
Virtualization

Overview

Introduction

Container-Orchestrated Virtual Machine Solution

Features

Product Features

Constraints and Limitations

Install

Install

Prerequisites

Procedure

Resource Quota Explanation

Images

Introduction
Advantages

Menu

Virtualization - Alauda Container Platform

Guides

How To

Permissions

Virtual Machine

Introduction

Guides

How To

Troubleshooting

Network

Virtualization - Alauda Container Platform

Introduction
Advantages

Guides

How To

Storage

Introduction
Advantages

Guides

Backup and Recovery

Introduction
Application Scenarios

Usage Limitations

Virtualization - Alauda Container Platform

Guides

Virtualization - Alauda Container Platform

Overview

Introduction

Container-Orchestrated Virtual Machine Solution

Features

Product Features

Constraints and Limitations

Menu

Overview - Alauda Container Platform

For enterprises using a virtual machine-based architecture, transitioning to a Kubernetes and

container-based architecture inevitably requires application modernization. However, due to

constraints such as the need for continuous business uptime or the difficulty in changing

development habits, enterprises often cannot completely disengage from virtualization

architecture in a short period.

Therefore, a solution that can uniformly configure, manage, and control container resources

and virtual machine resources on the same platform becomes particularly important.

Container-Orchestrated Virtual Machine Solution

Features

Product Features

Constraints and Limitations

This platform implements a virtual machine (VMI, VirtualMachineInstance) solution based on

the open-source component KubeVirt, allowing for easier and faster creation of container-

orchestrated virtual machines and running virtualized applications.

Introduction

TOC

Container-Orchestrated Virtual Machine Solution

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Rapid Transformation

There is no need to rewrite applications or modify images. Simply package the existing

application into a qcow2 or raw format virtual machine image, and create a virtual machine

using that image on the platform, allowing the application to be deployed to the container

platform.

Maintain Behavioral Habits

Containerized virtual machines can be managed using a similar approach to traditional virtual

machines, without needing to focus on the underlying container implementation, including

virtual machine lifecycle management, disks and networks, and snapshot management.

Coexistence of Virtualization and Containerization

The unified platform supports managing virtualized services while also enabling

Kubernetes-based container scheduling and management.

Features

Introduction - Alauda Container Platform

On the basis of continuing to use virtual machine workloads, it allows for a gradual

modernization of containerized applications.

The development of new containerized applications that need to interact with virtualized

applications remains unaffected.

Virtual Machine: Supports creating virtual machines with images allocated by

administrators and managing them, including starting and stopping virtual machines,

managing snapshots, remote login to virtual machines, and modifying virtual machine

configurations.

Virtual Disk: Supports viewing and managing disk information created in the current

project, including creating disks, viewing disk names, storage classes, capacities, and

associated virtual machines.

Virtual Machine Snapshots: Supports viewing details such as the status of virtual

machine snapshots, the associated virtual machine, and the most recent rollback time.

Virtual Machine Images: Supports viewing virtual machine image information under the

current project, including image provision method and operating system.

Key Pairs: Supports viewing and managing key pairs created in the current project,

including creating key pairs and viewing the list of associated virtual machines.

It must be implemented based on a physical machine cluster, and KubeVirt components must

be deployed within the cluster with virtualization enabled. The platform provides the capability

to deploy KubeVirt components via Operator and an interface to enable virtualization, with all

related configurations completed by the platform administrator.

Product Features

Constraints and Limitations

Introduction - Alauda Container Platform

In order for project personnel to fully utilize virtualization features within the container platform,

the platform administrator must perform the following operations to prepare the virtualization

environment.

Prerequisites

Procedure

Enabling Node Virtualization

Procedure

Deploying Operator

Creating a HyperConverged Instance

Configuring Virtual Machine Overcommit Ratio (Optional)

Important Notes

Resource Quota Explanation

Download the ACP Virtualization with KubeVirt installation package corresponding to

your platform architecture.

Upload the ACP Virtualization with KubeVirt installation package using the Upload

Packages mechanism.

Install

TOC

Prerequisites

Menu ON THIS PAGE

Install - Alauda Container Platform

When using virtualization features, it is necessary to plan and prepare the network and

storage environments in advance.

Note:

If you need to connect to the virtual machine directly via IP, the cluster must use the

Kube-OVN Underlay network mode. You can refer to the best practices Preparing Kube-

OVN Underlay Physical Network.

It is recommended to use TopoLVM in conjunction with Kubevirt, as it can provide near-

hardware level performance. If performance requirements are not high, Ceph distributed

storage can also be used.

Storage Product Description

TopoLVM

Advantages: Relatively lightweight and good performance.

Disadvantages: Cannot be used across nodes, has low

reliability, and cannot provide redundancy.

Ceph Distributed

Storage

Advantages: Can be used across nodes, highly available,

and has redundancy.

Disadvantages: Redundant disk copies lead to lower

utilization; performance is poorer.

If TopoLVM is used and multiple disks are configured, please ensure that the

remaining storage capacity on the virtualization-enabled nodes can meet the total

capacity of the multiple disks; otherwise, the virtual machine creation will fail.

If Ceph distributed storage is being used, please ensure that the network where the

storage resides and the network where the virtual machines reside can communicate

with each other.

Procedure

Enabling Node Virtualization1

Install - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html
http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

When the nodes of a self-built cluster are physical machines, you can control whether

to allow Kubernetes to schedule Virtual Machine Instances (VMIs) on that node by

enabling or disabling the node virtualization switch.

When the switch is enabled, new virtual machines are allowed to be scheduled on the

physical machine node; Windows physical nodes do not support enabling

virtualization.

When the switch is disabled, new virtual machines are prevented from being

scheduled on the physical machine node, but it does not affect virtual machines that

are already running on that node.

1. Enter Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.

3. Click Self-Built Cluster Name.

4. On the Nodes tab, click the ⋮ to the right of the node where you want to set the

virtualization switch > Enable Virtualization.

5. Click Confirm.

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the ACP Virtualization with KubeVirt, click Install, and navigate to the Install

ACP Virtualization with KubeVirt page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is alpha .

Procedure

Deploying Operator2

Install - Alauda Container Platform

Parameter Recommended Configuration

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Installation

Place
Select Recommended , Namespace only support kubevirt.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

1. Enter Administrator.

2. Click Marketplace > OperatorHub.

3. Find the ACP Virtualization with KubeVirt, click it to enter the ACP Virtualization

with KubeVirt detail info page.

4. Click All Instances

5. Click Create Instance on the HyperConverged instance card.

Note: Only one HyperConverged instance needs to be created in each cluster.

6. Switch to YAML view and only replace the placeholder specified in the

spec.storageImport.insecureRegistries field in the example with the correct virtual

machine image repository address, for example: 192.168.16.214:60080 , keeping

other parameters at their default values.

Replacement result:

Creating a HyperConverged Instance3

spec:

 storageImport:

 insecureRegistries:

 - placeholder

Install - Alauda Container Platform

7. Click Create and wait for the CDI and KubeVirt type instances to be automatically

created in the resource list, while ensuring that the status.phase displayed in the

YAML is deployed , indicating that the HyperConverged instance has been

successfully created.

Configuring the overcommit ratio for the cluster where the virtual machines reside in

Cluster Management > Clusters.

Or Configuring the overcommit ratio for the namespace where the virtual machines

are located in Project Management > Namespaces.

Virtual machines only support CPU overcommit ratios, and the recommended

configuration value is between 2 and 4.

Once the overcommit ratio is enabled for virtual machines, when creating a virtual

machine, the container's request value (requests) is fixed as specified limit value

(limits) / VM overcommit ratio, making the user's request set through YAML

ineffective.

For example: Assuming the CPU resource overcommit ratio is set to 4 for the virtual

machine, if the user specifies a CPU limit value of 4c when creating the virtual

machine, the CPU request value would be 4c/4 = 1c.

Configuring Virtual Machine Overcommit Ratio
(Optional)

4

Important Notes

Resource Quota Explanation

spec:

 storageImport:

 insecureRegistries:

 - "192.168.16.214:60080"

Install - Alauda Container Platform

The memory resource quota for virtual machines is limited by the memory resource quota of

the namespace they reside in. Since the memory of the Pod hosting the virtual machine is

usually larger than the actual available memory of the virtual machine, it is recommended to

reserve 20% of the resources. When the remaining available resources in the namespace are

below 20%, please promptly scale up the resources.

Install - Alauda Container Platform

Images

Introduction

Introduction

Advantages

Guides

Adding Virtual Machine Images

Procedure

Update/Delete Virtual Machine Images

Update/Delete Image Credentials

How To

Menu

Images - Alauda Container Platform

Creating Windows Images Based on ISO using KubeVirt
Prerequisites

Constraints and Limitations

Procedure

Remote Access

Creating Linux Images Based on ISO Using KubeVirt
Prerequisites

Constraints and Limitations

Procedure

Exporting Virtual Machine Images
Procedure

Permissions

Permissions

Images - Alauda Container Platform

Alauda Container Platform Virtualization with KubeVirt leverages Kubernetes extended API

capabilities to abstract virtual machine images as a Custom Resource Definition (CRD). It

provides a user interface (UI) for users to easily import virtual machine images stored in

remote repositories into ACP for usage.

Advantages

Support for Mainstream Operating Systems

Supports various commonly used Linux distributions and Windows operating systems.

Multi-Architecture Support

Compatible with both X86_64 and ARM64 architectures.

Multi-Source Support

Allows importing virtual machine images from:

Image registries

File servers

Introduction

TOC

Advantages

Menu ON THIS PAGE

Introduction - Alauda Container Platform

S3-compatible object storage

Multi-Format Support

Supports virtual machine images in QCOW2 and RAW formats.

Introduction - Alauda Container Platform

Guides

Adding Virtual Machine Images

Procedure

Update/Delete Virtual Machine Images

Update/Delete Image Credentials

Menu

Guides - Alauda Container Platform

The platform supports adding X86_64 and ARM64 (Alpha) architecture virtual machine

images, enabling developers to quickly create virtual machines for existing services and

facilitate the migration of business systems.

Procedure

1. Access Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machine Images.

3. Click Add Virtual Machine Image.

4. Refer to the instructions below to configure the relevant parameters.

Parameter Description

Provisioning

Method

Currently, only Public Image method is supported, meaning the

added image can be used in assigned projects.

Operating

System

Supported operating systems include:

CentOS/Ubuntu/RedHat/Debian/TLinux/Other Linux/Windows

(Alpha).

Adding Virtual Machine Images

TOC

Procedure

Menu ON THIS PAGE

Adding Virtual Machine Images - Alauda Container Platform

Parameter Description

Supported system architectures are: X86_64 and ARM64

(Alpha).

Source

Image Repository: Virtual machine images stored in a

container image repository.

HTTP: Virtual machine images stored on a file server using

the HTTP protocol.

Object Storage (S3): Virtual machine images that can be

retrieved using Object Storage Protocol (S3). If they do not

require authentication, please use HTTP as the source.

CPU

Architecture

Tag CPU architecture information. For image repository sources,

multiple selections are supported; for other sources, only single

selection is allowed.

Image Address

Supports KVM virtual machine images, including qcow2/raw

formats.

If from an image repository, enter

repository_address:image_version , e.g.,

index.docker.io/library/ubuntu:latest .

If from an HTTP source, enter the image file URL, which must

start with http:// or https:// , e.g.,

http://192.168.0.1/vm_image/centos_7.8.qcow2 .

If from an Object Storage (S3), enter the image address that

can be retrieved via Object Storage Protocol (S3), e.g.,

https://endpoint/bucket/centos.qcow2 .

Authentication Depending on whether the image repository requires

authentication, you can toggle the switch on or off. If enabled,

you can choose from existing image credentials or click Add

Credentials, supporting only Username/Password type

credentials.

Adding Virtual Machine Images - Alauda Container Platform

Parameter Description

Note: When the source is Object Storage (S3), authentication

cannot be turned off.

Assigned

Project

Assign usage permissions for this image to projects.

All Projects: Assigns usage permissions of the image to all

projects.

Specific Project: Assigns usage permissions of the image to a

specified project.

No Assignment: Do not assign to any projects for now. After

image creation, you can assign it through Update Image

operation.

5. Click Add.

Adding Virtual Machine Images - Alauda Container Platform

1. Navigate to Administrator.

2. In the left sidebar, click Virtualization Management > Virtual Machine Images.

3. Click ⋮ > Update/Delete.

4. After confirmation, click Update/Delete.

Update/Delete Virtual Machine Images

Menu

Update/Delete Virtual Machine Images - Alauda Container Platform

1. Go to Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machine Images.

3. In the Image Credentials tab, click ⋮ > Update/Delete.

4. After confirmation, click Update/Delete.

Update/Delete Image Credentials

Menu

Update/Delete Image Credentials - Alauda Container Platform

How To

Creating Windows Images Based on ISO using KubeVirt

Prerequisites

Constraints and Limitations

Procedure

Remote Access

Creating Linux Images Based on ISO Using KubeVirt

Prerequisites

Constraints and Limitations

Procedure

Exporting Virtual Machine Images
Procedure

Menu

How To - Alauda Container Platform

This document discusses a virtual machine solution based on the open-source component

KubeVirt, using KubeVirt virtualization technology to create a Windows operating system

image through an ISO image file.

Prerequisites

Constraints and Limitations

Procedure

Create Image

Create Virtual Machine

Install Windows Operating System

Install virtio-win-tools

Export Custom Windows Image

Use Windows Image

Add Internal Route

Remote Access

All components in the cluster are functioning correctly.

Creating Windows Images Based on ISO
using KubeVirt

TOC

Prerequisites

Menu ON THIS PAGE

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

Please prepare the Windows image and the latest virtio-win-tools in advance.

Please prepare the repository for storing the image. This document takes the build-

harbor.example.cn repository as an example, and please replace it according to your actual

environment.

When starting KubeVirt, the size of the custom image's filesystem will affect the speed of

writing the image to the disk in PVC. If the filesystem is too large, it may result in extended

creation times.

It is recommended to keep the Linux root partition or Windows C drive below 100G to

minimize the initial size. Subsequent expansion can be done through cloud-init (for

Windows systems, it must be expanded manually after creation).

Create a Docker image from the prepared Windows and virtio-win ISO images, and

push it to the repository. This document uses Windows Server 2019 as an example.

Create a Docker Image from the Windows ISO

1. Navigate to the directory where the ISO image is stored, and execute the following

command in the terminal to rename the ISO image to win.iso.

2. Execute the following command to create a Dockerfile.

↗

Constraints and Limitations

Procedure

Create Image1

mv <ISO image name> win.iso # Replace <ISO image name> with the actual image

name, e.g., mv en_windows_server_2019_x64_dvd_4cb967d8.iso win.iso

touch Dockerfile

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/

3. Edit the Dockerfile, add the following content, and save it.

4. Execute the following command to build the Docker image.

5. Execute the following command to push the image to the repository.

Create a Docker Image from the virtio-win ISO

1. Navigate to the directory where the ISO image is stored, and execute the following

command in the terminal to create a Dockerfile.

2. Edit the Dockerfile, add the following content, and save it.

3. Execute the following command to build the Docker image.

4. Execute the following command to push the image to the repository.

FROM scratch

ADD --chown=107:107 win.iso /disk/

docker build -t build-harbor.example.cn/3rdparty/vmdisks/winiso:2019 . # Replace

the repository according to your actual environment

docker push build-harbor.example.cn/3rdparty/vmdisks/winiso:2019 # Replace the

repository according to your actual environment

touch Dockerfile

FROM scratch

ADD --chown=107:107 virtio-win.iso /disk/

docker build -t build-harbor.example.cn/3rdparty/vmdisks/win-virtio:latest . #

Replace the repository according to your actual environment

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Machines.

3. Click on Create Virtual Machine.

4. Fill in the necessary parameters such as Name, Image, etc., in the form page. For

detailed parameters and configuration, please refer to Create Virtual Machine.

5. Switch to YAML.

6. Replace the configuration under the spec.template.spec.domain.devices.disks field

with the following content.

7. Add the following content under the spec.template.spec.volumes field.

Create Virtual Machine2

docker push build-harbor.example.cn/3rdparty/vmdisks/win-virtio:latest #

Replace the repository according to your actual environment

 domain:

 devices:

 disks:

 - disk:

 bus: virtio

 name: cloudinitdisk

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - cdrom:

 bus: sata

 name: virtio

 - disk:

 bus: sata

 name: rootfs

 bootOrder: 10

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

8. Check the YAML file. The complete YAML after finishing the configuration is as

follows.

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/winiso:2019 #

Replace the image according to your actual environment

 name: containerdisk

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/win-virtio #

Replace the image according to your actual environment

 name: virtio

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

apiVersion: kubevirt.io/v1alpha3

kind: VirtualMachine

metadata:

 annotations:

 cpaas.io/creator: test@example.io

 cpaas.io/display-name: ""

 cpaas.io/updated-at: 2024-09-01T14:57:55Z

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 generation: 16

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa-test

 name: aa-test

 namespace: acp-service-self

spec:

 dataVolumeTemplates:

 - metadata:

 creationTimestamp: null

 labels:

 vm.cpaas.io/reclaim-policy: Delete

 vm.cpaas.io/used-by: aa-test

 name: aa-test-rootfs

 spec:

 pvc:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: vm-cephrbd

 volumeMode: Block

 source:

 http:

 url: http://192.168.254.12/kube-debian-12.2.0-x86-out.qcow2

 running: true

 template:

 metadata:

 annotations:

 cpaas.io/creator: test@example.io

""

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

 cpaas.io/display-name: ""

 cpaas.io/updated-at: 2024-09-01T14:55:44Z

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 creationTimestamp: null

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa-test

 spec:

 affinity:

 nodeAffinity: {}

 architecture: amd64

 domain:

 devices:

 disks:

 - disk:

 bus: virtio

 name: cloudinitdisk

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - cdrom:

 bus: sata

 name: virtio

 - disk:

 bus: sata

 name: rootfs

 bootOrder: 10

 interfaces:

 - bridge: {}

 name: default

 machine:

 type: q35

 resources:

 limits:

 cpu: "4"

 memory: 8Gi

 requests:

 cpu: "4"

 memory: 8Gi

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

9. Click Create.

10. Click Actions > VNC Login.

11. When the prompt press any key boot from CD or DVD appears, press any key to

enter the Windows installation program; if you do not see the prompt, click on Send

Remote Command in the top left of the page, then select Ctrl-Alt-Delete from the

dropdown menu to restart the server.

Note: If a message appears at the top of the virtual machine details page stating The

current virtual machine has configuration changes that require a restart to take

effect, please restart, this message can be ignored; no restart is necessary.

 networks:

 - name: default

 pod: {}

 nodeSelector:

 kubernetes.io/arch: amd64

 vm.cpaas.io/baremetal: "true"

 volumes:

 - cloudInitConfigDrive:

 userData: >-

 #cloud-config

 disable_root: false

 ssh_pwauth: true

 users:

 - default

 - name: root

 lock_passwd: false

 hashed_passwd:

$6$0vlhl57e$0rawYwaeu9jL6hBf3XP9lk6XXaMUS9/W6LPbWRinUoXujo39lP3l98VOcOObtr.LDoAv/ylm

 name: cloudinitdisk

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/winiso:2019 # Replace

according to your actual environment

 name: containerdisk

 - containerDisk

 image: registry.example.cn:60070/3rdparty/vmdisks/win-virtio # Replace

according to your actual environment

 name: virtio

 - dataVolume:

 name: aa-test-rootfs

 name: rootfs

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

1. Follow the installation instructions to install the system after entering the installation

page.

Note: During the partition selection step, the bus must be sata for the disk to be

correctly recognized. Therefore, you need to select each partition in turn and click

Delete to remove all partitions, allowing the system to handle it automatically.

2. After configuring the administrator account password, click Send Remote Command

in the top left of the page, then select Ctrl-Alt-Delete from the dropdown menu.

3. When prompted The Ctrl+Alt+Delete combination will restart the server, confirm

to restart, click OK.

4. Enter the password to access the Windows system desktop; at this point, the

Windows operating system installation is complete.

This tool primarily contains the necessary drivers.

1. Open File Explorer.

2. Double-click CD Drive(E:) virtio-win-<version>, run the virtio-win-guest-tools

directory to enter the installation page, and follow the installation instructions. The

<version> part should be based on the actual situation.

3. After the installation is complete, power off the Windows system.

Please refer to Export Virtual Machine Image for the specific operation.

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Machines.

Install Windows Operating System3

Install virtio-win-tools4

Export Custom Windows Image5

Use Windows Image6

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

3. Click on Create Virtual Machine.

4. Fill in the necessary parameters on the form page. For the image, select the exported

Windows image. For detailed parameters and configuration, please refer to Create

Virtual Machine.

5. (Optional) If using a newer operating system, such as Windows 11, enable features

like clock, UEFI, TPM, etc. Switch to YAML and replace the original YAML file with the

following YAML file.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

apiVersion: kubevirt.io/v1

kind: VirtualMachineInstance

metadata:

 labels:

 special: vmi-windows

 name: vmi-windows

spec:

 domain:

 clock:

 timer:

 hpet:

 present: false

 hyperv: {}

 pit:

 tickPolicy: delay

 rtc:

 tickPolicy: catchup

 utc: {}

 cpu:

 cores: 2

 devices:

 disks:

 - disk:

 bus: sata

 name: pvcdisk

 interfaces:

 - masquerade: {}

 model: e1000

 name: default

 tpm: {}

 features:

 acpi: {}

 apic: {}

 hyperv:

 relaxed: {}

 spinlocks:

 spinlocks: 8191

 vapic: {}

 smm: {}

 firmware:

 bootloader:

 efi:

 secureBoot: true

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

6. Click Create.

By configuring a NodePort type internal route, expose the port for remote desktop

connections.

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Machines.

3. Click on the virtual machine name created with the Windows image in the list to enter

the details page.

4. Click on the Add icon next to Internal Route in the Login Information area.

5. Configure parameters according to the following instructions.

Parameter Description

Type Select NodePort.

Port
Protocol: Select TCP.

Service Port: Use 3389.

Virtual Machine Port: Use 3389.

Add Internal Route7

 uuid: 5d307ca9-b3ef-428c-8861-06e72d69f223

 resources:

 requests:

 memory: 4Gi

 networks:

 - name: default

 pod: {}

 terminationGracePeriodSeconds: 0

 volumes:

 - name: pvcdisk

 persistentVolumeClaim:

 claimName: disk-windows

 - name: winiso

 persistentVolumeClaim:

 claimName: win11cd-pvc

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

Parameter Description

Service Port Name: Use rdp.

6. Click OK to return to the details page.

7. Click on the Internal Route link in the Login Information area.

8. Save the Virtual IP information in the basic information area and the Host Port

information in the port area.

This document discusses using the Windows operating system for remote connection as an

example. Other operating systems can use software that supports the RDP protocol for

connection.

1. Open Remote Desktop Connection.

2. Enter the saved Virtual IP and Host Port from the Add Internal Route step, formatted as

Virtual IP:Host Port, for example: 192.1.1.1:3389 .

3. Click Connect.

Remote Access

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

This document describes a virtual machine solution implemented based on the open-source

component KubeVirt. It utilizes KubeVirt virtualization technology to create a Linux operating

system image from an ISO image file.

Prerequisites

Constraints and Limitations

Procedure

Convert Linux ISO Image into Docker Image

Create Virtual Machine

Install Linux Operating System

Modify YAML File

Install Required Software and Modify Configuration

Export and Use the Custom Linux Image

All components in the cluster are functioning properly.

Creating Linux Images Based on ISO Using
KubeVirt

TOC

Prerequisites

Menu ON THIS PAGE

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

A Linux image should be prepared in advance. This document uses the Ubuntu operating

system as an example.

A repository for storing images should be prepared in advance. This document uses the

build-harbor.example.cn repository as an example; please replace it according to your

actual environment.

When starting KubeVirt, the file system size of the custom image will affect the speed of

writing the image to the PVC disk. If the file system is too large, it may result in a prolonged

creation time.

It is recommended to keep the Linux root partition size below 100G to minimize the initial

size. After configuring cloud-init, allocate larger storage for the root partition when creating

the virtual machine, and the system will automatically expand it.

1. Navigate to the directory where the ISO image is stored and execute the following

command in the terminal to rename the ISO image to ubuntu.iso.

2. Create a Dockerfile by executing the following command.

3. Edit the Dockerfile, add the following content, and save it.

↗

Constraints and Limitations

Procedure

Convert Linux ISO Image into Docker Image1

mv <ISO image name> ubuntu.iso # Replace <ISO image name> with the actual image

name, e.g., mv ubuntu-24.04-live-server-amd64.iso ubuntu.iso

touch Dockerfile

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/

4. Build the Docker image by executing the following command.

5. Push the image to the repository by executing the following command.

1. Enter the Container Platform.

2. Click Virtualization > Virtual Machines in the left navigation bar.

3. Click Create Virtual Machine.

4. Fill in the parameters on the form page as follows. For specific parameters and

configurations, please refer to Create Virtual Machine.

Parameter Description

Select Image Choose the template image for the virtual machine.

IP Address Keep default, which will be obtained via DHCP.

Network Mode Use NAT mode; do not use bridged mode here.

5. Switch to YAML.

6. Replace the configuration under the spec.template.spec.domain.devices.disks field

with the following content.

Create Virtual Machine2

FROM scratch

ADD --chown=107:107 ubuntu.iso /disk/

docker build -t build-harbor.example.cn/3rdparty/vmdisks/ubuntu-iso:24.04 . #

Please replace the repository according to your actual environment

docker push build-harbor.example.cn/3rdparty/vmdisks/ubuntu-iso:24.04 # Please

replace the repository according to your actual environment

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

7. Add the following content under the spec.template.spec.volumes field.

8. Review the YAML file; the complete YAML configuration after completion is as follows.

 domain:

 devices:

 disks:

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - disk:

 bus: virtio

 name: cloudinitdisk

 - disk:

 bus: virtio

 name: rootfs

 bootOrder: 10

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/ubuntu-iso:24.04 #

Please replace the image according to your actual environment

 name: containerdisk

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

apiVersion: kubevirt.io/v1alpha3

kind: VirtualMachine

metadata:

 annotations:

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa

 name: aa

spec:

 dataVolumeTemplates:

 - metadata:

 creationTimestamp: null

 labels:

 vm.cpaas.io/reclaim-policy: Delete

 vm.cpaas.io/used-by: aa

 name: aa-rootfs

 spec:

 pvc:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: vm-cephrbd

 volumeMode: Block

 source:

 http:

 url: http://192.168.254.12/kube-debian-12.2.0-x86-out.qcow2

 running: true

 template:

 metadata:

 annotations:

 cpaas.io/creator: test@example.io

 cpaas.io/display-name: ""

 cpaas.io/updated-at: 2024-09-09T03:49:08Z

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 creationTimestamp: null

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa

 spec:

 accessCredentials:

 - sshPublicKey:

 propagationMethod:

 qemuGuestAgent:

 users:

 - root

 source:

 secret:

 secretName: test-xeon

 affinity:

 nodeAffinity: {}

 architecture: amd64

 domain:

 devices:

 disks:

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - disk:

 bus: virtio

 name: cloudinitdisk

 - disk:

 bus: virtio

 name: rootfs

 bootOrder: 10

 interfaces:

 - bridge: {}

 name: default

 machine:

 type: q35

 resources:

 limits:

 cpu: "1"

 memory: 2Gi

 requests:

 cpu: "1"

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

9. Click Create.

10. Click Actions > VNC Login.

11. When prompted with press any key boot from CD or DVD, press any key to enter

the Windows installation program; if you do not see the prompt, click Send Remote

Command in the upper left corner of the page, and then click Ctrl-Alt-Delete from

the dropdown menu to reboot the server.

Note: If a message appears at the top of the virtual machine detail page stating

Current virtual machine has configuration changes that require a restart to take

effect. Please restart., you can ignore this message; a restart is not necessary.

Install Linux Operating System3

 memory: 2Gi

 networks:

 - name: default

 pod: {}

 nodeSelector:

 kubernetes.io/arch: amd64

 vm.cpaas.io/baremetal: "true"

 volumes:

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/ubuntu-iso:24.04 #

Please replace the image according to your actual environment

 name: containerdisk

 - cloudInitConfigDrive:

 userData: |-

 #cloud-config

 disable_root: false

 ssh_pwauth: false

 users:

 - default

 - name: root

 lock_passwd: false

 hashed_passwd: ""

 name: cloudinitdisk

 - dataVolume:

 name: aa-rootfs

 name: rootfs

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

1. After entering the installation page, follow the installation guide to proceed. This

document gives an example of installing the Ubuntu operating system; the

configuration items during the installation process of different operating systems are

generally similar, and thus will not be elaborated further. Some configuration items

are explained below.

Configuration Description

Installation Type
It is recommended to use a minimal installation to

minimize the image size.

Storage

Configuration

Choose custom storage. Format the disk to ext4 or xfs

format and mount it to the root partition (/).

Note: Do not use LVM for disk partitioning (Create

volume group (LVM)).

SSH

Configuration
Choose to install the OpenSSH tools for SSH access.

2. Wait for the installation to complete.

1. Enter the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click on the Virtual Machine Name in the list to enter the details page.

4. Click Stop.

5. Click Actions > Update in the upper right corner.

6. Switch to YAML.

7. Confirm that the disk named rootfs under spec.template.spec.domain.devices.disks

has a bootOrder of 1. If it is not 1, modify it to 1.

8. Delete the relevant content for the disk named containerdisk under

spec.template.spec.domain.devices.disks; the specific content to delete is as follows.

Modify YAML File4

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

9. Delete the relevant content for the disk named containerdisk under

spec.template.spec.volumes; the specific content to delete is as follows.

10. Click Update.

11. Click Start.

Note: The following commands and configuration files may vary slightly between

different operating systems; please adjust according to your actual environment.

1. Enter your username and password to log in to the operating system.

2. Switch to root user privileges.

3. Install the software packages.

For CentOS series, execute the command:

For Debian series, execute the command:

4. Edit the SSHD configuration file.

1. Execute the following command to edit the sshd_config file.

Install Required Software and Modify Configuration5

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/ubuntu-iso:24.04

 name: containerdisk

yum install cloud-utils cloud-init qemu-guest-agent vim

apt install cloud-init cloud-guest-utils qemu-guest-agent vim

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

2. Add the following configurations.

3. Save the modified configuration.

5. Execute the following command to delete the default password for the root user.

6. Modify the source address file.

1. Execute the following command to modify the system's source address file and

change the address to a suitable mirror site address.

2. Save the configuration after modifications.

7. Modify the cloud-init configuration to automatically expand the root directory.

1. Execute the following command to edit the cloud.cfg configuration file.

2. Add the following configuration content.

vim /etc/ssh/sshd_config

PermitRootLogin yes # Allow the root user to log in with a password

PubkeyAuthentication yes # Allow key-based login

passwd -d root

vim /etc/apt/sources.list.d/ubuntu.sources

vim /etc/cloud/cloud.cfg

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

3. Save the configuration after modifications.

8. After completing the configuration, shut down the operating system.

For specific operations, please refer to Export Virtual Machine Image.

Export and Use the Custom Linux Image6

runcmd:

 - [growpart, /dev/vda, 1] # The growpart command is used to extend the

partition on the disk, which will extend the /dev/vda1 partition.

 - [xfs_growfs, /dev/vda1] # The xfs_growfs command is used to extend the

XFS file system to occupy all available space on the partition. /dev/vda1 is

the partition where the file system to be extended is located. After extending

the partition, using xfs_growfs ensures that the file system itself is also

expanded to the new partition size.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

This feature is used to export the system image of a virtual machine and upload it to object

storage, allowing the files in object storage to be added as sources to the platform's virtual

machine images.

Procedure

Stopping the Virtual Machine

Creating the vmexport Resource

Downloading the Virtual Machine Image File

Uploading the Virtual Machine Image File to Object Storage

Creating the Virtual Machine Image

Note: All operations below must be performed on the control node of the cluster where the

virtual machine resides.

1. Go to Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machines.

Exporting Virtual Machine Images

TOC

Procedure

Stopping the Virtual Machine1

Menu ON THIS PAGE

Exporting Virtual Machine Images - Alauda Container Platform

3. Click on the name of the virtual machine whose system image needs to be exported,

which will redirect you to the virtual machine details page in the Container Platform.

4. Click Stop.

1. Open the CLI tool.

2. Execute the following command to set variables.

Parameter explanation:

NAMESPACE: The name of the namespace where the virtual machine resides;

replace the <namespace> part with this name.

VM_NAME: The name of the virtual machine whose system image needs to be

exported; replace the <vm_name> part with this name.

TTL_DURATION: The lifetime of the export task, defaulting to 2 hours but can be

increased as needed.

3. Execute the following command to create the vmexport resource.

Creating the vmexport Resource2

NAMESPACE=<namespace>

VM_NAME=<vm_name>

TTL_DURATION=2h

cat <<EOF | kubectl create -f -

apiVersion: export.kubevirt.io/v1alpha1

kind: VirtualMachineExport

metadata:

 name: export-$VM_NAME

 namespace: $NAMESPACE

spec:

 ttlDuration: $TTL_DURATION

 source:

 apiGroup: "kubevirt.io"

 kind: VirtualMachine

 name: $VM_NAME

EOF

Exporting Virtual Machine Images - Alauda Container Platform

If similar echo information appears, it indicates successful creation.

4. Execute the following command to check the status of the vmexport resource.

Echo information:

5. When the PHASE field in the echo information changes to Ready, type ctrl (control) +

c to stop the watch operation.

6. Execute the following command to get the TOKEN.

1. Execute the following command to get the IP address of the virtual machine export

Pod in the specified namespace and store it in the EXPORT_SERVER_IP

environment variable.

2. Execute the following command to set the URL environment variable, which points to

the virtual machine's disk image file.

Downloading the Virtual Machine Image File3

virtualmachineexport.export.kubevirt.io/export-k1 created

kubectl -n $NAMESPACE get vmexport export-$VM_NAME -w

NAME SOURCEKIND SOURCENAME PHASE

export-k1 VirtualMachine k1 Ready

TOKEN=$(kubectl -n $NAMESPACE get secret export-token-export-$VM_NAME -o

jsonpath={.data.token} | base64 -d)

EXPORT_SERVER_IP=$(kubectl -n $NAMESPACE get po virt-export-export-$VM_NAME -o

jsonpath='{.status.podIP}')

URL=https://$EXPORT_SERVER_IP:8443/volumes/$VM_NAME-rootfs/disk.img.gz

Exporting Virtual Machine Images - Alauda Container Platform

3. Execute the following command to download the image file, with the downloaded file

named disk.img.gz.

Upload the downloaded image file to object storage. Any S3 tool can be used for the

upload, and this document will introduce the mc (minio-client) tool as an example.

1. Execute the following command to configure the mc tool and connect to the specified

S3 storage service.

Parameter explanation:

ENDPOINT: The address of the S3 storage service; replace the <ENDPOINT> part

with this address.

ACCESSKEY, SECRETKEY: The user ak and sk of the S3 storage service used

for authentication; for related information, please refer to MinIO Object Storage .

2. Execute the following command to create a bucket for storing the virtual machine

image files.

3. Execute the following command to upload the exported virtual machine image file

disk.img.gz to the created bucket.

Uploading the Virtual Machine Image File to Object
Storage

4

↗

Creating the Virtual Machine Image5

curl -k -O -H "x-kubevirt-export-token: $TOKEN" $URL

mc alias set minio <ENDPOINT> <ACCESSKEY> <SECRETKEY>

mc mb minio/vmdisks

mc put disk.img.gz minio/vmdisks

Exporting Virtual Machine Images - Alauda Container Platform

https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect

1. Go to Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machine

Images.

3. Click Add Virtual Machine Image.

4. In the image address, fill in <ENDPOINT>/vmdisks/disk.img.gz, replacing the

<ENDPOINT> part with the address of the S3 storage service. For other parameter

explanations, please refer to Adding Virtual Machine Images.

5. Click Add.

Exporting Virtual Machine Images - Alauda Container Platform

Function Action
Platform

Administrator

Platform

auditors

Project

Manager

virtualmachineimagetemplates

acp-

virtualmachineimagetemplates

View ✓ ✓ ✓

Create ✓ ✕ ✕

Update ✓ ✕ ✕

Delete ✓ ✕ ✕

Permissions

Menu

Permissions - Alauda Container Platform

Virtual Machine

Introduction

Introduction

Guides

Creating Virtual Machines/Virtual Machine Groups
Prerequisites

Notes

Create Virtual Machine

Create Virtual Machine Group

Batch Operations on Virtual Machines
Procedure

Logging into the Virtual Machine using VNC
Procedure

Menu

Virtual Machine - Alauda Container Platform

Managing Key Pairs
Creating Key Pairs

Updating Key Pairs

Deleting Key Pairs

Managing Virtual Machines
Reset Password

Update Key

Update Specifications

Live Migration

Update NAT Network Configuration

Update Tags and Annotations

Add Service

Reinstall Operating System

Configure IP

Monitoring and Alerts

Monitoring

Alerts

Quick Location of Virtual Machines
Prerequisites

Procedure

How To

Virtual Machine - Alauda Container Platform

Configuring USB host passthrough
Feature Overview

Use Cases

Prerequisites

Steps

Operation Result

Learn More

Virtual Machine Hot Migration
Overview

Constraints and Limitations

Prerequisites

Operation Steps

Virtual Machine Recovery
Steps to Operate

Clone Virtual Machines on KubeVirt

Ensure Prerequisites

Start Quickly

Understand the VirtualMachineClone Object

Virtual Machine - Alauda Container Platform

Physical GPU Passthrough Environment Preparation
Constraints and Limitations

Prerequisites

Operating Steps

Result Verification

Related Operations

Configuring High Availability for Virtual Machines

Overview

Glossary

Component Overview

Flow of events during fencing and remediation

Procedure

Create a VM Template from an Existing Virtual Machine
Prerequisites

Procedure

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual
Machine Nodes

Problem Description

Cause Analysis

Solutions

Virtual Machine - Alauda Container Platform

Hot Migration Error Messages and Solutions

Virtual Machine - Alauda Container Platform

KubeVirt provides CRDs (Custom Resource Definitions) such as VirtualMachine and

VirtualMachineInstance to abstract virtual machine (VM) resources. Based on these CRDs,

users gain comprehensive VM management capabilities. Building on this foundation, ACP
Virtualization With KubeVirt further enhances usability by offering a Web Console, enabling

users to perform various operations with greater ease.

Introduction

Menu

Introduction - Alauda Container Platform

Guides

Creating Virtual Machines/Virtual Machine Groups

Prerequisites

Notes

Create Virtual Machine

Create Virtual Machine Group

Batch Operations on Virtual Machines

Procedure

Logging into the Virtual Machine using VNC

Procedure

Managing Key Pairs
Creating Key Pairs

Updating Key Pairs

Deleting Key Pairs

Menu

Guides - Alauda Container Platform

Managing Virtual Machines
Reset Password

Update Key

Update Specifications

Live Migration

Update NAT Network Configuration

Update Tags and Annotations

Add Service

Reinstall Operating System

Configure IP

Monitoring and Alerts
Monitoring

Alerts

Quick Location of Virtual Machines
Prerequisites

Procedure

Guides - Alauda Container Platform

Create a virtual machine (VirtualMachineInstance) using an image, and schedule the virtual

machine to physical nodes with Kubevirt components installed and virtualization enabled.

You can create a single virtual machine through Create Virtual Machine, or you can quickly

create multiple virtual machines (VirtualMachineInstance) with the same configuration by

using Create Virtual Machine Group (virtualMachinePool).

Prerequisites

Notes

Create Virtual Machine

Procedure

Related Operations

Create Virtual Machine Group

Procedure

Before creating a virtual machine using an image, please confirm the following with the

platform administrator:

Creating Virtual Machines/Virtual Machine
Groups

TOC

Prerequisites

Menu ON THIS PAGE

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

The target cluster is a self-built cluster, and the Kubevirt components have been

deployed.

The target node must be a physical node with virtualization enabled.

A virtual machine image has been added to the platform.

If you need to use the physical GPU passthrough feature of the virtual machine, please

contact the platform administrator for the following configuration:

1. Obtain GPU passthrough environment preparation plan and prepare the necessary

environment.

2. Prepare the required physical GPU and enable the related features for physical GPU

passthrough for the virtual machine.

When using Windows virtual machines, only logins via the username/password set in the

virtual machine image are supported. Please contact the platform administrator to obtain this

information in advance.

Note: The following content presents an example of creating a virtual machine using a form,

and you may also switch to YAML format for the operation.

1. Enter Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Create Virtual Machine.

Notes

Create Virtual Machine

Procedure

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

4. In the Basic Information area, fill in the name and display name of the virtual machine and

set tags or annotations.

Parameter Description

Tags

Used to select objects and find collections of objects that meet

certain criteria. Must be a key-value pair, for example:

app.kubernetes.io/name: hello-app.

Annotations

Used to provide any information to development and operations

teams. Must be a key-value pair, for example: cpaas.io/maintainer:

kim.

5. Set the machine type and choose a virtual machine image.

Parameter Description

Specifications
You can select recommended usage scenarios or custom

resource limits based on your needs.

Physical GPU

(Alpha)

Select the model of the physical GPU; only one physical GPU

can be allocated to each virtual machine.

Note: Physical GPU passthrough for the virtual machine refers to

the direct allocation of the actual Graphics Processing Unit (GPU)

to the virtual machine in a virtualization environment, enabling it

to directly access and utilize the physical GPU to achieve

graphical performance equivalent to running directly on a

physical machine, avoiding performance bottlenecks caused by

virtual graphics adapters and enhancing overall performance.

Image

Choose a public image that has been assigned to the platform

project by the platform administrator.

Note: Only supports selecting images with the same CPU

architecture as the cluster architecture.

6. In the Storage area, refer to the following instructions to configure the relevant information.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

Disk Name
The name of the storage disk; the system disk name cannot be

modified.

Type

Root Disk: The system automatically creates a VirtIO type rootfs

system disk to store the operating system and data.

Data Disk: Click to add multiple data disks for persistent data

storage. Defaults to VirtIO device.

Note: Data disk names must not duplicate existing disk names.

Volume

Mode

File System: Mount the disk as a mounted file directory.

Block Device: Mount the disk as a block device.

Storage

Class

The platform maintains virtual machine disks by creating and

managing persistent volume claims. You need to specify a storage

class required for dynamically creating persistent volume claims.

Different storage classes support different volume modes; if there is

no available storage class for the selected volume mode, please

contact an administrator for addition.

Capacity
The capacity required for the virtual machine storage; the minimum

for the system disk is 20 G.

Delete with

VM

Defaults to enabled, cannot be modified, indicating that the disk data

will also be deleted when the virtual machine is deleted.

7. In the Network area, refer to the following instructions to configure the relevant information.

Parameter Description

IP Address
Defaults to Dynamic (DHCP); an IP is dynamically assigned

when the virtual machine starts, and the IP is released when the

virtual machine stops.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

If binding a Static IP, the virtual machine will always use this IP

address even after a restart. If there are no available IPs in the

current project, please release an IP appropriately first.

Network

Mode

Bridged: The virtual machine shares the same IP address as the

container group and communicates externally through this IP

address.

NAT: The virtual machine will be assigned an internal IP address

but will translate to the container group IP address for external

communication. Open ports indicate the exposed ports of the

virtual machine, such as the SSH service port 22; not filling in

Open Ports indicates that all ports are open.

Auxiliary

Network

Card

Add auxiliary network cards as needed.

Note:

If auxiliary network card features are required or there are no

available types of auxiliary network card networks, please contact

the platform administrator for configuration.

SR-IOV types only support Linux operating systems on x86_64

architecture.

Defaults to obtaining IP addresses via DHCP.

After multiple reboots, SR-IOV virtual machines may exhibit two

different VFs but with the same MAC address.

8. In the Initialization Settings area, refer to the following instructions to configure the

relevant information.

Parameter Description

Keys Always use SSH keys for remote login verification. This method

does not require password validation; it is recommended to log in to

the virtual machine using keys.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

You can use the keys already available in the platform or create

new keys immediately; all relevant keys can be viewed on the

Virtualization > Key Pairs page.

Only individuals with the private key can access the virtual

machine via SSH. If multiple people are to maintain the virtual

machine together, multiple keys can be associated, and private

keys can be assigned to different users. If key leakage occurs,

the associated key can be promptly revoked to reduce damage.

The public key of the SSH key is stored in the platform in a

confidential form; the platform does not store your private key, so

please keep it safe by yourself.

Please consult the relevant operating system documentation for

the root user password.

Password

Use the operating system user and password for login verification,

which can still be updated to the key method later.

The user is only an initial account; after the virtual machine is

successfully created, you can also create other operating system

users in the virtual machine for login.

The platform encrypts and stores your root user password, and

you will not see its plaintext password again, so please keep it

safe by yourself.

Start

Immediately

Defaults to enabled. Enabling this option will start the virtual

machine immediately after creation, otherwise only the virtual

machine will be created.

9. (Optional) In the Advanced Configuration area, refer to the following instructions to

configure the relevant information.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

Health

Check

Liveness Check: Checks if the virtual machine is in a healthy

state; if the detection result is abnormal, it will determine whether to

restart the instance based on the health check configuration.

Availability Check: Checks if the virtual machine has completed

startup and is in a normal service state; if the health status of the

virtual machine instance is detected as abnormal, the state of the

virtual machine will be updated.

For related parameter descriptions.

Node

Affinity

Preferred: The virtual machine will be scheduled to nodes that

meet affinity requirements whenever possible. The system will

determine nodes capable of running the virtual machine by

combining affinity weights and other scheduling requirements (e.g.,

compute resource requirements).

Required: The virtual machine will only be scheduled to nodes that

fully meet affinity requirements.

10. After confirming that the information is correct, click Create.

Wait for the virtual machine to change from Creating to Running status.

You can click the ⋮ icon on the right side of the list page or the Actions in the upper right

corner of the details page to update or delete the virtual machine as needed. For other related

operations like resetting passwords or updating keys, please refer to Manage Virtual

Machines.

Note:

Updates can only be performed when the virtual machine is in Abnormal, Unknown, or

Stopped status.

Related Operations

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Updates do not support displaying disks that were separately attached or created after the

virtual machine was created.

By default, Start Immediately is disabled during updates; you can enable it as needed.

Note: The following content presents an example of creating a virtual machine group using a

form, and you may also switch to YAML format for the operation.

1. Enter Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machine Groups.

3. Click Create Virtual Machine Group.

4. In the Basic Information area, refer to the following instructions to configure the

information for the virtual machine group.

Parameter Description

Number of

Instances

The number of virtual machines created by the virtual machine

group.

Anti-Affinity

between

Instances

If enabled, when scheduling multiple virtual machines to nodes, it

will try to distribute the virtual machines across different nodes,

which can enhance the high availability of a group of virtual

machines.

Tags

Tags can be added to the virtual machine group. Tags can be

used to select objects and find collections of objects that meet

certain criteria. Must be a key-value pair, for example:

app.kubernetes.io/name: hello-app.

5. In the Virtual Machine Template area, refer to Create Virtual Machine to configure unified

tags, annotations, specifications, images, storage, and other information for all the virtual

Create Virtual Machine Group

Procedure

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

machines in the group.

6. After confirming that the information is correct, click Create.

Tip: After successful creation, you can go to the Virtual Machines list page to view the

information of the virtual machines created via the virtual machine group.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Perform batch operations such as starting, stopping, restarting, and deleting virtual machines.

Procedure

1. Access the Container Platform.

2. Click on Virtualization > Virtual Machines in the left navigation bar.

3. Locate the target virtual machine, click ⋮ to perform operations on a single virtual machine,

or refer to the image below for batch operations on virtual machines.

Note:

The Start/Batch Start operation can be executed when the virtual machine is in a

suspended or stopped state; the Stop/Batch Stop operation can be executed when the

virtual machine is in a Preparing, Starting, Running, Suspended, Unknown, or Exception

state; the Restart/Batch Restart operation can be executed when the virtual machine is

in a Running state.

Performing a forced Restart/Stop operation on a virtual machine is equivalent to cutting

off power to the virtual machine, which may result in loss of data that has not been

Batch Operations on Virtual Machines

TOC

Procedure

Menu ON THIS PAGE

Batch Operations on Virtual Machines - Alauda Container Platform

written to disk.

4. Complete the operations according to the prompts on the interface. When the virtual

machine changes to the states below, the operation is successful.

Operation Status

Start Virtual Machine Running

Stop Virtual Machine Stopped

Restart Virtual Machine Running

Batch Operations on Virtual Machines - Alauda Container Platform

Log into the virtual machine using the Web Console (VNC) as an emergency operation

method.

Procedure

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click ⋮ > VNC Login.

4. The console window will open automatically; you will need to enter your username and

password to log in.

Logging into the Virtual Machine using VNC

TOC

Procedure

Menu ON THIS PAGE

Logging into the Virtual Machine using VNC - Alauda Container Platform

Note:

Supports sending common keyboard commands.

Supports copying and pasting commands and parameters.

Logging into the Virtual Machine using VNC - Alauda Container Platform

Create, update or delete key pairs.

Creating Key Pairs

Updating Key Pairs

Deleting Key Pairs

1. Navigate to Container Platform.

2. In the left navigation bar, click Virtualization > Key Pairs.

3. Click Create Key Pair.

Currently, only SSH type key pairs are supported. You can manually import keys or let the

system automatically generate a key pair. When using the system-generated key pair, the

platform supports automatically downloading the private key to your local machine. The

platform will not save the private key.

4. Click Create.

Managing Key Pairs

TOC

Creating Key Pairs

Menu ON THIS PAGE

Managing Key Pairs - Alauda Container Platform

1. Navigate to Container Platform.

2. In the left navigation bar, click Virtualization > Key Pairs.

3. Locate the Key Pair Name, click ⋮ > Update.

4. After re-importing or having the system generate a new key pair, click Update.

1. Navigate to Container Platform.

2. In the left navigation bar, click Virtualization > Key Pairs.

3. Locate the Key Pair Name, click ⋮ > Delete, and confirm.

Updating Key Pairs

Deleting Key Pairs

Managing Key Pairs - Alauda Container Platform

Reset Password

Procedure

Update Key

Procedure

Update Specifications

Live Migration

Update NAT Network Configuration

Procedure

Update Tags and Annotations

Add Service

Reinstall Operating System

Procedure

Configure IP

Procedure

Reset the root user password. This password also serves as the login password for the virtual

machine when logging in using a password.

Managing Virtual Machines

TOC

Reset Password

Menu ON THIS PAGE

Managing Virtual Machines - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the virtual machine and select ⋮ > Reset Password.

4. Set the password.

5. Click Reset.

Note: Please keep your password safe. To ensure environment security, the platform

encrypts and stores your password, and you will not be able to see the plaintext password

again.

Update the SSH keys.

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the virtual machine and select ⋮ > Update Key.

4. Select one or more associated keys, or Create Key.

5. Choose whether to restart immediately; updating keys requires a restart of the virtual

machine to take effect.

6. Click Update.

Procedure

Update Key

Procedure

Update Specifications

Managing Virtual Machines - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the target virtual machine and click ⋮ > Update Specifications.

4. Modify the relevant resources based on the platform's recommended scenarios or custom

needs.

5. Choose whether to Restart Immediately; the configuration will take effect after restarting.

6. Click Update.

Note: If you need documentation regarding live migration operations, please contact the

administrator for assistance.

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the target virtual machine and click ⋮ > Live Migration.

4. Click Confirm.

When using NAT network mode, the platform by default opens port 22 for SSH services, and

you can open other ports as needed.

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

Live Migration

Update NAT Network Configuration

Procedure

Managing Virtual Machines - Alauda Container Platform

3. Click Virtual Machine Name.

4. In the Basic Information section, click the icon to the right of Open Port.

5. Enter the port number and press the Enter key to confirm.

6. Choose whether to Restart Immediately; the configuration will take effect after restarting.

7. Click Update.

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Virtual Machine Name.

4. In the Basic Information section, click the icon to the right of Tags or Annotations.

5. Configure as needed and click Update.

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Virtual Machine Name.

4. In the Login Information section, click the icon to the right of Internal Route.

5. Refer to the Create Service page for quick addition of internal routes for the virtual

machine.

6. Click Confirm.

Update Tags and Annotations

Add Service

Managing Virtual Machines - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_service.html

It is strongly recommended to back up data before reinstalling the operating system to prevent

data loss.

Note: This operation will clear all data in the virtual machine's system disk, as well as all

snapshots, and is irreversible. Please proceed with caution!

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the virtual machine and select ⋮ > Reinstall Operating System.

4. In the Reinstall Operating System window, configure the following parameters.

Provisioning Method: Currently supports public images.

Select Image: By default, the current operating system image will be used for

reinstallation. If you wish to reinstall a new operating system, first select the operating

system of the virtual machine image, then choose the virtual machine image that

belongs to that operating system.

5. Click Reinstall.

Assign an IP to the virtual machine using dynamic allocation (DHCP) or bind a fixed IP to the

virtual machine; the new IP will take effect after the virtual machine is restarted.

1. Access the Container Platform.

Reinstall Operating System

Procedure

Configure IP

Procedure

Managing Virtual Machines - Alauda Container Platform

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the target virtual machine and click ⋮ > Configure IP.

4. Configure the IP Address.

Fill in an available IP: binding a fixed IP means that even after restarting, the virtual

machine will consistently use this IP address.

Leave the option blank: this will use dynamic allocation (DHCP) to acquire an IP,

assigning the IP when the virtual machine starts and releasing it when the virtual

machine stops.

5. Choose whether to Restart Immediately; the configuration will take effect after restarting.

6. Click Configure.

Managing Virtual Machines - Alauda Container Platform

Monitor and alert on virtual machines in terms of CPU, memory, storage, and network. To

facilitate timely alerts, notification policies can also be configured.

The intuitively presented monitoring data can be used to provide decision-making support for

operations inspection or performance tuning, while the comprehensive alerting and notification

mechanism will help ensure the stable operation of virtual machines.

Monitoring

Alerts

Configuring Alert Policies

Handling Alerts

Binding Notification Policies

By default, the platform collects commonly used performance monitoring metrics for virtual

machines, including CPU, memory, storage, and network. Navigate to Virtualization > Virtual
Machines, and on the Monitoring tab in the virtual machine details, you can view real-time

monitoring data for the metrics.

Monitoring and Alerts

TOC

Monitoring

Menu ON THIS PAGE

Monitoring and Alerts - Alauda Container Platform

To enable alerts, you must first create an alert policy. An alert policy describes the objects you

wish to monitor, the conditions under which you wish to be alerted, and how you will be

notified of relevant alerts. Navigate to Container Platform > Virtualization > Virtual
Machines, and in the virtual machine details, click Create Alert Policy on the Alerts tab to

complete the configuration.

Parameter Description

Alert Type

- Metric Alert: The monitored object is a platform predefined metric,

such as Memory Usage Rate.

- Event Alert: The monitored object is the cause of an event, that is, the

reason the virtual machine transitioned to its current state, e.g.,

BackOff, Pulling, Failed.

Trigger

Condition

Composed of comparison operators, alert thresholds, and duration. By

comparing the real-time monitoring results with the set thresholds, it

determines whether to alert.

If a duration is set, the platform will also compare the duration for

which the monitored object has been in the alert state.

Alert Level - Hint: The monitored object has expected issues that do not

immediately affect business operations but pose potential risks. For

Alerts

Configuring Alert Policies

Monitoring and Alerts - Alauda Container Platform

Parameter Description

example, if CPU usage exceeds 70% for 3 minutes.

- Warning: The monitored object has operational risks that may affect

normal business operations if not addressed promptly. For example, if

CPU usage exceeds 80% for 3 minutes.

- Serious: The monitored object has known issues that may lead to

platform functionality failures, affecting normal business operations.

- Disaster: The monitored object has failed, resulting in platform

service interruptions, data loss, with significant impact.

Tip: The virtual machine alerting function is similar to the platform's general alerting function.

For more detailed configuration guidance, please refer to the general Alerts documentation.

Navigate to the Alerts tab, and if there are alert status strategies indicated, please address

them promptly.

In addition to real-time alerts on the Alerts tab, the platform also supports sending alert

information via email, SMS, and other means to relevant personnel, notifying them to take

necessary measures to resolve issues or prevent failures. The notification policy needs to be

set up by contacting the administrator.

Handling Alerts

Binding Notification Policies

Monitoring and Alerts - Alauda Container Platform

The platform supports displaying the list of virtual machines by cluster, allowing platform

administrators to quickly locate the namespace of the virtual machine and perform operations

such as scaling up or troubleshooting, thereby improving operational efficiency.

Prerequisites

Procedure

Ensure that the virtualization feature is enabled for the current cluster before use. Please refer

to Install.

1. Go to Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machines.

3. Select Cluster to view the list of virtual machines in that cluster.

4. You can quickly locate the virtual machine by its name, IP address, or creator.

Quick Location of Virtual Machines

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Quick Location of Virtual Machines - Alauda Container Platform

5. Click on the virtual machine Name link to enter the details page of that virtual machine,

where you can perform operations such as scaling up or troubleshooting.

Quick Location of Virtual Machines - Alauda Container Platform

How To

Configuring USB host passthrough

Feature Overview

Use Cases

Prerequisites

Steps

Operation Result

Learn More

Virtual Machine Hot Migration

Overview

Constraints and Limitations

Prerequisites

Operation Steps

Virtual Machine Recovery
Steps to Operate

Clone Virtual Machines on KubeVirt
Ensure Prerequisites

Start Quickly

Understand the VirtualMachineClone Object

Menu

How To - Alauda Container Platform

Physical GPU Passthrough Environment Preparation
Constraints and Limitations

Prerequisites

Operating Steps

Result Verification

Related Operations

Configuring High Availability for Virtual Machines

Overview

Glossary

Component Overview

Flow of events during fencing and remediation

Procedure

Create a VM Template from an Existing Virtual Machine
Prerequisites

Procedure

How To - Alauda Container Platform

Feature Overview

Use Cases

Prerequisites

Steps

Expose USB devices

Assign USB devices to a Virtual Machine

Operation Result

Learn More

Expose multiple USB devices

Assign USB devices to a Virtual Machine

USB(Universal Serial Bus) pass-through feature enables you to access and manage USB

devices from a virtual machine.

Configuring USB host passthrough

TOC

Feature Overview

Use Cases

Menu ON THIS PAGE

Configuring USB host passthrough - Alauda Container Platform

Some applications running in virtual machines (VMs) have encryption requirements and need

to interact with dedicated USB devices. In such cases, it is necessary to passthrough the USB

devices from the host machine to the VM.

The platform version must be at least v3.18.

To assign a USB device to a VM, the USB device must be exposed via a

ResourceName. This can be configured by editing the

spec.permittedHostDevices.usbHostDevices section in the HyperConverged CR under the

kubevirt namespace.

Below is an example configuration for a USB device with ResourceName
kubevirt.io/storage, where the vendor is 0bda and the product is 8812 :

Tip

The vendor and product identifiers of a USB device can be obtained using the lsusb

command. For example:

Prerequisites

Steps

Expose USB devices1

spec:

 permittedHostDevices:

 usbHostDevices:

 - resourceName: kubevirt.io/storage

 selectors:

 - vendor: '0bda'

 product: '8812'

Configuring USB host passthrough - Alauda Container Platform

This command lists all connected USB devices, where ID displays the vendor:product pair.

Now, in the VM configuration, you can add spec.domain.devices.hostDevices.deviceName

to reference the ResourceName provided in the previous step and assign it a local name.

For example:

Tip

Ensure the VM is stopped before editing the configuration.

After completing the configuration, execute the lsusb command within the virtual machine. If

the output lists the host node's USB device, the passthrough was successful. For example:

Assign USB devices to a Virtual Machine2

Operation Result

lsusb

Bus 001 Device 007: ID 0bda:8812 Realtek Semiconductor Corp. RTL8812AU

802.11a/b/g/n/ac 2T2R DB WLAN Adapter

spec:

 domain:

 devices:

 hostDevices:

 - deviceName: kubevirt.io/storage

 name: usb-storage

lsusb

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 001 Device 002: ID 0bda:8812 Realtek Semiconductor Corp. RTL8812AU 802.11a/b/g/n/ac

2T2R DB WLAN Adapter

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Configuring USB host passthrough - Alauda Container Platform

You may want to passthrough multiple USB devices to a virtual machine, such as a keyboard,

mouse, or smart card device. We support assigning multiple USB devices under the same

resourceName. Here's how to configure it:

Tip

Note: All USB devices must be physically connected and detected on the host to ensure

successful assignment to the virtual machine.

Learn More

Expose multiple USB devices1

Assign USB devices to a Virtual Machine2

spec:

 permittedHostDevices:

 usbHostDevices:

 - resourceName: kubevirt.io/peripherals

 selectors:

 - vendor: '0bda'

 product: '8812'

 - vendor: '062a'

 product: '4102'

 - vendor: '072f'

 product: 'b100'

spec:

 domain:

 devices:

 hostDevices:

 - deviceName: kubevirt.io/peripherals

 name: local-peripherals

Configuring USB host passthrough - Alauda Container Platform

Overview

ProCopy

Constraints and Limitations

Prerequisites

Operation Steps

Deploy kubevirt-operator

Create HyperConverged Instance

Prepare the Virtual Machine

Start Hot Migration

The virtual machine hot migration technology allows for moving a virtual machine from one

physical server to another without shutting down or interrupting the virtual machine. The

platform's virtual machine solution is implemented based on the open-source component

KubeVirt, which uses a mode called ProCopy for hot migration by default.

ProCopy (Pre-Copy Memory Migration) is a commonly used virtual machine migration

technology that ensures service continuity during migration by pre-copying the virtual

Virtual Machine Hot Migration

TOC

Overview

ProCopy

Menu ON THIS PAGE

Virtual Machine Hot Migration - Alauda Container Platform

machine's memory data. The specific process is as follows:

1. Initial Phase: At the start of the migration, the source host will copy the virtual machine's

memory pages to the target host while the virtual machine continues to run. Because the

virtual machine continues running, some memory pages may be modified during the

copying process.

2. Iterative Copying: The source host repeatedly copies the modified memory pages to the

target host until the number of modified pages decreases to an acceptable level. Each

round of copying is called an iteration, and the number of unmodified memory pages

gradually decreases after each iteration.

3. Stop and Copy: When the remaining un-copied memory pages are sufficiently few, the

virtual machine will pause briefly (usually only a few seconds to a dozen seconds), during

which the last memory pages are copied to the target host, and the virtual machine's CPU

and device states are synchronized to the target host.

4. Resume Operation: The virtual machine resumes operation on the target host.

It is recommended that the two physical machines involved in the hot migration operation use

the same hardware configuration. If the configurations are inconsistent (for example, different

CPU models), migration may fail.

Please enable the relevant virtual machine hot migration functions in advance.

Note: For detailed steps and parameter explanations, please refer to Deploy Operator.

Constraints and Limitations

Prerequisites

Operation Steps

Deploy kubevirt-operator

Virtual Machine Hot Migration - Alauda Container Platform

1. Go to Administrator.

2. In the left navigation bar, click App Store Management > Operators.

3. Click Cluster at the top of the page to switch to the cluster where the Operator needs to be

deployed.

4. In the OperatorHub tab, click Deploy on the KubeVirt HyperConverged Cluster Operator

card.

5. Configure the parameters as needed and click Deploy. You can check the Operator

deployment status in the Deployed tab.

For specific creation steps, please refer to Create HyperConverged Instance.

Note: It is recommended to use the Kube-OVN Underlay network. For related configurations,

please refer to Create Subnet (Kube-OVN Underlay Network).

1. Go to Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machine.

3. Click Create Virtual Machine.

4. Click More in the Basic Information area to expand more configuration options, and click

Add corresponding to Annotations, adding annotations according to the key-value pairs

below. If the network plugin is Kube-OVN, there is no need to manually fill in this

annotation.

Note: Due to form restrictions, please enter the value of the annotation first before entering

the key of the annotation.

Annotation

Value true

Create HyperConverged Instance

Prepare the Virtual Machine

Virtual Machine Hot Migration - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_subnet.html#kube_ovn_underlay_network

Annotation

Key kubevirt.io/allow-pod-bridge-network-live-migration

5. Configure other virtual machine parameters as needed. For specific parameter

descriptions, please refer to the relevant product documentation.

Parameter Description

Volume Mode Must use Block Mode.

Storage Class Must use CephRBD block storage type storage class.

Network Mode Recommended to use Bridge.

6. Click Create.

Note: Hot migration can only be started when the virtual machine status is Running.

1. Go to Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machine.

3. Start the hot migration. There are two ways to do this:

Click ⋮ > Hot Migration on the right side of the virtual machine that needs to be migrated

in the list.

Click the name of the virtual machine that needs to be migrated in the list to enter the

detail information page, then click Actions > Hot Migration.

4. Click Confirm. You can check the migration progress through Virtual Machine Status or

Real-Time Events. When the status changes from Migrating to Running, or when a real-

time event appears with information like Migrated: The VirtualMachineInstance migrated

to node 10.1.1.1., it indicates that the migration was successful.

Start Hot Migration

Virtual Machine Hot Migration - Alauda Container Platform

In certain scenarios, such as incorrect modifications to fstab or filesystem errors requiring

fsck, virtual machines may fail to start properly. In such cases, you can utilize rescue mode to

repair the root filesystem (rootfs) or retrieve data from the system.

Steps to Operate

Obtain Image Address

Modify Virtual Machine YAML File

Mount the Original rootfs and Perform Repair

Restore the Virtual Machine YAML File

1. In the left navigation bar, click Virtualization Management > Virtual Machine Images.

2. Select the platform-provided Source as Image Repository, and the Operating System as

either CentOS or Ubuntu. Click ⋮ > Update on the right.

3. Copy and save the Image Address. This document uses

192.168.1.1:11443/3rdparty/vmdisks/centos:7.9 as an example.

Virtual Machine Recovery

TOC

Steps to Operate

Obtain Image Address

Menu ON THIS PAGE

Virtual Machine Recovery - Alauda Container Platform

4. Click Cancel.

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click ⋮ > Stop on the right side of the virtual machine that needs repair to Stop or Force

Stop it.

4. Click ⋮ > Update on the right side of the virtual machine.

5. Switch to YAML and modify the following fields.

Add the following content under spec.template.spec.domain.devices.disks . Adding a

bootOrder parameter can control which disk is prioritized during the virtual machine's

boot process; a lower bootOrder value indicates higher priority.

Note: If the original spec.template.spec.domain.devices.disks field contains bootOrder:

1 , increase the original value to ensure that the newly added bootOrder value is lower

than the original.

Modified YAML example:

Modify Virtual Machine YAML File

disks:

 - bootOrder: 1

 disk:

 bus: virtio

 name: containerdisk

Virtual Machine Recovery - Alauda Container Platform

Add the following content under spec.template.spec.volumes .

Note: Please replace the image address in the following image field with the one

obtained from Obtain Image Address.

Modified YAML example:

domain:

 devices:

 disks:

 - bootOrder: 1 # Added Field

 disk:

 bus: virtio

 name: containerdisk

 - disk:

 bus: virtio

 name: cloudinitdisk

 - disk: # Increase the original bootOrder: 1 value

 bus: virtio

 name: rootfs

 bootOrder: 10

 - disk:

 bus: virtio

 name: "1"

- containerDisk:

 image: 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9

 name: containerdisk

volumes:

 - containerDisk: # Added Field

 image: 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9

 name: containerdisk

 - dataVolume:

 name: k2-rootfs

 name: rootfs

 - dataVolume:

 name: k2-1

 name: "1"

Virtual Machine Recovery - Alauda Container Platform

6. Click Update.

Note: After modifying the YAML file, do not switch to Form, just click Update directly.

7. Click ⋮ > Start on the right side of the virtual machine.

1. Log in to the virtual machine using the original password or key and enter the command df

-h / to find that the rootfs filesystem has been replaced. You can use mount-related

commands to mount it or fsck-related commands to check and repair the original

filesystem.

2. After completion, shut down the virtual machine.

Follow the steps in Modify Virtual Machine YAML File to restore the virtual machine YAML file

to its original state. At this point, the virtual machine can start normally.

Mount the Original rootfs and Perform Repair

Restore the Virtual Machine YAML File

Virtual Machine Recovery - Alauda Container Platform

This document provides step-by-step guidance on cloning virtual machines (VMs) using

KubeVirt's VirtualMachineClone API.

Ensure Prerequisites

Start Quickly

Understand the VirtualMachineClone Object

View a Complete VirtualMachineClone Example

Understand Each Field

Check Clone Operation Phases

Before initiating a VM clone operation, make sure the following requirements are satisfied:

Snapshot‑Capable Storage: The Clone API relies on Snapshot & Restore functionalities.

The virtual machine's storage class must support volume snapshots, and snapshot

functionality must be explicitly enabled for that storage backend.

Clone Virtual Machines on KubeVirt

TOC

Ensure Prerequisites

Start Quickly

Menu ON THIS PAGE

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Follow these quick steps to clone a VM:

1. Prepare the Clone Manifest:

Create a file named clone.yaml with the following structure:

2. Execute the Clone Operation:

Apply the manifest:

3. Monitor the Clone Status:

Wait until the cloning is completed successfully:

4. Verify the Cloned VM:

Inspect the cloned VM configuration:

apiVersion: clone.kubevirt.io/v1beta1

kind: VirtualMachineClone

metadata:

 name: example-vm-clone

 namespace: ns-where-vm-run

spec:

 source:

 apiGroup: kubevirt.io

 kind: VirtualMachine

 name: source-vm

 target:

 apiGroup: kubevirt.io

 kind: VirtualMachine

 name: target-vm

kubectl create -f clone.yaml

kubectl wait vmclone example-vm-clone --for condition=Ready

kubectl get vm target-vm -o yaml

Clone Virtual Machines on KubeVirt - Alauda Container Platform

5. Fix the DataVolume Label (UI metadata):

The platform UI links VMs to their disks through the label vm.cpaas.io/used-by=<vm-name>

that is automatically added to every DataVolume. After a clone operation the new

DataVolume inherits the label from the source VM, so the UI still thinks it belongs to the old

VM. Update the label on the newly created DV so the relationship displays correctly

(functionality is not affected).

Here's a complete example of a VirtualMachineClone resource with detailed inline comments:

Understand the VirtualMachineClone Object

View a Complete VirtualMachineClone Example

List DataVolumes in the VM's namespace; the cloned DV name usually starts with

"restore-"

kubectl get datavolumes -n <ns-where-vm-run>

Overwrite the label to point to the cloned VM

kubectl label datavolume <new-dv-name> -n <ns-where-vm-run> vm.cpaas.io/used-by=

<target-vm> --overwrite

Clone Virtual Machines on KubeVirt - Alauda Container Platform

apiVersion: clone.kubevirt.io/v1beta1

kind: VirtualMachineClone

metadata:

 name: detailed-vm-clone

 namespace: ns-where-vm-run

spec:

 # Source VM details

 source:

 apiGroup: kubevirt.io

 kind: VirtualMachine

 name: vm-source

 # Target VM details

 target:

 apiGroup: kubevirt.io

 kind: VirtualMachine

 name: vm-target

 # Filters for labels and annotations copied from source

 labelFilters:

 - "*"

 - "!exclude-key/*"

 annotationFilters:

 - "include-annotations/*"

 # Template filters to manage network annotations

 template:

 labelFilters:

 - "*"

 annotationFilters:

 - "!network-info/*"

 # Explicitly set new MAC addresses

 newMacAddresses:

 eth0: "02-00-00-aa-bb-cc"

 # Explicitly set SMBios serial

 newSMBiosSerial: "unique-serial-1234"

 # JSON patches to further customize the cloned VM

 patches:

 - '{"op": "add", "path": "/metadata/labels/new-label", "value": "new-value"}'

 - '{"op": "replace", "path": "/spec/template/metadata/annotations/new-annotation",

" " " "}'

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Source and Target:

Define the original VM (source) and the cloned VM (target).

Auto-generated if the target name is omitted.

Both VMs must reside within the same namespace.

Label and Annotation Filters:

Control copying or excluding labels/annotations from the source VM using wildcards

(*) and negations (!).

Template Label and Annotation Filters:

Useful for managing network-related annotations, especially with CNIs like Kube-OVN.

newMacAddresses:

Optionally specify new MAC addresses for network interfaces.

Automatically regenerated if omitted.

newSMBiosSerial:

Optionally specify a new SMBios serial.

Auto-generated based on VM name if not provided.

JSON Patches:

Advanced customizations directly applied to VM specs.

The .status.phase of a VirtualMachineClone object changes according to the cloning process

progress. The table below explains each phase:

Understand Each Field

Check Clone Operation Phases

"value": "updated-value"}'

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Phase Explanation

SnapshotInProgress
Creating a snapshot of the source VM, initial step when

cloning a running VM.

CreatingTargetVM
Snapshot is complete; creating metadata and specification for

the target VM.

RestoreInProgress
DataVolume and PersistentVolumeClaim creation in progress,

restoring data from snapshot.

Succeeded
Operation successfully completed. Target VM and storage are

ready.

Failed
Operation failed. Check events and status.conditions for

detailed error information.

Unknown
Unable to determine the clone operation status, potentially

indicating a controller issue.

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Physical GPU passthrough in virtual machines refers to the process of directly allocating the

actual Graphics Processing Unit (GPU) to a virtual machine within a virtualization

environment. This allows the virtual machine to access and utilize the physical GPU directly,

achieving graphics performance equivalent to that of running directly on a physical machine. It

avoids performance bottlenecks caused by virtual graphics adapters, thus enhancing overall

performance.

Constraints and Limitations

Prerequisites

Chart and Image Preparation

Enabling IOMMU

Operating Steps

Create Namespace

Deploy gpu-operator

Configure Kubevirt

Result Verification

Related Operations

Delete the Virtual Machine with Passthrough GPU

Remove GPU-related Configuration from KubeVirt

Uninstall gpu-operator

Physical GPU Passthrough Environment
Preparation

TOC

Menu ON THIS PAGE

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

The physical GPU passthrough functionality requires the use of the kubevirt-gpu-device-

plugin; however, there is currently no ARM64 image available for the kubevirt-gpu-device-

plugin, which means this functionality cannot be used in an operating system with an ARM64

CPU architecture.

Obtain the following Chart and images and upload them to an image repository. This

document uses build-harbor.example.cn as an example repository address. For the specific

method of obtaining the Chart and images, please contact the relevant personnel.

Chart

build-harbor.example.cn/example/chart-gpu-operator:v23 .9.1

Images

build-harbor.example.cn/3rdparty/nvidia/gpu-operator:v23 .9.0

build-harbor.example.cn/3rdparty/nvidia/cloud-native/gpu-operator-validator:v23 .9.0

build-harbor.example.cn/3rdparty/nvidia/cuda:12 .3.1-base-ubi8

build-harbor.example.cn/3rdparty/nvidia/kubevirt-gpu-device-plugin:v1 .2.4

build-harbor.example.cn/3rdparty/nvidia/nfd/node-feature-discovery:v0 .14.2

The procedure for enabling IOMMU varies across different operating systems. Please refer to

the documentation of the corresponding operating system. This document uses CentOS as an

example, and all commands should be executed in the terminal.

Constraints and Limitations

Prerequisites

Chart and Image Preparation

Enabling IOMMU

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

1. Edit the /etc/default/grub file and add intel_iommu=on iommu=pt to the GRUB_CMDLINE_LINUX

configuration option.

2. Execute the following command to generate the grub.cfg file.

3. Restart the server.

4. Run the following command to confirm if IOMMU has been successfully enabled. If the

output contains IOMMU enabled , then it indicates that it has been successfully enabled.

Note: All commands below should be executed in the CLI tool on the corresponding cluster

Master node unless otherwise specified.

Execute the following command to create a namespace named gpu-system . If the output

displays namespace/gpu-system created , it indicates that the creation was successful.

1. Execute the following command to deploy the gpu-operator.

Operating Steps

Create Namespace

Deploy gpu-operator

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=centos/root rhgb quiet intel_iommu=on

iommu=pt"

grub2-mkconfig -o /boot/grub2/grub.cfg

dmesg | grep -i iommu

kubectl create ns gpu-system

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

2. Execute the following command to check if the gpu-operator has synchronized. If SYNC

shows as Synced , it indicates that it has synchronized successfully.

Output information:

export REGISTRY=<registry> # Replace <registry> with the repository address where the

gpu-operator image is located, e.g.: export REGISTRY=build-harbor.example.cn

cat <<EOF | kubectl create -f -

apiVersion: operator.alauda.io/v1alpha1

kind: AppRelease

metadata:

 annotations:

 auto-recycle: "true"

 interval-sync: "true"

 name: gpu-operator

 namespace: gpu-system

spec:

 destination:

 cluster: ""

 namespace: "gpu-operator"

 source:

 charts:

 - name: <chartName> # Replace <chartName> with the actual chart path, e.g.: name =

example/chart-gpu-operator

 releaseName: gpu-operator

 targetRevision: v23.9.1

 repoURL: $REGISTRY

 timeout: 120

 values:

 global:

 registry:

 address: $REGISTRY

 nfd:

 enabled: true

 sandboxWorkloads:

 enabled: true

 defaultWorkload: "vm-passthrough"

EOF

kubectl -n gpu-system get apprelease gpu-operator

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

3. Execute the following command to retrieve the names of all nodes and find the GPU node

name.

4. Execute the following command to check if the GPU node has any pass-through capable

GPU. If the output contains GPU information similar to nvidia.com/GK210GL_TESLA_K80 , it

indicates that there are pass-through capable GPUs.

Output information:

5. At this point, the gpu-operator has been successfully deployed.

1. Execute the following command to enable the DisableMDEVConfiguration feature. If a

message similar to hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched is

returned, it indicates successful enabling.

2. In the terminal of the GPU node, execute the following command to obtain the

pciDeviceSelector. The 10de:102d part in the output is the value of pciDeviceSelector.

{#pciDeviceSelector}

Configure Kubevirt

NAME SYNC HEALTH MESSAGE UPDATE AGE

gpu-operator Synced Ready chart synced 28s 32s

kubectl get nodes -o wide

kubectl get node <gpu-node-name> -o jsonpath='{.status.allocatable}' # Replace <gpu-

node-name> with the GPU node name obtained from Step 3

{"cpu":"39","devices.kubevirt.io/kvm":"1k","devices.kubevirt.io/tun":"1k","devices.kubevir

net":"1k","ephemeral-storage":"426562784165","hugepages-1Gi":"0","hugepages-

2Mi":"0","memory":"122915848Ki","nvidia.com/GK210GL_TESLA_K80":"8","pods":"256"}

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='[{"op": "add",

"path": "/spec/featureGates/disableMDevConfiguration", "value": true }]'

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Output information:

3. Execute the following command to retrieve the names of all nodes and find the GPU node

name.

4. Execute the following command to obtain the resourceName. The

nvidia.com/GK210GL_TESLA_K80 part in the output is the value of resourceName.

Output information:

lspci -nn | grep -i nvidia

04:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

05:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

08:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

09:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

85:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

86:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

89:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

8a:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [10de:102d] (rev

a1)

kubectl get nodes -o wide

kubectl get node <gpu-node-name> -o jsonpath='{.status.allocatable}' # Replace <gpu-

node-name> with the GPU node name obtained from Step 3

{"cpu":"39","devices.kubevirt.io/kvm":"1k","devices.kubevirt.io/tun":"1k","devices.kubevir

net":"1k","ephemeral-storage":"426562784165","hugepages-1Gi":"0","hugepages-

2Mi":"0","memory":"122915848Ki","nvidia.com/GK210GL_TESLA_K80":"8","pods":"256"}

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

5. Execute the following command to add the passthrough GPU.

Note: When replacing the <pci-devices-id> part in the command below with the

pciDeviceSelector value obtained in Step 2, all letters in the pciDeviceSelector must be

converted to uppercase. For example, if the pciDeviceSelector value obtained is

10de:102d , it should be replaced with export DEVICE=10DE:102D .

Adding a single GPU card

Adding multiple GPU cards

Note: When adding multiple GPU cards, each pciDeviceSelector value used to replace

<pci-devices-id> must be unique.

export DEVICE=<pci-devices-id> # Replace <pci-devices-id> with the

pciDeviceSelector obtained in Step 2, e.g.: export DEVICE=10DE:102D

export RESOURCE=<resource-name> # Replace <resource-name> with the resourceName

obtained in Step 4, e.g.: export RESOURCE=nvidia.com/GK210GL_TESLA_K80

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='

[

 {

 "op": "add",

 "path": "/spec/permittedHostDevices",

 "value": {

 "pciHostDevices": [

 {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE"'",

 "resourceName": "'"$RESOURCE"'"

 }

]

 }

 }

]'

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Adding new GPU cards after already adding GPU cards

export DEVICE1=<pci-devices-id1> # Replace <pci-devices-id1> with the

pciDeviceSelector obtained in Step 2

export RESOURCE1=<resource-name1> # Replace <resource-name1> with the resourceName

obtained in Step 4

export DEVICE2=<pci-devices-id2> # Replace <pci-devices-id2> with the

pciDeviceSelector obtained in Step 2

export RESOURCE2=<resource-name2> # Replace <resource-name2> with the resourceName

obtained in Step 4

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='

[

 {

 "op": "add",

 "path": "/spec/permittedHostDevices",

 "value": {

 "pciHostDevices": [

 {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE"'",

 "resourceName": "'"$RESOURCE"'"

 },

 {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE2"'",

 "resourceName": "'"$RESOURCE2"'"

 }

]

 }

 }

]'

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

After completing the above configuration steps, if the corresponding physical GPU can be

selected when creating the virtual machine, it indicates that the physical GPU passthrough

environment has been successfully prepared.

Note: If physical GPU passthrough needs to be configured, please enable the relevant

features in advance.

1. Go to Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Create Virtual Machine.

4. Configure the Physical GPU (Alpha) parameter for the virtual machine.

Result Verification

export DEVICE=<pci-devices-id> # Replace <pci-devices-id> with the

pciDeviceSelector obtained in Step 2

export RESOURCE=<resource-name> # Replace <resource-name> with the resourceName

obtained in Step 4

export INDEX=<index> # index is a zero-based array index, use the number to replace

<index>, for example: if one GPU card has already been added, and now you want to

add another one, index should be 1, i.e., export INDEX=1

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='

[

 {

 "op": "add",

 "path": "/spec/permittedHostDevices/pciHostDevices/'"${INDEX}"'",

 "value": {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE"'",

 "resourceName": "'"$RESOURCE"'"

 }

 }

]'

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Parameter Description

Physical GPU

(Alpha)

Select the model of the configured physical GPU. Only one

physical GPU can be assigned to each virtual machine.

5. At this point, the physical GPU passthrough environment has been successfully prepared.

1. Go to Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. In the list page, click the ⋮ on the right side of the virtual machine to be deleted > Delete, or

click the name of the virtual machine to be deleted to enter its detail information page, and

click Actions > Delete.

4. Input the confirmation information to delete the virtual machine with passthrough GPU.

1. On the corresponding cluster Master node for the GPU, use the CLI tool to execute the

following command to remove the GPU-related configuration from KubeVirt.

2. After deletion, if it is not possible to choose the corresponding physical GPU model when

creating a virtual machine through Container Platform, it indicates that the deletion was

successful. Please refer to Select Physical GPU Model for the specific steps to create a

virtual machine.

Related Operations

Delete the Virtual Machine with Passthrough GPU

Remove GPU-related Configuration from KubeVirt

Uninstall gpu-operator

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='[{"op":

"remove", "path": "/spec/permittedHostDevices"}]'

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

1. Use the CLI tool on the corresponding cluster Master node for the GPU to execute the

following command to uninstall the gpu-operator.

Output information:

2. Execute the command, and if you receive a response similar to the one below, it indicates

that the gpu-operator has been successfully uninstalled.

Output information:

kubectl -n gpu-system delete apprelease gpu-operator

apprelease.operator.alauda.io "gpu-operator" deleted

kubectl -n gpu-system get apprelease gpu-operator

Error from server (NotFound): appreleases.operator.alauda.io "gpu-operator" not found

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Overview

Glossary

Component Overview

Flow of events during fencing and remediation

Procedure

Operator Listing

Deploying Self Node Remediation Operator

Configuring Self Node Remediation Operator(optional)

Configuring Self Node Remediation Template(optional)

Deploying Node Health Check Operator

Create NodeHealthCheck instance

Verification(optional)

Hardware is imperfect and software contains bugs. When node-level failures, such as the

kernel hangs or network interface controllers (NICs) fail, the work required from the cluster

does not decrease, and workloads from affected nodes need to be restarted somewhere.

Configuring High Availability for Virtual
Machines

TOC

Overview

Menu ON THIS PAGE

Configuring High Availability for Virtual Machines - Alauda Container Platform

However, some workloads, such as ReadWriteOnce (RWO) volumes and StatefulSets, might

require at-most-one semantics.

Failures affecting these workloads risk data loss, corruption, or both. It is important to ensure

that the node reaches a safe state, known as fencing before initiating recovery of the

workload, known as remediation and ideally, recovery of the node also.

It is not always practical to depend on administrator intervention to confirm the true status of

the nodes and workloads. To facilitate such intervention, Alauda Container Platform provides

multiple components for the automation of failure detection, fencing and remediation.

Acronym Term

SNR Self Node Remediation

NHC Node Health Check

Self Node Remediation Operator

The Self Node Remediation Operator is a Alauda Container Platform add-on Operator that

implements an external system of fencing and remediation that reboots unhealthy nodes

and deletes resources, such as Pods and VolumeAttachments. The reboot ensures that the

workloads are fenced, and the resource deletion accelerates the rescheduling of affected

workloads. Unlike other external systems, Self Node Remediation does not require any

management interface, like, for example, Intelligent Platform Management Interface (IPMI)

or an API for node provisioning.

Self Node Remediation can be used by failure detection systems, like Machine Health

Check or Node Health Check.

Node Health Check Operator

Glossary

Component Overview

Configuring High Availability for Virtual Machines - Alauda Container Platform

The Node Health Check Operator is a Alauda Container Platform add-on Operator that

implements a failure detection system that monitors node conditions. It does not have a

built-in fencing or remediation system and so must be configured with an external system

that provides these features. By default, it is configured to utilize the Self Node

Remediation system.

Flow of events during fencing and remediation

Configuring High Availability for Virtual Machines - Alauda Container Platform

Yes

Connection to API Server
Lost

API Server Marks Node as
Unknown

NHC Timeout Threshold
Exceeded?

Self-Remediation Option
Selected

SNR Service

SNR Node Isolation &
Reboot

Delete Pod &
VolumeAttachment

Configuring High Availability for Virtual Machines - Alauda Container Platform

Resources

Workload Rescheduling

Download the Alauda Build of SelfNodeRemediation installation package

corresponding to your platform architecture.

Upload the Alauda Build of SelfNodeRemediation installation package using the

Upload Packages mechanism.

Download the Alauda Build of NodeHealthCheck installation package

corresponding to your platform architecture.

Upload the Alauda Build of NodeHealthCheck installation package using the

Upload Packages mechanism.

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Build of SelfNodeRemediation, click Install, and navigate to the

Install Alauda Build of SelfNodeRemediation page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Procedure

Operator Listing1

Deploying Self Node Remediation Operator2

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter Recommended Configuration

Installation

Place

Select Recommended , Namespace only support workload-

availability.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

The Self Node Remediation Operator creates the SelfNodeRemediationConfig CR with

the name self-node-remediation-config . The CR is created in the namespace of the Self

Node Remediation Operator.

Note

A change in the SelfNodeRemediationConfig CR re-creates the Self Node Remediation

daemon set.

The SelfNodeRemediationConfig CR resembles the following YAML file:

Configuring Self Node Remediation Operator(optional)3

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameters

Parameter Description

safeTimeToAssumeNodeRebootedSeconds Specify an optional time

duration that the Operator waits

before recovering affected

workloads running on an

unhealthy node. Starting

replacement pods while they

are still running on the failed

node can lead to data

corruption and a violation of

run-once semantics. The

Operator calculates a minimum

duration using the values in the

apiVersion: self-node-remediation.medik8s.io/v1alpha1

kind: SelfNodeRemediationConfig

metadata:

 name: self-node-remediation-config

 namespace: workload-availability

spec:

 safeTimeToAssumeNodeRebootedSeconds: 180

 watchdogFilePath: /dev/watchdog

 isSoftwareRebootEnabled: true

 apiServerTimeout: 15s

 apiCheckInterval: 5s

 maxApiErrorThreshold: 3

 peerApiServerTimeout: 5s

 peerDialTimeout: 5s

 peerRequestTimeout: 5s

 peerUpdateInterval: 15m

 hostPort: 30001

 customDsTolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io.infra

 operator: Equal

 value: "value1"

 tolerationSeconds: 3600

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter Description

ApiServerTimeout,

ApiCheckInterval,

MaxApiErrorThreshold,

PeerDialTimeout, and

PeerRequestTimeout fields, as

well as the watchdog timeout

and the cluster size at the time

of remediation.

watchdogFilePath

Specify the file path of the

watchdog device in the nodes. If

you enter an incorrect path to

the watchdog device, the Self

Node Remediation Operator

automatically detects the

softdog device path.

If a watchdog device is

unavailable, the

SelfNodeRemediationConfig CR

uses a software reboot.

isSoftwareRebootEnabled

Specify if you want to enable

software reboot of the unhealthy

nodes. By default, the value of

isSoftwareRebootEnabled is set

to true . To disable the

software reboot, set the

parameter value to false .

apiServerTimeout

Specify the timeout duration to

check connectivity with each

API server. When this duration

elapses, the Operator starts

remediation. The timeout

duration must be greater than or

equal to 10 milliseconds.

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter Description

apiCheckInterval

Specify the frequency to check

connectivity with each API

server. The timeout duration

must be greater than or equal to

1 second.

maxApiErrorThreshold

Specify a threshold value. After

reaching this threshold, the

node starts contacting its peers.

The threshold value must be

greater than or equal to 1

second.

peerApiServerTimeout

Specify the duration of the

timeout for the peer to connect

the API server. The timeout

duration must be greater than or

equal to 10 milliseconds.

peerDialTimeout

Specify the duration of the

timeout for establishing

connection with the peer. The

timeout duration must be

greater than or equal to 10

milliseconds.

peerRequestTimeout

Specify the duration of the

timeout to get a response from

the peer. The timeout duration

must be greater than or equal to

10 milliseconds.

peerUpdateInterval

Specify the frequency to update

peer information such as IP

address. The timeout duration

must be greater than or equal to

10 seconds.

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter Description

hostPort

Specify an optional value to

change the port that Self Node

Remediation agents use for

internal communication. The

value must be greater than 0.

The default value is port 30001.

customDsTolerations

Specify custom toleration Self

Node Remediation agents that

are running on the DaemonSets

to support remediation for

different types of nodes.

Note

The Self Node Remediation Operator creates the CR by default in the deployment

namespace.

The name for the CR must be self-node-remediation-config .

You can only have one SelfNodeRemediationConfig CR.

Deleting the SelfNodeRemediationConfig CR disables Self Node Remediation.

The Self Node Remediation Operator also creates the SelfNodeRemediationTemplate

Custom Resource Definition (CRD). This CRD defines the remediation strategy for the

nodes that is aimed to recover workloads faster. The following remediation strategies

are available:

Automatic

This remediation strategy simplifies the remediation process by letting the Self Node

Remediation Operator decide on the most suitable remediation strategy for the

cluster. This strategy checks if the OutOfServiceTaint strategy is available on the

Configuring Self Node Remediation Template(optional)4

Configuring High Availability for Virtual Machines - Alauda Container Platform

cluster. If the OutOfServiceTaint strategy is available, the Operator selects the

OutOfServiceTaint strategy. If the OutOfServiceTaint strategy is not available, the

Operator selects the ResourceDeletion strategy. Automatic is the default remediation

strategy.

ResourceDeletion

This remediation strategy removes the pods on the node, rather than the removal of

the node object.

OutOfServiceTaint

This remediation strategy implicitly causes the removal of the pods and associated

volume attachments on the node, rather than the removal of the node object. It

achieves this by placing the OutOfServiceTaint strategy on the node.

The Self Node Remediation Operator creates the SelfNodeRemediationTemplate CR for

the strategy self-node-remediation-automatic-strategy-template, which the Automatic

remediation strategy uses.

The SelfNodeRemediationTemplate CR resembles the following YAML file:

Parameters

Parameter Description

remediation_strategy
Values: Automatic、ResourceDeletion、

OutOfServiceTaint

apiVersion: self-node-remediation.medik8s.io/v1alpha1

kind: SelfNodeRemediationTemplate

metadata:

 creationTimestamp: "2022-03-02T08:02:40Z"

 name: self-node-remediation-<remediation_object>-deletion-template

 namespace: workload-availability

spec:

 template:

 spec:

 remediationStrategy: <remediation_strategy>

Configuring High Availability for Virtual Machines - Alauda Container Platform

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Build of NodeHealthCheck, click Install, and navigate to the

Install Alauda Build of NodeHealthCheck page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Installation

Place

Select Recommended , Namespace only support workload-

availability.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

Execute the following command on the cluster control node:

Deploying Node Health Check Operator5

Create NodeHealthCheck instance6

Command

Configuring High Availability for Virtual Machines - Alauda Container Platform

cat << EOF | kubectl apply -f -

apiVersion: remediation.medik8s.io/v1alpha1

kind: NodeHealthCheck

metadata:

 name: nodehealthcheck-<name>

spec:

 minHealthy: <minHealthy>

 remediationTemplate:

 apiVersion: self-node-remediation.medik8s.io/v1alpha1

 kind: SelfNodeRemediationTemplate

 name: self-node-remediation-automatic-strategy-template

 namespace: workload-availability

 selector: <selector>

 unhealthyConditions:

 - duration: 300s

 status: 'False'

 type: Ready

 - duration: 300s

 status: Unknown

 type: Ready

EOF

Example

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameters:

Parameter Description

name resource name

minHealthy

Specify the minimum proportion of healthy nodes. Faulty nodes

will only be repaired when the proportion of healthy nodes is

greater than or equal to this value. The default value is 51%

selector

Specify LabelSelector to match the nodes to be inspected and

self-repaired. Please avoid specifying control-plane and worker

nodes simultaneously in the same instance

cat << EOF | kubectl apply -f -

apiVersion: remediation.medik8s.io/v1alpha1

kind: NodeHealthCheck

metadata:

 name: nodehealthcheck-worker

spec:

 minHealthy: 51%

 remediationTemplate:

 apiVersion: self-node-remediation.medik8s.io/v1alpha1

 kind: SelfNodeRemediationTemplate

 name: self-node-remediation-automatic-strategy-template

 namespace: workload-availability

 selector:

 matchExpressions:

 - key: node-role.kubernetes.io/control-plane

 operator: DoesNotExist

 - key: node-role.kubernetes.io/master

 operator: DoesNotExist

 unhealthyConditions:

 - duration: 300s

 status: 'False'

 type: Ready

 - duration: 300s

 status: Unknown

 type: Ready

EOF

Configuring High Availability for Virtual Machines - Alauda Container Platform

Simulate the failure of the running node of the virtual machine and confirm that the

virtual machine is automatically scheduled to run on other nodes.

Verification(optional)7

Configuring High Availability for Virtual Machines - Alauda Container Platform

This document outlines how to create a reusable virtual machine (VM) template from an

existing VM for rapid deployment of new VMs.

Prerequisites

Procedure

Step 1: Basic Configuration on the Virtual Machine

Step 2: Create a VM Snapshot

Step 3: Retrieve Disk Snapshot Resource Name

Step 4: Create a DataSource Resource

Label Parameters Explanation:

Step 5: Create a New VM Using the Template

A properly deployed and configured KubeVirt environment.

Access to the Web Console and kubectl tool.

A configured VM with necessary software already installed.

Create a VM Template from an Existing
Virtual Machine

TOC

Prerequisites

Menu ON THIS PAGE

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

Inside the VM, perform the following steps:

Install cloud-init .

Install the qemu-guest-agent .

Install any required software.

Once installations are complete, run the following commands to clean cloud-init data and shut

down the VM:

Using the KubeVirt Web Console:

1. Navigate to Virtualization > Virtual Machines.

2. Select the VM intended to serve as a template.

3. Click Actions, select Create Snapshot, name your snapshot, and confirm.

Obtain the complete snapshot resource name using one of these methods:

Via Web Console:

Navigate to Storage > Volume Snapshots.

Find and record the full snapshot resource name under "Data Source."

Using kubectl:

Procedure

Step 1: Basic Configuration on the Virtual Machine

↗

Step 2: Create a VM Snapshot

Step 3: Retrieve Disk Snapshot Resource Name

cloud-init clean

shutdown -h now

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

https://cloud-init.io/
https://cloud-init.io/
https://cloud-init.io/

Record the complete snapshot resource name from the output.

Create the following DataSource resource in the kube-public namespace, ensuring you

replace placeholders with the actual snapshot name and namespace:

Key Possible Values Description

virtualization.cpaas.io/image-

os-arch
amd64, arm64 VM OS architecture

virtualization.cpaas.io/image-

os-type
linux, windows VM OS type

Step 4: Create a DataSource Resource

Label Parameters Explanation:

kubectl get volumesnapshots -n <NAMESPACE>

apiVersion: cdi.kubevirt.io/v1beta1

kind: DataSource

metadata:

 annotations:

 cpaas.io/display-name: MicroOS-Clone

 labels:

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: linux

 virtualization.cpaas.io/storage-class: cephrbd

 virtualization.cpaas.io/access-mode: ReadWriteMany

 virtualization.cpaas.io/size: 30Gi

 virtualization.cpaas.io/volume-mode: Block

 name: microos-clone

 namespace: kube-public

spec:

 source:

 snapshot:

 name: <Your Snapshot Resource Name>

 namespace: <Your Snapshot Namespace>

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

Key Possible Values Description

virtualization.cpaas.io/storage-

class
storage class name

Default storage class,

adjustable during VM

creation

virtualization.cpaas.io/access-

mode

ReadWriteOnce,

ReadWriteMany

Disk access mode; use

ReadWriteMany for VM live

migration

virtualization.cpaas.io/size
Capacity (Gi, Ti,

etc.)

Default disk size; specify

appropriate size

virtualization.cpaas.io/volume-

mode
Block, Filesystem

Disk volume mode; Block

mode recommended for

better performance

Important:

Ensure the namespace is kube-public .

These disk-related parameters can be modified during VM creation but providing defaults

simplifies the process.

1. Access the KubeVirt Web Console, go to Container Platform > Virtualization > Virtual

Machines.

2. Click Create Virtual Machine.

3. Under Image, select Image Instance as the Provision Method.

4. Select your newly created DataSource from the dropdown.

5. Configure any additional parameters as required and complete the VM creation process.

You have now successfully created and deployed new VMs using your VM template.

Step 5: Create a New VM Using the Template

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual
Machine Nodes
Problem Description

Cause Analysis

Solutions

Hot Migration Error Messages and Solutions

Menu

Troubleshooting - Alauda Container Platform

Problem Description

Cause Analysis

Solutions

Migration of Virtual Machine Pods during Graceful Shutdown

Recovery from Abnormal Shutdown

Whether the node is gracefully shut down or experiences an abnormal crash, the virtual

machine Pods running on that node will not automatically migrate to other healthy nodes.

The platform implements a virtual machine solution based on the open-source component

KubeVirt. However, from the perspective of KubeVirt, it cannot differentiate between an actual

virtual machine crash and a connection failure caused by network or other issues. If virtual

Pod Migration and Recovery from
Abnormal Shutdown of Virtual Machine
Nodes

TOC

Problem Description

Cause Analysis

Menu ON THIS PAGE

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

machines are migrated to other nodes indiscriminately, it may lead to multiple instances of the

same virtual machine existing concurrently.

When maintaining virtual machine nodes, manual actions are required according to this

document. For both graceful shutdown and abnormal crash situations, virtual machine

Pods must be manually evicted or forcibly deleted.

Note: The following commands must be executed on the Master node of the corresponding

cluster.

1. In the CLI tool, execute the following command to obtain node information. The NAME field

in the returned information is the Node-Name .

Output:

2. (Optional) Execute the following command to view the virtual machine instances under the

node.

Output:

Solutions

Migration of Virtual Machine Pods during Graceful
Shutdown

kubectl get nodes

NAME STATUS ROLES AGE VERSION

1.1.1.211 Ready control-plane,master 99d v1.28.8

kubectl get vmis --all-namespaces -o wide | grep <Node-Name> # Replace <Node-Name> in

the command with the Node-Name obtained in step 1

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

3. Before the graceful shutdown, execute the following command to evict all virtual machine

Pods on the node to be shut down. If the output appears as follows, it indicates that the

eviction was successful.

Output:

4. After all virtual machines are started on other nodes, shut down the node.

5. After the node is shut down and rebooted, execute the following command to mark the

node as schedulable.

Output:

6. At this point, the original virtual machine instances on that node have been migrated to

other healthy nodes, and this node is now available for new Pod scheduling after rebooting.

test-test vm-t-export-clone 13d Running 1.1.1.1 1.1.1.211 True

False

kubectl drain <Node-Name> --delete-local-data --ignore-daemonsets=true --force --pod-

selector=kubevirt.io=virt-launcher # Replace <Node-Name> in the command with the

Node-Name of the node to be shut down

Flag --delete-local-data has been deprecated, This option is deprecated and will be

deleted. Use --delete-emptydir-data.

node/1.1.1.211 cordoned

evicting pod test-test/virt-launcher-vm-t-export-clone-hmnkk

pod/virt-launcher-vm-t-export-clone-hmnkk evicted

node/1.1.1.211 drained

kubectl uncordon <Node-Name> # Replace <Node-Name> in the command with the Node-Name

of the shut down and rebooted node

node/1.1.1.211 uncordoned

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

1. In the CLI tool, execute the following command to obtain node information. The NAME field

in the returned information is the Node-Name .

Output:

2. Execute the following command to forcibly delete all virtual machine Pods on the node.

3. Execute the following command to delete the volume attachments on that node.

4. Execute the following command to query if there are Pods with the label kubevirt.io=virt-api

on the node that crashed abnormally.

If they exist, execute the following command to delete the Pods.

Recovery from Abnormal Shutdown

kubectl get nodes

NAME STATUS ROLES AGE VERSION

1.1.1.211 Ready control-plane,master 99d v1.28.8

kubectl get po -A -l kubevirt.io=virt-launcher -o wide | grep <Node-Name> | awk

'{print "kubectl delete pod --force -n " $1, $2}' | bash # Replace <Node-Name> in

the command with the Node-Name of the node that crashed abnormally.

kubectl get volumeattachments.storage.k8s.io | grep <Node-Name> | awk '{print $1}' |

xargs kubectl delete volumeattachments.storage.k8s.io # Replace <Node-Name> in the

command with the Node-Name of the node that crashed abnormally.

kubectl -n kubevirt get po -l kubevirt.io=virt-api -o wide | grep <Node-Name> #

Replace <Node-Name> in the command with the Node-Name of the node that crashed

abnormally.

kubectl -n kubevirt get po -l kubevirt.io=virt-api -o name | xargs kubectl -n kubevirt

delete --force --grace-period=0

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

5. Execute the following command to query if there are Pods with the label kubevirt.io=virt-

controller on the node that crashed abnormally.

If they exist, execute the following command to delete the Pods.

6. At this point, the virtual machine instances will be migrated to other healthy nodes after the

node experiences an abnormal shutdown.

kubectl -n kubevirt get po -l kubevirt.io=virt-controller -o wide | grep <Node-Name> #

Replace <Node-Name> in the command with the Node-Name of the node that crashed

abnormally.

kubectl -n kubevirt get po -l kubevirt.io=virt-controller -o name | xargs kubectl -n

kubevirt delete --force --grace-period=0

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

Error Message Cause Solution

cannot migrate VMI

which does not use

masquerade, bridge

with <annotation>

VM annotation or a

migratable plugin to

connect to the pod

network

The network

configuration

of the virtual

machine does

not support

hot migration.

Please check the following configurations:

Check the CNI network plugin used by

the current cluster; Kube-OVN is

recommended.

Check whether the "kubevirt.io/allow-

pod-bridge-network-live-migration":

"true" annotation exists in the

metadata.annotations and

spec.template.metadata.annotations

fields of the corresponding YAML file of

the virtual machine; if not, please add it

manually.

cannot migrate

VMI: Unable to

determine if PVC

<pvc name> is

shared, live

migration requires

that all PVCs must

be shared (using

ReadWriteMany

access mode)

cannot migrate

VMI: PVC <pvc

The storage

type of the

virtual

machine does

not support

multi-node

read-write

(RWX) access

mode.

The parameters related to the virtual

machine cannot be modified after creation.

Therefore, please recreate the virtual

machine and select a storage type that

supports multi-node read-write (RWX);

CephRBD block storage is recommended.

If issues persist after recreation, please

contact the relevant personnel for

assistance.

Hot Migration Error Messages and
Solutions

Menu

Hot Migration Error Messages and Solutions - Alauda Container Platform

Error Message Cause Solution

name> is not

shared, live

migration requires

that all PVCs must

be shared (using

ReadWriteMany

access mode)

cannot migrate

VMI: Backend

storage PVC is not

RWX

cannot migrate

VMI with non-

shared HostDisk

Other error

messages

The virtual

machine does

not support

hot migration.

Please contact the relevant personnel for

assistance.

Hot Migration Error Messages and Solutions - Alauda Container Platform

Network

Introduction

Introduction

Advantages

Guides

Configure Network

Configure IP

Connect to the virtual machine directly via IP

Add Internal Routes

How To

Control Virtual Machine Network Requests Through Network Policy
Procedure

Result Verification

Menu

Network - Alauda Container Platform

Configuring SR-IOV
Terminology

Constraints and Limitations

Prerequisites

Procedures

Result Verification

Related Notes

Configuring Virtual Machines to Use Network Binding Mode for IPv6
Support

Prerequisites

Procedure

Network - Alauda Container Platform

ACP Virtualization With KubeVirt is deeply integrated with Kube-OVN, extending support for

traditional virtual machine (VM) networking requirements and optimizing performance for

specific scenarios.

Advantages

IPv6 Support

Full IPv6 Support.

Static IP Retention

Ensures VMs retain the same IP address after restarts, aligning with legacy VM usage

patterns.

Multi-Network Mode Support

Supports multiple network modes such as container networks and SR-IOV, catering to

diverse user scenarios.

Introduction

TOC

Advantages

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Guides

Configure Network

Configure IP

Connect to the virtual machine directly via IP

Add Internal Routes

Menu

Guides - Alauda Container Platform

Configure IP

Connect to the virtual machine directly via IP

Add Internal Routes

Refs to Configure IP

Refs to Preparing Kube-OVN Underlay Physical Network

Refs to Add Internal Routes

Configure Network

TOC

Configure IP

Connect to the virtual machine directly via IP

Add Internal Routes

Menu ON THIS PAGE

Configure Network - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

Practical Guide

Control Virtual Machine Network Requests Through Network Policy

Procedure

Result Verification

Configuring SR-IOV
Terminology

Constraints and Limitations

Prerequisites

Procedures

Result Verification

Related Notes

Configuring Virtual Machines to Use Network Binding Mode for IPv6
Support
Prerequisites

Procedure

Menu

How To - Alauda Container Platform

The platform's virtual machine solution is implemented based on the open-source component

KubeVirt, which actually runs within Pods. By utilizing the functionality of Network Policies, it is

possible to control the incoming and outgoing requests of virtual machines.

Procedure

Result Verification

Step One: Create a Virtual Machine and Network Policy Allowing All Traffic Through

Step Two: Update Network Policy to Remove www.example.com from Whitelist

1. Enter Container Platform.

2. In the left navigation bar, click Network > Network Policies.

3. Click Create Network Policy.

4. Configure the following parameters as needed.

Control Virtual Machine Network Requests
Through Network Policy

TOC

Procedure

Menu ON THIS PAGE

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Parameter Description

Association

Method

Compute Component: Select the target compute component

as needed; it is recommended to select All as the target

compute component.

Label Selector: Match the Pods based on their labels.

Direction

Ingress: Requests sent from the external to the Pod.

Egress: Requests sent from the Pod to the external; select this

option if prohibiting the virtual machine from requesting a certain

external address.

Protocol

Choose between TCP or UDP.

Note:

When using domain names in the virtual machine to request

external services, it is necessary to add a UDP protocol whitelist

because DNS protocol uses UDP.

The form does not support configuring the ICMP protocol; once

the whitelist rules are enabled, ICMP protocol will be disabled,

which will result in the inability to perform Ping operations.

Access Ports

Specify which ports' traffic can be ingress or egress. If this field is

left empty, traffic through all ports will be allowed by default.

Note: It is necessary to allow ports 1053 and 53 for both UDP and

TCP protocols here to permit DNS traffic egress; otherwise,

domain name resolution will fail.

Remote Type
Specify the allowed remote types for access. Options include:

compute component, namespace, and IP segments.

Exclude

Remote

When the remote type is IP Segment, remove the specified IP

from the whitelist (i.e., prohibit access). Single IP can be removed

when input as IP/32 .

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Parameter Description

Note: This field only supports inputting IPs; if the corresponding IP

of a domain name is unclear, use the command curl -vvv

<domain> to request the domain and obtain the corresponding IP

address from the returned information.

5. Click Create.

This document verifies the setup using a virtual machine to access www.example.com .

1. Create the virtual machine, please refer to Create Virtual Machine for detailed steps.

2. Configure the network policy in the command namespace of the virtual machine, adding

whitelist rules for both TCP and UDP protocols, with the following parameters:

Whitelist for TCP Protocol:

Parameter Description

Association Method Select Compute Component.

Target Compute

Component
Select All.

Direction Select Egress.

Protocol Select TCP.

Remote Type Select IP Segment

Result Verification

↗

Step One: Create a Virtual Machine and Network Policy
Allowing All Traffic Through

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

http://www.example.com/
http://www.example.com/
http://www.example.com/

Parameter Description

Remote
Enter 0.0.0.0/0, indicating that all traffic is allowed

to egress.

Whitelist Rules for UDP Protocol:

Parameter Description

Direction Select Egress.

Protocol Select UDP.

Remote Type Select IP Segment

Remote Enter 0.0.0.0/0, indicating that all traffic is allowed to egress.

3. After the network policy is created, log in to the virtual machine and execute the following

command to request www.example.com .

4. The request is successful.

1. Execute the following command to obtain the IP address for www.example.com , resulting

in the IP address 93.184.215.14.

2. Update the network policy created in Step One, with the following updated parameters:

↗

Step Two: Update Network Policy to Remove
www.example.com from Whitelist↗

↗

curl www.example.com

curl -vvv www.example.com

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

Parameter Description

Exclude

Remote

In the TCP protocol whitelist rules, fill in the exclude remote

parameter with 93.184.215.14/32, indicating that IP address

93.184.215.14 is removed from the whitelist.

3. After updating the network policy, log in to the virtual machine and execute the following

command to request www.example.com .

4. The request times out, indicating that the exclude remote functionality is effective.

↗

curl www.example.com

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

http://www.example.com/
http://www.example.com/
http://www.example.com/

By configuring the physical server nodes to support the creation of virtual machines with SR-

IOV (Single Root I/O Virtualization) network cards, lower latency for virtual machines is

achieved, along with support for standalone IPv6 as well as dual-stack IPv4/IPv6 functionality.

Terminology

Constraints and Limitations

Prerequisites

Chart

Images

Procedures

Enabling SR-IOV in the Physical Machine's BIOS

Enabling IOMMU

Loading the VFIO Module in the System Kernel

Creating VF Devices

Binding the VFIO Driver

Deploying the Multus CNI Plugin

Deploying the sriov-network-operator

Setting Node Role Identifier Labels for Physical Nodes

Checking if the Resources are Created Successfully

Setting SR-IOV Node Feature Labels for Physical Nodes

Checking NIC Device Support

Configuring IP Address

Result Verification

Configuring SR-IOV

TOC

Menu ON THIS PAGE

Configuring SR-IOV - Alauda Container Platform

Related Notes

Kernel Parameter Configuration for CentOS Virtual Machines

Term Definition

Multus

CNI

Acts as middleware for other CNI plugins to enable Kubernetes to support

multiple network interfaces for Pods.

SR-IOV

Allows virtualization of the physical NIC on a node, splitting it into multiple

VFs for use by Pods or virtual machines, providing superior network

performance.

VF

A virtual device created from a physical PCI device; VFs can be allocated

directly to virtual machines or containers, resembling independent physical

PCI devices, significantly improving I/O performance.

The SR-IOV feature relies on glibc and only supports glibc versions 2.34 and above. However,

both Kylin V10 and CentOS 7.x operating systems do not support this version, and thus, SR-

IOV functionality cannot be used on these two operating systems.

Obtain the following charts and images and upload them to the image repository. This

document uses the repository address build-harbor.example.cn as an example. For specific

methods to obtain the charts and images, please contact the relevant personnel.

Terminology

Constraints and Limitations

Prerequisites

Configuring SR-IOV - Alauda Container Platform

build-harbor.example.cn/example/chart-sriov-network-operator:v3.15.0

build-harbor.example.cn/3rdparty/sriov/sriov-network-operator:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-network-operator-config-daemon:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-cni:4.13

build-harbor.example.cn/3rdparty/sriov/ib-sriov-cni:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-network-device-plugin:4.13

build-harbor.example.cn/3rdparty/sriov/network-resources-injector:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-network-operator-webhook:4.13

build-harbor.example.cn/3rdparty/kubectl:v3.15.1

Note: All commands mentioned below are executed in the terminal.

Before configuration, use the following command to check the motherboard information.

Chart

Images

Procedures

Enabling SR-IOV in the Physical Machine's BIOS1

Configuring SR-IOV - Alauda Container Platform

The operation to enable SR-IOV in the BIOS varies among server manufacturers.

Please refer to the corresponding manufacturer's documentation. Generally, the steps

are as follows:

1. Reboot the server.

2. When the brand logo is displayed on the screen during BIOS POST, press the F2 key

to enter the system setup.

3. Click Processor Settings > Virtualization Technology, and change Virtualization

Technology setting to Enabled .

4. Click Settings > Integrated devices, and change SR-IOV Global Enable setting to

Enabled .

5. Save the configuration and reboot the server.

The operation to enable IOMMU may vary across different operating systems. Please

refer to the corresponding operating system documentation. This document uses

CentOS as an example.

1. Edit the /etc/default/grub file and add intel_iommu=on iommu=pt to the

GRUB_CMDLINE_LINUX configuration item.

Enabling IOMMU2

dmidecode -t 1

dmidecode 3.3

Getting SMBIOS data from sysfs.

SMBIOS 2.7 present.

Handle 0x0100, DMI type 1, 27 bytes

System Information

 Product Name: PowerEdge R620

 Version: Not Specified

 Serial Number: 7SJNF62

 UUID: 4c4c4544-0053-4a10-804e-b7c04f463632

 Wake-up Type: Power Switch

 SKU Number: SKU=NotProvided;ModelName=PowerEdge R620

 Family: Not Specified

Configuring SR-IOV - Alauda Container Platform

2. Execute the following command to generate the grub.cfg file.

3. Reboot the server.

4. Execute the following command, and if the output shows IOMMU enabled , it indicates

that the enabling is successful.

1. Execute the following command to load the vfio-pci module.

2. Once loaded, execute the following command. If the configuration information can be

displayed normally, then the VFIO kernel module has been loaded successfully.

Loading the VFIO Module in the System Kernel3

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=centos/root rhgb quiet

intel_iommu=on iommu=pt"

grub2-mkconfig -o /boot/grub2/grub.cfg

dmesg | grep -i iommu

modprobe vfio-pci

Configuring SR-IOV - Alauda Container Platform

1. Execute the following command to see the currently supported VF devices.

The output information indicates as follows:

0000:05:00 .1: The PCI address of the SR-IOV physical NIC enp5s0f1.

0000:05:00 .0: The PCI address of the SR-IOV physical NIC enp5s0f0.

sriov_totalvfs: Number of supported VFs.

sriov_numvfs: Current number of VFs.

2. Execute the following command to get information on the physical machine's NIC.

Creating VF Devices4

For CentOS, execute the following command to check the VFIO loading status

lsmod | grep vfio

vfio_pci 41993 0

vfio_iommu_type1 22440 0

vfio 32657 2 vfio_iommu_type1, vfio_pci

irqbypass 13503 2 kvm, vfio_pc

For Ubuntu, execute the following command to check the VFIO loading status

cat /lib/modules/$(uname -r)/modules.builtin | grep vfio

kernel/drivers/vfio/vfio.ko

kernel/drivers/vfio/vfio_virqfd.ko

kernel/drivers/vfio/vfio_iommu_type1.ko

kernel/drivers/vfio/pci/vfio-pci-core.ko

kernel/drivers/vfio/pci/vfio-pci.ko

find /sys -name *vfs*

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_totalvfs

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.0/sriov_totalvfs

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.0/sriov_numvfs

Configuring SR-IOV - Alauda Container Platform

3. Execute the command ethtool -i <NIC name> to obtain the corresponding physical

NIC's PCI address, as shown below.

ifconfig

enp5s0f0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.66.213 netmask 255.255.255.0 broadcast 192.168.66.255

 inet6 1066::192:168:66:213 prefixlen 112 scopeid 0x0<global>

 inet6 fe80::a236:9fff:fe29:6c00 prefixlen 64 scopeid 0x20<link>

 ether a0:36:9f:29:6c:00 txqueuelen 1000 (Ethernet)

 RX packets 13889 bytes 1075801 (1.0 MB)

 RX errors 0 dropped 1603 overruns 0 frame 0

 TX packets 5057 bytes 440807 (440.8 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

enp5s0f1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::a236:9fff:fe29:6c02 prefixlen 64 scopeid 0x20<link>

 ether a0:36:9f:29:6c:02 txqueuelen 1000 (Ethernet)

 RX packets 1714 bytes 227506 (227.5 KB)

 RX errors 0 dropped 1604 overruns 0 frame 0

 TX packets 70 bytes 19241 (19.2 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Configuring SR-IOV - Alauda Container Platform

4. Execute the following command to create a VF. This document takes configuring the

enp5s0f1 NIC as an example. If multiple NICs need to be virtualized, all of them need

to be configured.

ethtool -i enp5s0f0

driver: ixgbe

version: 5.15.0-76-generic

firmware-version: 0x8000030d, 14.5.8

expansion-rom-version:

bus-info: 0000:05:00.0 ## The PCI address of the enp5s0f0 NIC

supports-statistics: yes

supports-test: yes

supports-eeprom-access: yes

supports-register-dump: yes

supports-priv-flags: yes

ethtool -i enp5s0f1

driver: ixgbe

version: 5.15.0-76-generic

firmware-version: 0x8000030d, 14.5.8

expansion-rom-version:

bus-info: 0000:05:00.1 ## The PCI address of the enp5s0f1 NIC

supports-statistics: yes

supports-test: yes

supports-eeprom-access: yes

supports-register-dump: yes

supports-priv-flags: yes

cat /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_totalvfs ## Check

the number of supported VFs

63

echo 8 > /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs ## Set

the current number of VFs

cat /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs ## Check

the current number of VFs

8

Configuring SR-IOV - Alauda Container Platform

5. Execute the following command to check if the VFs were created successfully.

Note: You can see the configured 8 VF addresses, such as 05:10.1 . These VF

addresses need to be supplemented with the Domain Identifier, resulting in the final

format: 0000:05:10.1 .

1. Download the binding script, and execute the python3 dpdk-devbind.py -b vfio-pci <VF

address with domain identifier> command to bind the 8 VFs of the enp5s0f1 NIC to

the vfio-pci driver, as shown below.

Binding the VFIO Driver5

lspci | grep Virtual

00:11.0 PCI bridge: Intel Corporation C600/X79 series chipset PCI Express

Virtual Root Port (rev 05)

05:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:10.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:10.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:10.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:11.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:11.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:11.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

05:11.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.1

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.3

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.5

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.7

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.1

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.3

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.5

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.7

Configuring SR-IOV - Alauda Container Platform

http://localhost:4173/container_platform/scripts/dpdk-devbind.py

2. After binding successfully, execute the following command to check the binding

results. Look for the already bound VFs in the Network devices using DPDK-

compatible driver area in the output result. Among them, the VF device ID is 10ed .

Configuring SR-IOV - Alauda Container Platform

python3 dpdk-devbind.py --status

Network devices using DPDK-compatible driver

==

0000:05:10.1 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:10.3 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:10.5 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:10.7 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:11.1 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:11.3 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:11.5 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

0000:05:11.7 '82599 Ethernet Controller Virtual Function 10ed' drv=vfio-pci

unused=ixgbevf

Network devices using kernel driver

===================================

0000:01:00.0 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno1 drv=tg3

unused=vfio-pci

0000:01:00.1 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno2 drv=tg3

unused=vfio-pci

0000:02:00.0 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno3 drv=tg3

unused=vfio-pci

0000:02:00.1 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno4 drv=tg3

unused=vfio-pci

0000:05:00.0 'Ethernet 10G 2P X520 Adapter 154d' if=enp5s0f0 drv=ixgbe

unused=vfio-pci *Active*

0000:05:00.1 'Ethernet 10G 2P X520 Adapter 154d' if=enp5s0f1 drv=ixgbe

unused=vfio-pci

No 'Baseband' devices detected

==============================

No 'Crypto' devices detected

============================

No 'DMA' devices detected

Configuring SR-IOV - Alauda Container Platform

1. Go to Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.

3. Click the name of the virtual machine cluster and switch to the Plugins tab.

Deploy the Multus CNI plugin.

Execute the following command to deploy the sriov-network-operator.

Deploying the Multus CNI Plugin6

Deploying the sriov-network-operator7

=========================

No 'Eventdev' devices detected

==============================

No 'Mempool' devices detected

=============================

No 'Compress' devices detected

==============================

No 'Misc (rawdev)' devices detected

===================================

No 'Regex' devices detected

===========================

Configuring SR-IOV - Alauda Container Platform

Note: Before performing this operation, ensure that the Pod of the sriov-network-

operator is running normally.

Setting Node Role Identifier Labels for Physical Nodes8

REGISTRY=<$registry> # Replace the <$registry> part with the repository address

where the sriov-network-operator image is located, for example: REGISTRY=build-

harbor.example.cn

NICSELECTOR=["<nics>"] # Replace the <nics> part with the NIC names, for example:

NICSELECTOR=["ens802f1","ens802f2"], separate multiple with commas

NUMVFS=<numVfs> # Replace the <numVfs> part with the number of VFs, for example:

NUMVFS=8

cat <<EOF | kubectl create -f -

apiVersion: operator.alauda.io/v1alpha1

kind: AppRelease

metadata:

 annotations:

 auto-recycle: "true"

 interval-sync: "true"

 name: sriov-network-operator

 namespace: cpaas-system

spec:

 destination:

 cluster: ""

 namespace: "kube-system"

 source:

 charts:

 - name: <chartName> # Replace <chartName> with the actual chart path, for

example: name = example/chart-sriov-network-operator

 releaseName: sriov-network-operator

 targetRevision: v3.15.0

 repoURL: $REGISTRY

 timeout: 120

 values:

 global:

 registry:

 address: $REGISTRY

 networkNodePolicy:

 nicSelector: $NICSELECTOR

 numVfs: $NUMVFS

EOF

Configuring SR-IOV - Alauda Container Platform

1. Go to Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.

3. Click the cluster name and switch to the Nodes tab.

4. Click the physical node that supports SR-IOV ⋮ > Update Node Labels.

5. Set the node label as follows:

node-role.kubernetes.io/worker: ""

6. Click Update.

In the CLI tool, execute the command kubectl -n cpaas-system get

sriovnetworknodestates to check if the sriovnetworknodestates resource has been

created successfully. If you see similar output below, it indicates that creation was

successful. If the resource creation fails, check if the Multus CNI plugin and sriov-

network-operator have been deployed successfully.

Note: Before performing this operation, ensure that the sriovnetworknodestates resource

has been successfully created.

1. Go to Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.

3. Click the cluster name and switch to the Nodes tab.

4. Click the physical node that supports SR-IOV ⋮ > Update Node Labels.

Checking if the Resources are Created Successfully9

Setting SR-IOV Node Feature Labels for Physical
Nodes

10

kubectl -n cpaas-system get sriovnetworknodestates

NAME SYNC STATUS AGE

192.168.254.88 Succeeded 5d22h

Configuring SR-IOV - Alauda Container Platform

5. Set the node label as follows:

feature.node.kubernetes.io/network-sriov.capable: "true"

1. Execute the command lspci -n -s <VF address with domain identifier> to obtain the

current NIC device's vendor ID and device ID, as shown below.

The output indicates:

8086: Vendor ID.

154d: Device ID.

2. Execute the command lspci -s <VF address with domain identifier> -vvv | grep

Ethernet to obtain the current NIC name, as shown below.

3. In the cpaas-system namespace, locate the configuration file named supported-nic-

ids with type ConfigMap, and check if the current NIC's configuration information is

in the support list within its data section.

Note: If the current NIC is not in the support list, you need to refer to Step 4 to add

the NIC to the configuration file. If the current NIC is already in the support list, skip

Step 4.

Checking NIC Device Support11

lspci -n -s 0000:05:00.1

05:00.1 0200: 8086:154d (rev 01)

lspci -s 0000:05:00.1 -vvv | grep Ethernet

05:00.1 Ethernet controller: Intel Corporation Ethernet 10G 2P X520 Adapter (rev

01)

Configuring SR-IOV - Alauda Container Platform

4. Add the current NIC to the data section of the support list in the format <NIC Name>:

<Vendor ID> <Device ID> <VF Device ID> , as shown below.

kind: ConfigMap

apiVersion: v1

metadata:

 name: supported-nic-ids

 namespace: cpaas-system

data:

 Broadcom_bnxt_BCM57414_2x25G: 14e4 16d7 16dc

 Broadcom_bnxt_BCM75508_2x100G: 14e4 1750 1806

 Intel_i40e_10G_X710_SFP: 8086 1572 154c

 Intel_i40e_25G_SFP28: 8086 158b 154c

 Intel_i40e_40G_XL710_QSFP: 8086 1583 154c

 Intel_i40e_X710_X557_AT_10G: 8086 1589 154c

 Intel_i40e_XXV710: 8086 158a 154c

 Intel_i40e_XXV710_N3000: 8086 0d58 154c

 Intel_ice_Columbiaville_E810: 8086 1591 1889

 Intel_ice_Columbiaville_E810-CQDA2_2CQDA2: 8086 1592 1889

 Intel_ice_Columbiaville_E810-XXVDA2: 8086 159b 1889

 Intel_ice_Columbiaville_E810-XXVDA4: 8086 1593 1889

Configuring SR-IOV - Alauda Container Platform

Parameter configuration explanation:

Intel_Corporation_X520: The name of the NIC, which can be customized.

8086: Vendor ID.

154d: Device ID.

10ed: VF Device ID, which can be found in the binding results.

Log in to the switch to configure DHCP (Dynamic Host Configuration Protocol).

Note: If it is not possible to use DHCP, please manually configure the IP address in the

virtual machine.

Configuring IP Address12

Result Verification

kind: ConfigMap

apiVersion: v1

metadata:

 name: supported-nic-ids

 namespace: cpaas-system

data:

 Broadcom_bnxt_BCM57414_2x25G: 14e4 16d7 16dc

 Broadcom_bnxt_BCM75508_2x100G: 14e4 1750 1806

 Intel_Corporation_X520: 8086 154d 10ed ## Add new NIC information

 Intel_i40e_10G_X710_SFP: 8086 1572 154c

 Intel_i40e_25G_SFP28: 8086 158b 154c

 Intel_i40e_40G_XL710_QSFP: 8086 1583 154c

 Intel_i40e_X710_X557_AT_10G: 8086 1589 154c

 Intel_i40e_XXV710: 8086 158a 154c

 Intel_i40e_XXV710_N3000: 8086 0d58 154c

 Intel_ice_Columbiaville_E810: 8086 1591 1889

 Intel_ice_Columbiaville_E810-CQDA2_2CQDA2: 8086 1592 1889

 Intel_ice_Columbiaville_E810-XXVDA2: 8086 159b 1889

 Intel_ice_Columbiaville_E810-XXVDA4: 8086 1593 1889

Configuring SR-IOV - Alauda Container Platform

1. Go to Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Create Virtual Machine, and when adding an auxiliary network card, select SR-IOV

as the Network Type.

4. Complete the creation of the virtual machine.

5. Access the virtual machine through VNC, you should see that eth1 has successfully

obtained an IP address, indicating that the configuration has been successful.

After the CentOS virtual machine uses the SR-IOV NIC, it is necessary to modify the kernel

parameters for the corresponding NIC. The specific steps are as follows.

1. Open a terminal and execute the following command to modify the kernel parameters for

the corresponding NIC. Replace the <NIC Name> part of the command with the actual NIC

name.

Related Notes

Kernel Parameter Configuration for CentOS Virtual
Machines

Configuring SR-IOV - Alauda Container Platform

2. Execute the following command to load and apply all kernel parameter commands from the

/etc/sysctl.conf file, so that the kernel configuration takes effect. When the value in the

output information is 2, it indicates that the modification was successful.

Output information:

sysctl -w net.ipv4.conf.<NIC Name>.rp_filter=2

echo "net.ipv4.conf.<NIC Name>.rp_filter=2" >> /etc/sysctl.conf

sysctl -p

net.ipv4.conf.<NIC Name>.rp_filter = 2

Configuring SR-IOV - Alauda Container Platform

The network binding mode is a plugin extension mechanism for virtual machine networking.

By default, the platform uses a plugin called ManagedTap to enable IPv6 support for virtual

machines. This plugin allows virtual machines to obtain IP addresses through the CNI's DHCP

Server. Therefore, as long as the CNI's DHCP Server supports IPv6, virtual machines will also

gain IPv6 capabilities.

Currently, we use Kube-OVN as the CNI. Since Kube-OVN's DHCP Server has full IPv6

support, virtual machines can achieve robust IPv6 functionality through the combination of

ManagedTap and Kube-OVN.

Prerequisites

Procedure

Add IPv6 Configuration to the Virtual Machine Subnet

Create a Virtual Machine Using Network Binding Mode in the web console

Access the Virtual Machine via VNC and Configure the Network Interface

Configure IPv6 Default Route

ACP version must be v4.0.0 or higher.

Configuring Virtual Machines to Use
Network Binding Mode for IPv6 Support

TOC

Prerequisites

Menu ON THIS PAGE

Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support - Alauda Container Platform

Kube-OVN is used as the CNI, and the virtual machine subnet is configured as Underlay.

Add the following parameters under spec :

When creating a virtual machine, select Network Binding as the network mode.

For CentOS systems, edit the /etc/sysconfig/network-scripts/ifcfg-enp1s0 file and add

the following configuration:

restart network

Procedure

Add IPv6 Configuration to the Virtual Machine Subnet1

Create a Virtual Machine Using Network Binding Mode
in the web console

2

Access the Virtual Machine via VNC and Configure the
Network Interface

3

kubectl edit subnet <subnet-name>

spec:

 enableDHCP: true

 enableIPv6RA: true

 u2oInterconnection: true

IPV6INIT=yes

DHCPV6C=yes

IPV6_AUTOCONF=yes

systemctl restart network

Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support - Alauda Container Platform

If the switch is configured to send Router Advertisement (RA) messages, manual route

configuration is not required. The default route can be automatically learned through RA

messages from the switch.

Configure IPv6 Default Route4

ip r r default via <subnet-v6-gateway>

Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support - Alauda Container Platform

Storage

Introduction

Introduction

Advantages

Guides

Managing Virtual Disks

Creating a Virtual Disk

Mounting a Virtual Disk

Expanding a Virtual Disk

Unmounting a Virtual Disk

Deleting a Virtual Disk

Menu

Storage - Alauda Container Platform

ACP Virtualization with KubeVirt Storage provides persistent storage capabilities for virtual

machines (VMs) by seamlessly integrating with Kubernetes-native storage mechanisms. It

leverages PersistentVolumeClaim (PVC) to store VM disk data and utilizes the Container
Storage Interface (CSI) to integrate with various storage systems. Additionally, the

Containerized Data Importer (CDI) is employed to initialize VM disk data. Building on these

foundations, the platform extends advanced functionalities for VM disk management, enabling

comprehensive lifecycle control.

Advantages

User-Friendly Operations

Most VM disk operations can be easily performed via the Web UI, minimizing the need for

CLI expertise.

VM Disk Lifecycle Management

Configure whether VM disks should be automatically deleted when the associated VM is

terminated.

Introduction

TOC

Advantages

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Guides

Managing Virtual Disks

Creating a Virtual Disk

Mounting a Virtual Disk

Expanding a Virtual Disk

Unmounting a Virtual Disk

Deleting a Virtual Disk

Menu

Guides - Alauda Container Platform

Data disks can be used to meet the data persistence requirements of the business.

Creating a Virtual Disk

Procedures

Mounting a Virtual Disk

Procedures

Expanding a Virtual Disk

Procedures

Unmounting a Virtual Disk

Procedures

Deleting a Virtual Disk

Procedures

Create a data disk for the virtual machine. Only one virtual disk can be added at a time; if

multiple disks are needed, please repeat this operation.

Note: Virtual disks can be mounted online when the virtual machine is in running state.

Managing Virtual Disks

TOC

Creating a Virtual Disk

Procedures

Menu ON THIS PAGE

Managing Virtual Disks - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click on Create Virtual Disk.

4. Configure the information based on the following instructions.

Parameter Description

Volume

Mode

- File System: Mount the disk in a way that mounts the file directory.

- Block Device: Mount the disk as a block device.

Storage

Class

The platform maintains virtual machine disks by automatically

creating and managing persistent volume claims. You need to specify

the storage class required for dynamically creating persistent volume

claims.

Different storage classes support different volume modes. If there are

no available storage classes for the selected volume mode, please

contact the administrator for addition.

Delete with

VM

If enabled, the disk data will also be deleted when the virtual machine

is deleted.

Mount

- Do Not Mount: Only create the virtual disk; it can be mounted later

when needed.

- Mount to VM: Select the target virtual machine to which the virtual

disk needs to be mounted.

5. Click on Create.

Mount the data disk to a virtual machine, attaching the already created virtual disk to the

target virtual machine.

Note: Virtual disks can be mounted online when the virtual machine is in running state.

Mounting a Virtual Disk

Managing Virtual Disks - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click ⋮ > Mount next to the virtual disk to be mounted.

4. Select the target virtual machine and click Mount.

Expand the system disk and data disk already mounted to the virtual machine.

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Machine.

3. Click the name of the virtual machine to enter the Details page.

4. In the Virtual Disk area, find the disk to be expanded and click ⋮ > Expand.

5. Enter the new capacity and click Expand.

Unmount the data disk from the virtual machine; only virtual machines in the stopped state

can unmount disks.

1. Access the Container Platform.

Procedures

Expanding a Virtual Disk

Procedures

Unmounting a Virtual Disk

Procedures

Managing Virtual Disks - Alauda Container Platform

2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click ⋮ > Unmount next to the virtual disk to be unmounted and confirm.

Deletion is only supported when the virtual disk is in an unmounted state.

Note: System disks cannot be deleted.

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click ⋮ > Delete next to the virtual disk to be deleted and confirm.

Deleting a Virtual Disk

Procedures

Managing Virtual Disks - Alauda Container Platform

Backup and Recovery

Introduction

Introduction

Application Scenarios

Usage Limitations

Guides

Using Snapshots
Prerequisites

Notes

Creating a Snapshot

Rolling Back a Snapshot

Deleting a Snapshot

Menu

Backup and Recovery - Alauda Container Platform

ACP Virtualization With Kubevirt provides virtual machine snapshot capabilities, allowing

users to back up and restore VMs via snapshots.

Application Scenarios

Usage Limitations

Disaster Recovery & Failure Rollback

When a virtual machine experiences data loss due to hardware failures, human errors

(e.g., accidental file deletion), or malicious attacks (e.g., ransomware), snapshots serve as

the last line of defense to restore operations.

Creating a snapshot requires stopping the virtual machine first.

The PVC (Persistent Volume Claim) used by the virtual machine disk must be configured

with a multi-node shared access mode.

Introduction

TOC

Application Scenarios

Usage Limitations

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Guides

Using Snapshots

Prerequisites

Notes

Creating a Snapshot

Rolling Back a Snapshot

Deleting a Snapshot

Menu

Guides - Alauda Container Platform

A virtual machine snapshot saves the current state of the virtual machine, and can be used to

restore the virtual machine to that state in the event of an unexpected failure.

Prerequisites

Notes

Creating a Snapshot

Procedures

Rolling Back a Snapshot

Notes

Procedures

Deleting a Snapshot

Notes

Procedures

The Volume Snapshot has been deployed by the administrator in the platform

management.

Virtual machine snapshots are based on volume snapshots. Ensure that at least one disk is

bound to a storage class that supports volume snapshots, such as CephFS built-in storage.

Using Snapshots

TOC

Prerequisites

Menu ON THIS PAGE

Using Snapshots - Alauda Container Platform

Only offline snapshots of the virtual machine are supported. Please first stop the virtual

machine before creating or rolling back to a snapshot.

If there are multiple storage types of the same kind in the cluster, for example, attaching

multiple different sources of Ceph RBD storage, the disk snapshot functionality may not work

properly when the virtual machine is using such storage.

The contents included in a virtual machine snapshot: virtual machine settings and the state of

the disks that support volume snapshots.

1. Access Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the virtual machine and click ⋮ > Create Snapshot.

4. Fill in the snapshot description. The description can help you document the current state of

the virtual machine, such as Initial Installation , Before Application Upgrade .

5. Click Create. The time taken for the snapshot depends on network conditions and

workload, please be patient.

6. Check the snapshot status.

When the snapshot changes to Ready , it indicates that the creation was successful.

If the snapshot remains in Not Ready status for a long time, click

> View the reasons and troubleshoot, then recreate the snapshot.

Notes

Creating a Snapshot

Procedures

Using Snapshots - Alauda Container Platform

Roll back the virtual machine settings and the disks that support volume snapshots to the

state at the time the snapshot was created. For example, disks added after the snapshot

creation will be removed; modified disk data will be restored.

If there are disks bound to a storage class that supports the LVM mechanism (for example,

TopoLVM), please confirm with the administrator that the reclamation policy for that storage

class is set to Retain (reclaimPolicy: Retain) to use the snapshot rollback feature correctly.

1. Access Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click on Virtual Machine Name.

4. In the Snapshots tab, locate the snapshot and click ⋮ > Rollback.

5. Read the prompt information on the interface, and click Rollback after confirming

everything is correct.

Note: The rollback operation cannot be aborted or undone, please proceed with caution.

6. Click on the snapshot name to check in the “Snapshot Rollback Records” if the rollback has

been completed. The time required for the rollback depends on network conditions and

workload, please be patient.

Description

If the rollback fails, the virtual machine state remains unchanged. You can start the virtual

machine normally or attempt to roll back the snapshot again.

If the virtual machine is started during the rollback process, it will revert to the state before

it was stopped, and upon stopping the virtual machine again, it will continue rolling back to

Rolling Back a Snapshot

Notes

Procedures

Using Snapshots - Alauda Container Platform

the state at the time of snapshot creation.

To avoid operational conflicts, please ensure that the most recent rollback record has been

completed before performing other operations on that virtual machine.

Delete unnecessary virtual machine snapshots to free up disk resources.

When deleting a rolled-back virtual machine snapshot, if the virtual machine disk needs to

copy data based on the snapshot (for example, TopoLVM), you must wait until a virtual

machine based on the rollback version has been started before deleting, otherwise the virtual

machine will fail to start.

1. Access Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click on Virtual Machine Name.

4. In the Snapshots tab, locate the target snapshot and click ⋮ > Delete.

5. Read the prompt information and click Delete after confirming everything is correct.

Deleting a Snapshot

Notes

Procedures

Using Snapshots - Alauda Container Platform

	Virtualization
	Overview
	Introduction
	TOC
	Container-Orchestrated Virtual Machine Solution
	Features
	Product Features
	Constraints and Limitations

	Install
	TOC
	Prerequisites
	Procedure
	Enabling Node Virtualization
	Procedure

	Deploying Operator
	Creating a HyperConverged Instance
	Configuring Virtual Machine Overcommit Ratio (Optional)
	Important Notes

	Resource Quota Explanation

	Images
	Introduction
	TOC
	Advantages

	Guides
	Adding Virtual Machine Images
	TOC
	Procedure

	Update/Delete Virtual Machine Images
	Update/Delete Image Credentials
	How To
	Creating Windows Images Based on ISO using KubeVirt
	TOC
	Prerequisites
	Constraints and Limitations
	Procedure
	Create Image
	Create Virtual Machine
	Install Windows Operating System
	Install virtio-win-tools
	Export Custom Windows Image
	Use Windows Image
	Add Internal Route

	Remote Access

	Creating Linux Images Based on ISO Using KubeVirt
	TOC
	Prerequisites
	Constraints and Limitations
	Procedure
	Convert Linux ISO Image into Docker Image
	Create Virtual Machine
	Install Linux Operating System
	Modify YAML File
	Install Required Software and Modify Configuration
	Export and Use the Custom Linux Image

	Exporting Virtual Machine Images
	TOC
	Procedure
	Stopping the Virtual Machine
	Creating the vmexport Resource
	Downloading the Virtual Machine Image File
	Uploading the Virtual Machine Image File to Object Storage
	Creating the Virtual Machine Image

	Permissions
	Virtual Machine
	Introduction
	Guides
	Creating Virtual Machines/Virtual Machine Groups
	TOC
	Prerequisites
	Notes
	Create Virtual Machine
	Procedure
	Related Operations

	Create Virtual Machine Group
	Procedure

	Batch Operations on Virtual Machines
	TOC
	Procedure

	Logging into the Virtual Machine using VNC
	TOC
	Procedure

	Managing Key Pairs
	TOC
	Creating Key Pairs
	Updating Key Pairs
	Deleting Key Pairs

	Managing Virtual Machines
	TOC
	Reset Password
	Procedure

	Update Key
	Procedure

	Update Specifications
	Live Migration
	Update NAT Network Configuration
	Procedure

	Update Tags and Annotations
	Add Service
	Reinstall Operating System
	Procedure

	Configure IP
	Procedure

	Monitoring and Alerts
	TOC
	Monitoring
	Alerts
	Configuring Alert Policies
	Handling Alerts
	Binding Notification Policies

	Quick Location of Virtual Machines
	TOC
	Prerequisites
	Procedure

	How To
	Configuring USB host passthrough
	TOC
	Feature Overview
	Use Cases
	Prerequisites
	Steps
	Expose USB devices
	Assign USB devices to a Virtual Machine

	Operation Result
	Learn More
	Expose multiple USB devices
	Assign USB devices to a Virtual Machine

	Virtual Machine Hot Migration
	TOC
	Overview
	ProCopy

	Constraints and Limitations
	Prerequisites
	Operation Steps
	Deploy kubevirt-operator
	Create HyperConverged Instance
	Prepare the Virtual Machine
	Start Hot Migration

	Virtual Machine Recovery
	TOC
	Steps to Operate
	Obtain Image Address
	Modify Virtual Machine YAML File
	Mount the Original rootfs and Perform Repair
	Restore the Virtual Machine YAML File

	Clone Virtual Machines on KubeVirt
	TOC
	Ensure Prerequisites
	Start Quickly
	Understand the VirtualMachineClone Object
	View a Complete VirtualMachineClone Example
	Understand Each Field
	Check Clone Operation Phases

	Physical GPU Passthrough Environment Preparation
	TOC
	Constraints and Limitations
	Prerequisites
	Chart and Image Preparation
	Enabling IOMMU

	Operating Steps
	Create Namespace
	Deploy gpu-operator
	Configure Kubevirt

	Result Verification
	Related Operations
	Delete the Virtual Machine with Passthrough GPU
	Remove GPU-related Configuration from KubeVirt
	Uninstall gpu-operator

	Configuring High Availability for Virtual Machines
	TOC
	Overview
	Glossary
	Component Overview
	Flow of events during fencing and remediation
	Procedure
	Operator Listing
	Deploying Self Node Remediation Operator
	Configuring Self Node Remediation Operator(optional)
	Configuring Self Node Remediation Template(optional)
	Deploying Node Health Check Operator
	Create NodeHealthCheck instance
	Verification(optional)

	Create a VM Template from an Existing Virtual Machine
	TOC
	Prerequisites
	Procedure
	Step 1: Basic Configuration on the Virtual Machine
	Step 2: Create a VM Snapshot
	Step 3: Retrieve Disk Snapshot Resource Name
	Step 4: Create a DataSource Resource
	Label Parameters Explanation:

	Step 5: Create a New VM Using the Template

	Troubleshooting
	Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes
	TOC
	Problem Description
	Cause Analysis
	Solutions
	Migration of Virtual Machine Pods during Graceful Shutdown
	Recovery from Abnormal Shutdown

	Hot Migration Error Messages and Solutions
	Network
	Introduction
	TOC
	Advantages

	Guides
	Configure Network
	TOC
	Configure IP
	Connect to the virtual machine directly via IP
	Add Internal Routes

	Practical Guide
	Control Virtual Machine Network Requests Through Network Policy
	TOC
	Procedure
	Result Verification
	Step One: Create a Virtual Machine and Network Policy Allowing All Traffic Through
	Step Two: Update Network Policy to Remove www.example.com from Whitelist

	Configuring SR-IOV
	TOC
	Terminology
	Constraints and Limitations
	Prerequisites
	Chart
	Images

	Procedures
	Enabling SR-IOV in the Physical Machine's BIOS
	Enabling IOMMU
	Loading the VFIO Module in the System Kernel
	Creating VF Devices
	Binding the VFIO Driver
	Deploying the Multus CNI Plugin
	Deploying the sriov-network-operator
	Setting Node Role Identifier Labels for Physical Nodes
	Checking if the Resources are Created Successfully
	Setting SR-IOV Node Feature Labels for Physical Nodes
	Checking NIC Device Support
	Configuring IP Address

	Result Verification
	Related Notes
	Kernel Parameter Configuration for CentOS Virtual Machines

	Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support
	TOC
	Prerequisites
	Procedure
	Add IPv6 Configuration to the Virtual Machine Subnet
	Create a Virtual Machine Using Network Binding Mode in the web console
	Access the Virtual Machine via VNC and Configure the Network Interface
	Configure IPv6 Default Route

	Storage
	Introduction
	TOC
	Advantages

	Guides
	Managing Virtual Disks
	TOC
	Creating a Virtual Disk
	Procedures

	Mounting a Virtual Disk
	Procedures

	Expanding a Virtual Disk
	Procedures

	Unmounting a Virtual Disk
	Procedures

	Deleting a Virtual Disk
	Procedures

	Backup and Recovery
	Introduction
	TOC
	Application Scenarios
	Usage Limitations

	Guides
	Using Snapshots
	TOC
	Prerequisites
	Notes
	Creating a Snapshot
	Procedures

	Rolling Back a Snapshot
	Notes
	Procedures

	Deleting a Snapshot
	Notes
	Procedures

