Virtualization - Alauda Container Platform

Menu

Virtualization

Overview

Introduction

Container-Orchestrated Virtual Machine Solution

Features
Product Features

Constraints and Limitations

Install

Install
Prerequisites
Procedure

Resource Quota Explanation

Images

Introduction

Advantages

Guides

How To

Permissions

Virtual Machine

Introduction

Guides

How To

Troubleshooting

Network

Virtualization - Alauda Container Platform

Introduction

Advantages

Guides

How To

Storage

Introduction

Advantages

Guides

Backup and Recovery

Introduction
Application Scenarios

Usage Limitations

Virtualization - Alauda Container Platform

Virtualization - Alauda Container Platform

Guides

Overview - Alauda Container Platform

Menu

Overview

Introduction

Container-Orchestrated Virtual Machine Solution
Features

Product Features

Constraints and Limitations

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

For enterprises using a virtual machine-based architecture, transitioning to a Kubernetes and
container-based architecture inevitably requires application modernization. However, due to
constraints such as the need for continuous business uptime or the difficulty in changing
development habits, enterprises often cannot completely disengage from virtualization

architecture in a short period.

Therefore, a solution that can uniformly configure, manage, and control container resources

and virtual machine resources on the same platform becomes particularly important.

TOC

Container-Orchestrated Virtual Machine Solution
Features
Product Features

Constraints and Limitations

Container-Orchestrated Virtual Machine Solution

This platform implements a virtual machine (VMI, VirtualMachinelnstance) solution based on
the open-source component KubeVirt, allowing for easier and faster creation of container-

orchestrated virtual machines and running virtualized applications.

Introduction - Alauda Container Platform

Binary/Dependency
Libraries

Operating System

Containers Virtual Machines

Physical Server

Features

Rapid Transformation

There is no need to rewrite applications or modify images. Simply package the existing
application into a gcow?2 or raw format virtual machine image, and create a virtual machine
using that image on the platform, allowing the application to be deployed to the container
platform.

Maintain Behavioral Habits

Containerized virtual machines can be managed using a similar approach to traditional virtual
machines, without needing to focus on the underlying container implementation, including
virtual machine lifecycle management, disks and networks, and snapshot management.

Coexistence of Virtualization and Containerization

¢ The unified platform supports managing virtualized services while also enabling

Kubernetes-based container scheduling and management.

Introduction - Alauda Container Platform

¢ On the basis of continuing to use virtual machine workloads, it allows for a gradual

modernization of containerized applications.

e The development of new containerized applications that need to interact with virtualized

applications remains unaffected.

Product Features

 Virtual Machine: Supports creating virtual machines with images allocated by
administrators and managing them, including starting and stopping virtual machines,
managing snapshots, remote login to virtual machines, and modifying virtual machine

configurations.

« Virtual Disk: Supports viewing and managing disk information created in the current
project, including creating disks, viewing disk names, storage classes, capacities, and

associated virtual machines.

+ Virtual Machine Snapshots: Supports viewing details such as the status of virtual

machine snapshots, the associated virtual machine, and the most recent rollback time.

 Virtual Machine Images: Supports viewing virtual machine image information under the

current project, including image provision method and operating system.

+ Key Pairs: Supports viewing and managing key pairs created in the current project,

including creating key pairs and viewing the list of associated virtual machines.

Constraints and Limitations

It must be implemented based on a physical machine cluster, and KubeVirt components must
be deployed within the cluster with virtualization enabled. The platform provides the capability
to deploy KubeVirt components via Operator and an interface to enable virtualization, with all

related configurations completed by the platform administrator.

Install - Alauda Container Platform

Menu ON THIS PAGE >

Install

In order for project personnel to fully utilize virtualization features within the container platform,
the platform administrator must perform the following operations to prepare the virtualization

environment.

TOC

Prerequisites
Procedure
Enabling Node Virtualization
Procedure
Deploying Operator
Creating a HyperConverged Instance
Configuring Virtual Machine Overcommit Ratio (Optional)
Important Notes

Resource Quota Explanation

Prerequisites

+ Download the ACP Virtualization with KubeVirt installation package corresponding to

your platform architecture.

+ Upload the ACP Virtualization with KubeVirt installation package using the Upload

Packages mechanism.

Install - Alauda Container Platform

* When using virtualization features, it is necessary to plan and prepare the network and

storage environments in advance.
Note:

¢ If you need to connect to the virtual machine directly via IP, the cluster must use the
Kube-OVN Underlay network mode. You can refer to the best practices Preparing Kube-
OVN Underlay Physical Network.

¢ Itis recommended to use TopoLVM in conjunction with Kubevirt, as it can provide near-
hardware level performance. If performance requirements are not high, Ceph distributed

storage can also be used.

Storage Product Description

Advantages: Relatively lightweight and good performance.
TopoLVM Disadvantages: Cannot be used across nodes, has low

reliability, and cannot provide redundancy.

Advantages: Can be used across nodes, highly available,
Ceph Distributed and has redundancy.
Storage Disadvantages: Redundant disk copies lead to lower

utilization; performance is poorer.

o If TopoLVM is used and multiple disks are configured, please ensure that the
remaining storage capacity on the virtualization-enabled nodes can meet the total

capacity of the multiple disks; otherwise, the virtual machine creation will fail.

o If Ceph distributed storage is being used, please ensure that the network where the
storage resides and the network where the virtual machines reside can communicate

with each other.

Procedure

1) Enabling Node Virtualization

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html
http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

Install - Alauda Container Platform

When the nodes of a self-built cluster are physical machines, you can control whether
to allow Kubernetes to schedule Virtual Machine Instances (VMIs) on that node by

enabling or disabling the node virtualization switch.

* When the switch is enabled, new virtual machines are allowed to be scheduled on the
physical machine node; Windows physical hodes do not support enabling

virtualization.

e When the switch is disabled, new virtual machines are prevented from being
scheduled on the physical machine node, but it does not affect virtual machines that

are already running on that node.

Procedure

1. Enter Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.
3. Click Self-Built Cluster Name.

4. On the Nodes tab, click the : to the right of the node where you want to set the

virtualization switch > Enable Virtualization.

5. Click Confirm.

Deploying Operator
1. Login, go to the Administrator page.
2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the ACP Virtualization with KubeVirt, click Install, and navigate to the Install

ACP Virtualization with KubeVirt page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is alpha .

Parameter

Installation
Mode

Installation

Place

Upgrade
Strategy

Install - Alauda Container Platform
Recommended Configuration

Cluster : All namespaces in the cluster share a single
Operator instance for creation and management, resulting in

lower resource usage.

Select Recommended , Namespace only support kubevirt.

Manual : When there is a new version in the Operator Hub,
manual confirmation is required to upgrade the Operator to

the latest version.

3/ Creating a HyperConverged Instance

1. Enter Administrator.

2. Click Marketplace > OperatorHub.

3. Find the ACP Virtualization with KubeVirt, click it to enter the ACP Virtualization

with KubeVirt detail info page.

4. Click All Instances

5. Click Create Instance on the HyperConverged instance card.

Note: Only one HyperConverged instance needs to be created in each cluster.

6. Switch to YAML view and only replace the placeholder specified in the

spec.storageImport.insecureRegistries field in the example with the correct virtual

machine image repository address, for example: 192.168.16.214:60080 , keeping

other parameters at their default values.

spec:
storagelImport:

insecureRegistries:

- placeholder

Replacement result:

Install - Alauda Container Platform

spec:
storageImport:
insecureRegistries:
- "192.168.16.214:60080"

7. Click Create and wait for the CDI and KubeVirt type instances to be automatically
created in the resource list, while ensuring that the status.phase displayed in the
YAML is deployed , indicating that the HyperConverged instance has been

successfully created.

4 Configuring Virtual Machine Overcommit Ratio
(Optional)

o Configuring the overcommit ratio for the cluster where the virtual machines reside in

Cluster Management > Clusters.

o Or Configuring the overcommit ratio for the namespace where the virtual machines

are located in Project Management > Namespaces.

Important Notes

 Virtual machines only support CPU overcommit ratios, and the recommended

configuration value is between 2 and 4.

¢ Once the overcommit ratio is enabled for virtual machines, when creating a virtual
machine, the container's request value (requests) is fixed as specified limit value
(limits) / VM overcommit ratio, making the user's request set through YAML

ineffective.

For example: Assuming the CPU resource overcommit ratio is set to 4 for the virtual
machine, if the user specifies a CPU limit value of 4c when creating the virtual

machine, the CPU request value would be 4c/4 = 1c.

Resource Quota Explanation

Install - Alauda Container Platform

The memory resource quota for virtual machines is limited by the memory resource quota of
the namespace they reside in. Since the memory of the Pod hosting the virtual machine is
usually larger than the actual available memory of the virtual machine, it is recommended to
reserve 20% of the resources. When the remaining available resources in the namespace are
below 20%, please promptly scale up the resources.

Images - Alauda Container Platform

Menu

Images

Introduction

Introduction

Advantages

Guides

Adding Virtual Machine Images

Procedure

Update/Delete Virtual Machine Images

Update/Delete Image Credentials

How To

Images - Alauda Container Platform

Creating Windows Images Based on ISO using KubeVirt
Prerequisites

Constraints and Limitations

Procedure

Remote Access

Creating Linux Images Based on ISO Using KubeVirt
Prerequisites
Constraints and Limitations

Procedure

Exporting Virtual Machine Images

Procedure

Permissions

Permissions

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Alauda Container Platform Virtualization with KubeVirt leverages Kubernetes extended API
capabilities to abstract virtual machine images as a Custom Resource Definition (CRD). It
provides a user interface (Ul) for users to easily import virtual machine images stored in
remote repositories into ACP for usage.

TOC

Advantages

Advantages

e Support for Mainstream Operating Systems

Supports various commonly used Linux distributions and Windows operating systems.
e Multi-Architecture Support

Compatible with both X86_64 and ARM64 architectures.
e Multi-Source Support

Allows importing virtual machine images from:

e Image registries

o File servers

Introduction - Alauda Container Platform

o S3-compatible object storage

¢ Multi-Format Support

Supports virtual machine images in QCOW2 and RAW formats.

Guides - Alauda Container Platform

Menu

Guides

Adding Virtual Machine Images

Procedure

Update/Delete Virtual Machine Images

Update/Delete Image Credentials

Menu

Adding Virtual Machine Images - Alauda Container Platform

ON THIS PAGE >

Adding Virtual Machine Images

The platform supports adding X86_64 and ARM64 (Alpha) architecture virtual machine

images, enabling developers to quickly create virtual machines for existing services and

facilitate the migration of business systems.

TOC

Procedure

Procedure

1. Access Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machine Images.

3. Click Add Virtual Machine Image.

4. Refer to the instructions below to configure the relevant parameters.

Parameter

Provisioning
Method

Operating
System

Description

Currently, only Public Image method is supported, meaning the

added image can be used in assigned projects.

Supported operating systems include:
CentOS/Ubuntu/RedHat/Debian/TLinux/Other Linux/Windows
(Alpha).

Parameter

Source

CPU

Architecture

Image Address

Authentication

Adding Virtual Machine Images - Alauda Container Platform

Description

Supported system architectures are: X86_64 and ARM64
(Alpha).

* Image Repository: Virtual machine images stored in a

container image repository.

e HTTP: Virtual machine images stored on a file server using
the HTTP protocol.

e Object Storage (S3): Virtual machine images that can be
retrieved using Object Storage Protocol (S3). If they do not

require authentication, please use HTTP as the source.

Tag CPU architecture information. For image repository sources,
multiple selections are supported; for other sources, only single

selection is allowed.

Supports KVM virtual machine images, including gcow2/raw

formats.

« If from an image repository, enter
repository_address:image_version , e.g.,

index.docker.io/library/ubuntu:latest .

e If from an HTTP source, enter the image file URL, which must
start with http:// or https:// , e.g.,
http://192.168.0.1/vm_image/centos_7.8.qcow? .

o If from an Object Storage (S3), enter the image address that
can be retrieved via Object Storage Protocol (S3), e.g.,

https://endpoint/bucket/centos.qcow? .

Depending on whether the image repository requires
authentication, you can toggle the switch on or off. If enabled,
you can choose from existing image credentials or click Add
Credentials, supporting only Username/Password type

credentials.

Adding Virtual Machine Images - Alauda Container Platform

Parameter Description

Note: When the source is Object Storage (S3), authentication

cannot be turned off.
Assign usage permissions for this image to projects.

» All Projects: Assigns usage permissions of the image to all

projects.
Assigned o Specific Project: Assigns usage permissions of the image to a
Project specified project.

» No Assignment: Do not assign to any projects for now. After
image creation, you can assign it through Update Image
operation.

5. Click Add.

Update/Delete Virtual Machine Images - Alauda Container Platform

Menu

Update/Delete Virtual Machine Images

1. Navigate to Administrator.
2. In the left sidebar, click Virtualization Management > Virtual Machine Images.
3. Click : > Update/Delete.

4. After confirmation, click Update/Delete.

Update/Delete Image Credentials - Alauda Container Platform

Menu

Update/Delete Image Credentials

1. Go to Administrator.
2. In the left navigation bar, click Virtualization Management > Virtual Machine Images.
3. In the Image Credentials tab, click : > Update/Delete.

4. After confirmation, click Update/Delete.

How To - Alauda Container Platform

Menu

How To

Creating Windows Images Based on ISO using KubeVirt
Prerequisites

Constraints and Limitations

Procedure

Remote Access

Creating Linux Images Based on ISO Using KubeVirt
Prerequisites
Constraints and Limitations

Procedure

Exporting Virtual Machine Images

Procedure

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

Menu ON THIS PAGE >

Creating Windows Images Based on ISO

using KubeVirt

This document discusses a virtual machine solution based on the open-source component
KubeVirt, using KubeVirt virtualization technology to create a Windows operating system
image through an ISO image file.

TOC

Prerequisites
Constraints and Limitations
Procedure
Create Image
Create Virtual Machine
Install Windows Operating System
Install virtio-win-tools
Export Custom Windows Image
Use Windows Image
Add Internal Route

Remote Access

Prerequisites

¢ All components in the cluster are functioning correctly.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

+ Please prepare the Windows image and the latest virtio-win-tools - in advance.

* Please prepare the repository for storing the image. This document takes the build-
harbor.example.cn repository as an example, and please replace it according to your actual

environment.

Constraints and Limitations

o When starting KubeVirt, the size of the custom image's filesystem will affect the speed of
writing the image to the disk in PVC. If the filesystem is too large, it may result in extended

creation times.

e Itis recommended to keep the Linux root partition or Windows C drive below 100G to
minimize the initial size. Subsequent expansion can be done through cloud-init (for

Windows systems, it must be expanded manually after creation).

Procedure

1) Create Image

Create a Docker image from the prepared Windows and virtio-win ISO images, and
push it to the repository. This document uses Windows Server 2019 as an example.

Create a Docker Image from the Windows ISO

1. Navigate to the directory where the 1SO image is stored, and execute the following

command in the terminal to rename the ISO image to win.iso.

mv <ISO image name> win.iso

2. Execute the following command to create a Dockerfile.

touch Dockerfile

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

3. Edit the Dockerfile, add the following content, and save it.

FROM scratch
ADD --chown=107:107 win.iso /disk/

4. Execute the following command to build the Docker image.

docker build -t build-harbor.example.cn/3rdparty/vmdisks/winiso:2019 .

5. Execute the following command to push the image to the repository.

docker push build-harbor.example.cn/3rdparty/vmdisks/winiso:2019

Create a Docker Image from the virtio-win ISO

1. Navigate to the directory where the 1SO image is stored, and execute the following

command in the terminal to create a Dockerfile.

touch Dockerfile

2. Edit the Dockerfile, add the following content, and save it.

FROM scratch
ADD --chown=107:107 virtio-win.iso /disk/

3. Execute the following command to build the Docker image.

docker build -t build-harbor.example.cn/3rdparty/vmdisks/win-virtio:latest .

4. Execute the following command to push the image to the repository.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

docker push build-harbor.example.cn/3rdparty/vmdisks/win-virtio:latest

2) Create Virtual Machine

1. Access the Container Platform.
2. In the left navigation bar, click on Virtualization > Virtual Machines.
3. Click on Create Virtual Machine.

4. Fill in the necessary parameters such as Name, Image, etc., in the form page. For

detailed parameters and configuration, please refer to Create Virtual Machine.
5. Switch to YAML.

6. Replace the configuration under the spec.template.spec.domain.devices.disks field

with the following content.

domain:
devices:
disks:
- disk:
bus: virtio
name: cloudinitdisk
- bootOrder: 1
cdrom:
bus: sata
name: containerdisk
- cdrom:
bus: sata
name: virtio
- disk:
bus: sata
name: rootfs
bootOrder: 10

7. Add the following content under the spec.template.spec.volumes field.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

- containerDisk:

image: registry.example.cn:60070/3rdparty/vmdisks/winiso:2019
name: containerdisk
- containerDisk:

image: registry.example.cn:60070/3rdparty/vmdisks/win-virtio

name: virtio

8. Check the YAML file. The complete YAML after finishing the configuration is as

follows.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

apiVersion: kubevirt.io/vlalpha3
kind: VirtualMachine
metadata:
annotations:
cpaas.io/creator: test@example.io
cpaas.io/display-name: ""
cpaas.io/updated-at: 2024-09-01T14:57:55Z
kubevirt.io/latest-observed-api-version: v1
kubevirt.io/storage-observed-api-version: v
generation: 16
labels:
virtualization.cpaas.io/image-name: debian-2120-x86
virtualization.cpaas.io/image-os-arch: amd64
virtualization.cpaas.io/image-os-type: debian
virtualization.cpaas.io/image-supply-by: public
vm.cpaas.io/name: aa-test
name: aa-test
namespace: acp-service-self
spec:
dataVolumeTemplates:
- metadata:
creationTimestamp: null
labels:
vm.cpaas.io/reclaim-policy: Delete
vm.cpaas.io/used-by: aa-test
name: aa-test-rootfs
spec:
pvc:
accessModes:
- ReadlWriteOnce
resources:
requests:
storage: 100Gi
storageClassName: vm-cephrbd
volumeMode: Block
source:
http:
url: http://192.168.254.12/kube-debian-12.2.0-x86-out.qcow?
running: true
template:
metadata:
annotations:

cpaas.io/creator: test@example.io

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

nn

cpaas.io/display-name:
cpaas.io/updated-at: 2024-09-01T14:55:44Z
kubevirt.io/latest-observed-api-version: v1
kubevirt.io/storage-observed-api-version: v1
creationTimestamp: null
labels:
virtualization.cpaas.io/image-name: debian-2120-x86
virtualization.cpaas.io/image-os-arch: amd64
virtualization.cpaas.io/image-os-type: debian
virtualization.cpaas.io/image-supply-by: public
vm.cpaas.io/name: aa-test
spec:
affinity:
nodeAffinity: {}
architecture: amdb4
domain:
devices:
disks:
- disk:
bus: virtio
name: cloudinitdisk
- bootOrder: 1
cdrom:
bus: sata
name: containerdisk
- cdrom:
bus: sata
name: virtio
- disk:
bus: sata
name: rootfs
bootOrder: 10
interfaces:
- bridge: {}
name: default
machine:
type: q35
resources:
limits:
cpu: "4"
memory: 8Gi
requests:
cpu: "4"

memory: 8Gi

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

networks:
- name: default
pod: {}
nodeSelector:
kubernetes.io/arch: amdb4
vm.cpaas.io/baremetal: "true"
volumes:
- cloudInitConfigDrive:
userData: >-
#cloud-config
disable_root: false
ssh_pwauth: true
users:
- default
- name: root
lock_passwd: false
hashed_passwd:
$6$0v1h157e$0rawYwaeu9jL6hBf3XP91k6XXaMUS9/WELPbWRinUoXujo391P3198V0c00btr . LDoAv/yln
name: cloudinitdisk
- containerDisk:

image: registry.example.cn:60070/3rdparty/vmdisks/winiso:2019

name: containerdisk
- containerDisk

image: registry.example.cn:60070/3rdparty/vmdisks/win-virtio

name: virtio
- dataVolume:

name: aa-test-rootfs
name: rootfs

9. Click Create.
10. Click Actions > VNC Login.

11. When the prompt press any key boot from CD or DVD appears, press any key to
enter the Windows installation program; if you do not see the prompt, click on Send
Remote Command in the top left of the page, then select Ctrl-Alt-Delete from the

dropdown menu to restart the server.

Note: If a message appears at the top of the virtual machine details page stating The
current virtual machine has configuration changes that require a restart to take

effect, please restart, this message can be ignored; no restart is necessary.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

3 Install Windows Operating System

1. Follow the installation instructions to install the system after entering the installation

page.

Note: During the partition selection step, the bus must be sata for the disk to be
correctly recognized. Therefore, you need to select each partition in turn and click

Delete to remove all partitions, allowing the system to handle it automatically.

2. After configuring the administrator account password, click Send Remote Command

in the top left of the page, then select Ctrl-Alt-Delete from the dropdown menu.

3. When prompted The Ctrl+Alt+Delete combination will restart the server, confirm

to restart, click OK.

4. Enter the password to access the Windows system desktop; at this point, the

Windows operating system installation is complete.

4 ' Install virtio-win-tools

This tool primarily contains the necessary drivers.
1. Open File Explorer.

2. Double-click CD Drive(E:) virtio-win-<version>, run the virtio-win-guest-tools
directory to enter the installation page, and follow the installation instructions. The

<version> part should be based on the actual situation.
3. After the installation is complete, power off the Windows system.
>/ Export Custom Windows Image

Please refer to Export Virtual Machine Image for the specific operation.

6 Use Windows Image

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Machines.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

3. Click on Create Virtual Machine.

4. Fill in the necessary parameters on the form page. For the image, select the exported
Windows image. For detailed parameters and configuration, please refer to Create

Virtual Machine.

5. (Optional) If using a newer operating system, such as Windows 11, enable features
like clock, UEFI, TPM, etc. Switch to YAML and replace the original YAML file with the
following YAML file.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstance
metadata:
labels:
special: vmi-windows
name: vmi-windows
spec:
domain:
clock:
timer:
hpet:
present: false
hyperv: {}
pit:
tickPolicy: delay
rtc:
tickPolicy: catchup
utc: {}
cpu:
cores: 2
devices:
disks:
- disk:
bus: sata
name: pvcdisk
interfaces:
- masquerade: {}
model: e1000
name: default
tpm: {}
features:
acpi: {}
apic: {}
hyperv:
relaxed: {}
spinlocks:
spinlocks: 8191
vapic: {}
smm: {}
firmware:
bootloader:
efi:
secureBoot: true

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

uuid: 5d307ca9-b3ef-428c-8861-06e72d69f223
resources:
requests:
memory: 4Gi
networks:
- name: default
pod: {}
terminationGracePeriodSeconds: 0
volumes:
- name: pvcdisk
persistentVolumeClaim:
claimName: disk-windows
- name: winiso
persistentVolumeClaim:

claimName: win17cd-pvc

6. Click Create.

Add Internal Route

By configuring a NodePort type internal route, expose the port for remote desktop
connections.

1. Access the Container Platform.
2. In the left navigation bar, click on Virtualization > Virtual Machines.

3. Click on the virtual machine name created with the Windows image in the list to enter

the details page.
4. Click on the Add icon next to Internal Route in the Login Information area.

5. Configure parameters according to the following instructions.

Parameter Description
Type Select NodePort.
Port

e Protocol: Select TCP.
e Service Port: Use 3389.

¢ Virtual Machine Port: Use 3389.

Creating Windows Images Based on ISO using KubeVirt - Alauda Container Platform

Parameter Description

e Service Port Name: Use rdp.

6. Click OK to return to the details page.
7. Click on the Internal Route link in the Login Information area.

8. Save the Virtual IP information in the basic information area and the Host Port

information in the port area.

Remote Access

This document discusses using the Windows operating system for remote connection as an
example. Other operating systems can use software that supports the RDP protocol for

connection.
1. Open Remote Desktop Connection.

2. Enter the saved Virtual IP and Host Port from the Add Internal Route step, formatted as
Virtual IP:Host Port, for example: 192.1.1.1:3389 .

3. Click Connect.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

Menu ON THIS PAGE >

Creating Linux Images Based on ISO Using
KubeVirt

This document describes a virtual machine solution implemented based on the open-source
component KubeVirt. It utilizes KubeVirt virtualization technology to create a Linux operating
system image from an ISO image file.

TOC

Prerequisites
Constraints and Limitations
Procedure
Convert Linux ISO Image into Docker Image
Create Virtual Machine
Install Linux Operating System
Modify YAML File
Install Required Software and Modify Configuration

Export and Use the Custom Linux Image

Prerequisites

¢ All components in the cluster are functioning properly.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

¢ ALinux image should be prepared in advance. This document uses the Ubuntu operating

system ~ as an example.

e Arepository for storing images should be prepared in advance. This document uses the
build-harbor.example.cn repository as an example; please replace it according to your
actual environment.

Constraints and Limitations

* When starting KubeVirt, the file system size of the custom image will affect the speed of

writing the image to the PVC disk. If the file system is too large, it may result in a prolonged

creation time.

¢ Itis recommended to keep the Linux root partition size below 100G to minimize the initial
size. After configuring cloud-init, allocate larger storage for the root partition when creating

the virtual machine, and the system will automatically expand it.

Procedure

17 Convert Linux ISO Image into Docker Image

1. Navigate to the directory where the 1SO image is stored and execute the following

command in the terminal to rename the ISO image to ubuntu.iso.

mv <ISO image name> ubuntu.iso

2. Create a Dockerfile by executing the following command.

touch Dockerfile

3. Edit the Dockerfile, add the following content, and save it.

https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

FROM scratch
ADD --chown=107:107 ubuntu.iso /disk/

4. Build the Docker image by executing the following command.

docker build -t build-harbor.example.cn/3rdparty/vmdisks/ubuntu-iso:24.04 .

5. Push the image to the repository by executing the following command.

docker push build-harbor.example.cn/3rdparty/vmdisks/ubuntu-iso:24.04

Create Virtual Machine

1. Enter the Container Platform.
2. Click Virtualization > Virtual Machines in the left navigation bar.
3. Click Create Virtual Machine.

4. Fill in the parameters on the form page as follows. For specific parameters and

configurations, please refer to Create Virtual Machine.

Parameter Description
Select Image Choose the template image for the virtual machine.
IP Address Keep default, which will be obtained via DHCP.

Network Mode Use NAT mode; do not use bridged mode here.

5. Switch to YAML.

6. Replace the configuration under the spec.template.spec.domain.devices.disks field

with the following content.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

domain:
devices:
disks:
- bootOrder: 1
cdrom:
bus: sata
name: containerdisk
- disk:
bus: virtio
name: cloudinitdisk
- disk:
bus: virtio
name: rootfs
bootOrder: 10

7. Add the following content under the spec.template.spec.volumes field.

- containerDisk:

image: registry.example.cn:60070/3rdparty/vmdisks/ubuntu-iso:24.04

name: containerdisk

8. Review the YAML file; the complete YAML configuration after completion is as follows.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

apiVersion: kubevirt.io/vlalpha3
kind: VirtualMachine
metadata:
annotations:
kubevirt.io/latest-observed-api-version: v1
kubevirt.io/storage-observed-api-version: v1l
labels:
virtualization.cpaas.io/image-name: debian-2120-x86
virtualization.cpaas.io/image-os-arch: amd64
virtualization.cpaas.io/image-os-type: debian
virtualization.cpaas.io/image-supply-by: public
vm.cpaas.io/name: aa
name: aa
spec:
dataVolumeTemplates:
- metadata:
creationTimestamp: null
labels:
vm.cpaas.io/reclaim-policy: Delete
vm.cpaas.io/used-by: aa
name: aa-rootfs
spec:
pvc:
accessModes:
- ReadWiriteOnce
resources:
requests:
storage: 100Gi
storageClassName: vm-cephrbd
volumeMode: Block
source:
http:
url: http://192.168.254.12/kube-debian-12.2.0-x86-out.qcow?
running: true
template:
metadata:
annotations:
cpaas.io/creator: test@example.io
cpaas.io/display-name: ""
cpaas.io/updated-at: 2024-09-09703:49:08Z
kubevirt.io/latest-observed-api-version: v1
kubevirt.io/storage-observed-api-version: v1
creationTimestamp: null

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

labels:
virtualization.cpaas.io/image-name: debian-2120-x86
virtualization.cpaas.io/image-os-arch: amd64
virtualization.cpaas.io/image-os-type: debian
virtualization.cpaas.io/image-supply-by: public
vm.cpaas.io/name: aa

spec:

accessCredentials:

- sshPublicKey:
propagationMethod:
gqemuGuestAgent:

users:
- root
source:
secret:
secretName: test-xeon
affinity:
nodeAffinity: {}
architecture: amdb4
domain:
devices:
disks:
- bootOrder: 1
cdrom:
bus: sata
name: containerdisk
- disk:
bus: virtio
name: cloudinitdisk
- disk:
bus: virtio
name: rootfs
bootOrder: 10
interfaces:
- bridge: {}
name: default
machine:
type: q35
resources:
limits:
cpu: "1"
memory: 2Gi
requests:

cpu: "1"

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

memory: 2Gi

networks:

- name: default

pod: {}

nodeSelector:

kubernetes.io/arch: amdb4

vm.cpaas.io/baremetal: "true"
volumes:

- containerDisk:

image: registry.example.cn:60070/3rdparty/vmdisks/ubuntu-iso:24.04

name: containerdisk
- cloudInitConfigDrive:
userData: |-
#cloud-config
disable_root: false
ssh_pwauth: false
users:
- default
- name: root
lock_passwd: false
hashed_passwd: ""
name: cloudinitdisk
- dataVolume:
name: aa-rootfs

name: rootfs

9. Click Create.
10. Click Actions > VNC Login.

11. When prompted with press any key boot from CD or DVD, press any key to enter
the Windows installation program; if you do not see the prompt, click Send Remote
Command in the upper left corner of the page, and then click Ctrl-Alt-Delete from

the dropdown menu to reboot the server.

Note: If a message appears at the top of the virtual machine detail page stating
Current virtual machine has configuration changes that require a restart to take

effect. Please restart., you can ignore this message; a restart is not necessary.

Install Linux Operating System

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

1. After entering the installation page, follow the installation guide to proceed. This
document gives an example of installing the Ubuntu operating system; the
configuration items during the installation process of different operating systems are
generally similar, and thus will not be elaborated further. Some configuration items

are explained below.

Configuration Description

. It is recommended to use a minimal installation to
Installation Type o . .
minimize the image size.

Choose custom storage. Format the disk to ext4 or xfs
Storage format and mount it to the root partition (/).
Configuration Note: Do not use LVM for disk partitioning (Create

volume group (LVM)).

SSH

)] Choose to install the OpenSSH tools for SSH access.
Configuration

2. Wait for the installation to complete.

4 Modify YAML File

1. Enter the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click on the Virtual Machine Name in the list to enter the details page.
4. Click Stop.

5. Click Actions > Update in the upper right corner.

6. Switch to YAML.

7. Confirm that the disk named rootfs under spec.template.spec.domain.devices.disks
has a bootOrder of 1. If it is not 1, modify it to 1.

8. Delete the relevant content for the disk named containerdisk under

spec.template.spec.domain.devices.disks; the specific content to delete is as follows.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

- bootOrder: 1
cdrom:
bus: sata

name: containerdisk

9. Delete the relevant content for the disk named containerdisk under

spec.template.spec.volumes; the specific content to delete is as follows.

- containerDisk:

image: registry.example.cn:60070/3rdparty/vmdisks/ubuntu-iso:24.04
name: containerdisk

10. Click Update.

11. Click Start.

Install Required Software and Modify Configuration

Note: The following commands and configuration files may vary slightly between

different operating systems; please adjust according to your actual environment.
1. Enter your username and password to log in to the operating system.

2. Switch to root user privileges.

3. Install the software packages.

e For CentOS series, execute the command:
yum install cloud-utils cloud-init gemu-guest-agent vim
o For Debian series, execute the command:
apt install cloud-init cloud-guest-utils gemu-guest-agent vim

4. Edit the SSHD configuration file.

1. Execute the following command to edit the sshd_config file.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

vim /etc/ssh/sshd_config

2. Add the following configurations.

PermitRootLogin yes

PubkeyAuthentication yes

3. Save the modified configuration.

5. Execute the following command to delete the default password for the root user.

passwd -d root

6. Modify the source address file.

1. Execute the following command to modify the system's source address file and

change the address to a suitable mirror site address.

vim /etc/apt/sources.list.d/ubuntu.sources

2. Save the configuration after modifications.
7. Modify the cloud-init configuration to automatically expand the root directory.

1. Execute the following command to edit the cloud.cfg configuration file.

vim /etc/cloud/cloud.cfg

2. Add the following configuration content.

Creating Linux Images Based on ISO Using KubeVirt - Alauda Container Platform

runcmd:

- [growpart, /dev/vda, 1]

- [xfs_growfs, /dev/vdal]

3. Save the configuration after modifications.

8. After completing the configuration, shut down the operating system.
6 Export and Use the Custom Linux Image

For specific operations, please refer to Export Virtual Machine Image.

Exporting Virtual Machine Images - Alauda Container Platform

Menu ON THIS PAGE >

Exporting Virtual Machine Images

This feature is used to export the system image of a virtual machine and upload it to object
storage, allowing the files in object storage to be added as sources to the platform's virtual
machine images.

TOC

Procedure
Stopping the Virtual Machine
Creating the vmexport Resource
Downloading the Virtual Machine Image File
Uploading the Virtual Machine Image File to Object Storage

Creating the Virtual Machine Image

Procedure

Note: All operations below must be performed on the control node of the cluster where the
virtual machine resides.

1) Stopping the Virtual Machine

1. Go to Administrator.

2. In the left navigation bar, click Virtualization Management > Virtual Machines.

Exporting Virtual Machine Images - Alauda Container Platform

3. Click on the name of the virtual machine whose system image needs to be exported,

which will redirect you to the virtual machine details page in the Container Platform.

4. Click Stop.

2) Creating the vmexport Resource

1. Open the CLI tool.

2. Execute the following command to set variables.

NAMESPACE=<namespace>
VM_NAME=<vm_name>
TTL_DURATION=2h

Parameter explanation:

e NAMESPACE: The name of the namespace where the virtual machine resides;

replace the <namespace> part with this name.

« VM_NAME: The name of the virtual machine whose system image needs to be

exported; replace the <vm_name> part with this name.

o TTL_DURATION: The lifetime of the export task, defaulting to 2 hours but can be

increased as needed.

3. Execute the following command to create the vmexport resource.

cat <<EOF | kubectl create -f -
apiVersion: export.kubevirt.io/v1alphal
kind: VirtualMachineExport
metadata:
name: export-$VM_NAME
namespace: $NAMESPACE
spec:
tt1Duration: $TTL_DURATION
source:
apiGroup: "kubevirt.io"
kind: VirtualMachine
name: $VM_NAME
EOF

Exporting Virtual Machine Images - Alauda Container Platform

If similar echo information appears, it indicates successful creation.

virtualmachineexport.export.kubevirt.io/export-k1 created

4. Execute the following command to check the status of the vmexport resource.

kubectl -n $NAMESPACE get vmexport export-$VM_NAME -w

Echo information:

NAME SOURCEKIND SOURCENAME PHASE
export-k1 VirtualMachine k1 Ready

5. When the PHASE field in the echo information changes to Ready, type ctrl (control) +

c to stop the watch operation.

6. Execute the following command to get the TOKEN.

TOKEN=$(kubectl -n $NAMESPACE get secret export-token-export-$VM_NAME -o
jsonpath={.data.token} | base64 -d)

Downloading the Virtual Machine Image File

1. Execute the following command to get the IP address of the virtual machine export
Pod in the specified namespace and store it in the EXPORT_SERVER_IP

environment variable.

EXPORT_SERVER_IP=$(kubectl -n $NAMESPACE get po virt-export-export-$VM_NAME -o
jsonpath="{.status.podIP}")

2. Execute the following command to set the URL environment variable, which points to

the virtual machine's disk image file.

URL=https://$EXPORT_SERVER_IP:8443/volumes/$VM_NAME-rootfs/disk.img.gz

Exporting Virtual Machine Images - Alauda Container Platform

3. Execute the following command to download the image file, with the downloaded file

named disk.img.gz.

curl -k -0 -H "x-kubevirt-export-token: $TOKEN" $URL

4 Uploading the Virtual Machine Image File to Object

Storage

Upload the downloaded image file to object storage. Any S3 tool can be used for the

upload, and this document will introduce the mc (minio-client) tool as an example.

1. Execute the following command to configure the mc tool and connect to the specified

S3 storage service.

mc alias set minio <ENDPOINT> <ACCESSKEY> <SECRETKEY>

Parameter explanation:

« ENDPOINT: The address of the S3 storage service; replace the <ENDPOINT> part

with this address.

o ACCESSKEY, SECRETKEY: The user ak and sk of the S3 storage service used

for authentication; for related information, please refer to MinlO Object Storage .

2. Execute the following command to create a bucket for storing the virtual machine

image files.
mc mb minio/vmdisks

3. Execute the following command to upload the exported virtual machine image file

disk.img.gz to the created bucket.

mc put disk.img.gz minio/vmdisks

5/ Creating the Virtual Machine Image

https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect

Exporting Virtual Machine Images - Alauda Container Platform

. Go to Administrator.

. In the left navigation bar, click Virtualization Management > Virtual Machine

Images.

. Click Add Virtual Machine Image.

. In the image address, fill in <ENDPOINT>/vmdisks/disk.img.gz, replacing the
<ENDPOINT> part with the address of the S3 storage service. For other parameter

explanations, please refer to Adding Virtual Machine Images.

. Click Add.

Menu

Permissions

Function

virtualmachineimagetemplates
acp-

virtualmachineimagetemplates

Permissions - Alauda Container Platform

Action

View

Create

Update

Delete

Platform

Administrator

v

v

Platform

auditors

v

X

Project

Manager
v

X

Virtual Machine - Alauda Container Platform

Menu

Virtual Machine

Introduction

Introduction

Guides

Creating Virtual Machines/Virtual Machine Groups
Prerequisites

Notes

Create Virtual Machine

Create Virtual Machine Group

Batch Operations on Virtual Machines

Procedure

Logging into the Virtual Machine using VNC

Procedure

Virtual Machine - Alauda Container Platform

Managing Key Pairs
Creating Key Pairs
Updating Key Pairs

Deleting Key Pairs

Managing Virtual Machines
Reset Password

Update Key

Update Specifications

Live Migration

Update NAT Network Configuration
Update Tags and Annotations

Add Service

Reinstall Operating System

Configure IP

Monitoring and Alerts
Monitoring

Alerts

Quick Location of Virtual Machines
Prerequisites

Procedure

How To

Virtual Machine - Alauda Container Platform

Configuring USB host passthrough
Feature Overview

Use Cases

Prerequisites

Steps

Operation Result

Learn More

Virtual Machine Hot Migration
Overview

Constraints and Limitations
Prerequisites

Operation Steps

Virtual Machine Recovery

Steps to Operate

Clone Virtual Machines on KubeVirt
Ensure Prerequisites
Start Quickly

Understand the VirtualMachineClone Object

Virtual Machine - Alauda Container Platform

Physical GPU Passthrough Environment Preparation
Constraints and Limitations

Prerequisites

Operating Steps

Result Verification

Related Operations

Configuring High Availability for Virtual Machines
Overview

Glossary

Component Overview

Flow of events during fencing and remediation

Procedure

Create a VM Template from an Existing Virtual Machine
Prerequisites

Procedure

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual
Machine Nodes

Problem Description
Cause Analysis

Solutions

Virtual Machine - Alauda Container Platform

Hot Migration Error Messages and Solutions

Introduction - Alauda Container Platform

Menu

Introduction

KubeVirt provides CRDs (Custom Resource Definitions) such as VirtualMachine and
VirtualMachinelnstance to abstract virtual machine (VM) resources. Based on these CRDs,
users gain comprehensive VM management capabilities. Building on this foundation, ACP
Virtualization With KubeVirt further enhances usability by offering a Web Console, enabling

users to perform various operations with greater ease.

Guides - Alauda Container Platform

Menu

Guides

Creating Virtual Machines/Virtual Machine Groups
Prerequisites

Notes

Create Virtual Machine

Create Virtual Machine Group

Batch Operations on Virtual Machines

Procedure

Logging into the Virtual Machine using VNC

Procedure

Managing Key Pairs
Creating Key Pairs
Updating Key Pairs

Deleting Key Pairs

Managing Virtual Machines
Reset Password

Update Key

Update Specifications

Live Migration

Update NAT Network Configuration
Update Tags and Annotations

Add Service

Reinstall Operating System

Configure IP

Monitoring and Alerts
Monitoring

Alerts

Guides - Alauda Container Platform

Quick Location of Virtual Machines

Prerequisites

Procedure

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Menu ON THIS PAGE >

Creating Virtual Machines/Virtual Machine

Groups

Create a virtual machine (VirtualMachinelnstance) using an image, and schedule the virtual

machine to physical nodes with Kubevirt components installed and virtualization enabled.

You can create a single virtual machine through Create Virtual Machine, or you can quickly
create multiple virtual machines (VirtualMachinelnstance) with the same configuration by

using Create Virtual Machine Group (virtualMachinePool).

TOC

Prerequisites

Notes

Create Virtual Machine
Procedure
Related Operations

Create Virtual Machine Group

Procedure

Prerequisites

+ Before creating a virtual machine using an image, please confirm the following with the

platform administrator:

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

e The target cluster is a self-built cluster, and the Kubevirt components have been

deployed.
¢ The target node must be a physical node with virtualization enabled.
¢ Avirtual machine image has been added to the platform.

e If you need to use the physical GPU passthrough feature of the virtual machine, please

contact the platform administrator for the following configuration:

1. Obtain GPU passthrough environment preparation plan and prepare the necessary

environment.

2. Prepare the required physical GPU and enable the related features for physical GPU
passthrough for the virtual machine.

Notes

When using Windows virtual machines, only logins via the usernamel/password set in the
virtual machine image are supported. Please contact the platform administrator to obtain this
information in advance.

Create Virtual Machine

Procedure

Note: The following content presents an example of creating a virtual machine using a form,

and you may also switch to YAML format for the operation.
1. Enter Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Create Virtual Machine.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

4. In the Basic Information area, fill in the name and display name of the virtual machine and

set tags or annotations.

Parameter Description

Used to select objects and find collections of objects that meet
Tags certain criteria. Must be a key-value pair, for example:

app.kubernetes.io/name: hello-app.

Used to provide any information to development and operations
Annotations teams. Must be a key-value pair, for example: cpaas.io/maintainer:

kim.

5. Set the machine type and choose a virtual machine image.

Parameter Description

. You can select recommended usage scenarios or custom
Specifications o
resource limits based on your needs.
Select the model of the physical GPU; only one physical GPU

can be allocated to each virtual machine.

Note: Physical GPU passthrough for the virtual machine refers to
Physical GPU the direct allocation of the actual Graphics Processing Unit (GPU)
(Alpha) to the virtual machine in a virtualization environment, enabling it
to directly access and utilize the physical GPU to achieve
graphical performance equivalent to running directly on a
physical machine, avoiding performance bottlenecks caused by

virtual graphics adapters and enhancing overall performance.

Choose a public image that has been assigned to the platform
project by the platform administrator.

Image o _
Note: Only supports selecting images with the same CPU

architecture as the cluster architecture.

6. In the Storage area, refer to the following instructions to configure the relevant information.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

The name of the storage disk; the system disk name cannot be

Disk Name N
modified.
+ Root Disk: The system automatically creates a VirtlO type rootfs
system disk to store the operating system and data.
Type o Data Disk: Click to add multiple data disks for persistent data
storage. Defaults to VirtlO device.
Note: Data disk names must not duplicate existing disk names.
Volume » File System: Mount the disk as a mounted file directory.
Mode « Block Device: Mount the disk as a block device.
The platform maintains virtual machine disks by creating and
managing persistent volume claims. You need to specify a storage
Storage class required for dynamically creating persistent volume claims.
Class Different storage classes support different volume modes; if there is
no available storage class for the selected volume mode, please
contact an administrator for addition.
] The capacity required for the virtual machine storage; the minimum
Capacity o
for the system disk is 20 G.
Delete with Defaults to enabled, cannot be modified, indicating that the disk data
VM will also be deleted when the virtual machine is deleted.

7. In the Network area, refer to the following instructions to configure the relevant information.

Parameter Description

IP Address
o Defaults to Dynamic (DHCP); an IP is dynamically assigned

when the virtual machine starts, and the IP is released when the

virtual machine stops.

Parameter

Network
Mode

Auxiliary
Network
Card

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Description

« If binding a Static IP, the virtual machine will always use this IP
address even after a restart. If there are no available IPs in the

current project, please release an IP appropriately first.

o Bridged: The virtual machine shares the same IP address as the
container group and communicates externally through this IP

address.

¢ NAT: The virtual machine will be assigned an internal IP address
but will translate to the container group IP address for external
communication. Open ports indicate the exposed ports of the
virtual machine, such as the SSH service port 22; not filling in

Open Ports indicates that all ports are open.

Add auxiliary network cards as needed.
Note:

o [f auxiliary network card features are required or there are no
available types of auxiliary network card networks, please contact

the platform administrator for configuration.

¢ SR-IOV types only support Linux operating systems on x86_64

architecture.

o Defaults to obtaining IP addresses via DHCP.
o After multiple reboots, SR-IOV virtual machines may exhibit two
different VFs but with the same MAC address.

8. In the Initialization Settings area, refer to the following instructions to configure the

relevant information.

Parameter

Keys

Description

Always use SSH keys for remote login verification. This method
does not require password validation; it is recommended to log in to

the virtual machine using keys.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

e You can use the keys already available in the platform or create
new keys immediately; all relevant keys can be viewed on the

Virtualization > Key Pairs page.

e Only individuals with the private key can access the virtual
machine via SSH. If multiple people are to maintain the virtual
machine together, multiple keys can be associated, and private
keys can be assigned to different users. If key leakage occurs,

the associated key can be promptly revoked to reduce damage.

e The public key of the SSH key is stored in the platform in a
confidential form; the platform does not store your private key, so

please keep it safe by yourself.

o Please consult the relevant operating system documentation for

the root user password.
Use the operating system user and password for login verification,
which can still be updated to the key method later.

e The user is only an initial account; after the virtual machine is

successfully created, you can also create other operating system

S users in the virtual machine for login.

e The platform encrypts and stores your root user password, and
you will not see its plaintext password again, so please keep it
safe by yourself.

s Defaults to enabled. Enabling this option will start the virtual
tart
. machine immediately after creation, otherwise only the virtual
Immediately

machine will be created.

9. (Optional) In the Advanced Configuration area, refer to the following instructions to

configure the relevant information.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

Parameter Description

e Liveness Check: Checks if the virtual machine is in a healthy
state; if the detection result is abnormal, it will determine whether to

restart the instance based on the health check configuration.

 Availability Check: Checks if the virtual machine has completed

Health

Check startup and is in a normal service state; if the health status of the
virtual machine instance is detected as abnormal, the state of the
virtual machine will be updated.

For related parameter descriptions.

o Preferred: The virtual machine will be scheduled to nodes that
meet affinity requirements whenever possible. The system will
determine nodes capable of running the virtual machine by

ode combining affinity weights and other scheduling requirements (e.qg.,
Affinity

compute resource requirements).

» Required: The virtual machine will only be scheduled to nodes that

fully meet affinity requirements.

10. After confirming that the information is correct, click Create.

Wait for the virtual machine to change from Creating to Running status.

Related Operations

You can click the : icon on the right side of the list page or the Actions in the upper right
corner of the details page to update or delete the virtual machine as needed. For other related
operations like resetting passwords or updating keys, please refer to Manage Virtual

Machines.

Note:

o Updates can only be performed when the virtual machine is in Abnormal, Unknown, or

Stopped status.

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

+ Updates do not support displaying disks that were separately attached or created after the

virtual machine was created.

o By default, Start Immediately is disabled during updates; you can enable it as needed.

Create Virtual Machine Group

Procedure

Note: The following content presents an example of creating a virtual machine group using a

form, and you may also switch to YAML format for the operation.

1. Enter Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machine Groups.
3. Click Create Virtual Machine Group.

4. In the Basic Information area, refer to the following instructions to configure the

information for the virtual machine group.

Parameter Description
Number of The number of virtual machines created by the virtual machine
Instances group.

If enabled, when scheduling multiple virtual machines to nodes, it

Anti-Affinity _ o _ _ _

will try to distribute the virtual machines across different nodes,
between _ . o '

which can enhance the high availability of a group of virtual
Instances _

machines.

Tags can be added to the virtual machine group. Tags can be
T used to select objects and find collections of objects that meet

ags

certain criteria. Must be a key-value pair, for example:

app.kubernetes.io/name: hello-app.

5. In the Virtual Machine Template area, refer to Create Virtual Machine to configure unified

tags, annotations, specifications, images, storage, and other information for all the virtual

Creating Virtual Machines/Virtual Machine Groups - Alauda Container Platform

machines in the group.
6. After confirming that the information is correct, click Create.

Tip: After successful creation, you can go to the Virtual Machines list page to view the

information of the virtual machines created via the virtual machine group.

Batch Operations on Virtual Machines - Alauda Container Platform

Menu ON THIS PAGE >

Batch Operations on Virtual Machines

Perform batch operations such as starting, stopping, restarting, and deleting virtual machines.

TOC

Procedure

Procedure

1. Access the Container Platform.
2. Click on Virtualization > Virtual Machines in the left navigation bar.

3. Locate the target virtual machine, click : to perform operations on a single virtual machine,

or refer to the image below for batch operations on virtual machines.

Note:

o The Start/Batch Start operation can be executed when the virtual machine is in a
suspended or stopped state; the Stop/Batch Stop operation can be executed when the
virtual machine is in a Preparing, Starting, Running, Suspended, Unknown, or Exception
state; the Restart/Batch Restart operation can be executed when the virtual machine is
in a Running state.

» Performing a forced Restart/Stop operation on a virtual machine is equivalent to cutting

off power to the virtual machine, which may result in loss of data that has not been

Batch Operations on Virtual Machines - Alauda Container Platform

written to disk.

4. Complete the operations according to the prompts on the interface. When the virtual

machine changes to the states below, the operation is successful.

Operation Status
Start Virtual Machine Running
Stop Virtual Machine Stopped

Restart Virtual Machine Running

Logging into the Virtual Machine using VNC - Alauda Container Platform

Menu ON THIS PAGE >

Logging into the Virtual Machine using VNC

Log into the virtual machine using the Web Console (VNC) as an emergency operation
method.

TOC

Procedure

Procedure

1. Access the Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Click : > VNC Login.

4. The console window will open automatically; you will need to enter your username and

password to log in.

Logging into the Virtual Machine using VNC - Alauda Container Platform

Send remote command v

ent0S Linux 7 (Core)
Kernel 3.18.8-11608.11.1.e17.x686_64 on an xB6_64

i login:

Note:

e Supports sending common keyboard commands.

e Supports copying and pasting commands and parameters.

Managing Key Pairs - Alauda Container Platform

Menu ON THIS PAGE >

Managing Key Pairs

Create, update or delete key pairs.

TOC

Creating Key Pairs
Updating Key Pairs

Deleting Key Pairs

Creating Key Pairs

1. Navigate to Container Platform.
2. In the left navigation bar, click Virtualization > Key Pairs.
3. Click Create Key Pair.

Currently, only SSH type key pairs are supported. You can manually import keys or let the
system automatically generate a key pair. When using the system-generated key pair, the
platform supports automatically downloading the private key to your local machine. The

platform will not save the private key.

4. Click Create.

Managing Key Pairs - Alauda Container Platform

Updating Key Pairs

1. Navigate to Container Platform.
2. In the left navigation bar, click Virtualization > Key Pairs.
3. Locate the Key Pair Name, click : > Update.

4. After re-importing or having the system generate a new key pair, click Update.

Deleting Key Pairs

1. Navigate to Container Platform.
2. In the left navigation bar, click Virtualization > Key Pairs.

3. Locate the Key Pair Name, click : > Delete, and confirm.

Managing Virtual Machines - Alauda Container Platform

Menu ON THIS PAGE >

Managing Virtual Machines

TOC

Reset Password
Procedure

Update Key
Procedure

Update Specifications

Live Migration

Update NAT Network Configuration
Procedure

Update Tags and Annotations

Add Service

Reinstall Operating System
Procedure

Configure IP

Procedure

Reset Password

Reset the root user password. This password also serves as the login password for the virtual

machine when logging in using a password.

Managing Virtual Machines - Alauda Container Platform
Procedure
1. Access the Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Locate the virtual machine and select : > Reset Password.
4. Set the password.
5. Click Reset.

Note: Please keep your password safe. To ensure environment security, the platform
encrypts and stores your password, and you will not be able to see the plaintext password

again.

Update Key

Update the SSH keys.

Procedure

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Locate the virtual machine and select : > Update Key.

4. Select one or more associated keys, or Create Key.

5. Choose whether to restart immediately; updating keys requires a restart of the virtual

machine to take effect.

6. Click Update.

Update Specifications

Managing Virtual Machines - Alauda Container Platform

1. Access the Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Locate the target virtual machine and click : > Update Specifications.

4. Modify the relevant resources based on the platform’'s recommended scenarios or custom

needs.
5. Choose whether to Restart Immediately; the configuration will take effect after restarting.

6. Click Update.

Live Migration

Note: If you need documentation regarding live migration operations, please contact the
administrator for assistance.

1. Access the Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Locate the target virtual machine and click : > Live Migration.

4. Click Confirm.

Update NAT Network Configuration

When using NAT network mode, the platform by default opens port 22 for SSH services, and

you can open other ports as needed.

Procedure

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

Managing Virtual Machines - Alauda Container Platform

3. Click Virtual Machine Name.

4. In the Basic Information section, click the icon to the right of Open Port.

5. Enter the port number and press the Enter key to confirm.

6. Choose whether to Restart Immediately; the configuration will take effect after restarting.

7. Click Update.

Update Tags and Annotations

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Virtual Machine Name.

4. In the Basic Information section, click the icon to the right of Tags or Annotations.

5. Configure as needed and click Update.

Add Service

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Virtual Machine Name.

4. In the Login Information section, click the icon to the right of Internal Route.

5. Refer to the Create Service page for quick addition of internal routes for the virtual

machine.

6. Click Confirm.

http://localhost:4173/container_platform/configure/networking/functions/configure_service.html

Managing Virtual Machines - Alauda Container Platform

Reinstall Operating System

It is strongly recommended to back up data before reinstalling the operating system to prevent
data loss.

Note: This operation will clear all data in the virtual machine's system disk, as well as all

snapshots, and is irreversible. Please proceed with caution!

Procedure

1. Access the Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Locate the virtual machine and select : > Reinstall Operating System.

4. In the Reinstall Operating System window, configure the following parameters.
¢ Provisioning Method: Currently supports public images.

o Select Image: By default, the current operating system image will be used for
reinstallation. If you wish to reinstall a new operating system, first select the operating
system of the virtual machine image, then choose the virtual machine image that

belongs to that operating system.

5. Click Reinstall.

Configure IP

Assign an IP to the virtual machine using dynamic allocation (DHCP) or bind a fixed IP to the
virtual machine; the new IP will take effect after the virtual machine is restarted.

Procedure

1. Access the Container Platform.

Managing Virtual Machines - Alauda Container Platform

2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Locate the target virtual machine and click : > Configure IP.
4. Configure the IP Address.

 Fill in an available IP: binding a fixed IP means that even after restarting, the virtual

machine will consistently use this IP address.

¢ Leave the option blank: this will use dynamic allocation (DHCP) to acquire an IP,
assigning the IP when the virtual machine starts and releasing it when the virtual

machine stops.
5. Choose whether to Restart Immediately; the configuration will take effect after restarting.

6. Click Configure.

Monitoring and Alerts - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring and Alerts

Monitor and alert on virtual machines in terms of CPU, memory, storage, and network. To

facilitate timely alerts, notification policies can also be configured.

The intuitively presented monitoring data can be used to provide decision-making support for
operations inspection or performance tuning, while the comprehensive alerting and notification

mechanism will help ensure the stable operation of virtual machines.

TOC

Monitoring

Alerts
Configuring Alert Policies
Handling Alerts

Binding Notification Policies

Monitoring

By default, the platform collects commonly used performance monitoring metrics for virtual
machines, including CPU, memory, storage, and network. Navigate to Virtualization > Virtual
Machines, and on the Monitoring tab in the virtual machine details, you can view real-time

monitoring data for the metrics.

Monitoring and Alerts - Alauda Container Platform

CPU Utilization (%) £ Memory Usage (GB) Utilization
Mean Mean
e | 2670% s 3.25GB
20 Max 2 Max
; 31.87% . 3.33GB
g Min Min
1] g, 0
10:15 10:30 10:45 1:00 24.38% 10:15 10:30 10:45 1:00 3.15GB
Disk IOPS (Times/sec) Write
1 Legend Current =
= cloudinitdisk 0 Times/sec
05
— rootfs 0 Times/sec
0
10:15 10:30 10:45 11:00

Alerts

Configuring Alert Policies

To enable alerts, you must first create an alert policy. An alert policy describes the objects you
wish to monitor, the conditions under which you wish to be alerted, and how you will be
notified of relevant alerts. Navigate to Container Platform > Virtualization > Virtual
Machines, and in the virtual machine details, click Create Alert Policy on the Alerts tab to

complete the configuration.

Parameter Description

- Metric Alert: The monitored object is a platform predefined metric,
such as Memory Usage Rate.

Alert Type - Event Alert: The monitored object is the cause of an event, that is, the
reason the virtual machine transitioned to its current state, e.g.,
BackOff, Pulling, Failed.

Composed of comparison operators, alert thresholds, and duration. By

comparing the real-time monitoring results with the set thresholds, it

Trigger _
. determines whether to alert.
Condition o _ .
If a duration is set, the platform will also compare the duration for
which the monitored object has been in the alert state.
Alert Level - Hint: The monitored object has expected issues that do not

immediately affect business operations but pose potential risks. For

Monitoring and Alerts - Alauda Container Platform

Parameter Description

example, if CPU usage exceeds 70% for 3 minutes.

- Warning: The monitored object has operational risks that may affect
normal business operations if not addressed promptly. For example, if
CPU usage exceeds 80% for 3 minutes.

- Serious: The monitored object has known issues that may lead to
platform functionality failures, affecting normal business operations.

- Disaster: The monitored object has failed, resulting in platform

service interruptions, data loss, with significant impact.

Tip: The virtual machine alerting function is similar to the platform's general alerting function.

For more detailed configuration guidance, please refer to the general Alerts documentation.

Handling Alerts

Navigate to the Alerts tab, and if there are alert status strategies indicated, please address
them promptly.

Binding Notification Policies

In addition to real-time alerts on the Alerts tab, the platform also supports sending alert
information via email, SMS, and other means to relevant personnel, notifying them to take
necessary measures to resolve issues or prevent failures. The notification policy needs to be

set up by contacting the administrator.

Quick Location of Virtual Machines - Alauda Container Platform

Menu ON THIS PAGE >

Quick Location of Virtual Machines

The platform supports displaying the list of virtual machines by cluster, allowing platform
administrators to quickly locate the namespace of the virtual machine and perform operations

such as scaling up or troubleshooting, thereby improving operational efficiency.

TOC

Prerequisites

Procedure

Prerequisites

Ensure that the virtualization feature is enabled for the current cluster before use. Please refer
to Install.

Procedure

1. Go to Administrator.
2. In the left navigation bar, click Virtualization Management > Virtual Machines.
3. Select Cluster to view the list of virtual machines in that cluster.

4. You can quickly locate the virtual machine by its name, IP address, or creator.

Quick Location of Virtual Machines - Alauda Container Platform

5. Click on the virtual machine Name link to enter the details page of that virtual machine,

where you can perform operations such as scaling up or troubleshooting.

How To - Alauda Container Platform

Menu

How To

Configuring USB host passthrough
Feature Overview

Use Cases

Prerequisites

Steps

Operation Result

Learn More

Virtual Machine Hot Migration
Overview

Constraints and Limitations
Prerequisites

Operation Steps

Virtual Machine Recovery

Steps to Operate

Clone Virtual Machines on KubeVirt
Ensure Prerequisites
Start Quickly

Understand the VirtualMachineClone Object

How To - Alauda Container Platform

Physical GPU Passthrough Environment Preparation
Constraints and Limitations

Prerequisites

Operating Steps

Result Verification

Related Operations

Configuring High Availability for Virtual Machines
Overview

Glossary

Component Overview

Flow of events during fencing and remediation

Procedure

Create a VM Template from an Existing Virtual Machine
Prerequisites

Procedure

Configuring USB host passthrough - Alauda Container Platform

Menu ON THIS PAGE >

Configuring USB host passthrough

TOC

Feature Overview
Use Cases
Prerequisites
Steps
Expose USB devices
Assign USB devices to a Virtual Machine
Operation Result
Learn More
Expose multiple USB devices

Assign USB devices to a Virtual Machine

Feature Overview

USB(Universal Serial Bus) pass-through feature enables you to access and manage USB

devices from a virtual machine.

Use Cases

Configuring USB host passthrough - Alauda Container Platform

Some applications running in virtual machines (VMs) have encryption requirements and need
to interact with dedicated USB devices. In such cases, it is necessary to passthrough the USB
devices from the host machine to the VM.

Prerequisites

¢ The platform version must be at least v3.18.

Steps

1 Expose USB devices

To assign a USB device to a VM, the USB device must be exposed via a
ResourceName. This can be configured by editing the

spec.permittedHostDevices.usbHostDevices section in the HyperConverged CR under the
kubevirt namespace.

Below is an example configuration for a USB device with ResourceName
kubevirt.io/storage, where the vendor is 0bda and the productis 8812 :

spec:
permittedHostDevices:
usbHostDevices:
- resourceName: kubevirt.io/storage
selectors:

- vendor: 'Obda’

product: '8812'
Tip

The vendor and product identifiers of a USB device can be obtained using the Tsusb

command. For example:

Configuring USB host passthrough - Alauda Container Platform

lsusb
Bus 001 Device 007: ID @bda:8812 Realtek Semiconductor Corp. RTL8812AU
802.11a/b/g/n/ac 2T2R DB WLAN Adapter

This command lists all connected USB devices, where ID displays the vendor:product pair.

2) Assign USB devices to a Virtual Machine

Now, in the VM configuration, you can add spec.domain.devices.hostDevices.deviceName
to reference the ResourceName provided in the previous step and assign it a local name.

For example:

spec:
domain:
devices:
hostDevices:
- deviceName: kubevirt.io/storage
name: usb-storage

Tip

Ensure the VM is stopped before editing the configuration.

Operation Result

After completing the configuration, execute the 1susb command within the virtual machine. If
the output lists the host node's USB device, the passthrough was successful. For example:

Lsusb

Bus 002 Device 001: ID 1dbb:0003 Linux Foundation 3.0 root hub

Bus 001 Device 002: ID @bda:8812 Realtek Semiconductor Corp. RTL8812AU 802.11a/b/g/n/ac
2T2R DB WLAN Adapter

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

Configuring USB host passthrough - Alauda Container Platform

Learn More

You may want to passthrough multiple USB devices to a virtual machine, such as a keyboard,
mouse, or smart card device. We support assigning multiple USB devices under the same

resourceName. Here's how to configure it:

1 Expose multiple USB devices

spec:
permittedHostDevices:
usbHostDevices:
- resourceName: kubevirt.io/peripherals
selectors:
- vendor: 'Obda’
product: '8812'
- vendor: '062a’
product: '4102'
- vendor: '072f'
product: 'b100'
Tip

Note: All USB devices must be physically connected and detected on the host to ensure

successful assignment to the virtual machine.

2) Assign USB devices to a Virtual Machine

spec:
domain:
devices:
hostDevices:
- deviceName: kubevirt.io/peripherals

name: local-peripherals

Virtual Machine Hot Migration - Alauda Container Platform

Menu ON THIS PAGE >

Virtual Machine Hot Migration

TOC

Overview
ProCopy
Constraints and Limitations
Prerequisites
Operation Steps
Deploy kubevirt-operator
Create HyperConverged Instance
Prepare the Virtual Machine

Start Hot Migration

Overview

The virtual machine hot migration technology allows for moving a virtual machine from one
physical server to another without shutting down or interrupting the virtual machine. The
platform’'s virtual machine solution is implemented based on the open-source component

KubeVirt, which uses a mode called ProCopy for hot migration by default.

ProCopy

ProCopy (Pre-Copy Memory Migration) is a commonly used virtual machine migration

technology that ensures service continuity during migration by pre-copying the virtual

Virtual Machine Hot Migration - Alauda Container Platform

machine's memory data. The specific process is as follows:

1. Initial Phase: At the start of the migration, the source host will copy the virtual machine's
memory pages to the target host while the virtual machine continues to run. Because the
virtual machine continues running, some memory pages may be modified during the

copying process.

2. Iterative Copying: The source host repeatedly copies the modified memory pages to the
target host until the number of modified pages decreases to an acceptable level. Each
round of copying is called an iteration, and the number of unmodified memory pages

gradually decreases after each iteration.

3. Stop and Copy: When the remaining un-copied memory pages are sufficiently few, the
virtual machine will pause briefly (usually only a few seconds to a dozen seconds), during
which the last memory pages are copied to the target host, and the virtual machine's CPU

and device states are synchronized to the target host.

4. Resume Operation: The virtual machine resumes operation on the target host.

Constraints and Limitations

It is recommended that the two physical machines involved in the hot migration operation use
the same hardware configuration. If the configurations are inconsistent (for example, different

CPU models), migration may falil.

Prerequisites

Please enable the relevant virtual machine hot migration functions in advance.

Operation Steps

Deploy kubevirt-operator

Note: For detailed steps and parameter explanations, please refer to Deploy Operator.

Virtual Machine Hot Migration - Alauda Container Platform

1. Go to Administrator.
2. In the left navigation bar, click App Store Management > Operators.

3. Click Cluster at the top of the page to switch to the cluster where the Operator needs to be

deployed.

4. In the OperatorHub tab, click Deploy on the KubeVirt HyperConverged Cluster Operator

card.
5. Configure the parameters as needed and click Deploy. You can check the Operator

deployment status in the Deployed tab.

Create HyperConverged Instance

For specific creation steps, please refer to Create HyperConverged Instance.

Prepare the Virtual Machine

Note: It is recommended to use the Kube-OVN Underlay network. For related configurations,
please refer to Create Subnet (Kube-OVN Underlay Network).

1. Go to Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machine.
3. Click Create Virtual Machine.

4. Click More in the Basic Information area to expand more configuration options, and click
Add corresponding to Annotations, adding annotations according to the key-value pairs
below. If the network plugin is Kube-OVN, there is no need to manually fill in this

annotation.

Note: Due to form restrictions, please enter the value of the annotation first before entering

the key of the annotation.

Annotation

Value true

http://localhost:4173/container_platform/configure/networking/functions/configure_subnet.html#kube_ovn_underlay_network

Virtual Machine Hot Migration - Alauda Container Platform
Annotation

Key kubevirt.io/allow-pod-bridge-network-live-migration

5. Configure other virtual machine parameters as needed. For specific parameter

descriptions, please refer to the relevant product documentation.

Parameter Description
Volume Mode Must use Block Mode.
Storage Class Must use CephRBD block storage type storage class.

Network Mode Recommended to use Bridge.

6. Click Create.

Start Hot Migration

Note: Hot migration can only be started when the virtual machine status is Running.

1. Go to Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machine.
3. Start the hot migration. There are two ways to do this:

« Click : > Hot Migration on the right side of the virtual machine that needs to be migrated

in the list.

¢ Click the name of the virtual machine that needs to be migrated in the list to enter the

detail information page, then click Actions > Hot Migration.

4. Click Confirm. You can check the migration progress through Virtual Machine Status or
Real-Time Events. When the status changes from Migrating to Running, or when a real-
time event appears with information like Migrated: The VirtualMachinelnstance migrated

to node 10.1.1.1,, it indicates that the migration was successful.

Virtual Machine Recovery - Alauda Container Platform

Menu ON THIS PAGE >

Virtual Machine Recovery

In certain scenarios, such as incorrect modifications to fstab or filesystem errors requiring
fsck, virtual machines may fail to start properly. In such cases, you can utilize rescue mode to
repair the root filesystem (rootfs) or retrieve data from the system.

TOC

Steps to Operate
Obtain Image Address
Modify Virtual Machine YAML File
Mount the Original rootfs and Perform Repair

Restore the Virtual Machine YAML File

Steps to Operate

Obtain Image Address

1. In the left navigation bar, click Virtualization Management > Virtual Machine Images.

2. Select the platform-provided Source as Image Repository, and the Operating System as
either CentOS or Ubuntu. Click : > Update on the right.

3. Copy and save the Image Address. This document uses

192.168.1.1:11443/3rdparty/vmdisks/centos:7.9 as an example.

Virtual Machine Recovery - Alauda Container Platform

4. Click Cancel.

Modify Virtual Machine YAML File

1. Access the Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click : > Stop on the right side of the virtual machine that needs repair to Stop or Force
Stop it.

4. Click : > Update on the right side of the virtual machine.
5. Switch to YAML and modify the following fields.

¢ Add the following content under spec.template.spec.domain.devices.disks . Adding a
bootOrder parameter can control which disk is prioritized during the virtual machine's

boot process; a lower bootOrder value indicates higher priority.

Note: If the original spec.template.spec.domain.devices.disks field contains bootOrder:
1, increase the original value to ensure that the newly added bootOrder value is lower

than the original.

disks:
- bootOrder: 1
disk:
bus: virtio

name: containerdisk

Modified YAML example:

Virtual Machine Recovery - Alauda Container Platform

domain:
devices:
disks:
- bootOrder: 1 # Added Field
disk:
bus: virtio

name: containerdisk
- disk:
bus: virtio
name: cloudinitdisk
- disk: # Increase the original bootOrder: 1 value
bus: virtio
name: rootfs
bootOrder: 10

- disk:
bus: virtio
name: "1"

¢ Add the following content under spec.template.spec.volumes .

Note: Please replace the image address in the following image field with the one

obtained from Obtain Image Address.

- containerDisk:
image: 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9

name: containerdisk

Modified YAML example:

volumes:
- containerDisk: # Added Field
image: 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9
name: containerdisk
- dataVolume:
name: k2-rootfs
name: rootfs
- dataVolume:
name: k2-1

name: "1"

Virtual Machine Recovery - Alauda Container Platform

6. Click Update.
Note: After modifying the YAML file, do not switch to Form, just click Update directly.

7. Click : > Start on the right side of the virtual machine.

Mount the Original rootfs and Perform Repair

1. Log in to the virtual machine using the original password or key and enter the command df
-h / to find that the rootfs filesystem has been replaced. You can use mount-related
commands to mount it or fsck-related commands to check and repair the original

filesystem.

2. After completion, shut down the virtual machine.

Restore the Virtual Machine YAML File

Follow the steps in Modify Virtual Machine YAML File to restore the virtual machine YAML file

to its original state. At this point, the virtual machine can start normally.

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Menu ON THIS PAGE >

Clone Virtual Machines on KubeVirt

This document provides step-by-step guidance on cloning virtual machines (VMs) using
KubeVirt's VirtualMachineClone API.

TOC

Ensure Prerequisites

Start Quickly

Understand the VirtualMachineClone Object
View a Complete VirtualMachineClone Example
Understand Each Field

Check Clone Operation Phases

Ensure Prerequisites

Before initiating a VM clone operation, make sure the following requirements are satisfied:

+ Snapshot-Capable Storage: The Clone API relies on Snapshot & Restore functionalities.
The virtual machine's storage class must support volume snhapshots, and snapshot

functionality must be explicitly enabled for that storage backend.

Start Quickly

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Follow these quick steps to clone a VM:

1. Prepare the Clone Manifest:

Create a file named clone.yaml with the following structure:

apiVersion: clone.kubevirt.io/vibetal
kind: VirtualMachineClone
metadata:
name: example-vm-clone
namespace: ns-where-vm-run
spec:
source:
apiGroup: kubevirt.io
kind: VirtualMachine
name: source-vm
target:
apiGroup: kubevirt.io
kind: VirtualMachine

name: target-vm

2. Execute the Clone Operation:

Apply the manifest:

kubectl create -f clone.yaml

3. Monitor the Clone Status:

Wait until the cloning is completed successfully:

kubectl wait vmclone example-vm-clone --for condition=Ready

4. Verify the Cloned VM:

Inspect the cloned VM configuration:

kubectl get vm target-vm -o yaml

Clone Virtual Machines on KubeVirt - Alauda Container Platform

5. Fix the DataVolume Label (Ul metadata):

The platform Ul links VMs to their disks through the label vm.cpaas.io/used-by=<vm-name>
that is automatically added to every DataVolume. After a clone operation the new
DataVolume inherits the label from the source VM, so the Ul still thinks it belongs to the old
VM. Update the label on the newly created DV so the relationship displays correctly

(functionality is not affected).

kubectl get datavolumes -n <ns-where-vm-run>

kubectl label datavolume <new-dv-name> -n <ns-where-vm-run> vm.cpaas.io/used-by=

<target-vm> --overwrite

Understand the VirtualMachineClone Object

View a Complete VirtualMachineClone Example

Here's a complete example of a VirtualMachineClone resource with detailed inline comments:

Clone Virtual Machines on KubeVirt - Alauda Container Platform

apiVersion: clone.kubevirt.io/vibetal
kind: VirtualMachineClone
metadata:
name: detailed-vm-clone
namespace: ns-where-vm-run
spec:
Source VM details
source:
apiGroup: kubevirt.io
kind: VirtualMachine

name:. vm-source

Target VM details
target:
apiGroup: kubevirt.io
kind: VirtualMachine

name: vm-target

Filters for labels and annotations copied from source
labelFilters:

= 050

- "lexclude-key/*"
annotationFilters:

- "include-annotations/*"

Template filters to manage network annotations
template:
labelFilters:
_ Wkn
annotationFilters:

- "Inetwork-info/*"

Explicitly set new MAC addresses
newMacAddresses:
eth0: "02-00-00-aa-bb-cc"

Explicitly set SMBios serial
newSMBiosSerial: "unique-serial-1234"

JSON patches to further customize the cloned VM
patches:
- "{"op": "add", "path": "/metadata/labels/new-label”, "value": "new-value"}'
- "{"op": "replace", "path": "/spec/template/metadata/annotations/new-annotation",

Clone Virtual Machines on KubeVirt - Alauda Container Platform

"value": "updated-value"}'

Understand Each Field

« Source and Target:

o Define the original VM (source) and the cloned VM (target).
¢ Auto-generated if the target name is omitted.

* Both VMs must reside within the same namespace.
« Label and Annotation Filters:

» Control copying or excluding labels/annotations from the source VM using wildcards

(*) and negations (!).
+ Template Label and Annotation Filters:
» Useful for managing network-related annotations, especially with CNiIs like Kube-OVN.
 newMacAddresses:

¢ Optionally specify new MAC addresses for network interfaces.

o Automatically regenerated if omitted.
* newSMBiosSerial:

o Optionally specify a new SMBios serial.

e Auto-generated based on VM name if not provided.
+ JSON Patches:

e Advanced customizations directly applied to VM specs.

Check Clone Operation Phases

The .status.phase of a VirtualMachineClone object changes according to the cloning process

progress. The table below explains each phase:

Phase

SnapshotinProgress

CreatingTargetVM

RestorelnProgress

Succeeded

Failed

Unknown

Clone Virtual Machines on KubeVirt - Alauda Container Platform

Explanation

Creating a snapshot of the source VM, initial step when

cloning a running VM.

Snapshot is complete; creating metadata and specification for
the target VM.

DataVolume and PersistentVolumeClaim creation in progress,

restoring data from snapshot.

Operation successfully completed. Target VM and storage are

ready.

Operation failed. Check events and status.conditions for

detailed error information.

Unable to determine the clone operation status, potentially

indicating a controller issue.

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Menu ON THIS PAGE >

Physical GPU Passthrough Environment

Preparation

Physical GPU passthrough in virtual machines refers to the process of directly allocating the
actual Graphics Processing Unit (GPU) to a virtual machine within a virtualization
environment. This allows the virtual machine to access and utilize the physical GPU directly,
achieving graphics performance equivalent to that of running directly on a physical machine. It
avoids performance bottlenecks caused by virtual graphics adapters, thus enhancing overall

performance.

TOC

Constraints and Limitations
Prerequisites
Chart and Image Preparation
Enabling IOMMU
Operating Steps
Create Namespace
Deploy gpu-operator
Configure Kubevirt
Result Verification
Related Operations
Delete the Virtual Machine with Passthrough GPU
Remove GPU-related Configuration from KubeVirt

Uninstall gpu-operator

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Constraints and Limitations

The physical GPU passthrough functionality requires the use of the kubevirt-gpu-device-
plugin; however, there is currently no ARM64 image available for the kubevirt-gpu-device-
plugin, which means this functionality cannot be used in an operating system with an ARM64
CPU architecture.

Prerequisites

Chart and Image Preparation

Obtain the following Chart and images and upload them to an image repository. This
document uses build-harbor.example.cn as an example repository address. For the specific

method of obtaining the Chart and images, please contact the relevant personnel.
Chart

 build-harbor.example.cn/example/chart-gpu-operator:v23 .9.1
Images

e build-harbor.example.cn/3rdparty/nvidia/gpu-operator:v23 .9.0

» build-harbor.example.cn/3rdparty/nvidia/cloud-native/gpu-operator-validator:v23 .9.0
 build-harbor.example.cn/3rdparty/nvidia/cuda:12 .3.1-base-ubi8

¢ build-harbor.example.cn/3rdparty/nvidia/kubevirt-gpu-device-plugin:vl .2.4

 build-harbor.example.cn/3rdparty/nvidia/nfd/node-feature-discovery:v0 .14.2

Enabling IOMMU

The procedure for enabling IOMMU varies across different operating systems. Please refer to
the documentation of the corresponding operating system. This document uses CentOS as an

example, and all commands should be executed in the terminal.

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

1. Edit the /etc/default/grub file and add intel_iommu=on iommu=pt to the GRUB_CMDLINE_LINUX

configuration option.

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=centos/root rhgb quiet intel_iommu=on

iommu=pt"
2. Execute the following command to generate the grub.cfg file.
grub2-mkconfig -o /boot/grub2/grub.cfg

3. Restart the server.

4. Run the following command to confirm if IOMMU has been successfully enabled. If the

output contains IOMMU enabled , then it indicates that it has been successfully enabled.

dmesg | grep -i iommu

Operating Steps

Note: All commands below should be executed in the CLI tool on the corresponding cluster

Master node unless otherwise specified.

Create Namespace

Execute the following command to create a namespace named gpu-system . If the output
displays namespace/gpu-system created , it indicates that the creation was successful.

kubectl create ns gpu-system

Deploy gpu-operator

1. Execute the following command to deploy the gpu-operator.

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

export REGISTRY=<registry> # Replace <registry> with the repository address where the
gpu-operator image is located, e.g.: export REGISTRY=build-harbor.example.cn

cat <<EOF | kubectl create -f -
apiVersion: operator.alauda.io/vlalphal
kind: AppRelease
metadata:
annotations:
auto-recycle: "true"
interval-sync: "true"
name: gpu-operator
namespace: gpu-system
spec:
destination:
cluster: ""
namespace: "gpu-operator”
source:
charts:
- name: <chartName> # Replace <chartName> with the actual chart path, e.g.: name =
example/chart-gpu-operator
releaseName: gpu-operator
targetRevision: v23.9.1
repoURL: $REGISTRY
timeout: 120
values:
global:
registry:
address: $REGISTRY
nfd:
enabled: true
sandboxWorkloads:
enabled: true
defaultWorkload: "vm-passthrough"
EOF

2. Execute the following command to check if the gpu-operator has synchronized. If SYNC

shows as Synced , it indicates that it has synchronized successfully.

kubectl -n gpu-system get apprelease gpu-operator

Output information:

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

NAME SYNC HEALTH MESSAGE UPDATE AGE
gpu-operator Synced Ready chart synced 28s 32s

3. Execute the following command to retrieve the names of all nodes and find the GPU node

name.
kubectl get nodes -o wide

4. Execute the following command to check if the GPU node has any pass-through capable
GPU. If the output contains GPU information similar to nvidia.com/GK210GL_TESLA_K80 , it

indicates that there are pass-through capable GPUs.

kubectl get node <gpu-node-name> -0 jsonpath='{.status.allocatable}' # Replace <gpu-

node-name> with the GPU node name obtained from Step 3

Output information:

{"cpu":"39","devices.kubevirt.io/kvm":"1k","devices.kubevirt.io/tun":"1k", "devices.kubevir
net":"1k", "ephemeral-storage":"426562784165", "hugepages-1Gi":"0", "hugepages-
2Mi":"0", "memory":"122915848Ki", "nvidia.com/GK210GL_TESLA_K80":"8", "pods":"256"}

5. At this point, the gpu-operator has been successfully deployed.

Configure Kubevirt

1. Execute the following command to enable the DisableMDEVConfiguration feature. If a
message similar to hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched is

returned, it indicates successful enabling.

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='[{"op": "add",

"path": "/spec/featureGates/disableMDevConfiguration”, "value": true }]'

2. In the terminal of the GPU node, execute the following command to obtain the
pciDeviceSelector. The 10de:102d part in the output is the value of pciDeviceSelector.

{#pciDeviceSelector}

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Ispci -nn | grep -i nvidia

Output information:

04:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
05:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
08:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
09:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
85:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
86:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
89:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)
8a:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K8@] [10de:102d] (rev
al)

3. Execute the following command to retrieve the names of all nodes and find the GPU node

name.

kubectl get nodes -o wide

4. Execute the following command to obtain the resourceName. The

nvidia.com/GK210GL_TESLA_K80@ partin the output is the value of resourceName.

kubectl get node <gpu-node-name> -o jsonpath='{.status.allocatable}"' # Replace <gpu-

node-name> with the GPU node name obtained from Step 3

Output information:

{"cpu":"39","devices.kubevirt.io/kvm":"1k","devices.kubevirt.io/tun":"1k", "devices.kubevir
net":"1k", "ephemeral-storage":"426562784165", "hugepages-1Gi":"0", "hugepages-
2Mi":"0", "memory":"122915848Ki", "nvidia.com/GK210GL_TESLA_K80":"8", "pods":"256"}

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

5. Execute the following command to add the passthrough GPU.

Note: When replacing the <pci-devices-id> part in the command below with the
pciDeviceSelector value obtained in Step 2, all letters in the pciDeviceSelector must be

converted to uppercase. For example, if the pciDeviceSelector value obtained is
10de:102d , it should be replaced with export DEVICE=10DE:102D .

¢ Adding a single GPU card

export DEVICE=<pci-devices-id> # Replace <pci-devices-id> with the
pciDeviceSelector obtained in Step 2, e.g.: export DEVICE=10DE:102D

export RESOURCE=<resource-name> # Replace <resource-name> with the resourceName
obtained in Step 4, e.g.: export RESOURCE=nvidia.com/GK210GL_TESLA_K80

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='

[
{
"op": "add",
"path": "/spec/permittedHostDevices",
"value": {
"pciHostDevices": [
{
"externalResourceProvider": true,
"pciDeviceSelector": "'"$DEVICE"'",
"resourceName": "'"$RESOURCE""'"
}
1
}
}
ik

¢ Adding multiple GPU cards

Note: When adding multiple GPU cards, each pciDeviceSelector value used to replace

<pci-devices-id> must be unique.

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

export DEVICE1=<pci-devices-id1> # Replace <pci-devices-id1> with the
pciDeviceSelector obtained in Step 2

export RESOURCET=<resource-name1> # Replace <resource-namel1> with the resourceName
obtained in Step 4

export DEVICE2=<pci-devices-id2> # Replace <pci-devices-id2> with the
pciDeviceSelector obtained in Step 2

export RESOURCE2=<resource-name2> # Replace <resource-name2> with the resourceName
obtained in Step 4

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='
[

"op": "add",

"path": "/spec/permittedHostDevices",

"value": {

"pciHostDevices": [
{

"externalResourceProvider": true,
"pciDeviceSelector": "'"$DEVICE"'",
"resourceName": "'"$RESOURCE""'"

"externalResourceProvider": true,
"pciDeviceSelector": "'"$DEVICE2"'",
"resourceName": "'"$RESOURCE2"'"

e Adding new GPU cards after already adding GPU cards

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

export DEVICE=<pci-devices-id> # Replace <pci-devices-id> with the
pciDeviceSelector obtained in Step 2

export RESOURCE=<resource-name> # Replace <resource-name> with the resourceName
obtained in Step 4

export INDEX=<index> # index is a zero-based array index, use the number to replace
<index>, for example: if one GPU card has already been added, and now you want to
add another one, index should be 1, i.e., export INDEX=1

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p='
[

"Op": lladdll,

"path": "/spec/permittedHostDevices/pciHostDevices/""${INDEX}""",
"value": {

"externalResourceProvider": true,
"pciDeviceSelector": "'"$DEVICE"'",
"resourceName": "'"$RESOURCE"""

Result Verification

After completing the above configuration steps, if the corresponding physical GPU can be
selected when creating the virtual machine, it indicates that the physical GPU passthrough
environment has been successfully prepared.

Note: If physical GPU passthrough needs to be configured, please enable the relevant
features in advance.

1. Go to Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Click Create Virtual Machine.

4. Configure the Physical GPU (Alpha) parameter for the virtual machine.

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

Parameter Description
Physical GPU Select the model of the configured physical GPU. Only one
(Alpha) physical GPU can be assigned to each virtual machine.

5. At this point, the physical GPU passthrough environment has been successfully prepared.

Related Operations

Delete the Virtual Machine with Passthrough GPU

1. Go to Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.

3. In the list page, click the : on the right side of the virtual machine to be deleted > Delete, or
click the name of the virtual machine to be deleted to enter its detail information page, and

click Actions > Delete.

4. Input the confirmation information to delete the virtual machine with passthrough GPU.

Remove GPU-related Configuration from KubeVirt

1. On the corresponding cluster Master node for the GPU, use the CLI tool to execute the

following command to remove the GPU-related configuration from KubeVirt.

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p="[{"op":

"remove", "path": "/spec/permittedHostDevices"}]"

2. After deletion, if it is not possible to choose the corresponding physical GPU model when
creating a virtual machine through Container Platform, it indicates that the deletion was
successful. Please refer to Select Physical GPU Model for the specific steps to create a

virtual machine.

Uninstall gpu-operator

Physical GPU Passthrough Environment Preparation - Alauda Container Platform

1. Use the CLI tool on the corresponding cluster Master node for the GPU to execute the

following command to uninstall the gpu-operator.

kubectl -n gpu-system delete apprelease gpu-operator

Output information:

apprelease.operator.alauda.io "gpu-operator" deleted

2. Execute the command, and if you receive a response similar to the one below, it indicates

that the gpu-operator has been successfully uninstalled.

kubectl -n gpu-system get apprelease gpu-operator

Output information:

Error from server (NotFound): appreleases.operator.alauda.io "gpu-operator" not found

Configuring High Availability for Virtual Machines - Alauda Container Platform

Menu ON THIS PAGE >

Configuring High Availability for Virtual
Machines

TOC

Overview
Glossary
Component Overview
Flow of events during fencing and remediation
Procedure
Operator Listing
Deploying Self Node Remediation Operator
Configuring Self Node Remediation Operator(optional)
Configuring Self Node Remediation Template(optional)
Deploying Node Health Check Operator
Create NodeHealthCheck instance

Verification(optional)

Overview

Hardware is imperfect and software contains bugs. When node-level failures, such as the
kernel hangs or network interface controllers (NICs) fail, the work required from the cluster

does not decrease, and workloads from affected nodes need to be restarted somewhere.

Configuring High Availability for Virtual Machines - Alauda Container Platform

However, some workloads, such as ReadWriteOnce (RWO) volumes and StatefulSets, might

require at-most-one semantics.

Failures affecting these workloads risk data loss, corruption, or both. It is important to ensure
that the node reaches a safe state, known as fencing before initiating recovery of the

workload, known as remediation and ideally, recovery of the node also.

It is not always practical to depend on administrator intervention to confirm the true status of
the nodes and workloads. To facilitate such intervention, Alauda Container Platform provides

multiple components for the automation of failure detection, fencing and remediation.

Glossary

Acronym Term
SNR Self Node Remediation

NHC Node Health Check

Component Overview

+ Self Node Remediation Operator

The Self Node Remediation Operator is a Alauda Container Platform add-on Operator that
implements an external system of fencing and remediation that reboots unhealthy nodes
and deletes resources, such as Pods and VolumeAttachments. The reboot ensures that the
workloads are fenced, and the resource deletion accelerates the rescheduling of affected
workloads. Unlike other external systems, Self Node Remediation does not require any
management interface, like, for example, Intelligent Platform Management Interface (IPMI)

or an API for node provisioning.

Self Node Remediation can be used by failure detection systems, like Machine Health
Check or Node Health Check.

* Node Health Check Operator

Configuring High Availability for Virtual Machines - Alauda Container Platform

The Node Health Check Operator is a Alauda Container Platform add-on Operator that
implements a failure detection system that monitors node conditions. It does not have a
built-in fencing or remediation system and so must be configured with an external system
that provides these features. By default, it is configured to utilize the Self Node

Remediation system.

Flow of events during fencing and remediation

Configuring High Availability for Virtual Machines - Alauda Container Platform

Connection to API Server
Lost

API Server Marks Node as
Unknown

NHC Timeout Threshold

Exceeded?

Yes

!

Self-Remediation Option
Selected

SNR Service

SNR Node Isolation &
Reboot

Delete Pod &
VolumeAttachment

Configuring High Availability for Virtual Machines - Alauda Container Platform

Resources

Workload Rescheduling

Procedure

1) Operator Listing

« Download the Alauda Build of SelfNodeRemediation installation package

corresponding to your platform architecture.

» Upload the Alauda Build of SelfNodeRemediation installation package using the

Upload Packages mechanism.

» Download the Alauda Build of NodeHealthCheck installation package

corresponding to your platform architecture.

» Upload the Alauda Build of NodeHealthCheck installation package using the

Upload Packages mechanism.
2 Deploying Self Node Remediation Operator

1. Login, go to the Administrator page.
2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Build of SelfNodeRemediation, click Install, and navigate to the

Install Alauda Build of SelfNodeRemediation page.

Configuration Parameters:

Parameter Recommended Configuration
Channel The default channel is stable .

] Cluster : All namespaces in the cluster share a single
Installation

_— Operator instance for creation and management, resulting in
ode

lower resource usage.

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter Recommended Configuration
Installation Select Recommended , Namespace only support workload-
Place availability.

Manual : When there is a new version in the Operator Hub,

Upgrade . . .
manual confirmation is required to upgrade the Operator to

Strategy
the latest version.

3 Configuring Self Node Remediation Operator(optional)

The Self Node Remediation Operator creates the SelfNodeRemediationConfig CR with
the name self-node-remediation-config . The CR is created in the namespace of the Self

Node Remediation Operator.

Note

A change in the SelfNodeRemediationConfig CR re-creates the Self Node Remediation

daemon set.

The SelfNodeRemediationConfig CR resembles the following YAML file:

Configuring High Availability for Virtual Machines - Alauda Container Platform

apiVersion: self-node-remediation.medik8s.io/v1alphal

kind: SelfNodeRemediationConfig
metadata:
name: self-node-remediation-config
namespace: workload-availability
spec:
safeTimeToAssumeNodeRebootedSeconds: 180
watchdogFilePath: /dev/watchdog
isSoftwareRebootEnabled: true
apiServerTimeout: 15s
apiCheckInterval: 5s
maxApiErrorThreshold: 3
peerApiServerTimeout: 5s
peerDialTimeout: 5s
peerRequestTimeout: 5s
peerUpdatelnterval: 15m
hostPort: 30001
customDsTolerations:
- effect: NoSchedule
key: node-role.kubernetes.io.infra
operator: Equal
value: "valuel"
tolerationSeconds: 3600

Parameters

Parameter

safeTimeToAssumeNodeRebootedSeconds

Description

Specify an optional time
duration that the Operator waits
before recovering affected
workloads running on an
unhealthy node. Starting
replacement pods while they
are still running on the failed
node can lead to data
corruption and a violation of
run-once semantics. The
Operator calculates a minimum

duration using the values in the

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter

watchdogFilePath

isSoftwareRebootEnabled

apiServerTimeout

Description

ApiServerTimeout,
ApiCheckinterval,
MaxApiErrorThreshold,
PeerDialTimeout, and
PeerRequestTimeout fields, as
well as the watchdog timeout
and the cluster size at the time

of remediation.

Specify the file path of the
watchdog device in the nodes. If
you enter an incorrect path to
the watchdog device, the Self
Node Remediation Operator
automatically detects the
softdog device path.
If a watchdog device is
unavailable, the
SelfNodeRemediationConfig CR

uses a software reboot.

Specify if you want to enable
software reboot of the unhealthy
nodes. By default, the value of
isSoftwareRebootEnabled is set
to true . To disable the
software reboot, set the

parameter value to false .

Specify the timeout duration to
check connectivity with each
API server. When this duration
elapses, the Operator starts
remediation. The timeout
duration must be greater than or

equal to 10 milliseconds.

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter

apiCheckinterval

maxApiErrorThreshold

peerApiServerTimeout

peerDialTimeout

peerRequestTimeout

peerUpdatelnterval

Description

Specify the frequency to check
connectivity with each API
server. The timeout duration
must be greater than or equal to

1 second.

Specify a threshold value. After
reaching this threshold, the
node starts contacting its peers.
The threshold value must be
greater than or equal to 1

second.

Specify the duration of the
timeout for the peer to connect
the API server. The timeout
duration must be greater than or

equal to 10 milliseconds.

Specify the duration of the
timeout for establishing
connection with the peer. The
timeout duration must be
greater than or equal to 10

milliseconds.

Specify the duration of the
timeout to get a response from
the peer. The timeout duration
must be greater than or equal to

10 milliseconds.

Specify the frequency to update
peer information such as IP
address. The timeout duration
must be greater than or equal to

10 seconds.

Configuring High Availability for Virtual Machines - Alauda Container Platform

Parameter Description

Specify an optional value to

change the port that Self Node

Remediation agents use for
hostPort . o

internal communication. The

value must be greater than 0.

The default value is port 30001.

Specify custom toleration Self
Node Remediation agents that

customDsTolerations are running on the DaemonSets
to support remediation for

different types of nodes.

Note

The Self Node Remediation Operator creates the CR by default in the deployment

namespace.
» The name for the CR must be self-node-remediation-config .
» You can only have one SelfNodeRemediationConfig CR.

o Deleting the SelfNodeRemediationConfig CR disables Self Node Remediation.

4’ Configuring Self Node Remediation Template(optional)

The Self Node Remediation Operator also creates the SelfNodeRemediationTemplate
Custom Resource Definition (CRD). This CRD defines the remediation strategy for the
nodes that is aimed to recover workloads faster. The following remediation strategies

are available:
o Automatic

This remediation strategy simplifies the remediation process by letting the Self Node
Remediation Operator decide on the most suitable remediation strategy for the

cluster. This strategy checks if the 0OutOfServiceTaint strategy is available on the

Configuring High Availability for Virtual Machines - Alauda Container Platform

cluster. If the OutOfServiceTaint strategy is available, the Operator selects the
OutOfServiceTaint strategy. If the OutOfServiceTaint strategy is not available, the
Operator selects the ResourceDeletion strategy. Automatic is the default remediation

strategy.

e ResourceDeletion

This remediation strategy removes the pods on the node, rather than the removal of

the node object.

e OutOfServiceTaint

This remediation strategy implicitly causes the removal of the pods and associated
volume attachments on the node, rather than the removal of the node object. It

achieves this by placing the 0utOfServiceTaint strategy on the node.

The Self Node Remediation Operator creates the SelfNodeRemediationTemplate CR for
the strategy self-node-remediation-automatic-strategy-template, which the Automatic
remediation strategy uses.

The SelfNodeRemediationTemplate CR resembles the following YAML file:

apiVersion: self-node-remediation.medik8s.io/v1alphal
kind: SelfNodeRemediationTemplate
metadata:
creationTimestamp: "2022-03-02T08:02:407"
name: self-node-remediation-<remediation_object>-deletion-template

namespace: workload-availability

spec:
template:
spec:
remediationStrategy: <remediation_strategy>
Parameters
Parameter Description

Values: Automatic, ResourceDeletion,

remediation_strategy . .
OutOfServiceTaint

Configuring High Availability for Virtual Machines - Alauda Container Platform

> Deploying Node Health Check Operator

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Build of NodeHealthCheck, click Install, and navigate to the
Install Alauda Build of NodeHealthCheck page.

Configuration Parameters:

Parameter

Channel

Installation
Mode

Installation

Place

Upgrade
Strategy

Recommended Configuration
The default channel is stable .

Cluster : All namespaces in the cluster share a single
Operator instance for creation and management, resulting in

lower resource usage.

Select Recommended , Namespace only support workload-

availability.

Manual : When there is a new version in the Operator Hub,
manual confirmation is required to upgrade the Operator to

the latest version.

6 Create NodeHealthCheck instance

Execute the following command on the cluster control node:

Command

Configuring High Availability for Virtual Machines - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: remediation.medik8s.io/v1alphaT
kind: NodeHealthCheck
metadata:
name: nodehealthcheck-<name>
spec:
minHealthy: <minHealthy>
remediationTemplate:
apiVersion: self-node-remediation.medik8s.io/v1alphal
kind: SelfNodeRemediationTemplate
name: self-node-remediation-automatic-strategy-template
namespace: workload-availability
selector: <selector>
unhealthyConditions:
- duration: 300s
status: 'False’
type: Ready
- duration: 300s
status: Unknown
type: Ready
EOF

Example

Configuring High Availability for Virtual Machines - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: remediation.medik8s.io/v1alphaT
kind: NodeHealthCheck
metadata:
name: nodehealthcheck-worker
spec:
minHealthy: 51%
remediationTemplate:
apiVersion: self-node-remediation.medik8s.io/v1alphal
kind: SelfNodeRemediationTemplate
name: self-node-remediation-automatic-strategy-template
namespace: workload-availability
selector:
matchExpressions:
- key: node-role.kubernetes.io/control-plane
operator: DoesNotExist
- key: node-role.kubernetes.io/master
operator: DoesNotExist
unhealthyConditions:
- duration: 300s
status: 'False’
type: Ready
- duration: 300s
status: Unknown
type: Ready
EOF

Parameters:

Parameter Description
name resource name

Specify the minimum proportion of healthy nodes. Faulty nodes
minHealthy will only be repaired when the proportion of healthy nodes is

greater than or equal to this value. The default value is 51%

Specify LabelSelector to match the nodes to be inspected and
selector self-repaired. Please avoid specifying control-plane and worker

nodes simultaneously in the same instance

Configuring High Availability for Virtual Machines - Alauda Container Platform
7’ Verification(optional)

Simulate the failure of the running node of the virtual machine and confirm that the

virtual machine is automatically scheduled to run on other nodes.

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

Menu ON THIS PAGE >

Create a VM Template from an Existing

Virtual Machine

This document outlines how to create a reusable virtual machine (VM) template from an

existing VM for rapid deployment of new VMs.

TOC

Prerequisites
Procedure
Step 1: Basic Configuration on the Virtual Machine
Step 2: Create a VM Snapshot
Step 3: Retrieve Disk Snapshot Resource Name
Step 4: Create a DataSource Resource
Label Parameters Explanation:

Step 5: Create a New VM Using the Template

Prerequisites

¢ A properly deployed and configured KubeVirt environment.
¢ Access to the Web Console and kubectl tool.

¢ A configured VM with necessary software already installed.

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

Procedure

Step 1: Basic Configuration on the Virtual Machine

Inside the VM, perform the following steps:

« Install cloud-init ~.
¢ Install the gemu-guest-agent .

« Install any required software.

Once installations are complete, run the following commands to clean cloud-init data and shut
down the VM:

cloud-init clean

shutdown -h now

Step 2: Create a VM Snapshot

Using the KubeVirt Web Console:

1. Navigate to Virtualization > Virtual Machines.
2. Select the VM intended to serve as a template.

3. Click Actions, select Create Snapshot, name your snapshot, and confirm.

Step 3: Retrieve Disk Snapshot Resource Name

Obtain the complete snapshot resource name using one of these methods:
e Via Web Console:

» Navigate to Storage > Volume Snapshots.

e Find and record the full snapshot resource name under "Data Source."

¢ Using kubectl:

https://cloud-init.io/
https://cloud-init.io/
https://cloud-init.io/

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

kubectl get volumesnapshots -n <NAMESPACE>

Record the complete snapshot resource name from the output.

Step 4: Create a DataSource Resource

Create the following DataSource resource in the kube-public namespace, ensuring you
replace placeholders with the actual snapshot name and namespace:

apiVersion: cdi.kubevirt.io/vi1betal
kind: DataSource
metadata:
annotations:
cpaas.io/display-name: Micro0S-Clone
labels:
virtualization.cpaas.io/image-os-arch: amd64
virtualization.cpaas.io/image-os-type: linux
virtualization.cpaas.io/storage-class: cephrbd
virtualization.cpaas.io/access-mode: ReadWriteMany
virtualization.cpaas.io/size: 30Gi
virtualization.cpaas.io/volume-mode: Block
name: microos-clone
namespace: kube-public
spec:
source:
snapshot:
name: <Your Snapshot Resource Name>
namespace: <Your Snapshot Namespace>

Label Parameters Explanation:

Key Possible Values Description

virtualization.cpaas.io/image-)
amd64, arm64 VM OS architecture
os-arch

virtualization.cpaas.io/image- _ _
linux, windows VM OS type
os-type

Create a VM Template from an Existing Virtual Machine - Alauda Container Platform

Key

virtualization.cpaas.io/storage-

class

virtualization.cpaas.io/access-

mode

virtualization.cpaas.io/size

virtualization.cpaas.io/volume-

mode

Important:

Possible Values

storage class name

ReadWriteOnce,
ReadWriteMany

Capacity (Gi, Ti,

etc.)

Block, Filesystem

¢ Ensure the namespace is kube-public .

Description

Default storage class,
adjustable during VM

creation

Disk access mode; use
ReadWriteMany for VM live

migration

Default disk size; specify

appropriate size

Disk volume mode; Block
mode recommended for

better performance

o These disk-related parameters can be modified during VM creation but providing defaults

simplifies the process.

Step 5: Create a New VM Using the Template

1. Access the KubeVirt Web Console, go to Container Platform > Virtualization > Virtual

Machines.

2. Click Create Virtual Machine.

3. Under Image, select Image Instance as the Provision Method.

4. Select your newly created DataSource from the dropdown.

5. Configure any additional parameters as required and complete the VM creation process.

You have now successfully created and deployed new VMs using your VM template.

Troubleshooting - Alauda Container Platform

Menu

Troubleshooting

Pod Migration and Recovery from Abnormal Shutdown of Virtual
Machine Nodes

Problem Description
Cause Analysis

Solutions

Hot Migration Error Messages and Solutions

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

= Menu ON THIS PAGE >

Pod Migration and Recovery from
Abnormal Shutdown of Virtual Machine

Nodes

TOC

Problem Description
Cause Analysis
Solutions
Migration of Virtual Machine Pods during Graceful Shutdown

Recovery from Abnormal Shutdown

Problem Description

Whether the node is gracefully shut down or experiences an abnormal crash, the virtual

machine Pods running on that node will not automatically migrate to other healthy nodes.

Cause Analysis

The platform implements a virtual machine solution based on the open-source component
KubeVirt. However, from the perspective of KubeVirt, it cannot differentiate between an actual

virtual machine crash and a connection failure caused by network or other issues. If virtual

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

machines are migrated to other nodes indiscriminately, it may lead to multiple instances of the

same virtual machine existing concurrently.

Solutions

When maintaining virtual machine nodes, manual actions are required according to this
document. For both graceful shutdown and abnormal crash situations, virtual machine

Pods must be manually evicted or forcibly deleted.

Note: The following commands must be executed on the Master node of the corresponding

cluster.

Migration of Virtual Machine Pods during Graceful
Shutdown

1. In the CLI tool, execute the following command to obtain node information. The NAME field

in the returned information is the Node-Name .
kubectl get nodes
Output:

NAME STATUS ROLES AGE VERSION
1.1.1.211 Ready control-plane,master 99d v1.28.8

2. (Optional) Execute the following command to view the virtual machine instances under the

node.

kubectl get vmis --all-namespaces -o wide | grep <Node-Name>

Output:

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

test-test vm-t-export-clone 13d Running 1.1.1.1 1.1.1.211 True

False

3. Before the graceful shutdown, execute the following command to evict all virtual machine
Pods on the node to be shut down. If the output appears as follows, it indicates that the

eviction was successful.

kubectl drain <Node-Name> --delete-local-data --ignore-daemonsets=true --force --pod-

selector=kubevirt.io=virt-launcher

Output:

Flag --delete-local-data has been deprecated, This option is deprecated and will be
deleted. Use --delete-emptydir-data.

node/1.1.1.211 cordoned

evicting pod test-test/virt-launcher-vm-t-export-clone-hmnkk
pod/virt-launcher-vm-t-export-clone-hmnkk evicted

node/1.1.1.211 drained

4. After all virtual machines are started on other nodes, shut down the node.

5. After the node is shut down and rebooted, execute the following command to mark the

node as schedulable.

kubectl uncordon <Node-Name>

Output:

node/1.1.1.211 uncordoned

6. At this point, the original virtual machine instances on that node have been migrated to

other healthy nodes, and this node is now available for new Pod scheduling after rebooting.

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

Recovery from Abnormal Shutdown

1. In the CLI tool, execute the following command to obtain node information. The NAME field

in the returned information is the Node-Name .
kubectl get nodes

Output:

NAME STATUS ROLES AGE VERSION
1.1.1.211 Ready control-plane,master 99d v1.28.8

2. Execute the following command to forcibly delete all virtual machine Pods on the node.

kubectl get po -A -1 kubevirt.io=virt-launcher -o wide | grep <Node-Name> | awk
"{print "kubectl delete pod --force -n " $1, $2}' | bash

3. Execute the following command to delete the volume attachments on that node.

kubectl get volumeattachments.storage.k8s.io | grep <Node-Name> | awk '{print $1}' |

xargs kubectl delete volumeattachments.storage.k8s.1io

4. Execute the following command to query if there are Pods with the label kubevirt.io=virt-api

on the node that crashed abnormally.

kubectl -n kubevirt get po -1 kubevirt.io=virt-api -o wide | grep <Node-Name>

If they exist, execute the following command to delete the Pods.

kubectl -n kubevirt get po -1 kubevirt.io=virt-api -o name | xargs kubectl -n kubevirt

delete --force --grace-period=0

Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes - Alauda Container Platform

5. Execute the following command to query if there are Pods with the label kubevirt.io=virt-

controller on the node that crashed abnormally.

kubectl -n kubevirt get po -1 kubevirt.io=virt-controller -o wide | grep <Node-Name>

If they exist, execute the following command to delete the Pods.

kubectl -n kubevirt get po -1 kubevirt.io=virt-controller -o name | xargs kubectl -n

kubevirt delete --force --grace-period=0

6. At this point, the virtual machine instances will be migrated to other healthy nodes after the

node experiences an abnormal shutdown.

Menu

Hot Migration Error Messages and Solutions - Alauda Container Platform

Hot Migration Error Messages and

Solutions

Error Message

cannot migrate VMI
which does not use
masquerade, bridge
with <annotation>
VM annotation or a
migratable plugin to
connect to the pod

network

e cannot migrate
VMI: Unable to
determine if PVC
<pvc name> is
shared, live
migration requires
that all PVCs must
be shared (using
ReadWriteMany

access mode)

e cannot migrate
VMI: PVC <pvc

Cause

The network
configuration
of the virtual
machine does
not support

hot migration.

The storage
type of the
virtual
machine does
not support
multi-node
read-write
(RWX) access

mode.

Solution
Please check the following configurations:

o Check the CNI network plugin used by
the current cluster; Kube-OVN is

recommended.

e Check whether the "kubevirt.io/allow-
pod-bridge-network-live-migration":
"true" annotation exists in the

metadata.annotations and
spec.template.metadata.annotations
fields of the corresponding YAML file of
the virtual machine; if not, please add it

manually.

The parameters related to the virtual
machine cannot be modified after creation.
Therefore, please recreate the virtual
machine and select a storage type that
supports multi-node read-write (RWX);
CephRBD block storage is recommended.
If issues persist after recreation, please
contact the relevant personnel for

assistance.

Hot Migration Error Messages and Solutions - Alauda Container Platform

Error Message Cause Solution

name> is not
shared, live
migration requires
that all PVCs must
be shared (using
ReadWriteMany

access mode)

e cannot migrate
VMI: Backend
storage PVC is not
RWX

e cannot migrate
VMI with non-
shared HostDisk

The virtual
Other error machine does Please contact the relevant personnel for
messages not support assistance.

hot migration.

Network - Alauda Container Platform

Menu

Network

Introduction

Introduction

Advantages

Guides

Configure Network
Configure IP

Connect to the virtual machine directly via IP

Add Internal Routes

How To

Control Virtual Machine Network Requests Through Network Policy

Procedure

Result Verification

Network - Alauda Container Platform

Configuring SR-IOV
Terminology

Constraints and Limitations
Prerequisites

Procedures

Result Verification

Related Notes

Configuring Virtual Machines to Use Network Binding Mode for IPv6
Support

Prerequisites

Procedure

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

ACP Virtualization With KubeVirt is deeply integrated with Kube-OVN, extending support for
traditional virtual machine (VM) networking requirements and optimizing performance for
specific scenarios.

TOC

Advantages

Advantages

¢ |Pv6 Support
Full IPv6 Support.
o Static IP Retention

Ensures VMs retain the same IP address after restarts, aligning with legacy VM usage

patterns.
¢ Multi-Network Mode Support

Supports multiple network modes such as container networks and SR-IOV, catering to

diverse user scenarios.

Guides - Alauda Container Platform

Menu

Guides

Configure Network
Configure IP
Connect to the virtual machine directly via IP

Add Internal Routes

Configure Network - Alauda Container Platform

Menu ON THIS PAGE >

Configure Network

TOC

Configure IP
Connect to the virtual machine directly via IP

Add Internal Routes

Configure IP

Refs to Configure IP

Connect to the virtual machine directly via IP

Refs to Preparing Kube-OVN Underlay Physical Network

Add Internal Routes

Refs to Add Internal Routes

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

How To - Alauda Container Platform

Menu

Practical Guide

Control Virtual Machine Network Requests Through Network Policy
Procedure

Result Verification

Configuring SR-IOV
Terminology

Constraints and Limitations
Prerequisites

Procedures

Result Verification

Related Notes

Configuring Virtual Machines to Use Network Binding Mode for IPv6
Support

Prerequisites

Procedure

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Menu ON THIS PAGE >

Control Virtual Machine Network Requests

Through Network Policy

The platform's virtual machine solution is implemented based on the open-source component
KubeVirt, which actually runs within Pods. By utilizing the functionality of Network Policies, it is

possible to control the incoming and outgoing requests of virtual machines.

TOC

Procedure
Result Verification
Step One: Create a Virtual Machine and Network Policy Allowing All Traffic Through

Step Two: Update Network Policy to Remove www.example.com from Whitelist

Procedure

1. Enter Container Platform.
2. In the left navigation bar, click Network > Network Policies.
3. Click Create Network Policy.

4. Configure the following parameters as needed.

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Parameter

Association
Method

Direction

Protocol

Access Ports

Remote Type

Exclude

Remote

Description

« Compute Component: Select the target compute component
as needed; it is recommended to select All as the target

compute component.

¢ Label Selector: Match the Pods based on their labels.

¢ Ingress: Requests sent from the external to the Pod.

o Egress: Requests sent from the Pod to the external; select this
option if prohibiting the virtual machine from requesting a certain

external address.

Choose between TCP or UDP.

Note:

¢ When using domain names in the virtual machine to request
external services, it is necessary to add a UDP protocol whitelist

because DNS protocol uses UDP.

o The form does not support configuring the ICMP protocol; once
the whitelist rules are enabled, ICMP protocol will be disabled,

which will result in the inability to perform Ping operations.

Specify which ports' traffic can be ingress or egress. If this field is

left empty, traffic through all ports will be allowed by default.

Note: It is necessary to allow ports 1053 and 53 for both UDP and
TCP protocols here to permit DNS traffic egress; otherwise,

domain name resolution will fail.

Specify the allowed remote types for access. Options include:

compute component, namespace, and IP segments.

When the remote type is IP Segment, remove the specified IP
from the whitelist (i.e., prohibit access). Single IP can be removed

when input as IP/32 .

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Parameter Description

Note: This field only supports inputting IPs; if the corresponding IP
of a domain name is unclear, use the command curl -vvv
<domain> to request the domain and obtain the corresponding IP

address from the returned information.

5. Click Create.

Result Verification

This document verifies the setup using a virtual machine to access www.example.com .

Step One: Create a Virtual Machine and Network Policy
Allowing All Traffic Through
1. Create the virtual machine, please refer to Create Virtual Machine for detailed steps.

2. Configure the network policy in the command namespace of the virtual machine, adding

whitelist rules for both TCP and UDP protocols, with the following parameters:

o Whitelist for TCP Protocol:

Parameter Description
Association Method Select Compute Component.

Target Compute

Select All.
Component
Direction Select Egress.
Protocol Select TCP.

Remote Type Select IP Segment

http://www.example.com/
http://www.example.com/
http://www.example.com/

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Parameter Description

Enter 0.0.0.0/0, indicating that all traffic is allowed

Remote
to egress.
» Whitelist Rules for UDP Protocol:
Parameter Description
Direction Select Egress.

Protocol Select UDP.
Remote Type Select IP Segment

Remote Enter 0.0.0.0/0, indicating that all traffic is allowed to egress.

3. After the network policy is created, log in to the virtual machine and execute the following

command to request www.example.com .
curl www.example.com

4. The request is successful.

Step Two: Update Network Policy to Remove

www.example.com -~ from Whitelist

1. Execute the following command to obtain the IP address for www.example.com -, resulting

in the IP address 93.184.215.14.
curl -vvv www.example.com

2. Update the network policy created in Step One, with the following updated parameters:

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

Control Virtual Machine Network Requests Through Network Policy - Alauda Container Platform

Parameter Description

In the TCP protocol whitelist rules, fill in the exclude remote
parameter with 93.184.215.14/32, indicating that IP address
93.184.215.14 is removed from the whitelist.

Exclude

Remote

3. After updating the network policy, log in to the virtual machine and execute the following

command to request www.example.com .

curl www.example.com

4. The request times out, indicating that the exclude remote functionality is effective.

http://www.example.com/
http://www.example.com/
http://www.example.com/

Configuring SR-10V - Alauda Container Platform

Menu ON THIS PAGE >

Configuring SR-IOV

By configuring the physical server nodes to support the creation of virtual machines with SR-
IOV (Single Root I/O Virtualization) network cards, lower latency for virtual machines is

achieved, along with support for standalone IPv6 as well as dual-stack IPv4/IPv6 functionality.

TOC

Terminology

Constraints and Limitations

Prerequisites
Chart
Images

Procedures
Enabling SR-IOV in the Physical Machine's BIOS
Enabling IOMMU
Loading the VFIO Module in the System Kernel
Creating VF Devices
Binding the VFIO Driver
Deploying the Multus CNI Plugin
Deploying the sriov-network-operator
Setting Node Role Identifier Labels for Physical Nodes
Checking if the Resources are Created Successfully
Setting SR-IOV Node Feature Labels for Physical Nodes
Checking NIC Device Support
Configuring IP Address

Result Verification

Configuring SR-10V - Alauda Container Platform

Related Notes

Kernel Parameter Configuration for CentOS Virtual Machines

Terminology
Term Definition
Multus Acts as middleware for other CNI plugins to enable Kubernetes to support
CNI multiple network interfaces for Pods.

Allows virtualization of the physical NIC on a node, splitting it into multiple
SR-I0V VFs for use by Pods or virtual machines, providing superior network

performance.

A virtual device created from a physical PCI device; VFs can be allocated
VF directly to virtual machines or containers, resembling independent physical

PCI devices, significantly improving I/O performance.

Constraints and Limitations

The SR-10V feature relies on glibc and only supports glibc versions 2.34 and above. However,
both Kylin V10 and CentOS 7.x operating systems do not support this version, and thus, SR-

IOV functionality cannot be used on these two operating systems.

Prerequisites

Obtain the following charts and images and upload them to the image repository. This
document uses the repository address build-harbor.example.cn as an example. For specific

methods to obtain the charts and images, please contact the relevant personnel.

Configuring SR-10V - Alauda Container Platform

Chart

e build-harbor.example.cn/example/chart-sriov-network-operator:v3.15.0

Images

e build-harbor.example.cn/3rdparty/sriov/sriov-network-operator:4.13

e build-harbor.example.cn/3rdparty/sriov/sriov-network-operator-config-daemon:4.13
e build-harbor.example.cn/3rdparty/sriov/sriov-cni:4.13

e build-harbor.example.cn/3rdparty/sriov/ib-sriov-cni:4.13

e build-harbor.example.cn/3rdparty/sriov/sriov-network-device-plugin:4.13

e build-harbor.example.cn/3rdparty/sriov/network-resources-injector:4.13

e build-harbor.example.cn/3rdparty/sriov/sriov-network-operator-webhook:4.13

e build-harbor.example.cn/3rdparty/kubectl:v3.15.1

Procedures

Note: All commands mentioned below are executed in the terminal.

1 Enabling SR-IOV in the Physical Machine's BIOS

Before configuration, use the following command to check the motherboard information.

Configuring SR-10V - Alauda Container Platform

dmidecode -t 1

Getting SMBIOS data from sysfs.
SMBIOS 2.7 present.

Handle 0x0100, DMI type 1, 27 bytes
System Information
Product Name: PowerEdge R620
Version: Not Specified
Serial Number: 7SINF62
UUID: 4c4c4544-0053-4a10-804e-b7c04f463632
Wake-up Type: Power Switch
SKU Number: SKU=NotProvided;ModelName=PowerEdge R620
Family: Not Specified

The operation to enable SR-IOV in the BIOS varies among server manufacturers.
Please refer to the corresponding manufacturer's documentation. Generally, the steps

are as follows:
1. Reboot the server.

2. When the brand logo is displayed on the screen during BIOS POST, press the F2 key

to enter the system setup.

3. Click Processor Settings > Virtualization Technology, and change Virtualization

Technology setting to Enabled .

4. Click Settings > Integrated devices, and change SR-IOV Global Enable setting to
Enabled .

5. Save the configuration and reboot the server.

Enabling IOMMU

The operation to enable IOMMU may vary across different operating systems. Please
refer to the corresponding operating system documentation. This document uses
CentOS as an example.

1. Edit the /etc/default/grub file and add intel_iommu=on iommu=pt to the
GRUB_CMDLINE_LINUX configuration item.

Configuring SR-10V - Alauda Container Platform

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.1lv=centos/root rhgb quiet

intel_iommu=on iommu=pt"
2. Execute the following command to generate the grub.cfg file.
grub2-mkconfig -o /boot/grub2/grub.cfg

3. Reboot the server.

4. Execute the following command, and if the output shows IO0MMU enabled , it indicates

that the enabling is successful.
dmesg | grep -i iommu
3 Loading the VFIO Module in the System Kernel
1. Execute the following command to load the vfio-pci module.

modprobe vfio-pci

2. Once loaded, execute the following command. If the configuration information can be

displayed normally, then the VFIO kernel module has been loaded successfully.

Configuring SR-10V - Alauda Container Platform

lsmod | grep vfio

vfio_pci 41993 0

vfio_iommu_typel 22440 0

vfio 32657 2 vfio_iommu_typel, vfio_pci
irgbypass 13503 2 kvm, vfio_pc

cat /lib/modules/$(uname -r)/modules.builtin | grep vfio
kernel/drivers/vfio/vfio.ko
kernel/drivers/vfio/vfio_virqfd.ko
kernel/drivers/vfio/vfio_iommu_typel.ko
kernel/drivers/vfio/pci/vfio-pci-core.ko

kernel/drivers/vfio/pci/vfio-pci.ko

4) Creating VF Devices

1. Execute the following command to see the currently supported VF devices.

find /sys -name *vfs*

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_totalvfs
/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs
/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.0/sriov_totalvfs
/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.0/sriov_numvfs

The output information indicates as follows:

0000:05:00 .1: The PCI address of the SR-IOV physical NIC enp5s0f1.

0000:05:00 .0: The PCI address of the SR-IOV physical NIC enp5s0f0.

sriov_totalvfs: Number of supported VFs.

sriov_numvfs: Current number of VFs.

2. Execute the following command to get information on the physical machine's NIC.

Configuring SR-10V - Alauda Container Platform

ifconfig

enp5s0f0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.66.213 netmask 255.255.255.0 broadcast 192.168.66.255
inetb 1066::192:168:66:213 prefixlen 112 scopeid 0x0<global>
inetb fe80::a236:9fff:fe29:6c00 prefixlen 64 scopeid 0x20<link>
ether a0:36:9f:29:6c:00 txqueuelen 1000 (Ethernet)
RX packets 13889 bytes 1075801 (1.0 MB)
RX errors @ dropped 1603 overruns @ frame @
TX packets 5057 bytes 440807 (440.8 KB)

TX errors @ dropped @ overruns @ carrier @ collisions 0

enp5s0f1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inetb fe80::a2236:9fff:fe29:6c02 prefixlen 64 scopeid @x20<1link>
ether a0:36:9f:29:6c:02 txqueuelen 1000 (Ethernet)
RX packets 1714 bytes 227506 (227.5 KB)
RX errors @ dropped 1604 overruns @ frame @
TX packets 70 bytes 19241 (19.2 KB)
TX errors @ dropped @ overruns @ carrier @ collisions 0

3. Execute the command ethtool -i <NIC name> to obtain the corresponding physical

NIC's PCI address, as shown below.

Configuring SR-10V - Alauda Container Platform

ethtool -i enp5s0f0

driver: ixgbe

version: 5.15.0-76-generic
firmware-version: 0x8000030d, 14.5.8
expansion-rom-version:

bus-info: 0000:05:00.0
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes

supports-priv-flags: yes

ethtool -i enp5s0f1

driver: ixgbe

version: 5.15.0-76-generic
firmware-version: 0x8000030d, 14.5.8
expansion-rom-version:
bus-info: 0000:05:00.1
supports-statistics: yes
supports-test: yes
supports-eeprom-access: yes
supports-register-dump: yes
supports-priv-flags: yes

4. Execute the following command to create a VF. This document takes configuring the
enp5s0fl NIC as an example. If multiple NICs need to be virtualized, all of them need

to be configured.

cat /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_totalvfs

63

echo 8 > /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs

cat /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs

Configuring SR-10V - Alauda Container Platform

5. Execute the following command to check if the VFs were created successfully.

Note: You can see the configured 8 VF addresses, such as 05:10.1 . These VF
addresses need to be supplemented with the Domain Identifier, resulting in the final
format: 0000:05:10.1 .

Ispci | grep Virtual

00:11.0 PCI bridge: Intel Corporation C600/X79 series chipset PCI Express
Virtual Root Port (rev 05)

05:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:10.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:10.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:10.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:11.1 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:11.3 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:11.5 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual
Function (rev 01)

05:11.7 Ethernet controller: Intel Corporation 82599 Ethernet Controller Virtual

Function (rev 01)

5 Binding the VFIO Driver

1. Download the binding script, and execute the python3 dpdk-devbind.py -b vfio-pci <VF
address with domain identifier> command to bind the 8 VFs of the enp5s0f1 NIC to

the vfio-pci driver, as shown below.

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.
python3 dpdk-devbind.py -b vfio-pci 0000:05:10.
python3 dpdk-devbind.py -b vfio-pci 0000:05:10.
python3 dpdk-devbind.py -b vfio-pci 0000:05:10.
python3 dpdk-devbind.py -b vfio-pci 0000:05:11.
python3 dpdk-devbind.py -b vfio-pci 0000:05:11.
python3 dpdk-devbind.py -b vfio-pci 0000:05:11.
python3 dpdk-devbind.py -b vfio-pci 0000:05:11.

~N U1 N = N U1 N =

http://localhost:4173/container_platform/scripts/dpdk-devbind.py

Configuring SR-10V - Alauda Container Platform

2. After binding successfully, execute the following command to check the binding
results. Look for the already bound VFs in the Network devices using DPDK-

compatible driver area in the output result. Among them, the VF device ID is 10ed .

Configuring SR-10V - Alauda Container Platform

python3 dpdk-devbind.py --status

Network devices using DPDK-compatible driver

0000:05:10.1 '82599
unused=ixgbevf
0000:05:10.3 '82599
unused=ixgbevf
0000:05:10.5 '82599
unused=ixgbevf
0000:05:10.7 '82599
unused=ixgbevf
0000:05:11.1 '82599
unused=ixgbevf
0000:05:11.3 '82599
unused=ixgbevf
0000:05:11.5 '82599
unused=ixgbevf
0000:05:11.7 '82599

unused=ixgbevf

Ethernet Controller Virtual

Ethernet

Ethernet

Ethernet

Ethernet

Ethernet

Ethernet

Ethernet

Network devices using kernel

Controller

Controller

Controller

Controller

Controller

Controller

Controller

driver

0000:01:00.0 'NetXtreme BCM5720 Gigabit

unused=vfio-pci

0000:01:00.1 'NetXtreme BCM5720 Gigabit

unused=vfio-pci

0000:02:00.0 'NetXtreme BCM5720 Gigabit

unused=vfio-pci

Virtual

Virtual

Virtual

Virtual

Virtual

Virtual

Virtual

Ethernet

Ethernet

Ethernet

0000:02:00.1 'NetXtreme BCM5720 Gigabit Ethernet

unused=vfio-pci

0000:05:00.0 'Ethernet 10G 2P X520 Adapter 154d'
unused=vfio-pci *Active*
0000:05:00.1 "Ethernet 10G 2P X520 Adapter 154d'

unused=vfio-pci

No 'Baseband' devices detected

No 'DMA' devices detected

Function

Function

Function

Function

Function

Function

Function

Function

PCIe 165f'

PCIe 165f'

PCIe 165f'

PCIe 165f'

10ed’

10ed’

10ed’

10ed’

10ed’

10ed’

10ed’

10ed’

drv=vfio-pci

drv=vfio-pci

drv=vfio-pci

drv=vfio-pci

drv=vfio-pci

drv=vfio-pci

drv=vfio-pci

drv=vfio-pci

if=enol1 drv=tg3

if=eno2 drv=tg3

if=eno3 drv=tg3

if=eno4 drv=tg3

if=enp5s0f@ drv=ixgbe

if=enp5s0f1 drv=ixgbe

Configuring SR-10V - Alauda Container Platform

5 Deploying the Multus CNI Plugin

1. Go to Administrator.
2. In the left navigation bar, click Cluster Management > Clusters.
3. Click the name of the virtual machine cluster and switch to the Plugins tab.

¢ Deploy the Multus CNI plugin.
) Deploying the sriov-network-operator

Execute the following command to deploy the sriov-network-operator.

Configuring SR-10V - Alauda Container Platform

REGISTRY=<$registry>

NICSELECTOR=["<nics>"]

NUMVFS=<numVfs>

cat <<EOF | kubectl create -f -
apiVersion: operator.alauda.io/v1alphal
kind: AppRelease
metadata:
annotations:
auto-recycle: "true"
interval-sync: "true"
name: sriov-network-operator
namespace: cpaas-system
spec:
destination:
cluster: ""
namespace: "kube-system"
source:
charts:
- name: <chartName> # Replace <chartName> with the actual chart path, for
example: name = example/chart-sriov-network-operator
releaseName: sriov-network-operator
targetRevision: v3.15.0
repoURL: $REGISTRY
timeout: 120
values:
global:
registry:
address: $REGISTRY
networkNodePolicy:
nicSelector: $NICSELECTOR
numVfs: $NUMVFS
EOF

Setting Node Role Identifier Labels for Physical Nodes

Note: Before performing this operation, ensure that the Pod of the sriov-network-

operator is running normally.

Configuring SR-10V - Alauda Container Platform

1. Go to Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.

3. Click the cluster name and switch to the Nodes tab.

4. Click the physical node that supports SR-IOV : > Update Node Labels.
5. Set the node label as follows:

e node-role.kubernetes.io/worker:

6. Click Update.

Checking if the Resources are Created Successfully

In the CLI tool, execute the command kubectl -n cpaas-system get

sriovnetworknodestates to check if the sriovnetworknodestates resource has been
created successfully. If you see similar output below, it indicates that creation was
successful. If the resource creation fails, check if the Multus CNI plugin and sriov-

network-operator have been deployed successfully.

kubectl -n cpaas-system get sriovnetworknodestates
NAME SYNC STATUS AGE
192.168.254.88 Succeeded 5d22h

Setting SR-IOV Node Feature Labels for Physical
Nodes

Note: Before performing this operation, ensure that the sriovnetworknodestates resource

has been successfully created.

1. Go to Administrator.

2. In the left navigation bar, click Cluster Management > Clusters.
3. Click the cluster name and switch to the Nodes tab.

4. Click the physical node that supports SR-IOV : > Update Node Labels.

Configuring SR-10V - Alauda Container Platform

5. Set the node label as follows:

e feature.node.kubernetes.io/network-sriov.capable: "true"

11/ Checking NIC Device Support

1. Execute the command 1spci -n -s <VF address with domain identifier> to obtain the

current NIC device's vendor ID and device ID, as shown below.

lspci -n -s 0000:05:00.1
05:00.1 0200: 8086:154d (rev 01)

The output indicates:

e 8086: Vendor ID.

e 154d: Device ID.

2. Execute the command 1spci -s <VF address with domain identifier> -vvv | grep

Ethernet to obtain the current NIC name, as shown below.

Ispci -s 0000:05:00.1 -vvv | grep Ethernet
05:00.1 Ethernet controller: Intel Corporation Ethernet 10G 2P X520 Adapter (rev

01)

3. In the cpaas-system namespace, locate the configuration file named supported-nic-
ids with type ConfigMap, and check if the current NIC's configuration information is

in the support list within its data section.

Note: If the current NIC is not in the support list, you need to refer to Step 4 to add
the NIC to the configuration file. If the current NIC is already in the support list, skip
Step 4.

Configuring SR-10V - Alauda Container Platform

kind: ConfigMap

apiVersion: v1

metadata:
name: supported-nic-ids
namespace: cpaas-system

data:
Broadcom_bnxt_BCM57414_2x25G: 14e4 16d7 16dc
Broadcom_bnxt_BCM75508_2x100G: 14e4 1750 1806
Intel_i40e_10G_X710_SFP: 8086 1572 154c
Intel_i40e_25G_SFP28: 8086 158b 154c
Intel_i40e_40G_XL710_QSFP: 8086 1583 154c
Intel_i40e_X710_X557_AT_10G: 8086 1589 154c
Intel_i40e_XXV710: 8086 158a 154c
Intel_i40e_XXV710_N3000: 8086 0d58 154c
Intel _ice_Columbiaville E810: 8086 1591 1889
Intel ice_Columbiaville E810-CQDA2_2CQDA2: 8086 1592 1889
Intel ice_Columbiaville E810-XXVDA2: 8086 159b 1889
Intel ice_Columbiaville E810-XXVDA4: 8086 1593 1889

4. Add the current NIC to the data section of the support list in the format <NIC Name>:

<Vendor ID> <Device ID> <VF Device ID> , as shown below.

Configuring SR-10V - Alauda Container Platform

kind: ConfigMap
apiVersion: v1
metadata:
name: supported-nic-ids
namespace: cpaas-system
data:
Broadcom_bnxt BCM57414 2x25G: 14e4 16d7 16dc
Broadcom_bnxt BCM75508 2x100G: 14e4 1750 1806

Intel_Corporation_X520: 8086 154d 10ed

Intel_i40@e_10G_X710_SFP: 8086 1572 154c
Intel_i4@e_25G_SFP28: 8086 158b 154c
Intel_i40e_40G_XL710_QSFP: 8086 1583 154c
Intel_i4@e_X710_X557_AT_10G: 8086 1589 154c
Intel_i40e_XXV710: 8086 158a 154c
Intel_i40e_XXV710_N3000: 8086 0d58 154c

Intel _ice_Columbiaville E810: 8086 1591 1889

Intel ice_Columbiaville E810-CQDA2_2CQDA2: 8086 1592 1889
Intel ice_Columbiaville E810-XXVDA2: 8086 159b 1889

Intel ice_Columbiaville E810-XXVDA4: 8086 1593 1889

Parameter configuration explanation:

Intel_Corporation_X520: The name of the NIC, which can be customized.

8086: Vendor ID.

154d: Device ID.

10ed: VF Device ID, which can be found in the binding results.
12) Configuring IP Address

Log in to the switch to configure DHCP (Dynamic Host Configuration Protocol).

Note: If it is not possible to use DHCP, please manually configure the IP address in the

virtual machine.

Result Verification

Configuring SR-I0V - Alauda Container Platform

1. Go to Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click Create Virtual Machine, and when adding an auxiliary network card, select SR-IOV

as the Network Type.

4. Complete the creation of the virtual machine.

5. Access the virtual machine through VNC, you should see that ethl has successfully

obtained an IP address, indicating that the configuration has been successful.

[root@sriov-demo ~1#
[root@sriov-demo ~1# dhclient ethl
[root@sriov-demo “I#t ip a
: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 gdisc noqueue state UNKNOWN group default glen 1668
link/loopback 60:80:80:008:08:88 brd 86 :86:80:080:80 :080
inet 127.8.8.1/8 scope host lo
valid_I1ft forever preferred_Ilft forever
inet6 ::1,128 scope host
valid_Ift forever preferred_I1ft forever
>th8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1488 gdisc pfifo_fast state UP group default glen 1688
linksether 88:80:80:8c:8f :cB brd ff:ff:ff:ff:Ff:ff
inet 18.33.8.44-16 brd 18.33.255.255 scope global dynamic eth#d
valid_1ft 86313367sec preferred_lft 86313367sec
inet6 feBA::200:ff :febBc:8fcB 64 scope link
valid_Ift forever preferred_I1ft forever
3: ethl: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1588 gdisc mg state UP group default gqlen 16688
linksether B6:1e:b5:el:5f :f7 brd ff:ff:ff:Ff:FfIFF
inet 192.168.39.7/24 brd 192.168.39.255 scope global dynamic ethl
valid_I1ft 86398sec preferred_Ilft 86398sec
inetb 2882: :41e:b5ff :feel:5ff7/64 scope global mmngtmpaddr dymamic
valid_Ift 2591997sec preferred_Ift 684797sec
inetb feBB::41e:bSff :feel:5ff7/64 scope link
valid_1ft forever preferred_Ilft forever
[rootl@sriov-demo ™ 1#

Related Notes

Kernel Parameter Configuration for CentOS Virtual

Machines

After the CentOS virtual machine uses the SR-IOV NIC, it is necessary to modify the kernel

parameters for the corresponding NIC. The specific steps are as follows.

1. Open a terminal and execute the following command to modify the kernel parameters for
the corresponding NIC. Replace the <NIC Name> part of the command with the actual NIC

name.

Configuring SR-10V - Alauda Container Platform

sysctl -w net.ipv4.conf.<NIC Name>.rp_filter=2

echo "net.ipv4.conf.<NIC Name>.rp_filter=2" >> /etc/sysctl.conf

2. Execute the following command to load and apply all kernel parameter commands from the
/etc/sysctl.conf file, so that the kernel configuration takes effect. When the value in the

output information is 2, it indicates that the modification was successful.

sysctl -p

Output information:

net.ipvé4.conf.<NIC Name>.rp_filter = 2

Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support - Alauda Container Platform

Menu ON THIS PAGE >

Configuring Virtual Machines to Use

Network Binding Mode for IPv6 Support

The network binding mode is a plugin extension mechanism for virtual machine networking.
By default, the platform uses a plugin called ManagedTap to enable IPv6 support for virtual
machines. This plugin allows virtual machines to obtain IP addresses through the CNI's DHCP
Server. Therefore, as long as the CNI's DHCP Server supports IPv6, virtual machines will also

gain IPv6 capabilities.

Currently, we use Kube-OVN as the CNI. Since Kube-OVN's DHCP Server has full IPv6
support, virtual machines can achieve robust IPv6 functionality through the combination of
ManagedTap and Kube-OVN.

TOC

Prerequisites

Procedure
Add IPv6 Configuration to the Virtual Machine Subnet
Create a Virtual Machine Using Network Binding Mode in the web console
Access the Virtual Machine via VNC and Configure the Network Interface

Configure IPv6 Default Route

Prerequisites

o ACP version must be v4.0.0 or higher.

Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support - Alauda Container Platform

¢ Kube-OVN is used as the CNI, and the virtual machine subnet is configured as Underlay.

Procedure

17 Add IPv6 Configuration to the Virtual Machine Subnet

kubectl edit subnet <subnet-name>

Add the following parameters under spec :

spec:
enableDHCP: true
enableIPv6RA: true

u2oInterconnection: true

2) Create a Virtual Machine Using Network Binding Mode
in the web console

When creating a virtual machine, select Network Binding as the network mode.

3/ Access the Virtual Machine via VNC and Configure the

Network Interface

For CentOS systems, edit the /etc/sysconfig/network-scripts/ifcfg-enp1s@ file and add
the following configuration:

IPV6INIT=yes
DHCPV6C=yes
IPV6_AUTOCONF=yes

restart network

systemctl restart network

Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support - Alauda Container Platform

4 Configure IPv6 Default Route

If the switch is configured to send Router Advertisement (RA) messages, manual route
configuration is not required. The default route can be automatically learned through RA

messages from the switch.

ip r r default via <subnet-v6-gateway>

Storage - Alauda Container Platform

Menu

Storage

Introduction

Introduction

Advantages

Guides

Managing Virtual Disks
Creating a Virtual Disk
Mounting a Virtual Disk
Expanding a Virtual Disk
Unmounting a Virtual Disk

Deleting a Virtual Disk

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

ACP Virtualization with KubeVirt Storage provides persistent storage capabilities for virtual
machines (VMs) by seamlessly integrating with Kubernetes-native storage mechanisms. It
leverages PersistentVolumeClaim (PVC) to store VM disk data and utilizes the Container
Storage Interface (CSI) to integrate with various storage systems. Additionally, the
Containerized Data Importer (CDI) is employed to initialize VM disk data. Building on these
foundations, the platform extends advanced functionalities for VM disk management, enabling

comprehensive lifecycle control.

TOC

Advantages

Advantages

o User-Friendly Operations

Most VM disk operations can be easily performed via the Web Ul, minimizing the need for

CLI expertise.
e VM Disk Lifecycle Management

Configure whether VM disks should be automatically deleted when the associated VM is

terminated.

Menu

Guides

Managing Virtual Disks
Creating a Virtual Disk
Mounting a Virtual Disk
Expanding a Virtual Disk
Unmounting a Virtual Disk

Deleting a Virtual Disk

Guides - Alauda Container Platform

Managing Virtual Disks - Alauda Container Platform

Menu ON THIS PAGE >

Managing Virtual Disks

Data disks can be used to meet the data persistence requirements of the business.

TOC

Creating a Virtual Disk
Procedures

Mounting a Virtual Disk
Procedures

Expanding a Virtual Disk
Procedures

Unmounting a Virtual Disk
Procedures

Deleting a Virtual Disk

Procedures

Creating a Virtual Disk

Create a data disk for the virtual machine. Only one virtual disk can be added at a time; if
multiple disks are needed, please repeat this operation.

Note: Virtual disks can be mounted online when the virtual machine is in running state.

Procedures

Managing Virtual Disks - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click on Create Virtual Disk.

4. Configure the information based on the following instructions.

Parameter

Volume
Mode

Storage

Class

Delete with
VM

Mount

5. Click on Create.

Description

- File System: Mount the disk in a way that mounts the file directory.

- Block Device: Mount the disk as a block device.

The platform maintains virtual machine disks by automatically
creating and managing persistent volume claims. You need to specify
the storage class required for dynamically creating persistent volume

claims.

Different storage classes support different volume modes. If there are
no available storage classes for the selected volume mode, please

contact the administrator for addition.

If enabled, the disk data will also be deleted when the virtual machine

is deleted.

- Do Not Mount: Only create the virtual disk; it can be mounted later
when needed.
- Mount to VM: Select the target virtual machine to which the virtual

disk needs to be mounted.

Mounting a Virtual Disk

Mount the data disk to a virtual machine, attaching the already created virtual disk to the

target virtual machine.

Note: Virtual disks can be mounted online when the virtual machine is in running state.

Managing Virtual Disks - Alauda Container Platform

Procedures

1. Access the Container Platform.
2. In the left navigation bar, click on Virtualization > Virtual Disk.
3. Click : > Mount next to the virtual disk to be mounted.

4. Select the target virtual machine and click Mount.

Expanding a Virtual Disk

Expand the system disk and data disk already mounted to the virtual machine.

Procedures

1. Access the Container Platform.

2. In the left navigation bar, click on Virtualization > Virtual Machine.

3. Click the name of the virtual machine to enter the Details page.

4. In the Virtual Disk area, find the disk to be expanded and click : > Expand.

5. Enter the new capacity and click Expand.

Unmounting a Virtual Disk

Unmount the data disk from the virtual machine; only virtual machines in the stopped state

can unmount disks.

Procedures

1. Access the Container Platform.

Managing Virtual Disks - Alauda Container Platform

2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click : > Unmount next to the virtual disk to be unmounted and confirm.

Deleting a Virtual Disk

Deletion is only supported when the virtual disk is in an unmounted state.

Note: System disks cannot be deleted.

Procedures

1. Access the Container Platform.
2. In the left navigation bar, click on Virtualization > Virtual Disk.

3. Click : > Delete next to the virtual disk to be deleted and confirm.

Backup and Recovery - Alauda Container Platform

Menu

Backup and Recovery

Introduction

Introduction
Application Scenarios

Usage Limitations

Guides

Using Snapshots
Prerequisites

Notes

Creating a Snapshot
Rolling Back a Snapshot

Deleting a Snapshot

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

ACP Virtualization With Kubevirt provides virtual machine snapshot capabilities, allowing

users to back up and restore VMs via snapshots.

TOC

Application Scenarios

Usage Limitations

Application Scenarios

o Disaster Recovery & Failure Rollback

When a virtual machine experiences data loss due to hardware failures, human errors
(e.g., accidental file deletion), or malicious attacks (e.g., ransomware), snapshots serve as

the last line of defense to restore operations.

Usage Limitations

¢ Creating a snapshot requires stopping the virtual machine first.

e The PVC (Persistent Volume Claim) used by the virtual machine disk must be configured

with a multi-node shared access mode.

Menu

Guides

Using Snapshots
Prerequisites

Notes

Creating a Snapshot
Rolling Back a Snapshot

Deleting a Snapshot

Guides - Alauda Container Platform

Using Snapshots - Alauda Container Platform

Menu ON THIS PAGE >

Using Snapshots

A virtual machine snapshot saves the current state of the virtual machine, and can be used to

restore the virtual machine to that state in the event of an unexpected failure.

TOC

Prerequisites

Notes

Creating a Snapshot
Procedures

Rolling Back a Snapshot
Notes
Procedures

Deleting a Snapshot
Notes

Procedures

Prerequisites

+ The Volume Snapshot has been deployed by the administrator in the platform

management.

« Virtual machine snapshots are based on volume snapshots. Ensure that at least one disk is

bound to a storage class that supports volume snapshots, such as CephFS built-in storage.

Using Snapshots - Alauda Container Platform

+ Only offline snapshots of the virtual machine are supported. Please first stop the virtual

machine before creating or rolling back to a snapshot.

Notes

If there are multiple storage types of the same kind in the cluster, for example, attaching
multiple different sources of Ceph RBD storage, the disk snapshot functionality may not work

properly when the virtual machine is using such storage.

Creating a Snapshot

The contents included in a virtual machine snapshot: virtual machine settings and the state of

the disks that support volume snapshots.

Procedures

1. Access Container Platform.
2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Locate the virtual machine and click : > Create Snapshot.

4. Fill in the snapshot description. The description can help you document the current state of

the virtual machine, such as Initial Installation , Before Application Upgrade .

5. Click Create. The time taken for the snapshot depends on network conditions and

workload, please be patient.
6. Check the snapshot status.
e When the snapshot changes to Ready , it indicates that the creation was successful.

« If the snapshot remains in Not Ready status for a long time, click

> View the reasons and troubleshoot, then recreate the snapshot.

Using Snapshots - Alauda Container Platform

Rolling Back a Snapshot

Roll back the virtual machine settings and the disks that support volume snapshots to the
state at the time the snapshot was created. For example, disks added after the snapshot

creation will be removed; modified disk data will be restored.

Notes

If there are disks bound to a storage class that supports the LVM mechanism (for example,
TopoLVM), please confirm with the administrator that the reclamation policy for that storage

class is set to Retain (reclaimPolicy: Retain) to use the snapshot rollback feature correctly.

Procedures

1. Access Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.
3. Click on Virtual Machine Name.

4. In the Snapshots tab, locate the snapshot and click : > Rollback.

5. Read the prompt information on the interface, and click Rollback after confirming

everything is correct.
Note: The rollback operation cannot be aborted or undone, please proceed with caution.

6. Click on the snapshot name to check in the “Snapshot Rollback Records” if the rollback has
been completed. The time required for the rollback depends on network conditions and

workload, please be patient.
Description

« If the rollback fails, the virtual machine state remains unchanged. You can start the virtual

machine normally or attempt to roll back the snapshot again.

e If the virtual machine is started during the rollback process, it will revert to the state before

it was stopped, and upon stopping the virtual machine again, it will continue rolling back to

Using Snapshots - Alauda Container Platform

the state at the time of snapshot creation.

+ To avoid operational conflicts, please ensure that the most recent rollback record has been

completed before performing other operations on that virtual machine.

Deleting a Shapshot

Delete unnecessary virtual machine snapshots to free up disk resources.

Notes

When deleting a rolled-back virtual machine snapshot, if the virtual machine disk needs to
copy data based on the snapshot (for example, TopoLVM), you must wait until a virtual
machine based on the rollback version has been started before deleting, otherwise the virtual
machine will fail to start.

Procedures

1. Access Container Platform.

2. In the left navigation bar, click Virtualization > Virtual Machines.

3. Click on Virtual Machine Name.

4. In the Snapshots tab, locate the target snapshot and click : > Delete.

5. Read the prompt information and click Delete after confirming everything is correct.

	Virtualization
	Overview
	Introduction
	TOC
	Container-Orchestrated Virtual Machine Solution
	Features
	Product Features
	Constraints and Limitations

	Install
	TOC
	Prerequisites
	Procedure
	Enabling Node Virtualization
	Procedure

	Deploying Operator
	Creating a HyperConverged Instance
	Configuring Virtual Machine Overcommit Ratio (Optional)
	Important Notes

	Resource Quota Explanation

	Images
	Introduction
	TOC
	Advantages

	Guides
	Adding Virtual Machine Images
	TOC
	Procedure

	Update/Delete Virtual Machine Images
	Update/Delete Image Credentials
	How To
	Creating Windows Images Based on ISO using KubeVirt
	TOC
	Prerequisites
	Constraints and Limitations
	Procedure
	Create Image
	Create Virtual Machine
	Install Windows Operating System
	Install virtio-win-tools
	Export Custom Windows Image
	Use Windows Image
	Add Internal Route

	Remote Access

	Creating Linux Images Based on ISO Using KubeVirt
	TOC
	Prerequisites
	Constraints and Limitations
	Procedure
	Convert Linux ISO Image into Docker Image
	Create Virtual Machine
	Install Linux Operating System
	Modify YAML File
	Install Required Software and Modify Configuration
	Export and Use the Custom Linux Image

	Exporting Virtual Machine Images
	TOC
	Procedure
	Stopping the Virtual Machine
	Creating the vmexport Resource
	Downloading the Virtual Machine Image File
	Uploading the Virtual Machine Image File to Object Storage
	Creating the Virtual Machine Image

	Permissions
	Virtual Machine
	Introduction
	Guides
	Creating Virtual Machines/Virtual Machine Groups
	TOC
	Prerequisites
	Notes
	Create Virtual Machine
	Procedure
	Related Operations

	Create Virtual Machine Group
	Procedure

	Batch Operations on Virtual Machines
	TOC
	Procedure

	Logging into the Virtual Machine using VNC
	TOC
	Procedure

	Managing Key Pairs
	TOC
	Creating Key Pairs
	Updating Key Pairs
	Deleting Key Pairs

	Managing Virtual Machines
	TOC
	Reset Password
	Procedure

	Update Key
	Procedure

	Update Specifications
	Live Migration
	Update NAT Network Configuration
	Procedure

	Update Tags and Annotations
	Add Service
	Reinstall Operating System
	Procedure

	Configure IP
	Procedure

	Monitoring and Alerts
	TOC
	Monitoring
	Alerts
	Configuring Alert Policies
	Handling Alerts
	Binding Notification Policies

	Quick Location of Virtual Machines
	TOC
	Prerequisites
	Procedure

	How To
	Configuring USB host passthrough
	TOC
	Feature Overview
	Use Cases
	Prerequisites
	Steps
	Expose USB devices
	Assign USB devices to a Virtual Machine

	Operation Result
	Learn More
	Expose multiple USB devices
	Assign USB devices to a Virtual Machine

	Virtual Machine Hot Migration
	TOC
	Overview
	ProCopy

	Constraints and Limitations
	Prerequisites
	Operation Steps
	Deploy kubevirt-operator
	Create HyperConverged Instance
	Prepare the Virtual Machine
	Start Hot Migration

	Virtual Machine Recovery
	TOC
	Steps to Operate
	Obtain Image Address
	Modify Virtual Machine YAML File
	Mount the Original rootfs and Perform Repair
	Restore the Virtual Machine YAML File

	Clone Virtual Machines on KubeVirt
	TOC
	Ensure Prerequisites
	Start Quickly
	Understand the VirtualMachineClone Object
	View a Complete VirtualMachineClone Example
	Understand Each Field
	Check Clone Operation Phases

	Physical GPU Passthrough Environment Preparation
	TOC
	Constraints and Limitations
	Prerequisites
	Chart and Image Preparation
	Enabling IOMMU

	Operating Steps
	Create Namespace
	Deploy gpu-operator
	Configure Kubevirt

	Result Verification
	Related Operations
	Delete the Virtual Machine with Passthrough GPU
	Remove GPU-related Configuration from KubeVirt
	Uninstall gpu-operator

	Configuring High Availability for Virtual Machines
	TOC
	Overview
	Glossary
	Component Overview
	Flow of events during fencing and remediation
	Procedure
	Operator Listing
	Deploying Self Node Remediation Operator
	Configuring Self Node Remediation Operator(optional)
	Configuring Self Node Remediation Template(optional)
	Deploying Node Health Check Operator
	Create NodeHealthCheck instance
	Verification(optional)

	Create a VM Template from an Existing Virtual Machine
	TOC
	Prerequisites
	Procedure
	Step 1: Basic Configuration on the Virtual Machine
	Step 2: Create a VM Snapshot
	Step 3: Retrieve Disk Snapshot Resource Name
	Step 4: Create a DataSource Resource
	Label Parameters Explanation:

	Step 5: Create a New VM Using the Template

	Troubleshooting
	Pod Migration and Recovery from Abnormal Shutdown of Virtual Machine Nodes
	TOC
	Problem Description
	Cause Analysis
	Solutions
	Migration of Virtual Machine Pods during Graceful Shutdown
	Recovery from Abnormal Shutdown

	Hot Migration Error Messages and Solutions
	Network
	Introduction
	TOC
	Advantages

	Guides
	Configure Network
	TOC
	Configure IP
	Connect to the virtual machine directly via IP
	Add Internal Routes

	Practical Guide
	Control Virtual Machine Network Requests Through Network Policy
	TOC
	Procedure
	Result Verification
	Step One: Create a Virtual Machine and Network Policy Allowing All Traffic Through
	Step Two: Update Network Policy to Remove www.example.com from Whitelist

	Configuring SR-IOV
	TOC
	Terminology
	Constraints and Limitations
	Prerequisites
	Chart
	Images

	Procedures
	Enabling SR-IOV in the Physical Machine's BIOS
	Enabling IOMMU
	Loading the VFIO Module in the System Kernel
	Creating VF Devices
	Binding the VFIO Driver
	Deploying the Multus CNI Plugin
	Deploying the sriov-network-operator
	Setting Node Role Identifier Labels for Physical Nodes
	Checking if the Resources are Created Successfully
	Setting SR-IOV Node Feature Labels for Physical Nodes
	Checking NIC Device Support
	Configuring IP Address

	Result Verification
	Related Notes
	Kernel Parameter Configuration for CentOS Virtual Machines

	Configuring Virtual Machines to Use Network Binding Mode for IPv6 Support
	TOC
	Prerequisites
	Procedure
	Add IPv6 Configuration to the Virtual Machine Subnet
	Create a Virtual Machine Using Network Binding Mode in the web console
	Access the Virtual Machine via VNC and Configure the Network Interface
	Configure IPv6 Default Route

	Storage
	Introduction
	TOC
	Advantages

	Guides
	Managing Virtual Disks
	TOC
	Creating a Virtual Disk
	Procedures

	Mounting a Virtual Disk
	Procedures

	Expanding a Virtual Disk
	Procedures

	Unmounting a Virtual Disk
	Procedures

	Deleting a Virtual Disk
	Procedures

	Backup and Recovery
	Introduction
	TOC
	Application Scenarios
	Usage Limitations

	Guides
	Using Snapshots
	TOC
	Prerequisites
	Notes
	Creating a Snapshot
	Procedures

	Rolling Back a Snapshot
	Notes
	Procedures

	Deleting a Snapshot
	Notes
	Procedures

