS

关于 Alauda Cache Service for Redis OSS

Alauda Streaming Service for Kafka

About Alauda Streaming Service for Kafka

Alauda Streaming Service for RabbitMQ

关于 Alauda Streaming Service for RabbitMQ

Alauda support for PostgreSQL

关于 Alauda support for PostgreSQL

运维管理

介绍

参数模板管理

介绍

功能指南

参数模板管理

备份管理

介绍

功能指南

外部 S3 存储
备份管理

检查管理

介绍

操作指南

创建巡检任务
Exec Inspection Task
更新和删除巡检任务

实用指南

如何设置检查调度?

检查优化建议

MySQL

MySQL IO负载优化
MySQL 内存使用优化
MySQL存储空间优化
MySQL 活动线程计数优化
MySQL 行锁优化

Redis

Redis 大键
Redis中的高CPU使用率
Redis中的高内存使用

Kafka

Kafka 中的高 CPU 利用率
Kafka Rebalance 优化
Kafka内存使用优化
Kafka 存储空间优化

RabbitMQ

RabbitMQ Mnesia 数据库异常处理

警报管理

介绍

操作指南

与平台能力的关系

升级管理

介绍

操作指南

示例升级

API 参考

概览

介绍
Kubernetes API 使用指南

Advanced APIs

Alert APIs

AlertHistories [v1]
AlertHistoryMessages [v1]
AlertStatus [v2]
SilenceStatus [v2]

Event APIs

Search

Log APIs

Aggregation
Archive
Context
Search

Monitoring APIs

Indicators [monitoring.alauda.io/v1beta1]
Metrics [monitoring.alauda.io/v1beta1]
Variables [monitoring.alauda.io/v1beta1]

Kubernetes APIs

Alert APIs

AlertTemplate [alerttemplates.aiops.alauda.io/v1beta1]
PrometheusRule [prometheusrules.monitoring.coreos.com/v1]

Inspection APIs

Inspection [inspections.ait.alauda.io/v1alpha1]

Notification APIs

Notification [notifications.ait.alauda.io/v1beta1]
NotificationGroup [notificationgroups.ait.alauda.io/v1beta1]
NotificationTemplate [notificationtemplates.ait.alauda.io/v1beta1]
📝 在 GitHub 上编辑此页
上一页配置集群网络策略
下一页网络可观测性

以 PDF 格式查看完整文档

#配置 Egress Gateway

#目录

#关于 Egress Gateway

Egress Gateway 用于控制 Pod 的外部网络访问,使用一组静态地址,具有以下特性:

  • 通过 ECMP 实现 Active-Active 高可用,支持水平吞吐量扩展
  • 通过 BFD 实现快速故障切换(<1秒)
  • 支持 IPv6 和双栈
  • 通过 NamespaceSelector 和 PodSelector 实现细粒度路由控制
  • 通过 NodeSelector 实现 Egress Gateway 的灵活调度

同时,Egress Gateway 具有以下限制:

  • 使用 macvlan 作为底层网络连接,要求底层网络支持 Underlay
  • 多实例 Gateway 模式下,需要多个 Egress IP
  • 目前仅支持 SNAT,不支持 EIP 和 DNAT
  • 目前不支持记录源地址转换关系

#实现细节

每个 Egress Gateway 由多个具有多个网络接口的 Pod 组成。 每个 Pod 有两个网络接口:一个加入虚拟网络,用于 VPC 内通信, 另一个通过 Macvlan 连接到底层物理网络,用于外部网络通信。 虚拟网络流量最终通过 Egress Gateway 实例内的 NAT 访问外部网络。

每个 Egress Gateway 实例在 OVN 路由表中注册其地址。 当 VPC 内的 Pod 需要访问外部网络时, OVN 使用源地址哈希将流量转发到多个 Egress Gateway 实例地址, 实现负载均衡。随着 Egress Gateway 实例数量增加, 吞吐量也可以水平扩展。

OVN 使用 BFD 协议探测多个 Egress Gateway 实例。 当某个 Egress Gateway 实例故障时,OVN 将对应路由标记为不可用, 实现快速故障检测和恢复。

#注意事项

  • 仅 Kube-OVN CNI 支持 Egress Gateway。
  • Egress Gateway 需要 Multus-CNI。

#使用方法

#创建 Network Attachment Definition

Egress Gateway 使用多个网卡同时访问内网和外网, 因此需要创建 Network Attachment Definition 以连接外部网络。 下面是使用 macvlan 插件和 Kube-OVN 提供的 IPAM 的示例:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
  name: eth1
  namespace: default
spec:
  config: '{
      "cniVersion": "0.3.0",
      "type": "macvlan",
      "master": "eth1",
      "mode": "bridge",
      "ipam": {
        "type": "kube-ovn",
        "server_socket": "/run/openvswitch/kube-ovn-daemon.sock",
        "provider": "eth1.default"
      }
    }'
---
apiVersion: kubeovn.io/v1
kind: Subnet
metadata:
  name: macvlan1
spec:
  protocol: IPv4
  provider: eth1.default
  cidrBlock: 172.17.0.0/16
  gateway: 172.17.0.1
  excludeIps:
    - 172.17.0.2..172.17.0.10
  1. 连接外部网络的宿主机接口。
  2. Provider 名称,格式为 <network attachment definition name>.<namespace>。
  3. 用于标识外部网络的 Provider 名称,必须与 NetworkAttachmentDefinition 中一致。
提示

你可以使用任意 CNI 插件创建 Network Attachment Definition 来访问对应网络。

#创建 VPC Egress Gateway

创建 VPC Egress Gateway 资源,示例如下:

apiVersion: kubeovn.io/v1
kind: VpcEgressGateway
metadata:
  name: gateway1
  namespace: default
spec:
  replicas: 1
  externalSubnet: macvlan1
  nodeSelector:
    - matchExpressions:
        - key: kubernetes.io/hostname
          operator: In
          values:
            - kube-ovn-worker
            - kube-ovn-worker2
  selectors:
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: default
  policies:
    - snat: true
      subnets:
        - subnet1
    - snat: false
      ipBlocks:
        - 10.18.0.0/16
  1. 创建 VPC Egress Gateway 实例的命名空间。
  2. VPC Egress Gateway 实例的副本数。
  3. 连接外部网络的外部子网。
  4. VPC Egress Gateway 适用的节点选择器。
  5. VPC Egress Gateway 适用的命名空间和 Pod 选择器。
  6. VPC Egress Gateway 的策略,包括 SNAT 及适用的子网/IP 段。
  7. 是否为该策略启用 SNAT。
  8. 策略适用的子网。
  9. 策略适用的 IP 段。

上述资源会在 default 命名空间下创建名为 gateway1 的 VPC Egress Gateway, 以下 Pod 会通过 macvlan1 子网访问外部网络:

  • default 命名空间中的 Pod。
  • subnet1 子网下的 Pod。
  • IP 属于 CIDR 10.18.0.0/16 的 Pod。
注意

匹配 .spec.selectors 的 Pod 始终启用 SNAT 访问外部网络。

创建完成后,查看 VPC Egress Gateway 资源:

$ kubectl get veg gateway1
NAME       VPC           REPLICAS   BFD ENABLED   EXTERNAL SUBNET   PHASE       READY   AGE
gateway1   ovn-cluster   1          false         macvlan1          Completed   true    13s

查看更多信息:

kubectl get veg gateway1 -o wide
NAME       VPC           REPLICAS   BFD ENABLED   EXTERNAL SUBNET   PHASE       READY   INTERNAL IPS     EXTERNAL IPS      WORKING NODES         AGE
gateway1   ovn-cluster   1          false         macvlan1          Completed   true    ["10.16.0.12"]   ["172.17.0.11"]   ["kube-ovn-worker"]   82s

查看工作负载:

$ kubectl get deployment -l ovn.kubernetes.io/vpc-egress-gateway=gateway1
NAME       READY   UP-TO-DATE   AVAILABLE   AGE
gateway1   1/1     1            1           4m40s

$ kubectl get pod -l ovn.kubernetes.io/vpc-egress-gateway=gateway1 -o wide
NAME                       READY   STATUS    RESTARTS   AGE     IP           NODE              NOMINATED NODE   READINESS GATES
gateway1-b9f8b4448-76lhm   1/1     Running   0          4m48s   10.16.0.12   kube-ovn-worker   <none>           <none>

查看 Pod 内的 IP 地址、路由和 iptables 规则:

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- ip address show
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
2: net1@if13: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UP group default qlen 1000
    link/ether 62:d8:71:90:7b:86 brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 172.17.0.11/16 brd 172.17.255.255 scope global net1
       valid_lft forever preferred_lft forever
    inet6 fe80::60d8:71ff:fe90:7b86/64 scope link
       valid_lft forever preferred_lft forever
17: eth0@if18: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue state UP group default
    link/ether 36:7c:6b:c7:82:6b brd ff:ff:ff:ff:ff:ff link-netnsid 0
    inet 10.16.0.12/16 brd 10.16.255.255 scope global eth0
       valid_lft forever preferred_lft forever
    inet6 fe80::347c:6bff:fec7:826b/64 scope link
       valid_lft forever preferred_lft forever

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- ip rule show
0:      from all lookup local
1001:   from all iif eth0 lookup default
1002:   from all iif net1 lookup 1000
1003:   from 10.16.0.12 iif lo lookup 1000
1004:   from 172.17.0.11 iif lo lookup default
32766:  from all lookup main
32767:  from all lookup default

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- ip route show
default via 172.17.0.1 dev net1
10.16.0.0/16 dev eth0 proto kernel scope link src 10.16.0.12
10.17.0.0/16 via 10.16.0.1 dev eth0
10.18.0.0/16 via 10.16.0.1 dev eth0
172.17.0.0/16 dev net1 proto kernel scope link src 172.17.0.11

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- ip route show table 1000
default via 10.16.0.1 dev eth0

$ kubectl exec gateway1-b9f8b4448-76lhm -c gateway -- iptables -t nat -S
-P PREROUTING ACCEPT
-P INPUT ACCEPT
-P OUTPUT ACCEPT
-P POSTROUTING ACCEPT
-N VEG-MASQUERADE
-A PREROUTING -i eth0 -j MARK --set-xmark 0x4000/0x4000
-A POSTROUTING -d 10.18.0.0/16 -j RETURN
-A POSTROUTING -s 10.18.0.0/16 -j RETURN
-A POSTROUTING -j VEG-MASQUERADE
-A VEG-MASQUERADE -j MARK --set-xmark 0x0/0xffffffff
-A VEG-MASQUERADE -j MASQUERADE --random-fully

在 Gateway Pod 中抓包验证网络流量:

$ kubectl exec -ti gateway1-b9f8b4448-76lhm -c gateway -- bash
nobody@gateway1-b9f8b4448-76lhm:/kube-ovn$ tcpdump -i any -nnve icmp and host 172.17.0.1
tcpdump: data link type LINUX_SLL2
tcpdump: listening on any, link-type LINUX_SLL2 (Linux cooked v2), snapshot length 262144 bytes
06:50:58.936528 eth0  In  ifindex 17 92:26:b8:9e:f2:1c ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 63, id 30481, offset 0, flags [DF], proto ICMP (1), length 84)
    10.17.0.9 > 172.17.0.1: ICMP echo request, id 37989, seq 0, length 64
06:50:58.936574 net1  Out ifindex 2 62:d8:71:90:7b:86 ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 62, id 30481, offset 0, flags [DF], proto ICMP (1), length 84)
    172.17.0.11 > 172.17.0.1: ICMP echo request, id 39449, seq 0, length 64
06:50:58.936613 net1  In  ifindex 2 02:42:39:79:7f:08 ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 64, id 26701, offset 0, flags [none], proto ICMP (1), length 84)
    172.17.0.1 > 172.17.0.11: ICMP echo reply, id 39449, seq 0, length 64
06:50:58.936621 eth0  Out ifindex 17 36:7c:6b:c7:82:6b ethertype IPv4 (0x0800), length 104: (tos 0x0, ttl 63, id 26701, offset 0, flags [none], proto ICMP (1), length 84)
    172.17.0.1 > 10.17.0.9: ICMP echo reply, id 37989, seq 0, length 64

OVN Logical Router 上自动创建路由策略:

$ kubectl ko nbctl lr-policy-list ovn-cluster
Routing Policies
     31000                            ip4.dst == 10.16.0.0/16   allow
     31000                            ip4.dst == 10.17.0.0/16   allow
     31000                           ip4.dst == 100.64.0.0/16   allow
     30000                              ip4.dst == 172.18.0.2  reroute  100.64.0.4
     30000                              ip4.dst == 172.18.0.3  reroute  100.64.0.3
     30000                              ip4.dst == 172.18.0.4  reroute  100.64.0.2
     29100                  ip4.src == $VEG.8ca38ae7da18.ipv4  reroute  10.16.0.12
     29100                   ip4.src == $VEG.8ca38ae7da18_ip4  reroute  10.16.0.12
     29000 ip4.src == $ovn.default.kube.ovn.control.plane_ip4  reroute  100.64.0.3
     29000       ip4.src == $ovn.default.kube.ovn.worker2_ip4  reroute  100.64.0.2
     29000        ip4.src == $ovn.default.kube.ovn.worker_ip4  reroute  100.64.0.4
     29000     ip4.src == $subnet1.kube.ovn.control.plane_ip4  reroute  100.64.0.3
     29000           ip4.src == $subnet1.kube.ovn.worker2_ip4  reroute  100.64.0.2
     29000            ip4.src == $subnet1.kube.ovn.worker_ip4  reroute  100.64.0.4
  1. VPC Egress Gateway 用于转发 .spec.policies 指定 Pod 流量的逻辑路由器策略。
  2. VPC Egress Gateway 用于转发 .spec.selectors 指定 Pod 流量的逻辑路由器策略。

如果需要启用负载均衡,修改 .spec.replicas,示例如下:

$ kubectl scale veg gateway1 --replicas=2
vpcegressgateway.kubeovn.io/gateway1 scaled

$ kubectl get veg gateway1
NAME       VPC           REPLICAS   BFD ENABLED   EXTERNAL SUBNET   PHASE       READY   AGE
gateway1   ovn-cluster   2          false         macvlan           Completed   true    39m

$ kubectl get pod -l ovn.kubernetes.io/vpc-egress-gateway=gateway1 -o wide
NAME                       READY   STATUS    RESTARTS   AGE   IP           NODE               NOMINATED NODE   READINESS GATES
gateway1-b9f8b4448-76lhm   1/1     Running   0          40m   10.16.0.12   kube-ovn-worker    <none>           <none>
gateway1-b9f8b4448-zd4dl   1/1     Running   0          64s   10.16.0.13   kube-ovn-worker2   <none>           <none>

$ kubectl ko nbctl lr-policy-list ovn-cluster
Routing Policies
     31000                            ip4.dst == 10.16.0.0/16    allow
     31000                            ip4.dst == 10.17.0.0/16    allow
     31000                           ip4.dst == 100.64.0.0/16    allow
     30000                              ip4.dst == 172.18.0.2  reroute  100.64.0.4
     30000                              ip4.dst == 172.18.0.3  reroute  100.64.0.3
     30000                              ip4.dst == 172.18.0.4  reroute  100.64.0.2
     29100                  ip4.src == $VEG.8ca38ae7da18.ipv4  reroute  10.16.0.12, 10.16.0.13
     29100                   ip4.src == $VEG.8ca38ae7da18_ip4  reroute  10.16.0.12, 10.16.0.13
     29000 ip4.src == $ovn.default.kube.ovn.control.plane_ip4  reroute  100.64.0.3
     29000       ip4.src == $ovn.default.kube.ovn.worker2_ip4  reroute  100.64.0.2
     29000        ip4.src == $ovn.default.kube.ovn.worker_ip4  reroute  100.64.0.4
     29000     ip4.src == $subnet1.kube.ovn.control.plane_ip4  reroute  100.64.0.3
     29000           ip4.src == $subnet1.kube.ovn.worker2_ip4  reroute  100.64.0.2
     29000            ip4.src == $subnet1.kube.ovn.worker_ip4  reroute  100.64.0.4

#启用基于 BFD 的高可用

基于 BFD 的高可用依赖于 VPC BFD LRP 功能, 因此需要修改 VPC 资源以启用 BFD Port。 以下示例为默认 VPC 启用 BFD Port:

apiVersion: kubeovn.io/v1
kind: Vpc
metadata:
  name: ovn-cluster
spec:
  bfdPort:
    enabled: true
    ip: 10.255.255.255
    nodeSelector:
      matchLabels:
        kubernetes.io/os: linux
  1. 是否启用 BFD Port。
  2. BFD Port 的 IP 地址,必须是有效且不与其他 IP/子网冲突的地址。
  3. 用于选择运行 BFD Port 的节点的节点选择器,BFD Port 绑定选中节点的 OVN HA Chassis Group,以 Active/Backup 模式工作。

启用 BFD Port 后,会在对应的 OVN Logical Router 上自动创建专用的 BFD LRP:

$ kubectl ko nbctl show ovn-cluster
router 0c1d1e8f-4c86-4d96-88b2-c4171c7ff824 (ovn-cluster)
    port bfd@ovn-cluster
        mac: "8e:51:4b:16:3c:90"
        networks: ["10.255.255.255"]
    port ovn-cluster-join
        mac: "d2:21:17:71:77:70"
        networks: ["100.64.0.1/16"]
    port ovn-cluster-ovn-default
        mac: "d6:a3:f5:31:cd:89"
        networks: ["10.16.0.1/16"]
    port ovn-cluster-subnet1
        mac: "4a:09:aa:96:bb:f5"
        networks: ["10.17.0.1/16"]
  1. 在 OVN Logical Router 上创建的 BFD Port。

随后,在 VPC Egress Gateway 中将 .spec.bfd.enabled 设置为 true,示例如下:

apiVersion: kubeovn.io/v1
kind: VpcEgressGateway
metadata:
  name: gateway2
  namespace: default
spec:
  vpc: ovn-cluster
  replicas: 2
  internalSubnet: ovn-default
  externalSubnet: macvlan1
  bfd:
    enabled: true
    minRX: 100
    minTX: 100
    multiplier: 5
  policies:
    - snat: true
      ipBlocks:
        - 10.18.0.0/16
  1. Egress Gateway 所属的 VPC。
  2. Egress Gateway 实例连接的内部子网。
  3. Egress Gateway 实例连接的外部子网。
  4. 是否为 Egress Gateway 启用 BFD。
  5. BFD 的最小接收间隔,单位毫秒。
  6. BFD 的最小发送间隔,单位毫秒。
  7. BFD 的乘数,决定多少次丢包后判定故障。

查看 VPC Egress Gateway 信息:

$ kubectl get veg gateway2 -o wide
NAME       VPC    REPLICAS   BFD ENABLED   EXTERNAL SUBNET   PHASE       READY   INTERNAL IPS                    EXTERNAL IPS                    WORKING NODES                            AGE
gateway2   vpc1   2          true          macvlan           Completed   true    ["10.16.0.102","10.16.0.103"]   ["172.17.0.13","172.17.0.14"]   ["kube-ovn-worker","kube-ovn-worker2"]   58s

$ kubectl get pod -l ovn.kubernetes.io/vpc-egress-gateway=gateway2 -o wide
NAME                       READY   STATUS    RESTARTS   AGE     IP            NODE               NOMINATED NODE   READINESS GATES
gateway2-fcc6b8b87-8lgvx   1/1     Running   0          2m18s   10.16.0.103   kube-ovn-worker2   <none>           <none>
gateway2-fcc6b8b87-wmww6   1/1     Running   0          2m18s   10.16.0.102   kube-ovn-worker    <none>           <none>

$ kubectl ko nbctl lr-policy-list ovn-cluster
Routing Policies
     31000                            ip4.dst == 10.16.0.0/16    allow
     31000                            ip4.dst == 10.17.0.0/16    allow
     31000                           ip4.dst == 100.64.0.0/16    allow
     30000                              ip4.dst == 172.18.0.2  reroute  100.64.0.4
     30000                              ip4.dst == 172.18.0.3  reroute  100.64.0.3
     30000                              ip4.dst == 172.18.0.4  reroute  100.64.0.2
     29100                  ip4.src == $VEG.8ca38ae7da18.ipv4  reroute  10.16.0.102, 10.16.0.103  bfd
     29100                   ip4.src == $VEG.8ca38ae7da18_ip4  reroute  10.16.0.102, 10.16.0.103  bfd
     29090                  ip4.src == $VEG.8ca38ae7da18.ipv4     drop
     29090                   ip4.src == $VEG.8ca38ae7da18_ip4     drop
     29000 ip4.src == $ovn.default.kube.ovn.control.plane_ip4  reroute  100.64.0.3
     29000       ip4.src == $ovn.default.kube.ovn.worker2_ip4  reroute  100.64.0.2
     29000        ip4.src == $ovn.default.kube.ovn.worker_ip4  reroute  100.64.0.4
     29000     ip4.src == $subnet1.kube.ovn.control.plane_ip4  reroute  100.64.0.3
     29000           ip4.src == $subnet1.kube.ovn.worker2_ip4  reroute  100.64.0.2
     29000            ip4.src == $subnet1.kube.ovn.worker_ip4  reroute  100.64.0.4

$ kubectl ko nbctl list bfd
_uuid               : 223ede10-9169-4c7d-9524-a546e24bfab5
detect_mult         : 5
dst_ip              : "10.16.0.102"
external_ids        : {af="4", vendor=kube-ovn, vpc-egress-gateway="default/gateway2"}
logical_port        : "bfd@ovn-cluster"
min_rx              : 100
min_tx              : 100
options             : {}
status              : up

_uuid               : b050c75e-2462-470b-b89c-7bd38889b758
detect_mult         : 5
dst_ip              : "10.16.0.103"
external_ids        : {af="4", vendor=kube-ovn, vpc-egress-gateway="default/gateway2"}
logical_port        : "bfd@ovn-cluster"
min_rx              : 100
min_tx              : 100
options             : {}
status              : up

查看 BFD 连接状态:

$ kubectl exec gateway2-fcc6b8b87-8lgvx -c bfdd -- bfdd-control status
There are 1 sessions:
Session 1
 id=1 local=10.16.0.103 (p) remote=10.255.255.255 state=Up

$ kubectl exec gateway2-fcc6b8b87-wmww6 -c bfdd -- bfdd-control status
There are 1 sessions:
Session 1
 id=1 local=10.16.0.102 (p) remote=10.255.255.255 state=Up
注意

如果所有 Gateway 实例均不可用,应用了 VPC Egress Gateway 的出口流量将被丢弃。

#配置参数

#VPC BFD Port

字段类型可选默认值描述示例
enabledboolean是false是否启用 BFD Port。true
ipstring否-BFD Port 使用的 IP 地址。
不得与其他地址冲突。支持 IPv4、IPv6 和双栈。
169.255.255.255
fdff::1
169.255.255.255,fdff::1
nodeSelectormatchLabelsobject是-用于选择承载 BFD Port 的节点的标签选择器。
BFD Port 绑定选中节点的 OVN HA Chassis Group,以 Active/Backup 模式工作。
若未指定,Kube-OVN 会自动选择最多三个节点。
可通过执行 kubectl ko nbctl list ha_chassis_group 查看所有 OVN HA Chassis Group 资源。
键值对映射。-
matchExpressionsobject 数组是-标签选择器要求列表,要求间为 AND 关系。-

#VPC Egress Gateway

字段类型可选默认值描述示例
vpcstring是默认 VPC 名称 (ovn-cluster)VPC 名称。vpc1
replicasinteger/int32是1副本数。2
prefixstring是-工作负载部署名称的不可变前缀。veg-
imagestring是-工作负载部署使用的镜像。docker.io/kubeovn/kube-ovn:v1 .14.0-debug
internalSubnetstring是默认 VPC 内的子网名称。用于访问内网/外网的子网名称。subnet1
externalSubnet否-ext1
internalIPsstring 数组是-

用于访问内网/外网的 IP 地址。支持 IPv4、IPv6 和双栈。
指定的 IP 数量不得少于 replicas。
建议设置为 <replicas> + 1,避免 Pod 创建异常。

10.16.0.101

fdff::1

169.255.255.255,fdff::1
externalIPs
bfdenabledboolean是falseBFD 配置。是否为 Egress Gateway 启用 BFD。-
minRXinteger/int32是1000BFD 的 minRX/minTX,单位毫秒。500
minTX
multiplierinteger/int32是3BFD 乘数。1
policiessnatboolean是false出口策略。是否启用 SNAT/MASQUERADE。true
ipBlocksstring 数组是-

适用的 IP 段。
支持 IPv4 和 IPv6。

192.168.0.1
192.168.0.0/24
fd00::1
fd00::/120
subnetsstring 数组是-

适用的 VPC 子网名称。
支持 IPv4、IPv6 和双栈子网。

subnet1
selectorsnamespaceSelectormatchLabelsobject是-

通过命名空间选择器和 Pod 选择器配置出口策略。
匹配的 Pod 会应用 SNAT/MASQUERADE。

命名空间选择器。空标签选择器匹配所有命名空间。

键值对映射。-
matchExpressionsobject 数组是-标签选择器要求列表,要求间为 AND 关系。-
podSelectormatchLabelsobject是-

Pod 选择器。空标签选择器匹配所有 Pod。

键值对映射。-
matchExpressionsobject 数组是-标签选择器要求列表,要求间为 AND 关系。-
nodeSelectormatchLabelsobject是-

用于选择承载工作负载部署的节点的节点选择器。
工作负载(Deployment/Pod)将在选中节点上运行。

键值对映射。-
matchExpressionsobject 数组是-标签选择器要求列表,要求间为 AND 关系。-
matchFieldsobject 数组是-字段选择器要求列表,要求间为 AND 关系。-
trafficPolicystring是Cluster

仅在启用 BFD 时生效。
可选值:Cluster/Local。
设置为 Local 时,出口流量会优先重定向到本节点上运行的 VPC Egress Gateway 实例,若实例不可用则重定向到其他实例。

Local

#相关资源

  • Egress Gateway - Kube-OVN 文档
  • RFC 5880 - 双向转发检测 (BFD)