
Storage

Ceph Distributed Storage

Introduction

Feature Overview

Storage Solution Comparison

Install

Architecture
Technical architecture

Concepts

Guides

How To

Menu

Storage - Alauda Container Platform

MinIO Object Storage

Introduction

Install

Prerequisites

Procedure

Related Information

Architecture
Core Components:

Deployment Architecture:

Multi-Pool Expansion:

Conclusion:

Concepts

Guides

How To

Storage - Alauda Container Platform

TopoLVM Local Storage

Introduction

Install

Prerequisites

Procedure

Guides

How To

Storage - Alauda Container Platform

Ceph Distributed Storage

Introduction

Introduction

Feature Overview

Storage Solution Comparison

Install

Create Standard Type Cluster
Prerequisites

Precautions

Procedure

Related Operations

Create Stretch Type Cluster
Terminology

Typical Deployment Scheme

Constraints and Limitations

Prerequisites

Procedure

Related Operations

Menu

Ceph Distributed Storage - Alauda Container Platform

Architecture

Architecture
Technical architecture

Concepts

Core Concepts
Rook Operator

Ceph CSI

Ceph module functions

Guides

Accessing Storage Services

Prerequisites

Procedure

Follow-up Actions

Managing Storage Pools
Creating a Storage Pool

Deleting a Storage Pool

Viewing Object Storage Pool Addresses

Ceph Distributed Storage - Alauda Container Platform

Node-specific Component Deployment
Update Component Deployment Configuration

Restart Storage Components

Adding Devices/Device Classes

Adding Device Classes

Adding Devices

Hard Disk Status

Monitoring and Alerts
Monitoring

Alerts

How To

Configure a Dedicated Cluster for Distributed Storage
Architecture

Infrastructure requirements

Procedure

Follow-up Actions

Cleanup Distributed Storage
Precautions

Procedure

Ceph Distributed Storage - Alauda Container Platform

Disaster Recovery

Update the optimization parameters

Procedure

Create ceph object store user

Prerequisites

Procedure

Ceph Distributed Storage - Alauda Container Platform

Alauda Build of Rook-Ceph is a hyper-converged storage solution provided by the platform

within the cluster. Based on the open-source Rook + Ceph storage solution, distributed

storage achieves automatic management, automatic scaling, and automatic repair

capabilities, fulfilling the block storage, file storage, and object storage needs of small to

medium-sized applications.

NOTE

In this document, distributed storage refers to the Ceph storage within this cluster, while external
storage refers to Ceph storage outside of this cluster.

Feature Overview

Storage Solution Comparison

Creating a Storage Cluster

Accessing External Storage

Easy Deployment: Provides graphical automatic deployment and management services

for storage clusters; supports both integrated and decoupled deployment modes for

compute and storage.

Introduction

TOC

Feature Overview

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Professional Operations: Offers persistent volume snapshot backup and clone new

volume functionalities; visual monitoring of capacity, performance, and component levels;

equipped with built-in alert policies to meet the needs of most storage operation scenarios.

Secure and Reliable: Distributed and multi-replica mechanisms ensure data security and

reliability; simple and reliable automated management supports online expansion of

storage resources.

Excellent Performance: Provides elastic and high-performance storage services; supports

the deployment of hybrid disk devices to enhance storage system performance and

efficiency.

The platform supports the following two types of storage solutions; you can choose one or the

other.

Requirement Advantages

You can choose to create either a

standard type cluster or an

extended type cluster

No need for additional storage solution

preparation; configuration can be completed on

the business cluster, saving costs.

Option 1: Access the distributed storage resources of other business clusters within the

platform to ensure storage and business are isolated for easier management and

maintenance.

Option 2: Integrate external Ceph storage resources as distributed storage.

Storage Solution Comparison

Creating a Storage Cluster

Accessing External Storage

Introduction - Alauda Container Platform

Requirement (choose

one)
Advantages

Option 1: Distributed

storage already deployed

in other business

clusters.

Can fully utilize storage resources across clusters and

avoid interference from business changes. Ensures data

security and stability while reducing operational

complexity.

Note: If the storage to be accessed is distributed

storage from different platforms, such as a

primary/backup platform in a disaster recovery

environment, please use the method of integrating

external Ceph.

Option 2: External Ceph

storage outside the

platform, version ≥ 14.2.3.

Compared to directly creating a storage class, this

method is more convenient for using the platform's

interface for volume snapshots, scaling, and other

functions.

Note: If you need to maintain the storage pool, storage device, and other configurations of

external storage, operations must be performed in the management interface of the storage

cluster.

Introduction - Alauda Container Platform

Install

Create Standard Type Cluster

Prerequisites

Precautions

Procedure

Related Operations

Create Stretch Type Cluster

Terminology

Typical Deployment Scheme

Constraints and Limitations

Prerequisites

Procedure

Related Operations

Menu

Install - Alauda Container Platform

A standard-type cluster is the most typical deployment method for Ceph storage. It distributes

data replicas across hard drives on different hosts, ensuring that if a single host fails, the data

copies on other hosts can still maintain service availability.

Prerequisites

Prepare Package

Prepare Infrastructure

Precautions

Procedure

Deploy Alauda Container Platform Storage Essentials

Deploy Operator

Create Cluster

Create Storage Pool

Related Operations

Create Stretch Type Cluster

Cleanup Distributed Storage

Create Standard Type Cluster

TOC

Prerequisites

Prepare Package

Menu ON THIS PAGE

Create Standard Type Cluster - Alauda Container Platform

Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

Download the Alauda Build of Rook-Ceph installation package corresponding to your

platform architecture.

Upload the Alauda Build of Rook-Ceph installation package using the Upload Packages

mechanism.

At least 3 nodes are required in the storage cluster.

Each node must have at least 1 blank hard disk or 1 unformatted hard disk partition

available.

The available hard disk capacity is recommended to be greater than 50 G.

If you are using an attached Kubernetes cluster with Containerd as the runtime component,

please ensure that the LimitNOFILE parameter value in the

/etc/systemd/system/containerd.service file is configured to 1048576 on all nodes of the

cluster, to ensure successful deployment of distributed storage. For configuration

instructions, please refer to Modifying Containerd Configuration Information.

Note: When upgrading from versions earlier than v3.10.2 to the current version, if you need

to deploy Ceph distributed storage on your custom Kubernetes cluster with Containerd as

the runtime component, you must also set the LimitNOFILE parameter value in the

/etc/systemd/system/containerd.service file to 1048576 on all nodes of the cluster.

Creating Storage Service and Accessing Storage Service only support selecting one

method.

Prepare Infrastructure

Precautions

Create Standard Type Cluster - Alauda Container Platform

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Installation

Place
Select Recommended , Namespace only support acp-storage.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

1. Navigate to Administrator.

2. In the left sidebar, click Storage Management > Distributed Storage.

3. Click Configure Now.

4. In the Deploy Operator wizard page, click the Deploy Operator button at the bottom

right.

Procedure

Deploy Alauda Container Platform Storage Essentials1

Deploy Operator2

Create Standard Type Cluster - Alauda Container Platform

When the page automatically advances to the next step, it indicates that the

Operator has been deployed successfully.

If the deployment fails, please refer to the prompt on the interface Clean Up

Deployed Information and Retry, and redeploy the Operator; if you wish to return

to the distributed storage selection page, click Application Store, first uninstall the

resources in the already deployed rook-operator, and then uninstall rook-

operator.

1. In the Create Cluster wizard page, configure the relevant parameters and click the

Create Cluster button at the bottom right.

Parameter Explanation

Cluster Type Select Standard.

Device Class

Type

Device classes are groupings of hard disks; you can

customize device classes according to your storage needs,

allocating different storage content to disks of varying

performance.

Default Device Class: The platform will automatically

categorize the types of hard disks in the cluster nodes.

For instance, creating device classes named hdd , ssd ,

nvme .

Custom Device Class: Customize the name of the

device class for specific combinations of disks in the

node; adding multiple device classes is supported. The

same hard disk can only belong to one device class.

Device Class -

Name

The name of the device class. When selecting Custom

Device Class, the device class cannot use the following

names: hdd , ssd , nvme .

Device Class -

Storage

Choose Blank Hard Disk or Unformatted Hard Disk

Partition on the nodes.

Create Cluster3

Create Standard Type Cluster - Alauda Container Platform

Parameter Explanation

Devices When the "Open All Blank Devices" switch is on: All

blank devices under the node will be added to the device

class;

When the "Open All Blank Devices" switch is off:

Manually input the names of the blank devices under the

node, such as sda .

Snapshot

When enabled, it supports creating PVC snapshots and

using snapshots to configure new PVCs for quick backup

and recovery of business data.

If you did not enable snapshots when creating storage, you

can still enable them as needed from the Operations

section on the storage cluster details page.

Note: Please ensure that you have deployed volume

snapshot plugins for the current cluster before using.

Monitoring

Alarm

When enabled, it will provide out-of-the-box monitoring

metric collection and alerting capabilities, see Monitoring

and Alarming.

Note: If not enabled at this time, you will need to find

alternative solutions for storage monitoring and alarms. For

example, manually configuring monitoring dashboards and

alert strategies in the operation and maintenance center.

2. Click Advanced Configuration for advanced component configuration.

Parameter Explanation

Network

Configuration
Host Network: The storage cluster will use the host

network, and you should fill in the relevant network

optimization parameters in the optimization

parameters column, such as configuring the public

and cluster subnets. If left blank, the default host

subnet will be used.

Note: Using the host network may expose security

Create Standard Type Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html
http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html

Parameter Explanation

risks due to unencrypted (plaintext) transmission of

data through host ports. Please contact the platform

support team to obtain the encrypted transmission

solution.

Container Network: The storage cluster will use

container networking; you can create subnets in

network management and assign them to the rook-

ceph namespace. If left blank, the default subnet will

be used.

Note:

IPv6 not supported.

When using the container network, storage is only

accessible within the cluster.

Failures or restarts of the Ceph CSI Pod may result in

service interruptions.

Optimization

Parameters

Supports filling parameters in Ceph configuration file

format; the system will overwrite the default parameters

based on the provided content.

Note: After first filling in or modifying initialization

parameters, please click on the initialization parameters;

successful initialization is required before a cluster can

be created.

Component

Fixed-point

Deployment

You can deploy components to specified nodes; at least

three nodes are required to ensure minimum availability.

The components eligible for fixed-point deployment

configuration include MON, MGR, MDS, RGW.

When the page automatically advances to the next step, it indicates that the Ceph

cluster has been deployed successfully.

If the creation fails, you may click to clean up Created Information or Retry to

automatically clean up the resources and recreate the cluster, or manually clean

Create Standard Type Cluster - Alauda Container Platform

up resources according to the documentation Distributed Storage Service

Resource Cleanup.

1. In the Create Storage Pool wizard page, configure the relevant parameters and click

the Create Storage Pool button at the bottom right.

Parameter Explanation

Storage

Type

File Storage: Provides secure, reliable, and scalable shared

file storage services. Suitable for file sharing, data backup,

etc.

Block Storage: Provides high IOPS and low-latency storage

services. Suitable for databases, virtualization, etc.

Object Storage: Provides standard S3 interface storage

services, suitable for big data, backup archiving, cloud

storage, etc.

Replica

Count

The larger the number of replicas, the higher the redundancy

and data security; however, the utilization rate of storage will

decrease. It is usually set to 3 to meet most needs.

Device

Class

Uniformly classify types for the same type of device or disks of

the same business logic, selecting from the device classes

added in the previous step.

When selecting a device class, data will be stored in the

chosen device class.

If no device class is selected, data will be randomly stored

across all devices in the storage pool.

If it is object storage, you also need to configure the following parameters:

Create Storage Pool4

Create Standard Type Cluster - Alauda Container Platform

Parameter Explanation

Region Specify the region where the storage pool is located.

Gateway Type Default is S3 and cannot be modified.

Internal Port Specify the port for internal access in the cluster.

External

Access

Enabling/disabling external access will create/destroy

Nodeport type Service.

Instance

Count
The number of resource instances for object storage.

When the page automatically advances to the next step, it indicates that the

storage pool has been deployed successfully.

If the deployment fails, please refer to the interface prompts to check the core

components, and then click Clean Up Created Information and Retry to recreate

the storage pool.

2. Click Create Storage Pool. In the Details tab, you can view information about the

created storage pool.

For details, please refer to Create Stretch Type Cluster.

For details, please refer to Cleanup Distributed Storage.

Related Operations

Create Stretch Type Cluster

Cleanup Distributed Storage

Create Standard Type Cluster - Alauda Container Platform

A stretch cluster can extend across two geographically distinct locations, providing disaster

recovery capabilities for storage infrastructure. In the event of a disaster, when one availability

zone in the two zones is completely unavailable, Ceph can still maintain availability.

Terminology

Typical Deployment Scheme

Component Description

Disaster Recovery Explanation

Constraints and Limitations

Prerequisites

Procedure

Tagging Nodes

Create Storage Service

Related Operations

Create Standard Type Cluster

Cleanup Distributed Storage

Create Stretch Type Cluster

TOC

Terminology

Menu ON THIS PAGE

Create Stretch Type Cluster - Alauda Container Platform

Term Explanation

Quorum

Availability

Zone

Usually located in a separate zone that does not bear primary

workloads, focusing on maintaining cluster consistency, and is

primarily used for arbitration decisions when a failure occurs in the

main data center or a network partition occurs.

Data

Availability

Zone

The primary area in the Ceph cluster where data is actually stored

and processed, bearing operational loads and data storage tasks,

forming a complete high-availability storage system together with the

quorum zone.

The following content provides a typical deployment scheme for stretch clusters, along with

component descriptions and principles of disaster recovery.

Nodes need to be distributed across three availability zones, including two data availability

zones and one quorum availability zone.

Both data availability zones need to fully deploy all core Ceph components (MON, OSD,

MGR, MDS, RGW), and each data availability zone must configure two MON instances for

high availability. When both MON instances in the same data availability zone are

unavailable, the system will determine that the availability zone is in a failure state.

The quorum availability zone only requires the deployment of one MON instance, serving

as the arbitration decision node.

Typical Deployment Scheme

Component Description

Create Stretch Type Cluster - Alauda Container Platform

When a data availability zone completely fails, the Ceph cluster will automatically enter a

degraded state and trigger an alarm notification. The system will adjust the minimum

number of replicas in the storage pool (min_size) from the default of 2 to 1. Since the other

data availability zone still maintains dual replicas, the cluster remains available. When the

failed data availability zone recovers, the system will automatically execute data

synchronization and return to a healthy state; if the failure cannot be repaired, it is

recommended to replace it with a new data availability zone.

When the network connection between the two data availability zones is interrupted, but

they can still connect normally to the quorum availability zone, the quorum availability zone

will arbitrate between the two data availability zones based on preset policies, selecting the

one in a better state to continue providing services as the primary data zone.

Storage Pool Limitations: Erasure-coded storage pools are not supported, and only

replica mechanisms can be used for data protection.

Device Classification Limitations: Device class functionality is not supported, and

storage cannot be stratified based on device characteristics.

Regional Deployment Limitations: Only two data availability zones are supported; no

more than two data availability zones can exist.

Disaster Recovery Explanation

Constraints and Limitations

Create Stretch Type Cluster - Alauda Container Platform

Data Balancing Requirements: The OSD weights of the two data availability zones must

strictly remain consistent to ensure balanced data distribution.

Storage Medium Requirements: Only all-flash (All-Flash) OSD configurations are

permitted, minimizing the time required for recovery after a connection is restored, and

reducing the potential for data loss as much as possible.

Network Latency Requirements: The RTT (round-trip time) between the two data

availability zones must not exceed 10ms, and the quorum availability zone must meet the

ETCD specification latency requirements to ensure the reliability of the arbitration

mechanism.

Please classify all or part of the nodes in the cluster into three availability zones in advance,

as follows:

Ensure that at least 5 nodes are distributed among one quorum availability zone and two

data availability zones. Among them, the quorum availability zone must have at least one

node, which can be a virtual machine or cloud host.

Ensure that at least one availability zone in the three availability zones contains a Master

node (control node).

Ensure that at least 4 computing nodes are evenly distributed across the 2 data availability

zones, with at least 2 computing nodes configured in each data availability zone.

Try to ensure that the number of nodes and disk configurations in the two data availability

zones are consistent.

1. Access Administrator.

Prerequisites

Procedure

Tagging Nodes1

Create Stretch Type Cluster - Alauda Container Platform

2. In the left navigation bar, click Cluster Management > Cluster.

3. Click on the corresponding cluster name to enter the cluster overview page.

4. Switch to the Nodes tab.

5. Based on the planning in the Prerequisites, add the topology.kubernetes.io/zone=

<zone> label to these nodes to classify them into the specified availability zone. Here,

replace <zone> with the name of the availability zone.

This document only describes the parameters that differ from standard type clusters; for

other parameters, please refer to Create Standard Type Cluster.

Create Cluster

Parameter Description

Cluster Type Select Stretch.

Quorum Availability

Zone
Choose the name of the quorum availability zone.

Data Availability Zone
Select the names of the availability zones and choose

the nodes.

Create Storage Pool

Parameter Description

Number of

Replicas
Default is 4.

Number of

Instances

When the storage type is Object Storage, to ensure

availability, the minimum number of instances is 2 and the

maximum is 5.

Create Storage Service2

Create Stretch Type Cluster - Alauda Container Platform

For details, please refer to Create Standard Type Cluster.

For details, please refer to Cleanup Distributed Storage.

Related Operations

Create Standard Type Cluster

Cleanup Distributed Storage

Create Stretch Type Cluster - Alauda Container Platform

Technical architecture

Architecture

TOC

Technical architecture

Menu ON THIS PAGE

Architecture - Alauda Container Platform

Example applications are shown above for the three supported storage types:

Block Storage is represented with a blue app, which has a ReadWriteOnce (RWO) volume

mounted. The application can read and write to the RWO volume, while Ceph manages the

IO.

Shared Filesystem is represented by two purple apps that are sharing a ReadWriteMany

(RWX) volume. Both applications can actively read or write simultaneously to the volume.

Ceph will ensure the data is safely protected for multiple writers with the MDS daemon.

Object storage is represented by an orange app that can read and write to a bucket with a

standard S3 client.

Below the dotted line in the above diagram, the components fall into three categories:

Architecture - Alauda Container Platform

Rook operator (blue layer): The operator automates configuration of Ceph

CSI plugins and provisioners (orange layer): The Ceph-CSI driver provides the provisioning

and mounting of volumes

Ceph daemons (red layer): The Ceph daemons run the core storage architecture. See the

Glossary to learn more about each daemon.

Block Storage
In the diagram above, the flow to create an application with an RWO volume is:

The (blue) app creates a PVC to request storage.

The PVC defines the Ceph RBD storage class (sc) for provisioning the storage.

K8s calls the Ceph-CSI RBD provisioner to create the Ceph RBD image.

The kubelet calls the CSI RBD volume plugin to mount the volume in the app.

The volume is now available for reads and writes.

A ReadWriteOnce volume can be mounted on one node at a time.

Shared Filesystem

In the diagram above, the flow to create a applications with a RWX volume is:

The (purple) app creates a PVC to request storage.

The PVC defines the CephFS storage class (sc) for provisioning the storage.

K8s calls the Ceph-CSI CephFS provisioner to create the CephFS subvolume.

The kubelet calls the CSI CephFS volume plugin to mount the volume in the app.

The volume is now available for reads and writes.

A ReadWriteMany volume can be mounted on multiple nodes for your application to use.

Object Storage S3
In the diagram above, the flow to create an application with access to an S3 bucket is:

The (orange) app creates an BucketClaim to request a bucket.

The Ceph COSI Driver creates a Ceph RGW bucket.

The Ceph COSI Driver creates a secret with the credentials for accessing the bucket.

The app retrieves the credentials from the secret.

The app can now read and write to the bucket with an S3 client.

Architecture - Alauda Container Platform

Core Concepts

Core Concepts

Rook Operator

Ceph CSI

Ceph module functions

Menu

Concepts - Alauda Container Platform

Rook Operator

Ceph CSI

Ceph module functions

The Rook operator is a simple container that has all that is needed to bootstrap and monitor

the storage cluster. The operator will start and monitor Ceph monitor pods, the Ceph OSD

daemons to provide RADOS storage, as well as start and manage other Ceph daemons. The

operator manages CRDs for pools, object stores (S3/Swift), and filesystems by initializing the

pods and other resources necessary to run the services.

The operator will monitor the storage daemons to ensure the cluster is healthy. Ceph mons

will be started or failed over when necessary, and other adjustments are made as the cluster

grows or shrinks. The operator will also watch for desired state changes specified in the Ceph

custom resources (CRs) and apply the changes.

Rook automatically configures the Ceph-CSI driver to mount the storage to your pods. The

rook/ceph image includes all necessary tools to manage the cluster.

Core Concepts

TOC

Rook Operator

Ceph CSI

Menu ON THIS PAGE

Core Concepts - Alauda Container Platform

Ceph CSI plugins implement an interface between a CSI-enabled Container Orchestrator

(CO) and Ceph clusters. They enable dynamically provisioning Ceph volumes and attaching

them to workloads.

Module Function

MON

The monitor (MON) is the most important component in a Ceph cluster. It

manages the Ceph cluster and maintains the status of the entire cluster.

The MON ensures that related components of a cluster can be

synchronized at the same time. It functions as the leader of the cluster

and is responsible for collecting, updating, and publishing cluster

information.

MGR

The manager (MGR) is a monitoring system that provides collection,

storage, analysis (including alarming), and visualization functions. It

makes certain cluster parameters available for external systems.

OSD

Object storage daemons (OSDs) store the actual user data. Every OSD

is usually bound to one physical drive. The OSDs handle the read/write

requests from clients.

MDS

The Ceph Metadata Server (MDS) tracks the file hierarchy and stores

metadata used only for CephFS. The RBD and RGW do not require

metadata. The MDS does not directly provide data services for clients.

RGW

The RADOS gateway (RGW) is a Ceph object gateway that provides

RESTful APIs compatible with S3 and Swift. The RGW also supports

multi-tenant and OpenStack Identity service (Keystone).

RADOS

Reliable Autonomic Distributed Object Store (RADOS) is the heart of a

Ceph storage cluster. Everything in Ceph is stored by RADOS in the form

of objects irrespective of their data types. The RADOS layer ensures

data consistency and reliability through data replication, fault detection

and recovery, and data recovery across cluster nodes.

Ceph module functions

Core Concepts - Alauda Container Platform

Module Function

LIBRADOS

Librados is a method that simplifies access to RADOS. Currently, it

supports programming languages PHP, Ruby, Java, Python, C, and C++.

It provides RADOS, a local interface of the Ceph storage cluster, and is

the base component of other services such as the RADOS block device

(RBD) and RADOS gateway (RGW). In addition, it provides the Portable

Operating System Interface (POSIX) for the Ceph file system (CephFS).

The Librados API can be used to directly access RADOS, enabling

developers to create their own interfaces for accessing the Ceph cluster

storage.

RBD

The RADOS block device (RBD) is the Ceph block device that provides

block storage for external systems. It can be mapped, formatted, and

mounted like a drive to a server.

CephFS

The CephFS provides a POSlX-compatible distributed file system of any

size. It depends on the Ceph MDS to track the file hierarchy, namely the

metadata.

Core Concepts - Alauda Container Platform

Guides

Accessing Storage Services

Prerequisites

Procedure

Follow-up Actions

Managing Storage Pools
Creating a Storage Pool

Deleting a Storage Pool

Viewing Object Storage Pool Addresses

Node-specific Component Deployment
Update Component Deployment Configuration

Restart Storage Components

Adding Devices/Device Classes
Adding Device Classes

Adding Devices

Hard Disk Status

Menu

Guides - Alauda Container Platform

Monitoring and Alerts
Monitoring

Alerts

Guides - Alauda Container Platform

Accessing storage services supports two methods of integration: first, integrating distributed

storage resources from other business clusters within the platform to ensure storage and

business isolation for easier management and maintenance; second, connecting external

Ceph storage resources for distributed storage use.

Prerequisites

Prepare Package

Prepare Storage

Open Ports

Obtain Authentication Information (External Ceph)

Procedure

Deploy Alauda Container Platform Storage Essentials

Access Storage

Follow-up Actions

Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

Accessing Storage Services

TOC

Prerequisites

Prepare Package

Menu ON THIS PAGE

Accessing Storage Services - Alauda Container Platform

Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

Download the Alauda Build of Rook-Ceph installation package corresponding to your

platform architecture.

Upload the Alauda Build of Rook-Ceph installation package using the Upload Packages

mechanism.

Choose one of the following:

Distributed storage has been deployed in other business clusters, and a storage pool has

been created. Please record the name of the storage pool for later integration use.

External Ceph storage outside the platform (version ≥ 14.2.3) has been created with a

storage pool. Please record the name of the storage pool for later integration use.

Destination

IP
Destination Port Source IP

Source

Port

IP of Ceph

node

3300, 6789, 6800-

7300, 7480

IP of all nodes in

business cluster
any

If the prepared storage is external Ceph storage, authentication information must be obtained

using the following commands.

Parameter Method of Acquisition

FSID ceph fsid

Prepare Storage

Open Ports

Obtain Authentication Information (External Ceph)

Accessing Storage Services - Alauda Container Platform

Parameter Method of Acquisition

MON Component

Information

ceph mon dump

Must be in {name= IP} format, e.g. a=192.168.100.100:6789

.

Admin Key ceph auth get-key client.admin

Storage Pool

File storage: Use ceph fs ls command to get the name

value.

Block storage: ceph osd dump | grep "application rbd" |

awk '{print $3}'

Data Storage Pool
(only needed for file storage) Use ceph fs ls command to

get the data pools value.

Note: The following steps take accessing external Ceph storage as an example, the

operations for accessing distributed storage are similar.

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Procedure

Deploy Alauda Container Platform Storage Essentials1

Accessing Storage Services - Alauda Container Platform

Parameter Recommended Configuration

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Installation

Place
Select Recommended , Namespace only support acp-storage.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

1. In the left navigation bar, click Storage Management > Distributed Storage.

2. Click Access Storage.

3. On the Access Configuration wizard page, select External Ceph.

Parameter Description

Snapshot

When enabled, supports creating PVC snapshots and

using snapshots to configure new PVCs for quick backup

and restoration of business data.

If snapshots were not enabled during storage access, you

can still enable them later in the Operations section of the

storage cluster details page as needed.

Note: Please ensure that you have deployed the volume

snapshot plugin for the current cluster before use.

Network

Configuration
Host Network: Computing components in this cluster

will access the storage cluster using the host network.

Container Network: Computing components in this

cluster will access the storage cluster using the

container network. You can create a subnet in network

Access Storage2

Accessing Storage Services - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html
http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html

Parameter Description

management and assign the subnet to the rook-ceph

namespace. If left empty, the default subnet will be used.

Other

Parameters

Please fill in the authentication parameters for the external

Ceph obtained in the prerequisites.

4. On the Create Storage Class wizard page, complete the configuration and click

Access.

Parameter Description

Type

Based on the type of storage pool created above, the default

corresponding storage class will be:

File Storage: CephFS File Storage

Block Storage: CephRBD Block Storage

Reclaim

Policy

Reclaim policy for persistent volumes.

Delete: When the persistent volume claim is deleted, the

bound persistent volume will also be deleted.

Retain: Even if the persistent volume claim is deleted, the

bound persistent volume will still be retained.

Project

Allocation

Projects that can use this type of storage.

If there are currently no projects requiring this type of storage,

you may choose not to allocate projects for now and update

them later.

5. Wait approximately 1-5 minutes for the successful integration.

Create Storage Classes: CephFS File Storage, CephRBD Block Storage

Follow-up Actions

Accessing Storage Services - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/cephfs_storageclass.html
http://localhost:4173/container_platform/configure/storage/functions/cephrbd_storageclass.html

Developers using the above storage classes to create persistent volume claims can extend

usage with volume snapshots and scaling features.

Note: If you need to maintain storage pools, storage device configurations, etc., for external

storage, operations must be performed in the management platform of the storage cluster.

Accessing Storage Services - Alauda Container Platform

A storage pool refers to a logical partition used for storing data. A single storage cluster

supports the simultaneous use of different types of storage pools, such as file storage and

block storage, to accommodate various business requirements.

Creating a Storage Pool

Procedure

Deleting a Storage Pool

Procedure

Viewing Object Storage Pool Addresses

Procedure

In addition to the storage pools created during the configuration of distributed storage, you

can also create additional types of storage pools.

Tip: Within the same storage cluster, only one file storage and one object storage pool are

allowed, while up to eight block storage pools can be created.

Managing Storage Pools

TOC

Creating a Storage Pool

Procedure

Menu ON THIS PAGE

Managing Storage Pools - Alauda Container Platform

1. Access Administrator.

2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Cluster Information tab, scroll down to the Storage Pool area and click

Create Storage Pool.

4. Configure the relevant parameters according to the following instructions.

Parameter Description

Storage

Type

Select the currently undeployed storage type.

- File Storage: Provides secure, reliable, and scalable shared

file storage services. Suitable for file sharing, data backup, etc.

- Block Storage: Provides high IOPS and low latency storage

services. Suitable for databases, virtualization, etc.

- Object Storage: Provides standard S3 interface storage

services, suitable for big data, backup archiving, cloud storage

services, etc.

Replica

Count

When the cluster type is Standard: A higher replica count

increases redundancy and data security, but it also reduces

storage utilization. Usually, a setting of 3 suffices for most

needs.

When the cluster type is Extended: The default replica

count is 4 and cannot be modified.

Managing Storage Pools - Alauda Container Platform

Parameter Description

Device

Class

When the cluster type is Standard: Choose an already

added device class within the created storage pool.

When selecting a device class, data will be stored in the

chosen device class.

If no device class is selected, data will be randomly stored

in all devices within the storage pool.

When the cluster type is Standard: Adding a device class

is not supported.

If it is an object storage type, you can configure the following parameters as well:

Parameter Description

Region Specify the region where the storage pool is located.

Gateway Type Defaults to S3 and cannot be modified.

Internal Port Specify the port for internal access to the cluster.

External

Access

Enabling/disabling external access will create/destroy a

NodePort type Service.

Instance

Count
Number of resource instances for object storage.

5. Click Create.

If a certain type of storage is no longer required, the storage pool can be deleted after

dissociating it from the storage class.

Deleting a Storage Pool

Managing Storage Pools - Alauda Container Platform

1. Access Administrator.

2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Cluster Information tab, scroll down to the Storage Pool area, click on the ⋮

next to the storage pool you wish to delete > Delete.

4. Read the prompt information and enter the name of the storage pool.

5. Click Delete.

After creating an object storage pool, you can view the internal and external access

addresses of the storage pool.

1. Access Administrator.

2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Cluster Information tab, scroll down to the Storage Pool area, click on the ⋮

next to the object storage pool and select View Address.

Procedure

Viewing Object Storage Pool Addresses

Procedure

Managing Storage Pools - Alauda Container Platform

After creating distributed storage, you can still view and modify the deployment location of

components, facilitating storage expansion and maintenance.

Update Component Deployment Configuration

Precautions

Procedure

Restart Storage Components

Procedure

Updating the configuration will trigger the system to automatically rebuild component

instances, which may affect service access to the storage system. It is recommended to

perform the update during off-peak hours.

When the cluster type is Extend, the fixed deployment feature for components is not

supported.

Node-specific Component Deployment

TOC

Update Component Deployment Configuration

Precautions

Procedure

Menu ON THIS PAGE

Node-specific Component Deployment - Alauda Container Platform

1. Go to Administrator.

2. In the left navigation bar, click on Storage Management > Distributed Storage.

3. Under the Storage Components tab, click on Component Deployment

Configuration.

4. Enable/disable the Fixed Deployment switch according to business needs, and

deploy components to specified nodes. The number of nodes must be no less than

three to ensure minimum availability. The components applicable for fixed

deployment configuration include MON, MGR, MDS, RGW.

5. Click Update, and the components will begin to be scheduled to the designated

nodes.

When you delete the deployed storage components, the system will automatically re-schedule

and redeploy components to the nodes according to the current component deployment

strategy.

1. Go to Administrator.

2. In the left navigation bar, click on Storage Management > Distributed Storage.

3. Under the Storage Components tab, click ⋮ next to the component name > Delete.

Restart Storage Components

Procedure

Node-specific Component Deployment - Alauda Container Platform

Adding Device Classes

Notes

Procedure

Adding Devices

Procedure

Hard Disk Status

Unify the classification of devices of the same type or hard disks with the same business logic

in cluster nodes, customize device classes according to storage needs, and allocate different

storage contents to different types of storage disks.

Adding device classes is not supported when the cluster type is Extend.

1. Enter Administrator.

Adding Devices/Device Classes

TOC

Adding Device Classes

Notes

Procedure

Menu ON THIS PAGE

Adding Devices/Device Classes - Alauda Container Platform

2. In the left navigation bar, click Storage Management > Distributed Storage.

3. Click the Device Classes tab.

4. Click Add Device Class and configure the relevant parameters according to the

following instructions.

Parameter Description

Name
The name of the device class. The following names cannot be

used for the device class: hdd , ssd , nvme .

Storage

Devices

Select Blank Disks or Unformatted Disk Partitions in the

node.

When the switch for all empty devices is turned on: add all

empty devices under the node to this device class;

When the switch for all empty devices is turned off:

manually enter the names of the empty devices under the

node, for example, sda .

Map available hard disks to storage devices for usage and management.

Note: Once hard disks are added as storage devices, updating or removing them through the

interface is not supported.

1. Enter Administrator.

2. In the left navigation bar, click Storage Management > Distributed Storage.

3. Click the Device Classes tab.

Adding Devices

Procedure

Adding Devices/Device Classes - Alauda Container Platform

4. On the right side of the device class, click Add Device, and configure the relevant

parameters according to the following instructions.

Parameter Description

Node Type

Select the type of node where the hard disk you want to add as

a storage device is located.

Compute Node: A node that has not added storage devices.

Storage Node: A node that has added storage devices.

Add Type

Select the method to add hard disks as storage devices.

All Empty Disks: Choose to add all unpartitioned mounted

disks in the node as storage devices.

Specified Disks: Choose to add some disks in the node as

storage devices, including empty disks or already partitioned

mounted disks.

When the node type is Storage Node, only Specified Disks

can be selected.

Specified

Disks

When the add type is Specified Disks, enter the names of all

the hard disks to be added as storage devices, such as sda ,

sdb . After entering each hard disk name, press Enter to

confirm.

Note: It is recommended to use the entire hard disk as storage

devices rather than partitions on the hard disk.

5. Click Add.

Normal: The corresponding status of the storage device is IN+UP.

Abnormal: The corresponding status of the storage device is IN+DOWN.

Offline: The corresponding status of the storage device is OUT+UP.

Hard Disk Status

Adding Devices/Device Classes - Alauda Container Platform

Fault: The corresponding status of the storage device is OUT+DOWN.

Adding Devices/Device Classes - Alauda Container Platform

Distributed storage provides out-of-the-box monitoring metrics collection and alert notification

capabilities. Once the monitoring and alerting features are enabled, you can monitor and alert

on aspects such as the storage cluster, storage performance, and storage components, with

support for configuring notification strategies.

The intuitively presented monitoring data can be used to provide decision support for

operation and maintenance inspections or performance tuning, and a comprehensive alert

and notification mechanism will help ensure the stable operation of the storage system.

Tip: If the monitoring and alerting features were not enabled when creating the distributed

storage, you will need to find alternative solutions for storage monitoring and alerting. For

example, manually configure monitoring dashboards and alert strategies in the operation and

maintenance center.

Monitoring

Storage Overview

Performance Monitoring

Component Monitoring

Alerts

Configure Notifications

Handling Alerts

Fault Review

Monitoring and Alerts

TOC

Menu ON THIS PAGE

Monitoring and Alerts - Alauda Container Platform

The platform automatically collects common monitoring metrics for distributed storage, such

as read and write performance, CPU and memory usage. In the Storage Management >
Distributed Storage section under the Monitoring tab, you can view real-time monitoring

data for these metrics.

Monitor the health status of the storage, physical capacity usage, and the number of active

OSD/MON components. In the event of abnormal storage status, you can check the reason

for the alert.

Monitor read and write bandwidth and read and write IOPS from three dimensions: cluster,

storage pool, and OSD. Additionally, you can monitor read and write latency specifically for

OSD.

Monitor CPU usage and memory usage of components such as MON and OSD.

The platform has a set of default alert strategies enabled. Once a resource becomes

abnormal or monitoring data reaches the warning state, alerts will be automatically triggered.

The preset strategies are sufficient for common operational needs such as component and

cluster status alerts, device capacity alerts, and user data alerts.

To receive alerts in a timely manner, it is recommended that you set up notification strategies

in the operation and maintenance center: send alert information via email, SMS, and other

Monitoring

Storage Overview

Performance Monitoring

Component Monitoring

Alerts

Configure Notifications

Monitoring and Alerts - Alauda Container Platform

means to relevant personnel, reminding them to take necessary measures to resolve issues

or prevent failures. Click Alert Configuration to switch to the operation and maintenance

center to complete the operation, refer to Create Alert Strategies。

If the storage cluster is monitored to be in a Warning state, it means an alert has been

triggered, and the related anomaly may lead to a failure. Please promptly check the details

in Real-time Alerts and identify and troubleshoot the fault based on the cause.

If the storage cluster is monitored to be in a Failure state, it indicates that the storage

cluster is unable to operate normally. Please locate the issue immediately and carry out

troubleshooting.

The table below indicates the meanings of the alert levels used by the preset strategies, which

can serve as a reference for you when establishing alert handling principles.

Alert

Level
Meaning

Disaster
The resource corresponding to the alert rule has failed, causing platform

service interruption, data loss, and significant impact.

Severe

The resource corresponding to the alert rule has known issues, which may

lead to platform function failures and affect the normal operation of

services.

Warning
The resource corresponding to the alert rule faces operational risks, which

could affect the normal operation of services if not dealt with promptly.

The Alert History records all alerts that have been triggered and no longer require action.

When conducting a fault review using the alert history, to effectively achieve the purpose of

summarizing experiences, you may need to answer the following questions.

What were the specific abnormal conditions at the time of the incident.

Handling Alerts

Fault Review

Monitoring and Alerts - Alauda Container Platform

Is there a pattern to a certain alert that appears repeatedly in the alert list, Can it be

prevented before it occurs next time.

Does the timeline show a surge in alerts during a certain period; was it caused by force

majeure or an operational accident, Is there a need to adjust the operational plan.

Monitoring and Alerts - Alauda Container Platform

How To

Configure a Dedicated Cluster for Distributed Storage

Configure a Dedicated Cluster for Distributed Storage

Architecture

Infrastructure requirements

Procedure

Follow-up Actions

Cleanup Distributed Storage

Cleanup Distributed Storage

Precautions

Procedure

Disaster Recovery

File Storage Disaster Recovery
Terminology

Backup Configuration

Failover

Menu

How To - Alauda Container Platform

Block Storage Disaster Recovery
Terminology

Backup Configuration

Failover

Object Storage Disaster Recovery
Terminology

Prerequisites

Procedures

Failover

Update the optimization parameters

Update the optimization parameters
Procedure

Create ceph object store user

Create ceph object store user

Prerequisites

Procedure

How To - Alauda Container Platform

Dedicated cluster deployment refers to using an independent cluster to deploy the platform's

distributed storage, where other business clusters within the platform access and utilize the

storage services it provides through integration.

To ensure the performance and stability of the platform's distributed storage, only the

platform's core components and distributed storage components are deployed in the

dedicated storage cluster, avoiding the co-location of other business workloads. This

separated deployment approach is the recommended best practice for the platform's

distributed storage.

Architecture

Infrastructure requirements

Platform requirements

Cluster requirements

Resource requirements

Storage device requirements

Storage device type requirements

Capacity planning

Capacity monitoring and expansion

Network requirements

Network Isolation

Network interface speed requirements

Procedure

Configure a Dedicated Cluster for
Distributed Storage

TOC

Menu ON THIS PAGE

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Deploy Operator

Create ceph cluster

Create storage pools

Create file pool

Create block pool

Create object pool

Follow-up Actions

Storage-Compute Separation Architecture

Architecture

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Supported in version 3.18 and later.

It is recommended to use bare-metal clusters as dedicated storage clusters.

Infrastructure requirements

Platform requirements

Cluster requirements

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Please refer to the Core Concepts for the components of distributed storage deployment.

Each component has distinct CPU and memory requirements. The recommended

configurations are as follows:

Process CPU Memory

MON 2c 3Gi

MGR 3c 4Gi

MDS 3c 8Gi

RGW 2c 4Gi

OSD 4c 8Gi

A cluster typically runs:

3 MON

2 MGR

multiple OSD

2 MDS (if using CephFS)

2 RGW (if using CephObjectStorage)

Based on the component distribution, the following per-node resource recommendations

apply:

CPU Memory

16c + (4c * OSD per node) 20Gi + (8Gi * OSD per node)

It is recommended to deploy 12 or fewer storage devices per node. This helps restrict the

recovery time following a node failure.

Resource requirements

Storage device requirements

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

It is recommended to use enterprise SSDs with a capacity of 10TiB or smaller per device, and

ensure all disks are identical in size and type.

Before deployment, storage capacity must be planned according to specific business

requirements. By default, the distributed storage system employs a 3-replica redundancy

strategy. Therefore, the usable capacity is calculated by dividing the total raw storage capacity

(from all storage devices) by 3.

Example for 30(N) nodes (replica count = 3), The usable capacity scenario is as follows:

Storage

device size(D)

Storage device

per node(M)

Total

Capacity(DMN)

Usable

Capacity(DMN/3)

0.5 TiB 3 45 TiB 15 TiB

2 TiB 6 360 TiB 120 TiB

4 TiB 9 1080 TiB 360 TiB

1. Proactive Capacity Planning

Always ensure usable storage capacity exceeds consumption. If storage is fully exhausted,

recovery requires manual intervention and cannot be resolved by simply deleting or

migrating data.

2. Capacity Alerts

The cluster triggers alerts at two thresholds:

80% utilization ("near full"): Proactively free up space or scale out the cluster.

95% utilization ("full"): Storage is fully exhausted, and standard commands cannot free

space. Contact platform support immediately.

Always address alerts promptly and monitor storage usage regularly to avoid outages.

Storage device type requirements

Capacity planning

Capacity monitoring and expansion

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

3. Scaling Recommendations

Avoid: Adding storage devices to existing nodes.

Recommended: Scale out by adding new storage nodes.

Requirement: New nodes must use storage devices identical in size, type, and quantity

to existing nodes.

Distributed storage must utilize HostNetwork.

The network is categorized into two types:

Public Network: Used for client-to-storage component interactions (e.g., I/O requests).

Cluster Network: Dedicated to data replication between replicas and data rebalancing

(e.g., recovery).

To ensure service quality and performance stability:

1. For Dedicated Storage Clusters:

Reserve two network interfaces on each host:

Public Network: For client and component communication.

Cluster Network: For internal replication and rebalancing traffic.

2. For Business Clusters:

Reserve one network interface on each host to access the storage Public Network.

Example Network Isolation Configuration

Network requirements

Network Isolation

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

1. Storage Nodes

Public Network and Cluster Network require 10GbE or higher network interfaces.

2. Business Cluster Nodes

The network interface used to access the storage Public Network must be 10GbE or

higher.

1. Access Administrator.

2. In the left sidebar, click Storage Management > Distributed Storage.

3. Click Create Now.

4. In the Deploy Operator wizard page, click the Deploy Operator button at the bottom

right.

When the page automatically advances to the next step, it indicates that the

Operator has been deployed successfully.

Network interface speed requirements

Procedure

Deploy Operator1

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

If the deployment fails, please refer to the prompt on the interface Clean Up

Deployed Information and Retry, and redeploy the Operator; if you wish to return

to the distributed storage selection page, click Application Store, first uninstall the

resources in the already deployed rook-operator, and then uninstall rook-

operator.

Execute commands on the control node of the storage cluster.

Click to view

Parameters:

public network cidr: CIDR of the storage Public Network (e.g., - 10.0.1.0/24).

cluster network cidr: CIDR of the storage Cluster Network (e.g., - 10.0.2.0/24).

storage devices: Specify the storage devices to be utilized by the distributed

storage.

Example Formatting:

Tip

Create ceph cluster2

 nodes:

 - name: storage-node-01

 devices:

 - name: /dev/disk/by-id/wwn-0x5000cca01dd27d60

 useAllDevices: false

 - name: storage-node-02

 devices:

 - name: sdb

 - name: sdc

 useAllDevices: false

 - name: storage-node-03

 devices:

 - name: sdb

 - name: sdc

 useAllDevices: false

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Uses the disk's World Wide Name (WWN) for stable naming, which avoids reliance on

volatile device paths like sdb that may change after reboots.

Three storage pool types are available. Select and create the appropriate ones based

on your business requirements.

Execute commands on the control node of the storage cluster.

Click to view

Execute commands on the control node of the storage cluster.

Click to view

Execute commands on the control node of the storage cluster.

Click to view

When other clusters need to utilize the distributed storage service, refer to the following

guidelines.

Accessing Storage Services

Create storage pools3

Create file pool

Create block pool

Create object pool

Follow-up Actions

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

If you need to delete a rook-ceph cluster and redeploy a new one, you should follow this

document to sequentially clean the distributed storage service related resources.

Precautions

Procedure

Deleting VolumeSnapshotClasses

Deleting StorageClasses

Deleting Storage Pools

Deleting ceph-cluster

Deleting rook-operator

Execute Cleanup Script

Cleanup Script

Precautions

Procedure

Before cleaning up rook-ceph, ensure that all PVC and PV resources using Ceph storage

have been deleted.

Cleanup Distributed Storage

TOC

Precautions

Menu ON THIS PAGE

Cleanup Distributed Storage - Alauda Container Platform

1. Delete the VolumeSnapshotClasses.

2. Verify that the VolumeSnapshotClasses have been cleaned up.

When there is no output from these commands, it indicates that the cleanup is

complete.

1. Go to Administrator.

2. In the left navigation bar, click Storage Management > Storage Classes.

3. Click ⋮ > Delete, and delete all StorageClasses that use Ceph storage solutions.

This step should be performed after the previous step has been completed.

1. Go to Administrator.

2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Storage Pool Area, click ⋮ > Delete, and delete all storage pools one by one.

When the storage pool area shows No Storage Pools, it indicates successful

deletion of the storage pools.

Procedure

Deleting VolumeSnapshotClasses1

Deleting StorageClasses2

Deleting Storage Pools3

kubectl delete VolumeSnapshotClass csi-cephfs-snapshotclass csi-rbd-

snapshotclass

kubectl get VolumeSnapshotClass | grep csi-cephfs-snapshotclass

kubectl get VolumeSnapshotClass | grep csi-rbd-snapshotclass

Cleanup Distributed Storage - Alauda Container Platform

4. (Optional) If the cluster mode is Extended, you also need to execute the following

command on the Master node of the cluster to delete the created built-in storage

pools.

Response:

This step should be performed after the previous step has been completed.

1. Update the ceph-cluster and enable the cleanup policy.

2. Delete the ceph-cluster.

3. Delete the jobs that perform the cleanup.

4. Verify that the ceph-cluster cleanup is complete.

When this command has no output, it indicates that the cleanup is complete.

Deleting ceph-cluster4

Deleting rook-operator5

kubectl -n rook-ceph delete cephblockpool -l cpaas.io/builtin=true

cephblockpool.ceph.rook.io "builtin-mgr" deleted

kubectl -n rook-ceph patch cephcluster ceph-cluster --type merge -p '{"spec":

{"cleanupPolicy":{"confirmation":"yes-really-destroy-data"}}}'

kubectl delete cephcluster ceph-cluster -n rook-ceph

kubectl delete jobs --all -n rook-ceph

kubectl get cephcluster -n rook-ceph | grep ceph-cluster

Cleanup Distributed Storage - Alauda Container Platform

This step should be performed after the previous step has been completed.

1. Delete the rook-operator.

2. Verify that the rook-operator cleanup is complete.

When this command has no output, it indicates that the cleanup is complete.

3. Verify that all ConfigMaps have been cleaned up.

When this command has no output, it indicates that cleanup is complete. If there are

output results, execute the following command to clean up, replacing <configmap>

with the actual output.

4. Verify that all Secrets have been cleaned up.

When this command has no output, it indicates that cleanup is complete. If there are

output results, execute the following command to clean up, replacing <secret> with

the actual output.

5. Verify that the rook-ceph cleanup is complete.

kubectl -n rook-ceph delete subscriptions.operators.coreos.com rook-operator

kubectl get subscriptions.operators.coreos.com -n rook-ceph | grep rook-operator

kubectl get configmap -n rook-ceph

kubectl -n rook-ceph patch configmap <configmap> --type merge -p '{"metadata":

{"finalizers": []}}'

kubectl get secret -n rook-ceph

kubectl -n rook-ceph patch secrets <secret> --type merge -p '{"metadata":

{"finalizers": []}}'

Cleanup Distributed Storage - Alauda Container Platform

When this command has no output, it indicates that cleanup is complete.

Once the above steps are completed, it indicates that Kubernetes and Ceph related

resources have been cleared. Next, you need to clean up any residuals of rook-ceph on

the host.

The contents of the cleanup script clean-rook.sh are as follows:

Click to view

The cleanup script depends on the sgdisk command, so please make sure to have it

installed before executing the cleanup script.

Installation command for Ubuntu: sudo apt install gdisk

Installation command for RedHat or CentOS: sudo yum install gdisk

1. Execute the cleanup script clean-rook.sh on each machine in the business

cluster where distributed storage is deployed.

Example: sh clean-rook.sh /dev/vdb

When executed, you will be prompted to confirm whether to really clear the

device. If confirmed, enter yes to begin cleaning.

Execute Cleanup Script6

Cleanup Script

Precautions

Procedure

kubectl get all -n rook-ceph

sh clean-rook.sh /dev/[device_name]

Cleanup Distributed Storage - Alauda Container Platform

2. Use the lsblk -f command to check the partition information. When the

FSTYPE column in the output of this command is empty, it indicates that the

cleanup is complete.

Cleanup Distributed Storage - Alauda Container Platform

Disaster Recovery

File Storage Disaster Recovery

Terminology

Backup Configuration

Failover

Block Storage Disaster Recovery
Terminology

Backup Configuration

Failover

Object Storage Disaster Recovery
Terminology

Prerequisites

Procedures

Failover

Menu

Disaster Recovery - Alauda Container Platform

CephFS Mirror is a feature of the Ceph file system designed to enable asynchronous data

replication between different Ceph clusters, thereby providing cross-cluster disaster recovery.

Its core functionality is to synchronize data in a primary-backup mode, ensuring that the

backup cluster can rapidly take over services if the primary cluster experiences a failure.

WARNING

CephFS Mirror performs incremental synchronization based on snapshots, with the default

snapshot interval set to once per hour (configurable). The differential data between the primary

and backup clusters typically consists of the amount of data written within one snapshot cycle.

CephFS Mirror solely provides the backup of underlying storage data and is incapable of

handling the backup of Kubernetes resources. Please utilize the platform's Backup and

Restore feature to back up PVC and PV resources in conjunction.

Term Explanation

Primary Cluster The cluster currently providing storage services.

Secondary Cluster Cluster for backup.

File Storage Disaster Recovery

TOC

Terminology

Menu

File Storage Disaster Recovery - Alauda Container Platform

Prepare two clusters suitable for deploying Alauda Build of Rook-Ceph, namely the Primary

cluster and the Secondary cluster, ensuring that the networks between the clusters are

interconnected.

The platform versions used by both clusters (v3.12 and above) must be consistent.

Create a distributed storage service in both the Primary and Secondary clusters

Create file storage pools with the same name in both the Primary and Secondary clusters.

Execute the following commands on the Control node of the Secondary cluster:

Parameters:

<fs-name> : Name of the file storage pool.

This token is the key credential for establishing a mirroring connection between the two

clusters.

Execute the following commands on the Control node of the Secondary cluster:

Backup Configuration

Prerequisites

Procedure

Enable the Mirror for the file storage pool in the
Secondary cluster

1

Command Line Output

kubectl -n rook-ceph patch cephfilesystem <fs-name> \

--type merge -p '{"spec":{"mirroring":{"enabled": true}}}'

Obtain the Peer Token2

Command Output

File Storage Disaster Recovery - Alauda Container Platform

Parameters:

<fs-name> : Name of the file storage pool.

After obtaining the Peer Token from the Secondary cluster, it is necessary to create a

Peer Secret in the Primary cluster.

Execute the following commands on the Control node of the Primary cluster:

Parameters:

<token> : The token obtained in step 2.

<fs-name> :Name of the file storage pool.

Execute the following commands on the Control node of the Primary cluster:

kubectl get secret -n rook-ceph \

$(kubectl -n rook-ceph get cephfilesystem <fs-name> -o

jsonpath='{.status.info.fsMirrorBootstrapPeerSecretName}') \

-o jsonpath='{.data.token}' | base64 -d

Create Peer Secret in the Primary cluster3

Command Output

kubectl -n rook-ceph create secret generic fs-secondary-site-secret \

--from-literal=token=<token> \

--from-literal=pool=<fs-name>

Enable the Mirror for the file storage pool in the
Primary cluster

4

Command Sample Output

File Storage Disaster Recovery - Alauda Container Platform

Parameters:

<fs-name> :Name of the file storage pool.

<schedule-interval> :Snapshot execution cycle. For details, please refer to the official

documentation .

<retention-policy> : Snapshot retention policy. details, please refer to the official

documentation .

The Mirror Daemon continuously monitors data changes in the file storage pool (with

Mirror enabled). It periodically creates snapshots and pushes the snapshot differences

to the Secondary cluster over the network.

kubectl -n rook-ceph patch cephfilesystem <fs-name> --type merge -p \

'{

 "spec": {

 "mirroring": {

 "enabled": true,

 "peers": {

 "secretNames": [

 "fs-secondary-site-secret"

]

 },

 "snapshotSchedules": [

 {

 "path": "/",

 "interval": "<schedule-interval>"

 }

],

 "snapshotRetention": [

 {

 "path": "/",

 "duration": "<retention-policy>"

 }

]

 }

 }

}'

↗

↗

Deploy the Mirror Daemon in the Primary cluster5

File Storage Disaster Recovery - Alauda Container Platform

https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies

Execute the following commands on the Control node of the Primary cluster:

In the event of a Primary cluster failure, you can directly continue using CephFS in the

Secondary cluster.

The Kubernetes resources of the Primary cluster have been backed up and restored to the

Secondary cluster, including PVCs, PVs, and workloads of the applications.

Command Output

cat << EOF | kubectl apply -f -

apiVersion: ceph.rook.io/v1

kind: CephFilesystemMirror

metadata:

 name: cephfs-mirror

 namespace: rook-ceph

spec:

 placement:

 tolerations:

 - key: NoSchedule

 operator: Exists

 resources:

 limits:

 cpu: "500m"

 memory: "1Gi"

 requests:

 cpu: "500m"

 memory: "1Gi"

 priorityClassName: system-node-critical

EOF

Failover

Prerequisites

File Storage Disaster Recovery - Alauda Container Platform

RBD Mirror is a feature of Ceph Block Storage (RBD) that enables asynchronous data

replication between different Ceph clusters, providing cross-cluster Disaster Recovery (DR).

Its core function is to synchronize data in a primary-backup mode, ensuring rapid service

takeover by the backup cluster when the primary cluster fails.

WARNING

RBD Mirror performs incremental synchronization based on snapshots, with a default snapshot

interval of once per hour (configurable). The differential data between primary and backup

clusters typically corresponds to writes within one snapshot cycle.

RBD Mirror only provides underlying storage data backup and does not handle Kubernetes

resource backups. Please use the platform's Backup and Restore feature to back up PVC and

PV resources.

Terminology

Backup Configuration

Prerequisites

Procedures

Enable Mirroring for Primary Cluster's Block Storage Pool

Retrieve Peer Token

Create Peer Token Secret in Secondary Cluster

Enable Mirroring for Secondary Cluster's Block Storage Pool

Deploy Mirror Daemon in Secondary Cluster

Block Storage Disaster Recovery

TOC

Menu ON THIS PAGE

Block Storage Disaster Recovery - Alauda Container Platform

Verify Mirror Status

Enable Replication Sidecar

Create VolumeReplicationClass

Enable Mirror for PVC

Failover

Prerequisites

Procedures

创建 VolumeReplication

Term Explanation

Primary Cluster The cluster currently providing storage services.

Secondary Cluster The standby cluster used for backup purposes.

Prepare two clusters capable of deploying Alauda Build of Rook-Ceph: a Primary cluster

and a Secondary cluster, with network connectivity between them.

Both clusters must run the same platform version (v3.12 or later).

Create distributed storage services in both Primary and Secondary clusters.

Create block storage pools with identical names in both Primary and Secondary clusters.

Please ensure that the following three images have been uploaded to the platform's private

image repository:

quay.io/csiaddons/k8s-controller:v0.5.0

Terminology

Backup Configuration

Prerequisites

Block Storage Disaster Recovery - Alauda Container Platform

quay.io/csiaddons/k8s-sidecar:v0.8.0

quay.io/brancz/kube-rbac-proxy:v0.8.0

Execute the following command on the Primary cluster's Control node:

Parameters:

<block-pool-name> : Block storage pool name.

This token serves as the critical credential for establishing mirror connections between

clusters.

Execute the following command on the Primary cluster's Control node:

Procedures

Enable Mirroring for Primary Cluster's Block Storage
Pool

1

Command

kubectl -n rook-ceph patch cephblockpool <block-pool-name> \

--type merge -p '{"spec":{"mirroring":{"enabled":true,"mode":"image"}}}'

Output

cephblockpool.ceph.rook.io/<block-pool-name> patched

Retrieve Peer Token2

Command

kubectl get secret -n rook-ceph \

$(kubectl get cephblockpool.ceph.rook.io <block-pool-name> -n rook-ceph -o

jsonpath='{.status.info.rbdMirrorBootstrapPeerSecretName}') \

-o jsonpath='{.data.token}' | base64 -d

Block Storage Disaster Recovery - Alauda Container Platform

Parameters:

<block-pool-name> : Block storage pool name.

Execute the following command on the Secondary cluster's Control node:

Parameters:

<token> : Token obtained from Step 2.

<block-pool-name> : Block storage pool name.

在 Execute the following command on the Secondary cluster's Control node:

Output

Output truncated due to sensitive information

eyJmc2lkIjoiMjc2N2I3ZmEtY2YwYi00N...

Create Peer Token Secret in Secondary Cluster3

Command

kubectl -n rook-ceph create secret generic rbd-primary-site-secret \

--from-literal=token=<token> \

--from-literal=pool=<block-pool-name>

Output

secret/rbd-primary-site-secret created

Enable Mirroring for Secondary Cluster's Block
Storage Pool

4

Command

Block Storage Disaster Recovery - Alauda Container Platform

Parameters:

<block-pool-name> : Block storage pool name.

This daemon is responsible for monitoring and managing RBD mirror synchronization

processes, including data synchronization and error handling.

Execute the following command on the Secondary cluster's Control node:

kubectl -n rook-ceph patch cephblockpool <block-pool-name> --type merge -p \

'{

 "spec": {

 "mirroring": {

 "enabled": true,

 "mode": "image",

 "peers": {

 "secretNames": [

 "rbd-primary-site-secret"

]

 }

 }

 }

}'

Output

cephblockpool.ceph.rook.io/<block-pool-name> patched

Deploy Mirror Daemon in Secondary Cluster5

Command

Block Storage Disaster Recovery - Alauda Container Platform

Execute the following command on the Secondary cluster's Control node:

Parameters:

<block-pool-name> : Block storage pool name.

This feature enables efficient data replication and synchronization without interrupting

primary application operations, enhancing system reliability and availability.

1. Deploy csiaddons-controller

cat << EOF | kubectl apply -f -

apiVersion: ceph.rook.io/v1

kind: CephRBDMirror

metadata:

 name: rbd-mirror

 namespace: rook-ceph

spec:

 count: 1

EOF

Output

cephrbdmirror.ceph.rook.io/rbd-mirror created

Verify Mirror Status6

Command

kubectl get cephblockpools.ceph.rook.io <block-pool-name> -n rook-ceph -o

jsonpath='{.status.mirroringStatus.summary}'

Output

All "OK" statuses indicate normal operation

{"daemon_health":"OK","health":"OK","image_health":"OK","states":{}}

Enable Replication Sidecar7

Block Storage Disaster Recovery - Alauda Container Platform

Execute the following commands on both Primary and Secondary clusters' Control

nodes:

Click to view

Parameters:

<registry> : Registry address of platform.

2. Enable csi sidecar

Execute the following commands on both Primary and Secondary clusters' Control

nodes:

Execute the following commands on both Primary and Secondary clusters' Control

nodes:

Create VolumeReplicationClass8

Command

kubectl patch cm rook-ceph-operator-config -n rook-ceph --type json --patch \

'[

 {

 "op": "add",

 "path": "/data/CSI_ENABLE_OMAP_GENERATOR",

 "value": "true"

 },

 {

 "op": "add",

 "path": "/data/CSI_ENABLE_CSIADDONS",

 "value": "true"

 }

]'

Block Storage Disaster Recovery - Alauda Container Platform

1. <scheduling-interval> : Scheduling interval, (e.g., schedulingInterval: "1h" indicates

execution every 1 hour.)

Execute the following command on the Primary cluster's Control node:

cat << EOF | kubectl apply -f -

apiVersion: replication.storage.openshift.io/v1alpha1

kind: VolumeReplicationClass

metadata:

 name: rbd-volumereplicationclass

spec:

 provisioner: rook-ceph.rbd.csi.ceph.com

 parameters:

 mirroringMode: snapshot

 schedulingInterval: "<scheduling-interval>" 1

 replication.storage.openshift.io/replication-secret-name: rook-csi-rbd-

provisioner

 replication.storage.openshift.io/replication-secret-namespace: rook-ceph

EOF

Output

volumereplicationclass.replication.storage.openshift.io/rbd-volumereplicationclass

created

Enable Mirror for PVC9

Command

Block Storage Disaster Recovery - Alauda Container Platform

1. <vr-name> : The name of the VolumeReplication object, recommended to be the same

as the PVC name.

2. <namespace> : The namespace to which the VolumeReplication belongs, which must

be the same as the PVC namespace.

3. <pvc-name> : The name of the PVC for which Mirror needs to be enabled.

Note After enabling, the RBD image in the Secondary cluster becomes read-only.

When the Primary cluster fails, it is necessary to switch the primary-backup relationship of the

RBD image.

cat << EOF | kubectl apply -f -

apiVersion: replication.storage.openshift.io/v1alpha1

kind: VolumeReplication

metadata:

 name: <vr-name> 1

 namespace: <namespace> 2

spec:

 autoResync: false

 volumeReplicationClass: rbd-volumereplicationclass

 replicationState: primary

 dataSource:

 apiGroup: ""

 kind: PersistentVolumeClaim

 name: <pvc-name> 3

EOF

Output

volumereplication.replication.storage.openshift.io/<mirror-pvc-name> created

Failover

Prerequisites

Block Storage Disaster Recovery - Alauda Container Platform

The Kubernetes resources of the Primary cluster have been backed up and restored to the

Secondary cluster, including PVCs, PVs, application workloads, etc.

Execute the following command on the Secondary cluster's Control node:

1. <vr-name> : VolumeReplication name.

2. <namespace> : PVC namespace.

3. <mirror-pvc-name> : The name of the PVC.

Note After creation, the RBD image on the Secondary cluster becomes primary and is

writable.

Procedures

创建 VolumeReplication

cat << EOF | kubectl apply -f -

apiVersion: replication.storage.openshift.io/v1alpha1

kind: VolumeReplication

metadata:

 name: <vr-name> 1

 namespace: <namespace> 2

spec:

 autoResync: false

 dataSource:

 apiGroup: ""

 kind: PersistentVolumeClaim

 name: <mirror-pvc-name> 3

 replicationHandle: ""

 replicationState: primary

 volumeReplicationClass: rbd-volumereplicationclass

EOF

Block Storage Disaster Recovery - Alauda Container Platform

The Ceph RGW Multi-Site feature is a cross-cluster asynchronous data replication mechanism

designed to synchronize object storage data between geographically distributed Ceph

clusters, providing High Availability (HA) and Disaster Recovery (DR) capabilities.

Terminology

Prerequisites

Procedures

Create Object Storage in Primary Cluster

Configure External Access for Primary Zone

Obtain access-key and secret-key

Create Secondary Zone and Configure Realm Sync

Configure External Access for Secondary Zone

Check Ceph Object Storage Synchronization Status

Failover

Procedures

Object Storage Disaster Recovery

TOC

Terminology

Menu ON THIS PAGE

Object Storage Disaster Recovery - Alauda Container Platform

Term Explanation

Primary

Cluster
The cluster currently providing storage services.

Secondary

Cluster
The standby cluster used for backup purposes.

Realm,

ZoneGroup,

Zone

Realm: The highest-level logical grouping in Ceph object storage.

It represents a complete object storage namespace, typically used

for multi-site replication and synchronization. A Realm can span

different geographical locations or data centers.

ZoneGroup: A logical grouping within a Realm, containing multiple

Zones. ZoneGroups enable data synchronization and replication

across Zones, usually within the same geographical region.

Zone: A logical grouping within a ZoneGroup that physically stores

data. Each Zone manages and stores objects independently and

can have its own data/metadata pool configurations.

Prepare two clusters available for deploying Rook-Ceph (Primary and Secondary clusters)

with network connectivity between them.

Both clusters must use the same platform version (v3.12 or later).

Ensure no Ceph object storage is deployed on either the Primary or Secondary cluster.

Refer to the Create Storage Service documentation to deploy Operator and create clusters.

Do not proceed with object storage pool creation via the wizard after cluster creation.

Instead, use CLI tools for configuration as described below.

This guide provides a synchronization solution between two Zones in the same ZoneGroup.

Prerequisites

Procedures

Object Storage Disaster Recovery - Alauda Container Platform

This step creates the Realm, ZoneGroup, Primary Zone, and Primary Zone's gateway

resources.

Execute the following commands on the Control node of the Primary cluster:

1. Set Parameters

Parameters description:

<realm-name> : Realm name.

<zonegroup-name> : ZoneGroup name.

<primary-zone-name> : Primary Zone name.

<primary-object-store-name> : Gateway name.

2. Create Object Storage

Create Object Storage in Primary Cluster1

Command

export REALM_NAME=<realm-name>

export ZONE_GROUP_NAME=<zonegroup-name>

export PRIMARY_ZONE_NAME=<primary-zone-name>

export PRIMARY_OBJECT_STORE_NAME=<primary-object-store-name>

Object Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -

apiVersion: ceph.rook.io/v1

kind: CephObjectRealm

metadata:

 name: $REALM_NAME

 namespace: rook-ceph

apiVersion: ceph.rook.io/v1

kind: CephObjectZoneGroup

metadata:

 name: $ZONE_GROUP_NAME

 namespace: rook-ceph

spec:

 realm: $REALM_NAME

apiVersion: ceph.rook.io/v1

kind: CephObjectZone

metadata:

 name: $PRIMARY_ZONE_NAME

 namespace: rook-ceph

spec:

 zoneGroup: $ZONE_GROUP_NAME

 metadataPool:

 failureDomain: host

 replicated:

 size: 3

 requireSafeReplicaSize: true

 dataPool:

 failureDomain: host

 replicated:

 size: 3

 requireSafeReplicaSize: true

 parameters:

 compression_mode: none

 preservePoolsOnDelete: false

apiVersion: ceph.rook.io/v1

kind: CephObjectStore

metadata:

$

Object Storage Disaster Recovery - Alauda Container Platform

1. Obtain the UID of the ObjectStore

2. Create an external access Service

 name: $PRIMARY_OBJECT_STORE_NAME

 namespace: rook-ceph

spec:

 gateway:

 port: 7480

 instances: 2

 zone:

 name: $PRIMARY_ZONE_NAME

EOF

Output

cephobjectrealm.ceph.rook.io/<realm-name> created

cephobjectzonegroup.ceph.rook.io/<zonegroup-name> created

cephobjectzone.ceph.rook.io/<primary-zone-name> created

cephobjectstore.ceph.rook.io/<primary-object-store-name> created

Configure External Access for Primary Zone2

export PRIMARY_OBJECT_STORE_UID=$(kubectl -n rook-ceph get cephobjectstore

$PRIMARY_OBJECT_STORE_NAME -o jsonpath='{.metadata.uid}')

Object Storage Disaster Recovery - Alauda Container Platform

3. Add external endpoints to the CephObjectZone.

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Service

metadata:

 name: rook-ceph-rgw-$PRIMARY_OBJECT_STORE_NAME-external

 namespace: rook-ceph

 labels:

 app: rook-ceph-rgw

 rook_cluster: rook-ceph

 rook_object_store: $PRIMARY_OBJECT_STORE_NAME

 ownerReferences:

 - apiVersion: ceph.rook.io/v1

 kind: CephObjectStore

 name: $PRIMARY_OBJECT_STORE_NAME

 uid: $PRIMARY_OBJECT_STORE_UID

spec:

 ports:

 - name: rgw

 port: 7480

 targetPort: 7480

 protocol: TCP

 selector:

 app: rook-ceph-rgw

 rook_cluster: rook-ceph

 rook_object_store: $PRIMARY_OBJECT_STORE_NAME

 sessionAffinity: None

 type: NodePort

EOF

IP=$(kubectl get nodes -l 'node-role.kubernetes.io/control-plane' -o

jsonpath='{.items[0].status.addresses[?(@.type=="InternalIP")].address}' | cut -

d ' ' -f1 | tr -d '\n')

PORT=$(kubectl -n rook-ceph get svc rook-ceph-rgw-$PRIMARY_OBJECT_STORE_NAME-

external -o jsonpath='{.spec.ports[0].nodePort}')

ENDPOINT=http://$IP:$PORT

kubectl -n rook-ceph patch cephobjectzone $PRIMARY_ZONE_NAME --type merge -p "

{\"spec\":{\"customEndpoints\":[\"$ENDPOINT\"]}}"

Object Storage Disaster Recovery - Alauda Container Platform

This section explains how to create the Secondary Zone and configure synchronization

by pulling Realm information from the Primary cluster.

Execute the following commands on the Control node of the Secondary cluster:

1. Set Parameters

Parameters description:

<realm-name> : Realm name.

<zone-group-name> : ZoneGroup name.

<primary-zone-name> : Primary Zone name.

<primary-object-store-name> : Gateway name.

<realm-endpoint> : External address obtained from the Primary cluster.

<access-key> : AK obtain from here.

<secret-key> : SK obtain from here.

<secondary-zone-name> : Secondary Zone name.

Obtain access-key and secret-key3

Create Secondary Zone and Configure Realm Sync4

kubectl -n rook-ceph get secrets $REALM_NAME-keys -o jsonpath='{.data.access-key}'

kubectl -n rook-ceph get secrets $REALM_NAME-keys -o jsonpath='{.data.secret-key}'

export REALM_NAME=<realm-name>

export ZONE_GROUP_NAME=<zonegroup-name>

export PRIMARY_ZONE_NAME=<primary-zone-name>

export PRIMARY_OBJECT_STORE_NAME=<primary-object-store-name>

export REALM_ENDPOINT=<realm-endpoint>

export ACCESS_KEY=<access-key>

export SECRET_KEY=<secret-key>

export SECONDARY_ZONE_NAME=<secondary-zone-name>

export SECONDARY_OBJECT_STORE_NAME=<secondary-object-store-name>

Object Storage Disaster Recovery - Alauda Container Platform

<secondary-object-store-name> : Secondary Gateway name.

2. Create Secondary Zone and Configure Realm Sync

Object Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Secret

metadata:

 name: $REALM_NAME-keys

 namespace: rook-ceph

data:

 access-key: $ACCESS_KEY

 secret-key: $SECRET_KEY

apiVersion: ceph.rook.io/v1

kind: CephObjectRealm

metadata:

 name: $REALM_NAME

 namespace: rook-ceph

spec:

 pull:

 endpoint: $REALM_ENDPOINT

apiVersion: ceph.rook.io/v1

kind: CephObjectZoneGroup

metadata:

 name: $ZONE_GROUP_NAME

 namespace: rook-ceph

spec:

 realm: $REALM_NAME

apiVersion: ceph.rook.io/v1

kind: CephObjectZone

metadata:

 name: $SECONDARY_ZONE_NAME

 namespace: rook-ceph

spec:

 zoneGroup: $ZONE_GROUP_NAME

 metadataPool:

 failureDomain: host

 replicated:

 size: 3

 requireSafeReplicaSize: true

 dataPool:

Object Storage Disaster Recovery - Alauda Container Platform

1. Obtain UID of Secondary Gateway

2. Create an external access Service

Configure External Access for Secondary Zone5

 failureDomain: host

 replicated:

 size: 3

 requireSafeReplicaSize: true

 preservePoolsOnDelete: false

apiVersion: ceph.rook.io/v1

kind: CephObjectStore

metadata:

 name: $SECONDARY_OBJECT_STORE_NAME

 namespace: rook-ceph

spec:

 gateway:

 port: 7480

 instances: 2

 zone:

 name: $SECONDARY_ZONE_NAME

EOF

export SECONDARY_OBJECT_STORE_UID=$(kubectl -n rook-ceph get cephobjectstore

$SECONDARY_OBJECT_STORE_NAME -o jsonpath='{.metadata.uid}')

Object Storage Disaster Recovery - Alauda Container Platform

3. Add external endpoints to the Secondary CephObjectZone

cat << EOF | kubectl apply -f -

apiVersion: v1

kind: Service

metadata:

 name: rook-ceph-rgw-$SECONDARY_OBJECT_STORE_NAME-external

 namespace: rook-ceph

 labels:

 app: rook-ceph-rgw

 rook_cluster: rook-ceph

 rook_object_store: $SECONDARY_OBJECT_STORE_NAME

 ownerReferences:

 - apiVersion: ceph.rook.io/v1

 kind: CephObjectStore

 name: $SECONDARY_OBJECT_STORE_NAME

 uid: $SECONDARY_OBJECT_STORE_UID

spec:

 ports:

 - name: rgw

 port: 7480

 targetPort: 7480

 protocol: TCP

 selector:

 app: rook-ceph-rgw

 rook_cluster: rook-ceph

 rook_object_store: $SECONDARY_OBJECT_STORE_NAME

 sessionAffinity: None

 type: NodePort

EOF

IP=$(kubectl get nodes -l 'node-role.kubernetes.io/control-plane' -o

jsonpath='{.items[0].status.addresses[?(@.type=="InternalIP")].address}' | cut -

d ' ' -f1 | tr -d '\n')

PORT=$(kubectl -n rook-ceph get svc rook-ceph-rgw-$SECONDARY_OBJECT_STORE_NAME-

external -o jsonpath='{.spec.ports[0].nodePort}')

ENDPOINT=http://$IP:$PORT

kubectl -n rook-ceph patch cephobjectzone $SECONDARY_ZONE_NAME --type merge -p "

{\"spec\":{\"customEndpoints\":[\"$ENDPOINT\"]}}"

Object Storage Disaster Recovery - Alauda Container Platform

Execute the following commands in the rook-ceph-tools pod of the Primary cluster

Output example

data is caught up with source means sync status is healthy.

When the Primary cluster fails, it is necessary to promote the Secondary Zone to the Primary

Zone. After the switch, the Secondary Zone's gateway can continue to provide object storage

services.

Execute the following commands in the rook-ceph-tools pod of the Secondary cluster

Check Ceph Object Storage Synchronization Status6

Failover

Procedures

enter rook-ceph-tools pod

kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get po -l app=rook-ceph-tools

-o jsonpath='{range .items[*]}{@.metadata.name}') -- bash

radosgw-admin sync status

 realm d713eec8-6ec4-4f71-9eaf-379be18e551b (india)

 zonegroup ccf9e0b2-df95-4e0a-8933-3b17b64c52b7 (shared)

 zone 04daab24-5bbd-4c17-9cf5-b1981fd7ff79 (primary)

 current time 2022-09-15T06:53:52Z

zonegroup features enabled: resharding

 metadata sync no sync (zone is master)

 data sync source: 596319d2-4ffe-4977-ace1-8dd1790db9fb (secondary)

 syncing

 full sync: 0/128 shards

 incremental sync: 128/128 shards

 data is caught up with source

Object Storage Disaster Recovery - Alauda Container Platform

Parameters

<realm-name> : Realm name.

<zone-group-name> : Zone Group name.

<secondary-zone-name> : Secondary Zone name.

enter rook-ceph-tools pod

kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get po -l app=rook-ceph-tools -o

jsonpath='{range .items[*]}{@.metadata.name}') -- bash

radosgw-admin zone modify --rgw-realm=<realm-name> --rgw-zonegroup=<zone-group-name> --

rgw-zone=<secondary-zone-name> --master

Object Storage Disaster Recovery - Alauda Container Platform

The platform supports filling in optimization parameters in Ceph configuration file format when

creating a storage cluster, but does not provide a way to modify them through the interface

after creation. You need to manually update them according to the following steps.

Procedure

1. First, update the storage optimization parameters to the Configmap named rook-config-

override-user , replace the .data.config field, and set the value of the

.metadata.annotations[rook.cpaas.io/need-sync] field to true . For example:

Update the optimization parameters

TOC

Procedure

Menu ON THIS PAGE

Update the optimization parameters - Alauda Container Platform

2. Execute ceph tell [mon|osd|mgr|mds|rgw].* config set [key] [value] in the Pod of rook-

ceph-tools to apply the configuration in real time.

3. To start the Pod of tools, edit the ClusterServiceVersion (CSV) under the rook-ceph

namespace and set the replicas value of rook-ceph-tools in the Deployments section to 1.

apiVersion: v1

data:

 config: |

 [global]

 mon_memory_target=1073741824

 mds_cache_memory_limit=2147483648

 osd_memory_target=4147483648

kind: ConfigMap

metadata:

 annotations:

 cpaas.io/creator: admin

 cpaas.io/updated-at: "2022-03-01T12:24:04Z"

 rook.cpaas.io/need-sync: "true"

 rook.cpaas.io/sync-status: synced

 creationTimestamp: "2022-03-01T12:24:04Z"

 finalizers:

 - rook.cpaas.io/config-merge

 name: rook-config-override-user

 namespace: default

 resourceVersion: "38816864"

 uid: ce3a8f3e-6453-4bdd-bff0-e16cf7d5d5fa

Update the optimization parameters - Alauda Container Platform

We allows creation and customization of object store users through the custom resource

definitions (CRDs).

Prerequisites

Procedure

Create User

Allow create user in other namespaces

Get user information

The object storage pool has been created

Execute commands on the control node of the cluster.

Create ceph object store user

TOC

Prerequisites

Procedure

Create User1

Menu ON THIS PAGE

Create ceph object store user - Alauda Container Platform

Parameters

Parameters Description

name The name of the object store user to create.

namespace The namespace of the object store user is created.

displayName The display name.

clusterNamespace

The namespace where the parent CephCluster and

CephObjectStore are found. If not specified, the user must

be in the same namespace as the cluster and object store.

To enable this feature, the CephObjectStore

allowUsersInNamespaces must include the namespace of

this user.

ObjectStore
The object store in which the user will be created. This

matches the name of the object storage pool.

quotas optional

This represents quota limitation can be set on the user.

cat << EOF | kubectl apply -f -

apiVersion: ceph.rook.io/v1

kind: CephObjectStoreUser

metadata:

 name: <name>

 namespace: <namespace>

spec:

 store: <ObjectStore>

 displayName: <displayName>

 clusterNamespace: <clusterNamespace>

 quotas:

 maxBuckets: -1

 maxSize: -1

 maxObjects: -1

 capabilities:

 user: "*"

 bucket: "*"

EOF

Create ceph object store user - Alauda Container Platform

Parameters Description

maxBuckets: The maximum bucket limit for the user. Set to

-1 indicates no restriction.

maxSize: Maximum size limit of all objects across all the

user's buckets. Set to -1 indicates no restriction.

maxObjects: Maximum number of objects across all the

user's buckets. Set to -1 indicates no restriction.

capabilities

optional

Ceph allows users to be given additional permissions. This

setting can currently only be used during the creation of

the object store user. If a user's capabilities need modified,

the user must be deleted and re-created. See the Ceph

docs for more info. We supports adding read , write ,

read,write , or * permissions for the following resources:

user

buckets

usage

metadata

zone

roles

info

amz-cache

bilog

mdlog

datalog

user-policy

odic-provider

ratelimit

If a CephObjectStoreUser is created in a namespace other than the Rook cluster

namespace, the namespace must be added to this list of allowed namespaces, or

specify "*" to allow all namespaces. This is useful for applications that need object store

credentials to be created in their own namespace.

↗

Allow create user in other namespaces2

Create ceph object store user - Alauda Container Platform

https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities
https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities
https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities
https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities

Execute commands on the control node of the cluster.

Execute commands on the control node of the cluster.

Get user information3

kubectl -n rook-ceph patch cephobjectstore <ObjectStore> --type merge -p '{"spec":

{"allowUsersInNamespaces":["*"]}}'

user_secret=$(kubectl -n <namespace> get cephobjectstoreuser <user-name> -o

jsonpath='{.status.info.secretName}')

ACCESS_KEY

kubectl -n <namespace> get secret $user_secret -o jsonpath='{.data.AccessKey}' |

base64 --decode

SECRET_KEY

kubectl -n <namespace> get secret $user_secret -o jsonpath='{.data.SecretKey}' |

base64 --decode

Create ceph object store user - Alauda Container Platform

MinIO Object Storage

Introduction

Introduction

Install

Install
Prerequisites

Procedure

Related Information

Architecture

Architecture

Core Components:

Deployment Architecture:

Multi-Pool Expansion:

Conclusion:

Menu

MinIO Object Storage - Alauda Container Platform

Concepts

Core Concepts

Guides

Adding a Storage Pool

Notes

Procedure

Monitoring & Alerts
Monitoring

Alerts

How To

Data Disaster Recovery
Applicable Scenarios

Terminology

Prerequisites

Operation Steps

Related Operations

MinIO Object Storage - Alauda Container Platform

Alauda Container Platform (ACP) Object Storage with MinIO is an object storage service

licensed under the Apache License v2.0. It is compatible with the Amazon S3 cloud storage

service interface, making it particularly suitable for storing large volumes of unstructured data,

such as images, videos, log files, backup data, and container/virtual machine images. An

object file can range in size from a few KB to a maximum of 5T.

The main advantages are as follows:

Simplicity: Minimalism is the guiding design principle of MinIO, allowing for out-of-the-box

functionality. Simplicity reduces the chances of errors, increases uptime, and enhances

reliability while also boosting performance.

High Performance: MinIO is a world leader in object storage. On standard hardware,

read/write speeds can reach up to 183 GB/sec and 171 GB/sec.

Scalability: Multiple small to medium-sized, easily manageable clusters can be

established, supporting the aggregation of multiple clusters into a super-large resource

pool across data centers, rather than directly adopting a large-scale, centrally managed

distributed cluster.

Cloud-Native: Compliant with all native cloud computing architectures and build

processes, and incorporates the latest technologies and concepts in cloud computing,

making object storage more user-friendly for Kubernetes.

Introduction

Menu

Introduction - Alauda Container Platform

Alauda Container Platform (ACP) Object Storage with MinIO is an object storage service

based on the Apache License v2.0 open-source protocol. It is compatible with the Amazon S3

cloud storage service interface and is ideal for storing large volumes of unstructured data,

such as images, videos, log files, backup data, and container/virtual machine images. An

object file can be of any size, ranging from a few kilobytes to a maximum of 5 terabytes.

Prerequisites

Procedure

Deploy Alauda Container Platform Storage Essentials

Deploy Operator

Create Cluster

Create Bucket

Upload/Download Files

Related Information

Redundancy Factor Mapping Table

Storage Pool Overview

MinIO is built on underlying storage, so please ensure that a storage class has been

created in the current cluster. TopoLVM is recommended.

Install

TOC

Prerequisites

Menu ON THIS PAGE

Install - Alauda Container Platform

Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

Download the Alauda Container Platform (ACP) Object Storage with MinIO installation

package corresponding to your platform architecture.

Upload the Alauda Container Platform (ACP) Object Storage with MinIO installation

package using the Upload Packages mechanism.

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Installation

Place
Select Recommended , Namespace only support acp-storage.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

Procedure

Deploy Alauda Container Platform Storage Essentials1

Install - Alauda Container Platform

Parameter Recommended Configuration

the latest version.

1. In the left navigation bar, click Storage > Object Storage.

2. Click Configure Now.

3. On the Deploy MinIO Operator wizard page, click Deploy Operator at the bottom

right.

Once the page automatically proceeds to the next step, it indicates that the

Operator deployment was successful.

If the deployment fails, refer to the interface prompts to Clean Up Deployed

Information and Retry, and redeploy the Operator.

1. On the Create Cluster wizard page, configure the basic information.

Parameter Description

Access

Key

Access key ID. A unique identifier associated with a private

access key; used with the access key ID to encrypt and sign

requests.

Secret Key

Private access key used in conjunction with the access key ID

to encrypt and sign requests, identify the sender, and prevent

request tampering.

2. In the Resource Configuration area, configure specifications as per the following

instructions.

Deploy Operator2

Create Cluster3

Install - Alauda Container Platform

Parameter Description

Small

scale

Suitable for handling up to 100,000 objects, supporting

concurrent access of no more than 50 in test environments or

data backup scenarios. The CPU resource request and limit are

set to 2 cores by default, and the memory resource request and

limit are set to 4 Gi.

Medium

scale

Designed for enterprise-level applications requiring storage of

1,000,000 objects and capable of handling up to 200 concurrent

requests. The CPU resource request and limit are set to 4 cores

by default, and the memory resource request and limit are set to

8 Gi.

Large

scale

Designed for group users with storage needs of 10,000,000

objects and handling up to 500 concurrent requests, suitable for

high-load scenarios. The CPU resource request and limit are set

to 8 cores by default, and the memory resource request and

limit are set to 16 Gi.

Custom

Offers flexible configuration options for professional users with

specific needs, ensuring precise matching of service scale and

performance requirements. Note: When configuring custom

specifications, ensure that:

The CPU resource request is greater than 100 m.

The memory resource request is greater than or equal to 2

Gi.

The CPU and memory resource limits are greater than or

equal to the resource requests.

3. In the Storage Pool area, configure related information as per the following

instructions.

Install - Alauda Container Platform

Parameter Description

Instance

Number

Increasing the number of instances in a MinIO cluster can

significantly enhance system performance and reliability,

ensuring high data availability. However, too many instances

can lead to the following issues:

Increased resource consumption.

If a node hosts multiple instances, a node failure may

cause multiple instances to go offline simultaneously,

reducing overall cluster reliability.

Note:

The minimum number of instances that can be entered is

4.

If the number of instances is greater than 16, the entered

value must be a multiple of 8.

When adding additional storage pools, the number of

instances must be no less than the first storage pool's

number of instances.

Single

Storage

Volume

Capacity of a single storage volume PVC. Each storage

service manages one storage volume. After entering the

capacity of a single storage volume, the platform will

automatically calculate the storage pool capacity and other

information, which can be viewed in the Storage Pool

Overview.

Underlying

Storage

The underlying storage used by the MinIO cluster. Please

select a storage class that has been created in the current

cluster. TopoLVM is recommended.

Storage

Nodes

Select the storage nodes required by the MinIO cluster. It is

recommended to use 4-16 storage nodes. The platform will

deploy one storage service for each selected storage node.

Install - Alauda Container Platform

Parameter Description

Storage

Pool

Overview

For specific parameters and calculation formulas, please refer

to Storage Pool Overview.

4. In the Access Configuration area, configure related information as per the following

instructions.

Parameter Description

External

Access

When enabled, it supports cross-cluster access to MinIO; when

disabled, it only supports access within the cluster.

Protocol

Supports HTTP and HTTPS; when selecting HTTPS, you need

to enter the Domain and import the Public Key and Private

Key of the domain name certificate.

Note:

When the access protocol is HTTP, pods within the cluster

can access MinIO directly via the obtained IP or domain

name without configuring IP address and domain name

mapping; nodes within the cluster can access MinIO directly

via the obtained IP, and if domain name access is required,

manual configuration of IP address and domain name

mapping is needed; external access can be done directly via

the obtained IP.

When the access protocol is HTTPS, access to MinIO via IP

is not possible both inside and outside the cluster. Manual

configuration of the mapping between the obtained IP

address and the domain name entered during cluster

creation is required to access normally via the domain name.

Access

Method
NodePort: Opens a fixed port on each compute node host to

expose the service externally. When configuring domain

name access, it is recommended to use VIP for domain

name resolution to ensure high availability.

Install - Alauda Container Platform

Parameter Description

LoadBalancer: Uses a load balancer to forward traffic to

backend services. Before use, please ensure that the

MetalLB plugin is deployed in the current cluster and there

are available IPs in the external address pool.

5. Click Create Cluster at the bottom right.

Once the page automatically proceeds to Cluster Details, it indicates that the

cluster creation was successful.

If the cluster remains in the creation process, you can click Cancel. After

cancellation, the deployed cluster information will be cleaned up, and you can

return to the cluster creation page to recreate the cluster.

Log in to the control node of the cluster and use the command to create a bucket.

1. On the cluster details page, click the Access Method tab to view the MinIO access

address, or use the following command to query.

Note:

Replace tenant ns with the actual namespace minio-system .

Example: kubectl get svc -n minio-system minio | grep -w minio | awk '{print

$3}'

2. Obtain the mc command.

3. Configure MinIO cluster alias.

Create Bucket4

kubectl get svc -n <tenant ns> minio | grep -w minio | awk '{print $3}'

wget https://dl.min.io/client/mc/release/linux-amd64/mc -O /bin/mc && chmod a+x

/bin/mc

Install - Alauda Container Platform

IPv4:

IPv6:

Domain Name:

Note:

Enter the IP address obtained in step 1 for minio endpoint .

Enter the Access Key and Secret Key created during cluster creation for

accessKey and secretKey .

Configuration examples:

IPv4: mc --insecure alias set myminio http://12.4.121.250:80 07Apples@

07Apples@

IPv6: mc --insecure alias set myminio http://[2004::192:168:143:117]:80

07Apples@ 07Apples@

Domain Name: mc --insecure alias set myminio http://test.minio.alauda:80

07Apples@ 07Apples@ or mc --insecure alias set myminio

https://test.minio.alauda:443 07Apples@ 07Apples@

4. Create a bucket.

mc --insecure alias set <minio cluster alias> http://<minio endpoint>:<port>

<accessKey> <secretKey>

mc --insecure alias set <minio cluster alias> http://[<minio endpoint>]:<port>

<accessKey> <secretKey>

mc --insecure alias set <minio cluster alias> http://<domain name>:<port>

<accessKey> <secretKey>

mc --insecure alias set <minio cluster alias> https://<domain name>:<port>

<accessKey> <secretKey>

mc --insecure mb <minio cluster alias>/<bucket name>

Install - Alauda Container Platform

Once the bucket is created, you can use the command line to upload files to the bucket

or download existing files from the bucket.

1. Create a file for upload testing. This step can be skipped if uploading an existing file.

2. Upload files to the bucket.

3. View files in the bucket to confirm successful upload.

4. Delete uploaded files.

Note: When adding additional storage pools, the redundancy factor needs to be calculated

based on the number of instances in the first storage pool.

Instance Number Redundancy Factor

4 - 5 2

6 - 7 3

Upload/Download Files5

Related Information

Redundancy Factor Mapping Table

touch <file name>

mc --insecure cp <file name> <minio cluster alias>/<bucket name>

mc --insecure ls <minio cluster alias>/<bucket name>

mc --insecure rm <minio cluster alias>/<bucket name>/<file name>

Install - Alauda Container Platform

Instance Number Redundancy Factor

>= 8 4

Storage Pool Overview Parameter Calculation Formula

Usable Capacity

When the Instance Number ≤ 16,

Usable Capacity = Single Storage

Volume Capacity × (Instance

Number - Redundancy Factor).

When the number of instances > 16, Usable

Capacity = Single Storage Volume Capacity ×

(Instance Number - 4 × (Instance Number + 15) /

16). The result of "4 × (Instance Number + 15) /

16" should be rounded down.

Total Capacity

Total Capacity = Instance

Numbers × Single Storage

Volume Capacity

Number of failover storage services tolerated

When the Instance Number > 2 ×

Redundancy Factor, Number of

Tolerable Fault Storage Services

= Redundancy Factor.

When the Instance Number = 2 × Redundancy

Factor, the number of tolerable fault storage

services = Redundancy Factor - 1

Storage Pool Overview

Install - Alauda Container Platform

Alauda Container Platform (ACP) Object Storage with MinIO is a high-performance,

distributed object storage system designed for cloud-native environments. It leverages

erasure coding, distributed storage pools, and high-availability mechanisms to ensure data

durability and scalability in Kubernetes.

Core Components:

Deployment Architecture:

Multi-Pool Expansion:

Conclusion:

MinIO Operator: Manages the deployment and upgrade of MinIO clusters.

MinIO Peer: Configures and manages MinIO's site replication functionality.

MinIO Pool: The core component of MinIO, responsible for handling object storage

requests. Each pool corresponds to a StatefulSet and provides storage resources.

Architecture

TOC

Core Components:

Deployment Architecture:

Menu ON THIS PAGE

Architecture - Alauda Container Platform

Deploying MinIO in Kubernetes requires defining a MinIO tenant, specifying the number of

server instances (pods) and the number of volumes (drives) per instance. Each MinIO server

is managed via a StatefulSet, ensuring stable identities and persistent storage. MinIO

aggregates all drives into one or more erasure sets and applies erasure coding for fault

tolerance.

MinIO clusters can scale by adding additional server pools, each with its own erasure set.

While this provides greater storage capacity, it introduces complexity in cluster maintenance

and reduces overall cluster reliability. A failure in any server pool can render the entire MinIO

cluster unavailable, even if other pools remain operational.

MinIO is a highly scalable, cloud-native object storage solution that balances performance and

reliability. When architecting a MinIO cluster, it is crucial to carefully design storage pools,

configure erasure coding settings, and implement high-availability strategies to ensure data

integrity and operational stability in Kubernetes environments.

Multi-Pool Expansion:

Conclusion:

Architecture - Alauda Container Platform

Concepts

Core Concepts

Menu

Concepts - Alauda Container Platform

Erasure Coding (EC): MinIO employs Reed-Solomon erasure coding to break objects into

data and parity shards, distributing them across multiple drives to ensure fault tolerance.

For example, in a 16-drive setup, data can be split into 12 data shards and 4 parity shards,

allowing the system to rebuild data even if up to 4 drives fail.

Server Pools & Erasure Sets: MinIO Server Pools are logical groupings of storage

resources, where each pool consists of multiple nodes sharing storage and compute

capabilities. Within a pool, drives are automatically organized into one or more Erasure

Sets.

Data Distribution: When an object is stored, it is split into data and parity shards and

distributed across different drives within an erasure set.

Redundancy Model: Erasure sets form the fundamental unit of data redundancy,

ensuring resiliency based on configured data-to-parity shard ratios.

Scalability: A single MinIO storage pool can contain multiple erasure sets, and new data

is always written to the erasure set with the most available capacity.

Core Concepts

Menu

Core Concepts - Alauda Container Platform

Guides

Adding a Storage Pool

Notes

Procedure

Monitoring & Alerts
Monitoring

Alerts

Menu

Guides - Alauda Container Platform

A storage pool refers to a logical partition used for storing data. Different types of underlying

storage can be used simultaneously within the same storage cluster to meet various business

needs.

In addition to the storage pools created during the configuration of object storage, you can

also add additional storage pools.

Notes

Procedure

Adding a storage pool will cause a brief interruption in the MinIO service, but it will

automatically recover to a normal state afterward.

1. Go to Administrator.

2. Click on Storage Management > Object Storage in the left navigation bar.

Adding a Storage Pool

TOC

Notes

Procedure

Menu ON THIS PAGE

Adding a Storage Pool - Alauda Container Platform

3. Under the Cluster Information tab, scroll down to the Storage Pool section and click Add

Storage Pool.

4. Configure the relevant parameters according to the instructions below.

Parameter Description

Underlying

Storage

The underlying storage used by the MinIO cluster. Please select an

existing storage class created in the current cluster, with TopoLVM

recommended.

Storage

Nodes

Select the storage nodes required for the MinIO cluster. It is

recommended to use 4-16 storage nodes; the platform will deploy 1

storage service for each selected storage node.

Note: When using 3 storage nodes, to ensure reliability, 2 storage

services will be deployed for each node.

Single

Storage

Volume

The capacity of a single storage volume PVC. Each storage service

manages 1 storage volume, and once the capacity of a single

storage volume is entered, the platform will automatically calculate

the storage pool capacity and other information, which can be

viewed in the Storage Pool Overview.

5. Click Confirm.

Adding a Storage Pool - Alauda Container Platform

The object storage system comes with built-in monitoring and alerting capabilities, covering

storage clusters, service health, and resource utilization. It also supports configurable

notification policies to keep your operations team informed. Real-time monitoring insights help

with performance tuning and operational decision-making, while automated alerts ensure the

stability and reliability of your storage system.

Monitoring

Storage Overview

Cluster Monitoring

Object Monitoring

Alerts

Configuring Notifications

Handling Alerts

Post-Incident Analysis

By default, the platform collects key metrics on storage clusters and service status. You can

access real-time monitoring data under Storage Management > Object Storage >

Monitoring.

Monitoring & Alerts

TOC

Monitoring

Menu ON THIS PAGE

Monitoring & Alerts - Alauda Container Platform

This section provides a high-level view of storage system health, service status, and raw

capacity utilization. If the storage status is abnormal, alert details will indicate the root cause,

helping you diagnose and resolve issues efficiently.

Track raw capacity usage and I/O performance trends across your storage cluster. This helps

identify storage bottlenecks, optimize resource allocation, and ensure smooth data operations.

Monitor access patterns, including total request counts and failed requests. These insights

help analyze storage workload and detect anomalies that may indicate service disruptions or

security risks.

The platform comes with pre-configured alerting policies to detect anomalies and trigger

notifications when predefined thresholds are reached. These built-in rules cover essential

areas such as component health, capacity usage, and user data integrity.

To ensure timely responses, configure notification policies in the Operations Center. Alerts

can be sent via email, SMS, or other channels to notify the right personnel. Fine-tune your

settings to match your organization's incident response workflow.

Cluster in "Alert" state: A warning has been triggered, and system stability may be at risk.

Check the Live Alerts section for details, identify the root cause, and take corrective

actions.

Storage Overview

Cluster Monitoring

Object Monitoring

Alerts

Configuring Notifications

Handling Alerts

Monitoring & Alerts - Alauda Container Platform

Cluster in "Failure" state: The storage cluster is no longer operational. Immediate

intervention is required to restore service availability.

The platform categorizes alerts into different severity levels, helping teams prioritize incident

response:

Severity Description

Critical
A system failure impacting business operations or causing data loss.

Immediate action required.

Major
A known issue that may lead to functionality breakdowns, potentially

disrupting business processes.

Warning
A potential risk that, if unaddressed, could impact performance or

availability.

The Alert History logs all past incidents, providing valuable data for post-mortem analysis

and system improvements. When reviewing past alerts, consider the following:

1. What were the exact symptoms when the incident occurred?

2. Are certain alerts repeating over time? Can proactive measures be taken to prevent

recurrence?

3. Did a specific time window show a spike in alerts? Was it caused by an operational issue or

an external factor? Should the response strategy be adjusted?

By continuously analyzing alert patterns and refining monitoring strategies, teams can

enhance system resilience, minimize downtime, and ensure seamless storage operations.

Post-Incident Analysis

Monitoring & Alerts - Alauda Container Platform

How To

Data Disaster Recovery

Applicable Scenarios

Terminology

Prerequisites

Operation Steps

Related Operations

Menu

How To - Alauda Container Platform

MinIO supports the establishment of a disaster recovery center through remote data backup

or active-active deployment to ensure that original data is not lost or damaged in the event of

a disaster, thereby guaranteeing data security and reliability.

Applicable Scenarios

Terminology

Prerequisites

Operation Steps

Related Operations

Hot Backup: There are two data centers in the same city or in different locations, one

primary and one backup. Data is replicated in real-time from the primary cluster to the

backup cluster to ensure data consistency. When a disaster occurs in the primary cluster,

business traffic can be seamlessly switched to the backup cluster to ensure business

continuity.

City-Level Active-Active: In a city-level active-active (multi-cluster) architecture, there are

two data centers located in different clusters. Both data centers are active and can receive

business traffic simultaneously. When one data center encounters a disaster, business can

continue running uninterrupted in the other data center.

Data Disaster Recovery

TOC

Applicable Scenarios

Menu ON THIS PAGE

Data Disaster Recovery - Alauda Container Platform

Primary Cluster: Refers to the cluster that is currently active and processing business

requests. It is the source of the data or the initiator of operations. In the primary cluster,

data is created, modified, or updated, and business traffic is first sent to this cluster for

processing.

Target Cluster: Refers to the cluster that receives data replication, migration, or failover. It

is typically in a backup or standby state, waiting to receive data from the primary cluster or

take over business traffic. When the primary cluster fails or needs to switch, the target

cluster will receive data copies from the primary cluster or take over business traffic to

ensure business continuity. In an active-active scenario, both clusters can serve as each

other's target cluster.

Both the primary cluster and the target cluster must have external network access enabled.

For specific configuration methods, please refer to Create Object Storage.

The primary cluster must use the LoadBalancer access method, while the target cluster is

recommended to support load balancing functionality.

The primary cluster and the target cluster must use the same access protocol, i.e., either

both use HTTP or both use HTTPS.

When using the HTTPS protocol, both the primary cluster and the target cluster need to

configure DNS resolution for themselves and each other.

When using the HTTPS protocol, it is recommended that both the primary cluster and the

target cluster use CA-signed certificates to ensure secure and trusted communication; if

self-signed certificates are used, both parties must import and trust each other's self-signed

certificates to establish a secure HTTPS connection successfully.

Terminology

Prerequisites

Operation Steps

Data Disaster Recovery - Alauda Container Platform

1. Enter Administrator.

2. In the left navigation bar, click Storage Management > Object Storage.

3. On the Data Disaster Recovery tab, click Add Target Cluster.

4. Configure the relevant parameters for the target cluster according to the following

instructions.

Parameter Description

Access

Address

The external access address of the target cluster, starting with http://

or https://.

Access Key

The Access Key ID for the target cluster. A unique identifier

associated with the private access key; used in conjunction with the

private access key to encrypt requests.

Secret Key

The private access key used in conjunction with the Access Key ID

to encrypt requests, identify the sender, and prevent request

modification.

5. Click Add.

Upon successful addition, you will be able to view the status of the target cluster and the

synchronization status between clusters.

Parameter Description

Cluster

Status

The status of the target cluster, including Healthy, Abnormal, or

Unknown.

Buckets The number of buckets pending synchronization and those

already synchronized.

In hot backup scenarios, pending synchronization refers to

the number of buckets that the primary cluster needs to

synchronize with the target cluster.

In city-level active-active scenarios, pending synchronization

refers to the total number of buckets that need to be

Data Disaster Recovery - Alauda Container Platform

Parameter Description

synchronized between the primary and target clusters.

Objects

The number of objects that failed to synchronize in the bucket.

Note: This number is for reference only, as MinIO synchronizes

related file configurations during synchronization.

Network

Traffic Rate

The network ingress and egress rate of the primary cluster.

In hot backup scenarios, the network ingress rate is always 0.

In city-level active-active scenarios, both ingress and egress

rates have data.

If the addition of the target cluster fails, you can click Re-add to clear the cluster

information and return to the add target cluster page, where you can re-add the target

cluster.

When disaster recovery is no longer needed, you can click Remove Target Cluster.
Removing the target cluster does not delete the data that has been synchronized; if any data

is currently synchronizing, it will be interrupted.

Related Operations

Data Disaster Recovery - Alauda Container Platform

TopoLVM Local Storage

Introduction

Introduction

Install

Install
Prerequisites

Procedure

Guides

Device Management
Prerequisites

Adding Devices

Menu

TopoLVM Local Storage - Alauda Container Platform

Monitoring and Alerting
Monitoring

Alerts

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero

Prerequisites

Limitations

Procedure

TopoLVM Local Storage - Alauda Container Platform

TopoLVM is a Container Storage Interface (CSI) plugin designed specifically for Kubernetes,

aimed at providing efficient and convenient management of local storage volumes.

Key features and advantages:

Local Volume Management: TopoLVM focuses on managing local storage devices (such

as disks and SSDs) on Kubernetes nodes. Compared to traditional network storage, local

volumes offer lower latency and higher performance.

Topology Awareness: TopoLVM can recognize the topology of Kubernetes clusters (e.g.,

nodes, availability zones), allowing it to automatically allocate storage volumes to the same

node based on the actual scheduling location of Pods, further optimizing performance.

Dynamic Volume Allocation: TopoLVM supports dynamically creating, deleting, and

resizing storage volumes without manual intervention, significantly simplifying operations

and reducing complexity.

Deep Integration with Kubernetes: As a CSI plugin, TopoLVM seamlessly integrates with

Kubernetes storage management APIs, enabling users to manage local volumes directly

through standard Kubernetes resource objects such as PersistentVolumeClaims.

In summary, TopoLVM addresses common challenges associated with using local storage in

Kubernetes, such as manual management, lack of topology awareness, and insufficient

dynamic allocation capabilities. It provides a more efficient and user-friendly solution for

applications requiring high-performance local storage, such as databases and caches.

Introduction

Menu

Introduction - Alauda Container Platform

Local storage is a software-defined server-local storage solution that provides a simple, easy-

to-maintain, and high-performance local storage service capability. Based on the community's

TopoLVM solution, it achieves persistent volume orchestration management of local storage

through the system's LVM approach.

Prerequisites

Procedure

Deploy Alauda Container Platform Storage Essentials

Deploy Storage

The lvm2 package must be installed on each node of the storage cluster. If not installed,

please execute the yum install -y lvm2 command on the node.

Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

Download the Alauda Build of TopoLVM installation package corresponding to your

platform architecture.

Install

TOC

Prerequisites

Menu ON THIS PAGE

Install - Alauda Container Platform

Upload the Alauda Build of TopoLVM installation package using the Upload Packages

mechanism.

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Installation

Mode

Cluster : All namespaces in the cluster share a single

Operator instance for creation and management, resulting in

lower resource usage.

Installation

Place
Select Recommended , Namespace only support acp-storage.

Upgrade

Strategy

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

1. Go to Administrator.

2. In the left navigation bar, click Storage Management > Local Storage.

3. Click Configure Now.

Procedure

Deploy Alauda Container Platform Storage Essentials1

Deploy Storage2

Install - Alauda Container Platform

4. On the Install Operator wizard page, click Start Deployment.

When the page automatically proceeds to the next step, it indicates that the

Operator deployment was successful.

If the deployment fails, please refer to the interface prompts for resolution. Then

click Clean Up and redeploy the Operator.

5. On the Create Cluster wizard page, add devices.

Parameter Description

Select

Node
Node with at least 1 bare disk.

Device

Class

Each device class corresponds to a set of storage devices with

the same characteristics. It is recommended to fill in the name

based on the disk nature, such as hdd, ssd.

Device

Type
Only disk types are supported.

Storage

Device

For example, /dev/sda. If there are multiple disks, they can be

added one by one.

Snapshot

When enabled, it supports creating PVC snapshots and using

the snapshots to configure new PVCs for quick backup and

recovery of business data.

If the snapshot was not enabled when creating the storage,

you can still enable it as needed in the Operations section of

the storage cluster details page.

Note: Before use, please ensure that the Volume Snapshot

Plugin has been deployed for the current cluster.

Click Next. When the page automatically proceeds to the next step, it indicates

that the cluster deployment was successful.

If the creation fails, please refer to the interface prompts and clean up resources in

a timely manner.

Install - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html
http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html

6. On the Create Storage Class wizard page, configure the relevant parameters.

Parameter Description

Name
The name of the storage class. It must be unique within the

current cluster.

Display

Name

A name that helps you identify or filter, such as a Chinese

description of the storage class.

Device

Class

The device class is a way to categorize storage devices in

TopoLVM. Each device class corresponds to a set of storage

devices with the same characteristics. If there are no special

requirements, you can use the Auto-Allocated device class

from the cluster.

File System

- XFS is a high-performance journaling file system adept at

handling parallel I/O workloads, supporting large file processing

and providing smooth data transfer.

- EXT4 is a journaling file system in Linux, offering extent file

storage methods and supporting large file processing. The file

system can reach a capacity of 1 EiB, with a maximum

supported file size of 16 TiB.

Recycling

Policy

The recycling policy for persistent volumes.

- Delete: When the persistent volume claim is deleted, the

bound persistent volume is also deleted.

- Retain: Even if the persistent volume claim is deleted, the

bound persistent volume will still be retained.

Access

Mode

ReadWriteOnce (RWO): Can be mounted by a single node in

read-write mode.

Allocation

Project

This type of persistent volume claim can only be created in

specific projects.

If no project is assigned temporarily, the project can also be

Updated later.

7. Click Next and wait for the resource creation to complete.

Install - Alauda Container Platform

Install - Alauda Container Platform

Guides

Device Management

Prerequisites

Adding Devices

Monitoring and Alerting
Monitoring

Alerts

Menu

Guides - Alauda Container Platform

Whether for initial deployment or resource expansion, you need to map the available disks on

the node into storage devices for use and management.

Storage devices with similar characteristics are typically used in a centralized manner, and

these devices are categorized under Device Classes in local storage. Using device classes is

equivalent to directly using disks, ensuring zero loss and high performance, while also

reducing application awareness and dependence on specific devices.

Prerequisites

Adding Devices

Device Management

TOC

Prerequisites

Menu ON THIS PAGE

Device Management - Alauda Container Platform

At least 1 Device Class (deviceClasses.classes) must have been added when creating the

local storage cluster, including devices in the device class.

There must be at least 1 bare disk present on the node.

1. Go to Administrator.

2. In the left navigation bar, click Storage Management > Local Storage.

3. In the Details tab, click Add Storage Node.

4. Configure the related parameters according to the instructions below.

Parameter Description

Storage

Node
A node that has at least 1 bare disk.

Device

Class

Each device class corresponds to a group of storage devices with

the same characteristics; it is recommended to name it according to

the nature of the disks, e.g., hdd, ssd.

Storage

Device

For example, /dev/sda. If there are multiple disks, they can be added

one by one.

Note: The storage device should be the entire hard disk, not a

partition on the hard disk, as this will cause errors.

5. Click Add.

Note: If the device class status is Unavailable due to the lack of added devices, you can

proceed with the following operations.

6. Switch to the Storage Devices tab and click Add Storage Device.

7. Add devices according to the prompts on the interface.

Adding Devices

Device Management - Alauda Container Platform

8. Click Add.

Device Management - Alauda Container Platform

Local storage provides out-of-the-box monitoring metrics collection and alerting capabilities.

Once the platform monitoring component is enabled, monitoring and alerts can be configured

based on storage clusters, storage performance, and storage capacity, with support for

configuring notification policies.

The intuitively presented monitoring data can be utilized to support decision making for

operational inspections or performance tuning, and a comprehensive alerting mechanism will

help ensure the stable operation of the storage system.

Monitoring

Performance Monitoring

Capacity Monitoring

Alerts

Configuring Notifications

Handling Alerts

Post-Mortem Analysis

Monitoring and Alerting

TOC

Monitoring

Performance Monitoring

Menu ON THIS PAGE

Monitoring and Alerting - Alauda Container Platform

By default, the platform collects commonly used performance monitoring metrics such as read

and write bandwidth, IOPS, and latency for local storage. Real-time monitoring data for these

metrics can be viewed on the Monitoring tab of the Local Storage page under Storage

Management. The platform displays these metrics visually through graphs and charts,

allowing administrators to clearly observe current storage performance and quickly identify

potential issues.

Since local storage can only use locally available storage resources on nodes, users must

ensure there is sufficient available capacity on the nodes before declaring local storage to

avoid issues caused by over-declaring.

To assist with this, the platform provides detailed capacity monitoring in the Details section of

local storage, categorized by device types. Users can check available storage space clearly

displayed in numerical and graphical formats. If any device type shows insufficient available

capacity, space should be cleared or additional disk devices added before using local storage.

The platform includes a set of default alerting policies. If resources become abnormal or

monitoring data reaches a warning threshold, alerts are automatically triggered. The

preconfigured alerting policies effectively cover common operational needs, including alerts

for cluster health status and device type capacity.

To ensure alerts are received in a timely manner, notification policies should be configured in

the operations center. Notifications can be sent through email, SMS, or other methods to

relevant personnel, prompting immediate attention to resolve issues or prevent failures. Users

can access the notification policy settings directly from the operations center interface.

Detailed instructions on configuring alerts can be found in the [Creating Alert Policies]

documentation.

Capacity Monitoring

Alerts

Configuring Notifications

Handling Alerts

Monitoring and Alerting - Alauda Container Platform

If the health status of the storage cluster changes to Alert , administrators should

investigate immediately. The Details section provides information for troubleshooting and

resolving these issues. Common causes include abnormal node services or problems with

specific device types.

Inspection

Item

Corresponding

Status
Cause

Health Status Alert
Caused by abnormal node services or

device type issues.

Service Status Unknown
Node is in a notready state, possibly due

to network failures or power outages.

Device Type

Status
Unavailable

The disk in use may not be a raw disk, or

it might be missing.

Real-time alerts triggered on the Alert tab require prompt attention, even if the storage

cluster status currently appears Healthy . Quick responses prevent escalation into more

serious issues. The following table outlines alert levels and their implications:

Alert

Level
Meaning

Critical
Indicates significant issues causing platform service interruptions or

data loss, with severe impacts.

Major
Known issues potentially affecting platform functionality and normal

business operations.

Warning
Risk of operational issues exists; timely intervention needed to avoid

impact on normal business operations.

The Alert History logs all alerts triggered previously that no longer require immediate action.

During post-mortem analysis, consider the following:

What specific abnormalities were observed at the time of the incident?

Post-Mortem Analysis

Monitoring and Alerting - Alauda Container Platform

Are there patterns of specific alerts repeatedly occurring? How can these be proactively

prevented in the future?

Was there a surge in alerts during specific periods linked to external factors or operational

incidents? Should operational strategies be adjusted accordingly?

Monitoring and Alerting - Alauda Container Platform

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero

Prerequisites

Limitations

Procedure

Menu

How To - Alauda Container Platform

Velero enables backup and restoration of Persistent Volume Claims (PVCs) and Persistent

Volumes (PVs) for TopoLVM filesystems. This functionality is integrated into the platform.

This guide applies specifically to TopoLVM filesystem PVCs.

Prerequisites

Limitations

Procedure

Step 1: Configure Backup Repository

Step 2: Perform Backup

Step 3: Restore Cluster

1. Deploy the "Alauda Container Platform Data Backup for Velero" via the

Marketplace/Cluster Plugins.

2. Configure an S3-compatible storage for Velero's BackupStorageLocation . Use platform-

provided Ceph or MinIO object storage.

Backup and Restore TopoLVM Filesystem
PVCs with Velero

TOC

Prerequisites

Menu ON THIS PAGE

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

1. The S3 storage must have sufficient free space to store all PV data from the target cluster.

2. During restoration, the namespace quota and storage class must support the total capacity

of all PVCs.

1. Ensure an S3-compatible storage is available.

2. Navigate to Administrator > Cluster Management > Backup and Restore > Backup

Repository.

3. Create a backup repository using the object storage credentials.

1. Label the PVCs and associated pods to be backed up:

Velero needs a pod to restore a Filesystem PVC. The pod mounts the PVC for Velero to

import data; without a pod, the PVC remains Pending. For complex apps, pause the

application and attach the PVC to a lightweight pod (e.g., Nginx) for backup/restore, then

restore the original app configuration post-restoration.

2. Go to Backup and Restore and create a new backup:

Select Backup Kubernetes Resources and PVC Data Volumes.

Choose the namespaces containing the data to back up.

Configure the backup with the following settings:

Limitations

Procedure

Step 1: Configure Backup Repository

Step 2: Perform Backup

kubectl label pvc -n <namespace> <pvc-name> velero-backup=true

kubectl label pod -n <namespace> <pod-name> velero-backup=true

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

3. After the backup completes, verify the data in the S3 bucket (e.g., MinIO):

Example output:

Step 3: Restore Cluster

apiVersion: velero.io/v1

kind: Schedule

metadata:

 name: <backup-name>

 namespace: cpaas-system

 annotations:

 cpaas.io/description: ''

spec:

 template:

 includedNamespaces:

 - <namespace>

 includedResources:

 - '*'

 labelSelector:

 matchLabels:

 velero-backup: 'true'

 excludedNamespaces: []

 excludedResources: []

 defaultVolumesToFsBackup: true

 storageLocation: default

 ttl: 720h

 schedule: '@every 876000h'

 skipImmediately: false

status:

 phase: Enabled

mc ls <minio-alias>/<bucket-name>/<backup-path>/<namespace>/

[2025-03-14 00:18:33 CST] 155B STANDARD config

[2025-03-14 09:04:56 CST] 0B data/

[2025-03-14 09:04:56 CST] 0B index/

[2025-03-14 09:04:56 CST] 0B keys/

[2025-03-14 09:04:56 CST] 0B snapshots/

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

1. In the target cluster, configure the same S3 bucket as used for the backup. Velero will

automatically detect the existing backup.

2. Navigate to Backup and Restore and create a restore task:

Select the namespace(s) to restore.

In the advanced configuration, map the original namespace to the target namespace if

needed.

3. Execute the restore operation.

4. After restoration, verify:

PVC names match the original cluster.

Application data in the PVCs is intact and accessible.

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

	Storage
	Ceph Distributed Storage
	Introduction
	TOC
	Feature Overview
	Storage Solution Comparison
	Creating a Storage Cluster
	Accessing External Storage

	Install
	Create Standard Type Cluster
	TOC
	Prerequisites
	Prepare Package
	Prepare Infrastructure

	Precautions
	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Deploy Operator
	Create Cluster
	Create Storage Pool

	Related Operations
	Create Stretch Type Cluster
	Cleanup Distributed Storage

	Create Stretch Type Cluster
	TOC
	Terminology
	Typical Deployment Scheme
	Component Description
	Disaster Recovery Explanation

	Constraints and Limitations
	Prerequisites
	Procedure
	Tagging Nodes
	Create Storage Service

	Related Operations
	Create Standard Type Cluster
	Cleanup Distributed Storage

	Architecture
	TOC
	Technical architecture

	Core Concepts
	Core Concepts
	TOC
	Rook Operator
	Ceph CSI
	Ceph module functions

	Guides
	Accessing Storage Services
	TOC
	Prerequisites
	Prepare Package
	Prepare Storage
	Open Ports
	Obtain Authentication Information (External Ceph)

	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Access Storage

	Follow-up Actions

	Managing Storage Pools
	TOC
	Creating a Storage Pool
	Procedure

	Deleting a Storage Pool
	Procedure

	Viewing Object Storage Pool Addresses
	Procedure

	Node-specific Component Deployment
	TOC
	Update Component Deployment Configuration
	Precautions
	Procedure

	Restart Storage Components
	Procedure

	Adding Devices/Device Classes
	TOC
	Adding Device Classes
	Notes
	Procedure

	Adding Devices
	Procedure

	Hard Disk Status

	Monitoring and Alerts
	TOC
	Monitoring
	Storage Overview
	Performance Monitoring
	Component Monitoring

	Alerts
	Configure Notifications
	Handling Alerts
	Fault Review

	How To
	Configure a Dedicated Cluster for Distributed Storage
	TOC
	Architecture
	Infrastructure requirements
	Platform requirements
	Cluster requirements
	Resource requirements
	Storage device requirements
	Storage device type requirements
	Capacity planning
	Capacity monitoring and expansion

	Network requirements
	Network Isolation
	Network interface speed requirements

	Procedure
	Deploy Operator
	Create ceph cluster
	Create storage pools
	Create file pool
	Create block pool
	Create object pool

	Follow-up Actions

	Cleanup Distributed Storage
	TOC
	Precautions
	Procedure
	Deleting VolumeSnapshotClasses
	Deleting StorageClasses
	Deleting Storage Pools
	Deleting ceph-cluster
	Deleting rook-operator
	Execute Cleanup Script
	Cleanup Script
	Precautions
	Procedure

	Disaster Recovery
	File Storage Disaster Recovery
	TOC
	Terminology
	Backup Configuration
	Prerequisites
	Procedure
	Enable the Mirror for the file storage pool in the Secondary cluster
	Obtain the Peer Token
	Create Peer Secret in the Primary cluster
	Enable the Mirror for the file storage pool in the Primary cluster
	Deploy the Mirror Daemon in the Primary cluster

	Failover
	Prerequisites

	Block Storage Disaster Recovery
	TOC
	Terminology
	Backup Configuration
	Prerequisites
	Procedures
	Enable Mirroring for Primary Cluster's Block Storage Pool
	Retrieve Peer Token
	Create Peer Token Secret in Secondary Cluster
	Enable Mirroring for Secondary Cluster's Block Storage Pool
	Deploy Mirror Daemon in Secondary Cluster
	Verify Mirror Status
	Enable Replication Sidecar
	Create VolumeReplicationClass
	Enable Mirror for PVC

	Failover
	Prerequisites
	Procedures
	创建 VolumeReplication

	Object Storage Disaster Recovery
	TOC
	Terminology
	Prerequisites
	Procedures
	Create Object Storage in Primary Cluster
	Configure External Access for Primary Zone
	Obtain access-key and secret-key
	Create Secondary Zone and Configure Realm Sync
	Configure External Access for Secondary Zone
	Check Ceph Object Storage Synchronization Status

	Failover
	Procedures

	Update the optimization parameters
	TOC
	Procedure

	Create ceph object store user
	TOC
	Prerequisites
	Procedure
	Create User
	Allow create user in other namespaces
	Get user information

	MinIO Object Storage
	Introduction
	Install
	TOC
	Prerequisites
	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Deploy Operator
	Create Cluster
	Create Bucket
	Upload/Download Files

	Related Information
	Redundancy Factor Mapping Table
	Storage Pool Overview

	Architecture
	TOC
	Core Components:
	Deployment Architecture:
	Multi-Pool Expansion:
	Conclusion:

	Concepts
	Core Concepts
	Guides
	Adding a Storage Pool
	TOC
	Notes
	Procedure

	Monitoring & Alerts
	TOC
	Monitoring
	Storage Overview
	Cluster Monitoring
	Object Monitoring

	Alerts
	Configuring Notifications
	Handling Alerts
	Post-Incident Analysis

	How To
	Data Disaster Recovery
	TOC
	Applicable Scenarios
	Terminology
	Prerequisites
	Operation Steps
	Related Operations

	TopoLVM Local Storage
	Introduction
	Install
	TOC
	Prerequisites
	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Deploy Storage

	Guides
	Device Management
	TOC
	Prerequisites
	Adding Devices

	Monitoring and Alerting
	TOC
	Monitoring
	Performance Monitoring
	Capacity Monitoring

	Alerts
	Configuring Notifications
	Handling Alerts
	Post-Mortem Analysis

	How To
	Backup and Restore TopoLVM Filesystem PVCs with Velero
	TOC
	Prerequisites
	Limitations
	Procedure
	Step 1: Configure Backup Repository
	Step 2: Perform Backup
	Step 3: Restore Cluster

