Menu

Storage

Ceph Distributed Storage

Introduction
Feature Overview

Storage Solution Comparison

Install

Architecture

Technical architecture

Concepts

Guides

How To

Storage - Alauda Container Platform

Storage - Alauda Container Platform

MinlO Object Storage

Introduction

Install
Prerequisites
Procedure

Related Information

Architecture

Core Components:
Deployment Architecture:
Multi-Pool Expansion:

Conclusion:

Concepts

Guides

How To

Storage - Alauda Container Platform

TopoLVM Local Storage

Introduction

Install
Prerequisites

Procedure

Guides

How To

Menu

Ceph Distributed Storage - Alauda Container Platform

Ceph Distributed Storage

Introduction

Introduction
Feature Overview

Storage Solution Comparison

Install

Create Standard Type Cluster

Prerequisites
Precautions
Procedure

Related Operations

Create Stretch Type Cluster

Terminology

Typical Deployment Scheme
Constraints and Limitations
Prerequisites

Procedure

Related Operations

Ceph Distributed Storage - Alauda Container Platform

Architecture

Architecture

Technical architecture

Concepts

Core Concepts
Rook Operator
Ceph CSlI

Ceph module functions

Guides

Accessing Storage Services
Prerequisites
Procedure

Follow-up Actions

Managing Storage Pools
Creating a Storage Pool
Deleting a Storage Pool

Viewing Object Storage Pool Addresses

Ceph Distributed Storage - Alauda Container Platform

Node-specific Component Deployment
Update Component Deployment Configuration

Restart Storage Components

Adding Devices/Device Classes
Adding Device Classes
Adding Devices

Hard Disk Status

Monitoring and Alerts
Monitoring

Alerts

How To

Configure a Dedicated Cluster for Distributed Storage
Architecture

Infrastructure requirements

Procedure

Follow-up Actions

Cleanup Distributed Storage
Precautions

Procedure

Ceph Distributed Storage - Alauda Container Platform

Disaster Recovery

Update the optimization parameters

Procedure

Create ceph object store user
Prerequisites

Procedure

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Alauda Build of Rook-Ceph is a hyper-converged storage solution provided by the platform
within the cluster. Based on the open-source Rook + Ceph storage solution, distributed
storage achieves automatic management, automatic scaling, and automatic repair
capabilities, fulfilling the block storage, file storage, and object storage needs of small to

medium-sized applications.

NOTE

In this document, distributed storage refers to the Ceph storage within this cluster, while external
storage refers to Ceph storage outside of this cluster.

TOC

Feature Overview
Storage Solution Comparison
Creating a Storage Cluster

Accessing External Storage

Feature Overview

» Easy Deployment: Provides graphical automatic deployment and management services
for storage clusters; supports both integrated and decoupled deployment modes for

compute and storage.

Introduction - Alauda Container Platform

+ Professional Operations: Offers persistent volume snapshot backup and clone new
volume functionalities; visual monitoring of capacity, performance, and component levels;

equipped with built-in alert policies to meet the needs of most storage operation scenarios.

« Secure and Reliable: Distributed and multi-replica mechanisms ensure data security and
reliability; simple and reliable automated management supports online expansion of

storage resources.

+ Excellent Performance: Provides elastic and high-performance storage services; supports
the deployment of hybrid disk devices to enhance storage system performance and

efficiency.

Storage Solution Comparison

The platform supports the following two types of storage solutions; you can choose one or the

other.

Creating a Storage Cluster

Requirement Advantages
You can choose to create either a No need for additional storage solution
standard type cluster or an preparation; configuration can be completed on
extended type cluster the business cluster, saving costs.

Accessing External Storage

Option 1: Access the distributed storage resources of other business clusters within the
platform to ensure storage and business are isolated for easier management and

maintenance.

Option 2: Integrate external Ceph storage resources as distributed storage.

Requirement (choose

one)

Option 1: Distributed
storage already deployed
in other business

clusters.

Option 2: External Ceph

storage outside the

platform, version = 14.2.3.

Introduction - Alauda Container Platform

Advantages

Can fully utilize storage resources across clusters and
avoid interference from business changes. Ensures data
security and stability while reducing operational

complexity.

Note: If the storage to be accessed is distributed
storage from different platforms, such as a
primary/backup platform in a disaster recovery
environment, please use the method of integrating

external Ceph.

Compared to directly creating a storage class, this
method is more convenient for using the platform's
interface for volume snapshots, scaling, and other

functions.

Note: If you need to maintain the storage pool, storage device, and other configurations of

external storage, operations must be performed in the management interface of the storage

cluster.

Install - Alauda Container Platform

Menu

Install

Create Standard Type Cluster
Prerequisites

Precautions

Procedure

Related Operations

Create Stretch Type Cluster
Terminology

Typical Deployment Scheme
Constraints and Limitations
Prerequisites

Procedure

Related Operations

Create Standard Type Cluster - Alauda Container Platform

Menu ON THIS PAGE >

Create Standard Type Cluster

A standard-type cluster is the most typical deployment method for Ceph storage. It distributes
data replicas across hard drives on different hosts, ensuring that if a single host fails, the data

copies on other hosts can still maintain service availability.

TOC

Prerequisites

Prepare Package

Prepare Infrastructure
Precautions
Procedure

Deploy Alauda Container Platform Storage Essentials

Deploy Operator

Create Cluster

Create Storage Pool
Related Operations

Create Stretch Type Cluster

Cleanup Distributed Storage

Prerequisites

Prepare Package

Create Standard Type Cluster - Alauda Container Platform

Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

Download the Alauda Build of Rook-Ceph installation package corresponding to your

platform architecture.

Upload the Alauda Build of Rook-Ceph installation package using the Upload Packages

mechanism.

Prepare Infrastructure

At least 3 nodes are required in the storage cluster.

Each node must have at least 1 blank hard disk or 1 unformatted hard disk partition

available.
The available hard disk capacity is recommended to be greater than 50 G.

If you are using an attached Kubernetes cluster with Containerd as the runtime component,
please ensure that the LimitNOFILE parameter value in the
/etc/systemd/system/containerd.service file is configured to 1048576 on all nodes of the
cluster, to ensure successful deployment of distributed storage. For configuration

instructions, please refer to Modifying Containerd Configuration Information.

Note: When upgrading from versions earlier than v3.10.2 to the current version, if you need
to deploy Ceph distributed storage on your custom Kubernetes cluster with Containerd as
the runtime component, you must also set the LimitNOFILE parameter value in the

/etc/systemd/system/containerd.service file to 1048576 on all nodes of the cluster.

Precautions

Creating Storage Service and Accessing Storage Service only support selecting one

method.

Procedure

Create Standard Type Cluster - Alauda Container Platform

1) Deploy Alauda Container Platform Storage Essentials

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter

Channel

Installation
Mode

Installation

Place

Upgrade
Strategy

Recommended Configuration
The default channel is stable .

Cluster : All namespaces in the cluster share a single
Operator instance for creation and management, resulting in

lower resource usage.

Select Recommended , Namespace only support acp-storage.

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

2 Deploy Operator

1. Navigate to Administrator.

2. In the left sidebar, click Storage Management > Distributed Storage.

3. Click Configure Now.

4. In the Deploy Operator wizard page, click the Deploy Operator button at the bottom

right.

Create Standard Type Cluster - Alauda Container Platform

* When the page automatically advances to the next step, it indicates that the

Operator has been deployed successfully.

 If the deployment fails, please refer to the prompt on the interface Clean Up
Deployed Information and Retry, and redeploy the Operator; if you wish to return
to the distributed storage selection page, click Application Store, first uninstall the
resources in the already deployed rook-operator, and then uninstall rook-

operator.
3 Create Cluster

1. In the Create Cluster wizard page, configure the relevant parameters and click the

Create Cluster button at the bottom right.

Parameter Explanation
Cluster Type Select Standard.

Device classes are groupings of hard disks; you can
customize device classes according to your storage needs,
allocating different storage content to disks of varying

performance.

o Default Device Class: The platform will automatically
Device Class categorize the types of hard disks in the cluster nodes.
Type For instance, creating device classes named hdd , ssd,

nvme .

e Custom Device Class: Customize the name of the
device class for specific combinations of disks in the
node; adding multiple device classes is supported. The

same hard disk can only belong to one device class.

) The name of the device class. When selecting Custom
Device Class -] . .
Device Class, the device class cannot use the following
Name
names: hdd , ssd, nvme .

Device Class - Choose Blank Hard Disk or Unformatted Hard Disk

Storage Partition on the nodes.

Parameter

Devices

Snapshot

Monitoring

Alarm

Create Standard Type Cluster - Alauda Container Platform

Explanation

* When the "Open All Blank Devices" switch is on: All
blank devices under the node will be added to the device

class;

* When the "Open All Blank Devices" switch is off:
Manually input the names of the blank devices under the

node, such as sda .

When enabled, it supports creating PVC snapshots and
using snapshots to configure new PVCs for quick backup
and recovery of business data.

If you did not enable snapshots when creating storage, you
can still enable them as needed from the Operations
section on the storage cluster details page.

Note: Please ensure that you have deployed volume

snapshot plugins for the current cluster before using.

When enabled, it will provide out-of-the-box monitoring
metric collection and alerting capabilities, see Monitoring
and Alarming.

Note: If not enabled at this time, you will need to find
alternative solutions for storage monitoring and alarms. For
example, manually configuring monitoring dashboards and

alert strategies in the operation and maintenance center.

2. Click Advanced Configuration for advanced component configuration.

Parameter

Network

Configuration

Explanation

o Host Network: The storage cluster will use the host
network, and you should fill in the relevant network
optimization parameters in the optimization
parameters column, such as configuring the public
and cluster subnets. If left blank, the default host
subnet will be used.

Note: Using the host network may expose security

http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html
http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html

Create Standard Type Cluster - Alauda Container Platform

Parameter Explanation

risks due to unencrypted (plaintext) transmission of
data through host ports. Please contact the platform
support team to obtain the encrypted transmission

solution.

o Container Network: The storage cluster will use
container networking; you can create subnets in
network management and assign them to the rook-
ceph namespace. If left blank, the default subnet will
be used.

Note:

IPv6 not supported.

When using the container network, storage is only
accessible within the cluster.

Failures or restarts of the Ceph CSI Pod may result in

service interruptions.

Supports filling parameters in Ceph configuration file
format; the system will overwrite the default parameters
based on the provided content.

Optimization o o
Note: After first filling in or modifying initialization

Parameters _ S
parameters, please click on the initialization parameters;
successful initialization is required before a cluster can
be created.
You can deploy components to specified nodes; at least
Component _ . o
i] three nodes are required to ensure minimum availability.
Fixed-point o . .
The components eligible for fixed-point deployment
Deployment

configuration include MON, MGR, MDS, RGW.

+ When the page automatically advances to the next step, it indicates that the Ceph

cluster has been deployed successfully.

« If the creation fails, you may click to clean up Created Information or Retry to

automatically clean up the resources and recreate the cluster, or manually clean

Create Standard Type Cluster - Alauda Container Platform

up resources according to the documentation Distributed Storage Service

Resource Cleanup.
4/ Create Storage Pool

1. In the Create Storage Pool wizard page, configure the relevant parameters and click

the Create Storage Pool button at the bottom right.

Parameter Explanation

» File Storage: Provides secure, reliable, and scalable shared

file storage services. Suitable for file sharing, data backup,

etc.
Storage » Block Storage: Provides high IOPS and low-latency storage
Type services. Suitable for databases, virtualization, etc.

* Object Storage: Provides standard S3 interface storage
services, suitable for big data, backup archiving, cloud

storage, etc.

The larger the number of replicas, the higher the redundancy

Replica . S -
. and data security; however, the utilization rate of storage will
ount
decrease. It is usually set to 3 to meet most needs.
Uniformly classify types for the same type of device or disks of
the same business logic, selecting from the device classes
added in the previous step.
Devi . . . :
evice * When selecting a device class, data will be stored in the
Class

chosen device class.

¢ If no device class is selected, data will be randomly stored

across all devices in the storage pool.

If it is object storage, you also need to configure the following parameters:

Create Standard Type Cluster - Alauda Container Platform
Parameter Explanation
Region Specify the region where the storage pool is located.

Gateway Type Default is S3 and cannot be modified.

Internal Port Specify the port for internal access in the cluster.
External Enabling/disabling external access will create/destroy
Access Nodeport type Service.

Instance

The number of resource instances for object storage.
Count

* When the page automatically advances to the next step, it indicates that the

storage pool has been deployed successfully.

« If the deployment fails, please refer to the interface prompts to check the core
components, and then click Clean Up Created Information and Retry to recreate

the storage pool.

2. Click Create Storage Pool. In the Details tab, you can view information about the

created storage pool.

Related Operations

Create Stretch Type Cluster

For details, please refer to Create Stretch Type Cluster.

Cleanup Distributed Storage

For details, please refer to Cleanup Distributed Storage.

Create Stretch Type Cluster - Alauda Container Platform

Menu ON THIS PAGE >

Create Stretch Type Cluster

A stretch cluster can extend across two geographically distinct locations, providing disaster
recovery capabilities for storage infrastructure. In the event of a disaster, when one availability

zone in the two zones is completely unavailable, Ceph can still maintain availability.

TOC

Terminology
Typical Deployment Scheme
Component Description
Disaster Recovery Explanation
Constraints and Limitations
Prerequisites
Procedure
Tagging Nodes
Create Storage Service
Related Operations
Create Standard Type Cluster

Cleanup Distributed Storage

Terminology

Term

Quorum
Availability

Zone

Data
Availability

Zone

Create Stretch Type Cluster - Alauda Container Platform
Explanation

Usually located in a separate zone that does not bear primary
workloads, focusing on maintaining cluster consistency, and is
primarily used for arbitration decisions when a failure occurs in the

main data center or a network partition occurs.

The primary area in the Ceph cluster where data is actually stored
and processed, bearing operational loads and data storage tasks,
forming a complete high-availability storage system together with the

quorum zone.

Typical Deployment Scheme

The following content provides a typical deployment scheme for stretch clusters, along with

component descriptions and principles of disaster recovery.

Component Description

Nodes need to be distributed across three availability zones, including two data availability

zones and one quorum availability zone.

» Both data availability zones need to fully deploy all core Ceph components (MON, OSD,

MGR, MDS, RGW), and each data availability zone must configure two MON instances for

high availability. When both MON instances in the same data availability zone are

unavailable, the system will determine that the availability zone is in a failure state.

e The quorum availability zone only requires the deployment of one MON instance, serving

as the arbitration decision node.

Create Stretch Type Cluster - Alauda Container Platform

DC3

MON (Arbiter)

DC1 Ceph Public//Private Network DC1 (10.0.128.0/19) Ceph Public/Private Network DC2 (10.0.128.0/19)

Disaster Recovery Explanation

+ When a data availability zone completely fails, the Ceph cluster will automatically enter a
degraded state and trigger an alarm notification. The system will adjust the minimum
number of replicas in the storage pool (min_size) from the default of 2 to 1. Since the other
data availability zone still maintains dual replicas, the cluster remains available. When the
failed data availability zone recovers, the system will automatically execute data
synchronization and return to a healthy state; if the failure cannot be repaired, it is

recommended to replace it with a new data availability zone.

+ When the network connection between the two data availability zones is interrupted, but
they can still connect normally to the quorum availability zone, the quorum availability zone
will arbitrate between the two data availability zones based on preset policies, selecting the

one in a better state to continue providing services as the primary data zone.

Constraints and Limitations

o Storage Pool Limitations: Erasure-coded storage pools are not supported, and only

replica mechanisms can be used for data protection.

+ Device Classification Limitations: Device class functionality is not supported, and

storage cannot be stratified based on device characteristics.

+ Regional Deployment Limitations: Only two data availability zones are supported; no

more than two data availability zones can exist.

Create Stretch Type Cluster - Alauda Container Platform

Data Balancing Requirements: The OSD weights of the two data availability zones must

strictly remain consistent to ensure balanced data distribution.

Storage Medium Requirements: Only all-flash (All-Flash) OSD configurations are
permitted, minimizing the time required for recovery after a connection is restored, and

reducing the potential for data loss as much as possible.

Network Latency Requirements: The RTT (round-trip time) between the two data
availability zones must not exceed 10ms, and the quorum availability zone must meet the
ETCD specification latency requirements to ensure the reliability of the arbitration

mechanism.

Prerequisites

Please classify all or part of the nodes in the cluster into three availability zones in advance,

as follows:

Ensure that at least 5 nodes are distributed among one quorum availability zone and two
data availability zones. Among them, the quorum availability zone must have at least one

node, which can be a virtual machine or cloud host.

Ensure that at least one availability zone in the three availability zones contains a Master

node (control node).

Ensure that at least 4 computing nodes are evenly distributed across the 2 data availability

zones, with at least 2 computing nodes configured in each data availability zone.

Try to ensure that the number of nodes and disk configurations in the two data availability

Zones are consistent.

Procedure

1) Tagging Nodes

1. Access Administrator.

Create Stretch Type Cluster - Alauda Container Platform

2. In the left navigation bar, click Cluster Management > Cluster.

3. Click on the corresponding cluster name to enter the cluster overview page.

4. Switch to the Nodes tab.

5. Based on the planning in the Prerequisites, add the topology.kubernetes.io/zone=

<zone> label to these nodes to classify them into the specified availability zone. Here,

replace <zone> with the name of the availability zone.

Create Storage Service

This document only describes the parameters that differ from standard type clusters; for

other parameters, please refer to Create Standard Type Cluster.

Create Cluster

Parameter
Cluster Type

Quorum Availability

Zone

Data Availability Zone

Description

Select Stretch.

Choose the name of the quorum availability zone.

Select the names of the availability zones and choose

the nodes.
Create Storage Pool
Parameter Description
Number of .
] Default is 4.
Replicas
When the storage type is Object Storage, to ensure
Number of o o _ _
availability, the minimum number of instances is 2 and the
Instances

maximum is 5.

Create Stretch Type Cluster - Alauda Container Platform

Related Operations

Create Standard Type Cluster

For details, please refer to Create Standard Type Cluster.

Cleanup Distributed Storage

For details, please refer to Cleanup Distributed Storage.

Architecture - Alauda Container Platform

Menu ON THIS PAGE >

Architecture

TOC

Technical architecture

Technical architecture

Architecture - Alauda Container Platform

Rook Architecture

_m D0 e

ReadWriteOnce (RWQO) ReadWriteMany (RWX) S3 Client
Persistent Volume Claim Persistent Volume Claim
Node Node Node

L™ Rook
@ Operator

s N\

; Plugin &Provisioner & Plugm ;s Plugin

Csl i | Csl Csl : Csl

@OSD Q 0sD Q 0sD @OSD Q 0sD Q 0sD @osn Q 0sD Q 0sD

g @aa @ala

Example applications are shown above for the three supported storage types:

» Block Storage is represented with a blue app, which has a ReadWriteOnce (RWO) volume
mounted. The application can read and write to the RWO volume, while Ceph manages the
1O.

+ Shared Filesystem is represented by two purple apps that are sharing a ReadWriteMany
(RWX) volume. Both applications can actively read or write simultaneously to the volume.

Ceph will ensure the data is safely protected for multiple writers with the MDS daemon.

* Object storage is represented by an orange app that can read and write to a bucket with a

standard S3 client.

Below the dotted line in the above diagram, the components fall into three categories:

Architecture - Alauda Container Platform
¢ Rook operator (blue layer): The operator automates configuration of Ceph

e CSI plugins and provisioners (orange layer): The Ceph-CSlI driver provides the provisioning

and mounting of volumes

e Ceph daemons (red layer): The Ceph daemons run the core storage architecture. See the

Glossary to learn more about each daemon.

Block Storage

In the diagram above, the flow to create an application with an RWO volume is:

¢ The (blue) app creates a PVC to request storage.

e The PVC defines the Ceph RBD storage class (sc) for provisioning the storage.
¢ K8s calls the Ceph-CSI RBD provisioner to create the Ceph RBD image.

e The kubelet calls the CSI RBD volume plugin to mount the volume in the app.

e The volume is now available for reads and writes.

o A ReadWriteOnce volume can be mounted on one node at a time.

Shared Filesystem

In the diagram above, the flow to create a applications with a RWX volume is:

o The (purple) app creates a PVC to request storage.

e The PVC defines the CephFS storage class (sc) for provisioning the storage.

¢ K8s calls the Ceph-CSI CephFS provisioner to create the CephFS subvolume.

e The kubelet calls the CSI CephFS volume plugin to mount the volume in the app.

e The volume is now available for reads and writes.

o A ReadWriteMany volume can be mounted on multiple nodes for your application to use.

Object Storage S3

In the diagram above, the flow to create an application with access to an S3 bucket is:

The (orange) app creates an BucketClaim to request a bucket.

The Ceph COSI Driver creates a Ceph RGW bucket.

The Ceph COSI Driver creates a secret with the credentials for accessing the bucket.

The app retrieves the credentials from the secret.

The app can now read and write to the bucket with an S3 client.

Menu

Core Concepts

Core Concepts
Rook Operator
Ceph CSI

Ceph module functions

Concepts - Alauda Container Platform

Core Concepts - Alauda Container Platform

Menu ON THIS PAGE >

Core Concepts

TOC

Rook Operator
Ceph CSI

Ceph module functions

Rook Operator

The Rook operator is a simple container that has all that is needed to bootstrap and monitor
the storage cluster. The operator will start and monitor Ceph monitor pods, the Ceph OSD
daemons to provide RADOS storage, as well as start and manage other Ceph daemons. The
operator manages CRDs for pools, object stores (S3/Swift), and filesystems by initializing the

pods and other resources necessary to run the services.

The operator will monitor the storage daemons to ensure the cluster is healthy. Ceph mons
will be started or failed over when necessary, and other adjustments are made as the cluster
grows or shrinks. The operator will also watch for desired state changes specified in the Ceph

custom resources (CRs) and apply the changes.

Rook automatically configures the Ceph-CSlI driver to mount the storage to your pods. The

rook/ceph image includes all necessary tools to manage the cluster.

Ceph CSI

Core Concepts - Alauda Container Platform

Ceph CSI plugins implement an interface between a CSl-enabled Container Orchestrator

(CO) and Ceph clusters. They enable dynamically provisioning Ceph volumes and attaching

them to workloads.

Ceph module functions

Module

MON

MGR

OSD

MDS

RGW

RADOS

Function

The monitor (MON) is the most important component in a Ceph cluster. It
manages the Ceph cluster and maintains the status of the entire cluster.
The MON ensures that related components of a cluster can be
synchronized at the same time. It functions as the leader of the cluster
and is responsible for collecting, updating, and publishing cluster

information.

The manager (MGR) is a monitoring system that provides collection,
storage, analysis (including alarming), and visualization functions. It

makes certain cluster parameters available for external systems.

Object storage daemons (OSDs) store the actual user data. Every OSD
is usually bound to one physical drive. The OSDs handle the read/write

requests from clients.

The Ceph Metadata Server (MDS) tracks the file hierarchy and stores
metadata used only for CephFS. The RBD and RGW do not require

metadata. The MDS does not directly provide data services for clients.

The RADOS gateway (RGW) is a Ceph object gateway that provides
RESTful APIs compatible with S3 and Swift. The RGW also supports

multi-tenant and OpenStack Identity service (Keystone).

Reliable Autonomic Distributed Object Store (RADOS) is the heart of a
Ceph storage cluster. Everything in Ceph is stored by RADOS in the form
of objects irrespective of their data types. The RADOS layer ensures
data consistency and reliability through data replication, fault detection

and recovery, and data recovery across cluster nodes.

Module

LIBRADOS

RBD

CephFS

Core Concepts - Alauda Container Platform

Function

Librados is a method that simplifies access to RADOS. Currently, it
supports programming languages PHP, Ruby, Java, Python, C, and C++.
It provides RADOS, a local interface of the Ceph storage cluster, and is
the base component of other services such as the RADOS block device
(RBD) and RADOS gateway (RGW). In addition, it provides the Portable
Operating System Interface (POSIX) for the Ceph file system (CephFS).
The Librados API can be used to directly access RADOS, enabling
developers to create their own interfaces for accessing the Ceph cluster

storage.

The RADOS block device (RBD) is the Ceph block device that provides
block storage for external systems. It can be mapped, formatted, and

mounted like a drive to a server.

The CephFS provides a POSIX-compatible distributed file system of any
size. It depends on the Ceph MDS to track the file hierarchy, namely the

metadata.

Guides - Alauda Container Platform

Menu

Guides

Accessing Storage Services
Prerequisites
Procedure

Follow-up Actions

Managing Storage Pools
Creating a Storage Pool
Deleting a Storage Pool

Viewing Object Storage Pool Addresses

Node-specific Component Deployment
Update Component Deployment Configuration

Restart Storage Components

Adding Devices/Device Classes
Adding Device Classes
Adding Devices

Hard Disk Status

Guides - Alauda Container Platform

Monitoring and Alerts
Monitoring

Alerts

Accessing Storage Services - Alauda Container Platform

Menu ON THIS PAGE >

Accessing Storage Services

Accessing storage services supports two methods of integration: first, integrating distributed
storage resources from other business clusters within the platform to ensure storage and
business isolation for easier management and maintenance; second, connecting external

Ceph storage resources for distributed storage use.

TOC

Prerequisites

Prepare Package

Prepare Storage

Open Ports

Obtain Authentication Information (External Ceph)
Procedure

Deploy Alauda Container Platform Storage Essentials

Access Storage

Follow-up Actions

Prerequisites

Prepare Package

 Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

Accessing Storage Services - Alauda Container Platform

+ Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

 Download the Alauda Build of Rook-Ceph installation package corresponding to your

platform architecture.

+ Upload the Alauda Build of Rook-Ceph installation package using the Upload Packages

mechanism.

Prepare Storage

Choose one of the following:

o Distributed storage has been deployed in other business clusters, and a storage pool has

been created. Please record the name of the storage pool for later integration use.

« External Ceph storage outside the platform (version = 14.2.3) has been created with a

storage pool. Please record the name of the storage pool for later integration use.

Open Ports
Destination Source
Destination Port Source IP
IP Port
IP of Ceph 3300, 6789, 6800- IP of all nodes in
an
node 7300, 7480 business cluster Y

Obtain Authentication Information (External Ceph)

If the prepared storage is external Ceph storage, authentication information must be obtained

using the following commands.

Parameter Method of Acquisition

FSID ceph fsid

Accessing Storage Services - Alauda Container Platform

Parameter Method of Acquisition

ceph mon dump
MON Component

] Must be in {name= IP} format, e.g. a=192.168.100.100:6789
Information

Admin Key ceph auth get-key client.admin

o File storage: Use ceph fs 1s command to get the name

value.
Storage Pool
o Block storage: ceph osd dump | grep "application rbd" |

awk '{print $3}'

(only needed for file storage) Use ceph fs 1s command to
Data Storage Pool
get the data pools value.

Procedure

Note: The following steps take accessing external Ceph storage as an example, the
operations for accessing distributed storage are similar.

1) Deploy Alauda Container Platform Storage Essentials

1. Login, go to the Administrator page.
2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is stable .

Parameter

Installation
Mode

Installation

Place

Upgrade
Strategy

Accessing Storage Services - Alauda Container Platform
Recommended Configuration

Cluster : All namespaces in the cluster share a single
Operator instance for creation and management, resulting in

lower resource usage.

Select Recommended , Namespace only support acp-storage.

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

the latest version.

2) Access Storage

1. In the left navigation bar, click Storage Management > Distributed Storage.

2. Click Access Storage.

3. On the Access Configuration wizard page, select External Ceph.

Parameter

Snapshot

Network

Configuration

Description

When enabled, supports creating PVC snapshots and
using snapshots to configure new PVCs for quick backup
and restoration of business data.

If snapshots were not enabled during storage access, you
can still enable them later in the Operations section of the
storage cluster details page as needed.

Note: Please ensure that you have deployed the volume

snapshot plugin for the current cluster before use.

e Host Network: Computing components in this cluster

will access the storage cluster using the host network.

e Container Network: Computing components in this
cluster will access the storage cluster using the

container network. You can create a subnet in network

http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html
http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html

Accessing Storage Services - Alauda Container Platform

Parameter Description

management and assign the subnet to the rook-ceph

namespace. If left empty, the default subnet will be used.

Other Please fill in the authentication parameters for the external

Parameters Ceph obtained in the prerequisites.

4. On the Create Storage Class wizard page, complete the configuration and click

Access.
Parameter Description
Based on the type of storage pool created above, the default
corresponding storage class will be:
T . .
ype o File Storage: CephFS File Storage
» Block Storage: CephRBD Block Storage
Reclaim policy for persistent volumes.
¢ Delete: When the persistent volume claim is deleted, the
Reclaim . .
bound persistent volume will also be deleted.
Policy
¢ Retain: Even if the persistent volume claim is deleted, the
bound persistent volume will still be retained.
Projects that can use this type of storage.
Project If there are currently no projects requiring this type of storage,
Allocation you may choose not to allocate projects for now and update

them later.

5. Wait approximately 1-5 minutes for the successful integration.

Follow-up Actions

o Create Storage Classes: CephFS File Storage, CephRBD Block Storage

http://localhost:4173/container_platform/configure/storage/functions/cephfs_storageclass.html
http://localhost:4173/container_platform/configure/storage/functions/cephrbd_storageclass.html

Accessing Storage Services - Alauda Container Platform

« Developers using the above storage classes to create persistent volume claims can extend

usage with volume snapshots and scaling features.

Note: If you need to maintain storage pools, storage device configurations, etc., for external

storage, operations must be performed in the management platform of the storage cluster.

Managing Storage Pools - Alauda Container Platform

Menu ON THIS PAGE >

Managing Storage Pools

A storage pool refers to a logical partition used for storing data. A single storage cluster
supports the simultaneous use of different types of storage pools, such as file storage and

block storage, to accommodate various business requirements.

TOC

Creating a Storage Pool
Procedure
Deleting a Storage Pool
Procedure
Viewing Object Storage Pool Addresses

Procedure

Creating a Storage Pool

In addition to the storage pools created during the configuration of distributed storage, you

can also create additional types of storage pools.

Tip: Within the same storage cluster, only one file storage and one object storage pool are

allowed, while up to eight block storage pools can be created.

Procedure

Managing Storage Pools - Alauda Container Platform

1. Access Administrator.
2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Cluster Information tab, scroll down to the Storage Pool area and click

Create Storage Pool.

4. Configure the relevant parameters according to the following instructions.

Parameter Description

Select the currently undeployed storage type.

- File Storage: Provides secure, reliable, and scalable shared

file storage services. Suitable for file sharing, data backup, etc.
Storage - Block Storage: Provides high IOPS and low latency storage
Type services. Suitable for databases, virtualization, etc.

- Object Storage: Provides standard S3 interface storage

services, suitable for big data, backup archiving, cloud storage

services, etc.

* When the cluster type is Standard: A higher replica count
increases redundancy and data security, but it also reduces

Replica storage utilization. Usually, a setting of 3 suffices for most
Count needs.

o When the cluster type is Extended: The default replica

count is 4 and cannot be modified.

Managing Storage Pools - Alauda Container Platform

Parameter Description

+ When the cluster type is Standard: Choose an already

added device class within the created storage pool.

e When selecting a device class, data will be stored in the
Device chosen device class.
Class « If no device class is selected, data will be randomly stored

in all devices within the storage pool.

+ When the cluster type is Standard: Adding a device class

is not supported.

If it is an object storage type, you can configure the following parameters as well:

Parameter Description
Region Specify the region where the storage pool is located.
Gateway Type Defaults to S3 and cannot be modified.
Internal Port Specify the port for internal access to the cluster.
External Enabling/disabling external access will create/destroy a
Access NodePort type Service.
Instance

Number of resource instances for object storage.
Count

5. Click Create.

Deleting a Storage Pool

If a certain type of storage is no longer required, the storage pool can be deleted after
dissociating it from the storage class.

Managing Storage Pools - Alauda Container Platform
Procedure
1. Access Administrator.
2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Cluster Information tab, scroll down to the Storage Pool area, click on the :

next to the storage pool you wish to delete > Delete.
4. Read the prompt information and enter the name of the storage pool.

5. Click Delete.

Viewing Object Storage Pool Addresses

After creating an object storage pool, you can view the internal and external access

addresses of the storage pool.

Procedure

1. Access Administrator.
2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Cluster Information tab, scroll down to the Storage Pool area, click on the :

next to the object storage pool and select View Address.

Node-specific Component Deployment - Alauda Container Platform

Menu ON THIS PAGE >

Node-specific Component Deployment

After creating distributed storage, you can still view and modify the deployment location of

components, facilitating storage expansion and maintenance.

TOC

Update Component Deployment Configuration
Precautions
Procedure

Restart Storage Components

Procedure

Update Component Deployment Configuration

Precautions

o Updating the configuration will trigger the system to automatically rebuild component
instances, which may affect service access to the storage system. It is recommended to

perform the update during off-peak hours.

e When the cluster type is Extend, the fixed deployment feature for components is not
supported.

Procedure

Node-specific Component Deployment - Alauda Container Platform

1. Go to Administrator.
2. In the left navigation bar, click on Storage Management > Distributed Storage.

3. Under the Storage Components tab, click on Component Deployment

Configuration.

4. Enable/disable the Fixed Deployment switch according to business needs, and
deploy components to specified nodes. The number of nodes must be no less than
three to ensure minimum availability. The components applicable for fixed
deployment configuration include MON, MGR, MDS, RGW.

5. Click Update, and the components will begin to be scheduled to the designated

nodes.

Restart Storage Components

When you delete the deployed storage components, the system will automatically re-schedule
and redeploy components to the nodes according to the current component deployment

strategy.

Procedure
1. Go to Administrator.
2. In the left navigation bar, click on Storage Management > Distributed Storage.

3. Under the Storage Components tab, click : next to the component name > Delete.

Adding Devices/Device Classes - Alauda Container Platform

Menu ON THIS PAGE >

Adding Devices/Device Classes

TOC

Adding Device Classes
Notes
Procedure

Adding Devices
Procedure

Hard Disk Status

Adding Device Classes

Unify the classification of devices of the same type or hard disks with the same business logic
in cluster nodes, customize device classes according to storage needs, and allocate different
storage contents to different types of storage disks.

Notes

Adding device classes is not supported when the cluster type is Extend.

Procedure

1. Enter Administrator.

Adding Devices/Device Classes - Alauda Container Platform

2. In the left navigation bar, click Storage Management > Distributed Storage.
3. Click the Device Classes tab.

4. Click Add Device Class and configure the relevant parameters according to the

following instructions.

Parameter Description

The name of the device class. The following names cannot be

Name _

used for the device class: hdd , ssd, nvme .

Select Blank Disks or Unformatted Disk Partitions in the

node.

¢ When the switch for all empty devices is turned on: add all
SITELE empty devices under the node to this device class;
Devices

¢ When the switch for all empty devices is turned off:
manually enter the names of the empty devices under the

node, for example, sda .

Adding Devices

Map available hard disks to storage devices for usage and management.

Note: Once hard disks are added as storage devices, updating or removing them through the
interface is not supported.

Procedure

1. Enter Administrator.
2. In the left navigation bar, click Storage Management > Distributed Storage.

3. Click the Device Classes tab.

Adding Devices/Device Classes - Alauda Container Platform

4. On the right side of the device class, click Add Device, and configure the relevant

parameters according to the following instructions.

Parameter Description

Select the type of node where the hard disk you want to add as
a storage device is located.

Node Type .
Compute Node: A node that has not added storage devices.

Storage Node: A node that has added storage devices.

Select the method to add hard disks as storage devices.

All Empty Disks: Choose to add all unpartitioned mounted

disks in the node as storage devices.

Specified Disks: Choose to add some disks in the node as
Add Type

storage devices, including empty disks or already partitioned

mounted disks.

When the node type is Storage Node, only Specified Disks

can be selected.

When the add type is Specified Disks, enter the names of all
the hard disks to be added as storage devices, such as sda ,

. sdb . After entering each hard disk name, press Enter to
Specified

Disks

confirm.

Note: It is recommended to use the entire hard disk as storage

devices rather than partitions on the hard disk.

5. Click Add.

Hard Disk Status

* Normal: The corresponding status of the storage device is IN+UP.
+ Abnormal: The corresponding status of the storage device is IN+DOWN.

o Offline: The corresponding status of the storage device is OUT+UP.

Adding Devices/Device Classes - Alauda Container Platform

¢ Fault: The corresponding status of the storage device is OUT+DOWN.

Monitoring and Alerts - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring and Alerts

Distributed storage provides out-of-the-box monitoring metrics collection and alert notification
capabilities. Once the monitoring and alerting features are enabled, you can monitor and alert
on aspects such as the storage cluster, storage performance, and storage components, with

support for configuring notification strategies.

The intuitively presented monitoring data can be used to provide decision support for
operation and maintenance inspections or performance tuning, and a comprehensive alert

and notification mechanism will help ensure the stable operation of the storage system.

Tip: If the monitoring and alerting features were not enabled when creating the distributed
storage, you will need to find alternative solutions for storage monitoring and alerting. For
example, manually configure monitoring dashboards and alert strategies in the operation and
maintenance center.

TOC

Monitoring
Storage Overview
Performance Monitoring
Component Monitoring
Alerts
Configure Notifications
Handling Alerts

Fault Review

Monitoring and Alerts - Alauda Container Platform

Monitoring

The platform automatically collects common monitoring metrics for distributed storage, such
as read and write performance, CPU and memory usage. In the Storage Management >
Distributed Storage section under the Monitoring tab, you can view real-time monitoring

data for these metrics.

Storage Overview

Monitor the health status of the storage, physical capacity usage, and the number of active
OSD/MON components. In the event of abnormal storage status, you can check the reason

for the alert.

Performance Monitoring
Monitor read and write bandwidth and read and write IOPS from three dimensions: cluster,

storage pool, and OSD. Additionally, you can monitor read and write latency specifically for
OSD.

Component Monitoring

Monitor CPU usage and memory usage of components such as MON and OSD.

Alerts

The platform has a set of default alert strategies enabled. Once a resource becomes
abnormal or monitoring data reaches the warning state, alerts will be automatically triggered.
The preset strategies are sufficient for common operational needs such as component and

cluster status alerts, device capacity alerts, and user data alerts.

Configure Notifications

To receive alerts in a timely manner, it is recommended that you set up notification strategies

in the operation and maintenance center: send alert information via email, SMS, and other

Monitoring and Alerts - Alauda Container Platform

means to relevant personnel, reminding them to take necessary measures to resolve issues
or prevent failures. Click Alert Configuration to switch to the operation and maintenance

center to complete the operation, refer to Create Alert Strategies,

Handling Alerts

« If the storage cluster is monitored to be in a Warning state, it means an alert has been
triggered, and the related anomaly may lead to a failure. Please promptly check the details

in Real-time Alerts and identify and troubleshoot the fault based on the cause.

« If the storage cluster is monitored to be in a Failure state, it indicates that the storage
cluster is unable to operate normally. Please locate the issue immediately and carry out

troubleshooting.

The table below indicates the meanings of the alert levels used by the preset strategies, which

can serve as a reference for you when establishing alert handling principles.

Alert)
Meaning
Level
] The resource corresponding to the alert rule has failed, causing platform
Disaster o . o .
service interruption, data loss, and significant impact.
The resource corresponding to the alert rule has known issues, which may
Severe lead to platform function failures and affect the normal operation of
services.
) The resource corresponding to the alert rule faces operational risks, which
Warning

could affect the normal operation of services if not dealt with promptly.

Fault Review

The Alert History records all alerts that have been triggered and no longer require action.
When conducting a fault review using the alert history, to effectively achieve the purpose of

summarizing experiences, you may need to answer the following questions.

» What were the specific abnormal conditions at the time of the incident.

Monitoring and Alerts - Alauda Container Platform

¢ [s there a pattern to a certain alert that appears repeatedly in the alert list, Can it be

prevented before it occurs next time.

¢ Does the timeline show a surge in alerts during a certain period; was it caused by force

majeure or an operational accident, Is there a need to adjust the operational plan.

How To - Alauda Container Platform

Menu

How To

Configure a Dedicated Cluster for Distributed Storage

Configure a Dedicated Cluster for Distributed Storage
Architecture

Infrastructure requirements

Procedure

Follow-up Actions

Cleanup Distributed Storage

Cleanup Distributed Storage
Precautions

Procedure

Disaster Recovery

File Storage Disaster Recovery
Terminology
Backup Configuration

Failover

How To - Alauda Container Platform

Block Storage Disaster Recovery
Terminology
Backup Configuration

Failover

Object Storage Disaster Recovery
Terminology

Prerequisites

Procedures

Failover

Update the optimization parameters

Update the optimization parameters

Procedure

Create ceph object store user

Create ceph object store user
Prerequisites

Procedure

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Menu ON THIS PAGE >

Configure a Dedicated Cluster for

Distributed Storage

Dedicated cluster deployment refers to using an independent cluster to deploy the platform's
distributed storage, where other business clusters within the platform access and utilize the
storage services it provides through integration.

To ensure the performance and stability of the platform's distributed storage, only the
platform's core components and distributed storage components are deployed in the
dedicated storage cluster, avoiding the co-location of other business workloads. This
separated deployment approach is the recommended best practice for the platform's
distributed storage.

TOC

Architecture
Infrastructure requirements
Platform requirements
Cluster requirements
Resource requirements
Storage device requirements
Storage device type requirements
Capacity planning
Capacity monitoring and expansion
Network requirements
Network Isolation
Network interface speed requirements

Procedure

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Deploy Operator

Create ceph cluster

Create storage pools
Create file pool
Create block pool
Create object pool

Follow-up Actions

Architecture

Storage-Compute Separation Architecture

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Business Cluster Business Cluster

csi csi
provisioner provisioner

csi plugin csi plugin csi plugin csi plugin csi plugin csi plugin

Storage Cluster

Rook Operator

EN El ENEl KN K

Infrastructure requirements

Platform requirements

Supported in version 3.18 and later.

Cluster requirements

It is recommended to use bare-metal clusters as dedicated storage clusters.

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Resource requirements

Please refer to the Core Concepts for the components of distributed storage deployment.

Each component has distinct CPU and memory requirements. The recommended

configurations are as follows:

Process CPU Memory

MON 2c 3Gi
MGR 3c 4Gi
MDS 3c 8Gi
RGW 2C 4Gi
OSD 4c 8Gi

A cluster typically runs:

3 MON

2 MGR

multiple OSD

2 MDS (if using CephFS)

2 RGW (if using CephObjectStorage)

Based on the component distribution, the following per-node resource recommendations

apply:

CPU Memory

16¢ + (4c * OSD per node) 20Gi + (8Gi * OSD per node)

Storage device requirements

It is recommended to deploy 12 or fewer storage devices per node. This helps restrict the

recovery time following a node failure.

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Storage device type requirements

It is recommended to use enterprise SSDs with a capacity of 10TiB or smaller per device, and

ensure all disks are identical in size and type.

Capacity planning

Before deployment, storage capacity must be planned according to specific business
requirements. By default, the distributed storage system employs a 3-replica redundancy
strategy. Therefore, the usable capacity is calculated by dividing the total raw storage capacity

(from all storage devices) by 3.

Example for 30(N) nodes (replica count = 3), The usable capacity scenario is as follows:

Storage Storage device Total Usable
device size(D) per node(M) Capacity(DMN) Capacity(DMNI/3)
0.5TiB 3 45 TiB 15TiB
2TiB 6 360 TiB 120 TiB
4TiB 9 1080 TiB 360 TiB

Capacity monitoring and expansion
1. Proactive Capacity Planning

Always ensure usable storage capacity exceeds consumption. If storage is fully exhausted,
recovery requires manual intervention and cannot be resolved by simply deleting or

migrating data.
2. Capacity Alerts
The cluster triggers alerts at two thresholds:

o 80% utilization ("near full"): Proactively free up space or scale out the cluster.

o 95% utilization ("full"): Storage is fully exhausted, and standard commands cannot free

space. Contact platform support immediately.

Always address alerts promptly and monitor storage usage regularly to avoid outages.

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

3. Scaling Recommendations

e Avoid: Adding storage devices to existing nodes.
« Recommended: Scale out by adding new storage nodes.

* Requirement: New nodes must use storage devices identical in size, type, and quantity

to existing nodes.

Network requirements

Distributed storage must utilize HostNetwork.

Network Isolation

The network is categorized into two types:

e Public Network: Used for client-to-storage component interactions (e.g., /0O requests).

+ Cluster Network: Dedicated to data replication between replicas and data rebalancing

(e.g., recovery).
To ensure service quality and performance stability:

1. For Dedicated Storage Clusters:

Reserve two network interfaces on each host:

¢ Public Network: For client and component communication.

o Cluster Network: For internal replication and rebalancing traffic.

2. For Business Clusters:

Reserve one network interface on each host to access the storage Public Network.

Example Network Isolation Configuration

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Switch/VLAN

Sotrage Cluster Business Cluster

Public network
Switch/VLAN

Cluster network

00]

I] I
torage node2 Storage node3

L
Storage node1

Internal network Internal network

SDN switch SDN switch

Network interface speed requirements
1. Storage Nodes

e Public Network and Cluster Network require 10GbE or higher network interfaces.
2. Business Cluster Nodes

e The network interface used to access the storage Public Network must be 10GbE or

higher.

Procedure

1) Deploy Operator
1. Access Administrator.
2. In the left sidebar, click Storage Management > Distributed Storage.
3. Click Create Now.

4. In the Deploy Operator wizard page, click the Deploy Operator button at the bottom
right.

* When the page automatically advances to the next step, it indicates that the

Operator has been deployed successfully.

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

« If the deployment fails, please refer to the prompt on the interface Clean Up
Deployed Information and Retry, and redeploy the Operator; if you wish to return
to the distributed storage selection page, click Application Store, first uninstall the
resources in the already deployed rook-operator, and then uninstall rook-

operator.
2) Create ceph cluster

Execute commands on the control node of the storage cluster.
» Click to view

Parameters:

» public network cidr: CIDR of the storage Public Network (e.g., - 10.0.1.0/24).
 cluster network cidr: CIDR of the storage Cluster Network (e.g., - 10.0.2.0/24).

o storage devices: Specify the storage devices to be utilized by the distributed
storage.

Example Formatting:

nodes:
- name: storage-node-01
devices:
- name: /dev/disk/by-id/wwn-0x5000ccad1dd27d60
useAllDevices: false
- name: storage-node-02
devices:
- name: sdb
- name: sdc
useAllDevices: false
- name: storage-node-03
devices:
- name: sdb
- name: sdc

useAllDevices: false

Tip

Configure a Dedicated Cluster for Distributed Storage - Alauda Container Platform

Uses the disk's World Wide Name (WWN) for stable naming, which avoids reliance on

volatile device paths like sdb that may change after reboots.

3/ Create storage pools

Three storage pool types are available. Select and create the appropriate ones based

on your business requirements.

Create file pool

Execute commands on the control node of the storage cluster.

» Click to view

Create block pool

Execute commands on the control node of the storage cluster.

» Click to view

Create object pool

Execute commands on the control node of the storage cluster.

» Click to view

Follow-up Actions

When other clusters need to utilize the distributed storage service, refer to the following
guidelines.

Accessing Storage Services

Cleanup Distributed Storage - Alauda Container Platform

Menu ON THIS PAGE >

Cleanup Distributed Storage

If you need to delete a rook-ceph cluster and redeploy a new one, you should follow this

document to sequentially clean the distributed storage service related resources.

TOC

Precautions
Procedure
Deleting VolumeSnapshotClasses
Deleting StorageClasses
Deleting Storage Pools
Deleting ceph-cluster
Deleting rook-operator
Execute Cleanup Script
Cleanup Script
Precautions

Procedure

Precautions

Before cleaning up rook-ceph, ensure that all PVC and PV resources using Ceph storage
have been deleted.

Cleanup Distributed Storage - Alauda Container Platform

Procedure

1) Deleting VolumeSnapshotClasses

1. Delete the VolumeSnapshotClasses.

kubectl delete VolumeSnapshot(Class csi-cephfs-snapshotclass csi-rbd-

snapshotclass
2. Verify that the VolumeSnapshotClasses have been cleaned up.

kubectl get VolumeSnapshotClass | grep csi-cephfs-snapshotclass
kubectl get VolumeSnapshotClass | grep csi-rbd-snapshotclass

When there is no output from these commands, it indicates that the cleanup is

complete.

2) Deleting StorageClasses

1. Go to Administrator.
2. In the left navigation bar, click Storage Management > Storage Classes.

3. Click : > Delete, and delete all StorageClasses that use Ceph storage solutions.

3 Deleting Storage Pools

This step should be performed after the previous step has been completed.
1. Go to Administrator.
2. In the left navigation bar, click Storage Management > Distributed Storage.

3. In the Storage Pool Area, click : > Delete, and delete all storage pools one by one.
When the storage pool area shows No Storage Pools, it indicates successful

deletion of the storage pools.

Cleanup Distributed Storage - Alauda Container Platform

4. (Optional) If the cluster mode is Extended, you also need to execute the following
command on the Master node of the cluster to delete the created built-in storage

pools.
kubectl -n rook-ceph delete cephblockpool -1 cpaas.io/builtin=true
Response:

cephblockpool.ceph.rook.io "builtin-mgr" deleted

4 Deleting ceph-cluster

This step should be performed after the previous step has been completed.

1. Update the ceph-cluster and enable the cleanup policy.

kubectl -n rook-ceph patch cephcluster ceph-cluster --type merge -p '{"spec":
{"cleanupPolicy":{"confirmation":"yes-really-destroy-data"}}}'

2. Delete the ceph-cluster.
kubectl delete cephcluster ceph-cluster -n rook-ceph
3. Delete the jobs that perform the cleanup.
kubectl delete jobs --all -n rook-ceph
4. Verify that the ceph-cluster cleanup is complete.
kubectl get cephcluster -n rook-ceph | grep ceph-cluster

When this command has no output, it indicates that the cleanup is complete.

> Deleting rook-operator

Cleanup Distributed Storage - Alauda Container Platform

This step should be performed after the previous step has been completed.

1. Delete the rook-operator.

kubectl -n rook-ceph delete subscriptions.operators.coreos.com rook-operator

2. Verify that the rook-operator cleanup is complete.

kubectl get subscriptions.operators.coreos.com -n rook-ceph | grep rook-operator

When this command has no output, it indicates that the cleanup is complete.

3. Verify that all ConfigMaps have been cleaned up.

kubectl get configmap -n rook-ceph

When this command has no output, it indicates that cleanup is complete. If there are
output results, execute the following command to clean up, replacing <configmap>

with the actual output.

kubectl -n rook-ceph patch configmap <configmap> --type merge -p '{"metadata":
{"finalizers": [1}}'

4. Verify that all Secrets have been cleaned up.

kubectl get secret -n rook-ceph

When this command has no output, it indicates that cleanup is complete. If there are
output results, execute the following command to clean up, replacing <secret> with

the actual output.

kubectl -n rook-ceph patch secrets <secret> --type merge -p '{"metadata":
{"finalizers": []}}'

5. Verify that the rook-ceph cleanup is complete.

Cleanup Distributed Storage - Alauda Container Platform

kubectl get all -n rook-ceph

When this command has no output, it indicates that cleanup is complete.
6 Execute Cleanup Script

Once the above steps are completed, it indicates that Kubernetes and Ceph related
resources have been cleared. Next, you need to clean up any residuals of rook-ceph on
the host.

Cleanup Script

The contents of the cleanup script clean-rook.sh are as follows:

» Click to view

Precautions

The cleanup script depends on the sgdisk command, so please make sure to have it
installed before executing the cleanup script.

e Installation command for Ubuntu: sudo apt install gdisk

¢ Installation command for RedHat or CentOS: sudo yum install gdisk

Procedure

1. Execute the cleanup script clean-rook.sh on each machine in the business

cluster where distributed storage is deployed.

sh clean-rook.sh /dev/[device_name]

Example: sh clean-rook.sh /dev/vdb

When executed, you will be prompted to confirm whether to really clear the

device. If confirmed, enter yes to begin cleaning.

Cleanup Distributed Storage - Alauda Container Platform

2. Use the 1sblk -f command to check the partition information. When the
FSTYPE column in the output of this command is empty, it indicates that the

cleanup is complete.

Disaster Recovery - Alauda Container Platform

Menu

Disaster Recovery

File Storage Disaster Recovery
Terminology
Backup Configuration

Failover

Block Storage Disaster Recovery
Terminology
Backup Configuration

Failover

Object Storage Disaster Recovery
Terminology

Prerequisites

Procedures

Failover

File Storage Disaster Recovery - Alauda Container Platform

Menu

File Storage Disaster Recovery

CephFS Mirror is a feature of the Ceph file system designed to enable asynchronous data
replication between different Ceph clusters, thereby providing cross-cluster disaster recovery.
Its core functionality is to synchronize data in a primary-backup mode, ensuring that the

backup cluster can rapidly take over services if the primary cluster experiences a failure.

WARNING

o CephFS Mirror performs incremental synchronization based on snapshots, with the default
snapshot interval set to once per hour (configurable). The differential data between the primary

and backup clusters typically consists of the amount of data written within one snapshot cycle.

o CephFS Mirror solely provides the backup of underlying storage data and is incapable of
handling the backup of Kubernetes resources. Please utilize the platform's Backup and

Restore feature to back up PVC and PV resources in conjunction.

TOC

Terminology
Term Explanation
Primary Cluster The cluster currently providing storage services.

Secondary Cluster Cluster for backup.

File Storage Disaster Recovery - Alauda Container Platform

Backup Configuration

Prerequisites

¢ Prepare two clusters suitable for deploying Alauda Build of Rook-Ceph, namely the Primary
cluster and the Secondary cluster, ensuring that the networks between the clusters are

interconnected.
¢ The platform versions used by both clusters (v3.12 and above) must be consistent.
o Create a distributed storage service in both the Primary and Secondary clusters

« Create file storage pools with the same name in both the Primary and Secondary clusters.

Procedure

1) Enable the Mirror for the file storage pool in the

Secondary cluster
Execute the following commands on the Control node of the Secondary cluster:

Command Line Output

kubectl -n rook-ceph patch cephfilesystem <fs-name> \

--type merge -p '{"spec":{"mirroring":{"enabled": true}}}'

Parameters:

o <fs-name> : Name of the file storage pool.

2) Obtain the Peer Token

This token is the key credential for establishing a mirroring connection between the two

clusters.

Execute the following commands on the Control node of the Secondary cluster:

Command Output

File Storage Disaster Recovery - Alauda Container Platform

kubectl get secret -n rook-ceph \

$(kubectl -n rook-ceph get cephfilesystem <fs-name> -o
jsonpath="{.status.info.fsMirrorBootstrapPeerSecretName}') \
-0 jsonpath="{.data.token}"' | base64 -d

Parameters:

e <fs-name> : Name of the file storage pool.

Create Peer Secret in the Primary cluster

After obtaining the Peer Token from the Secondary cluster, it is necessary to create a

Peer Secret in the Primary cluster.

Execute the following commands on the Control node of the Primary cluster:

Command Output

kubectl -n rook-ceph create secret generic fs-secondary-site-secret \
--from-literal=token=<token> \

--from-literal=pool=<fs-name>

Parameters:

e <token> : The token obtained in step 2.

o <fs-name> :Name of the file storage pool.

Enable the Mirror for the file storage pool in the

Primary cluster

Execute the following commands on the Control node of the Primary cluster:

Command Sample Output

File Storage Disaster Recovery - Alauda Container Platform

kubectl -n rook-ceph patch cephfilesystem <fs-name> --type merge -p \
q
"spec": {
"mirroring": {
"enabled": true,
"peers": {
"secretNames": [

"fs-secondary-site-secret"

]
i
"snapshotSchedules": [
{
"path": "/",
"interval": "<schedule-interval>"
}
I
"snapshotRetention": [
{
"path": "/",
"duration": "<retention-policy>"
}
1
}
}
}
Parameters:

e <fs-name> :Name of the file storage pool.
e <schedule-interval> :Snapshot execution cycle. For details, please refer to the official
documentation .

e <retention-policy> : Snapshot retention policy. details, please refer to the official

documentation .
Deploy the Mirror Daemon in the Primary cluster

The Mirror Daemon continuously monitors data changes in the file storage pool (with
Mirror enabled). It periodically creates snapshots and pushes the snapshot differences

to the Secondary cluster over the network.

https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-schedules
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies
https://docs.ceph.com/en/latest/cephfs/snap-schedule/#add-and-remove-retention-policies

File Storage Disaster Recovery - Alauda Container Platform

Execute the following commands on the Control node of the Primary cluster:

Command Output

cat << EOF | kubectl apply -f -
apiVersion: ceph.rook.io/v1
kind: CephFilesystemMirror
metadata:
name: cephfs-mirror
namespace: rook-ceph
spec:
placement:
tolerations:
- key: NoSchedule
operator: Exists
resources:
limits:
cpu: "500m"
memory: "1Gi"
requests:
cpu: "500m"
memory: "1Gi"
priorityClassName: system-node-critical
EOF

Failover

In the event of a Primary cluster failure, you can directly continue using CephFS in the

Secondary cluster.

Prerequisites

The Kubernetes resources of the Primary cluster have been backed up and restored to the

Secondary cluster, including PVCs, PVs, and workloads of the applications.

Block Storage Disaster Recovery - Alauda Container Platform

Menu ON THIS PAGE >

Block Storage Disaster Recovery

RBD Mirror is a feature of Ceph Block Storage (RBD) that enables asynchronous data
replication between different Ceph clusters, providing cross-cluster Disaster Recovery (DR).
Its core function is to synchronize data in a primary-backup mode, ensuring rapid service

takeover by the backup cluster when the primary cluster fails.

WARNING

« RBD Mirror performs incremental synchronization based on snapshots, with a default snapshot
interval of once per hour (configurable). The differential data between primary and backup

clusters typically corresponds to writes within one snapshot cycle.

« RBD Mirror only provides underlying storage data backup and does not handle Kubernetes
resource backups. Please use the platform's Backup and Restore feature to back up PVC and

PV resources.

TOC

Terminology
Backup Configuration
Prerequisites
Procedures
Enable Mirroring for Primary Cluster's Block Storage Pool
Retrieve Peer Token
Create Peer Token Secret in Secondary Cluster
Enable Mirroring for Secondary Cluster's Block Storage Pool

Deploy Mirror Daemon in Secondary Cluster

Block Storage Disaster Recovery - Alauda Container Platform

Verify Mirror Status
Enable Replication Sidecar
Create VolumeReplicationClass
Enable Mirror for PVC

Failover
Prerequisites
Procedures

413 VolumeReplication

Terminology
Term Explanation
Primary Cluster The cluster currently providing storage services.

Secondary Cluster The standby cluster used for backup purposes.

Backup Configuration

Prerequisites

* Prepare two clusters capable of deploying Alauda Build of Rook-Ceph: a Primary cluster

and a Secondary cluster, with network connectivity between them.
¢ Both clusters must run the same platform version (v3.12 or later).
o Create distributed storage services in both Primary and Secondary clusters.
+ Create block storage pools with identical names in both Primary and Secondary clusters.
* Please ensure that the following three images have been uploaded to the platform's private

image repository:

e quay.io/csiaddons/k8s-controller:v@.5.0

Block Storage Disaster Recovery - Alauda Container Platform
e quay.io/csiaddons/k8s-sidecar:v@.8.0

e quay.io/brancz/kube-rbac-proxy:v0.8.0

Procedures

1) Enable Mirroring for Primary Cluster's Block Storage

Pool

Execute the following command on the Primary cluster's Control node:

Command

kubectl -n rook-ceph patch cephblockpool <block-pool-name> \

n n

--type merge -p '{"spec":{"mirroring":{"enabled":true, "mode":"image"}}}'

Output

cephblockpool.ceph.rook.io/<block-pool-name> patched

Parameters:
e <block-pool-name> : Block storage pool name.
2) Retrieve Peer Token

This token serves as the critical credential for establishing mirror connections between

clusters.

Execute the following command on the Primary cluster's Control node:

Command

kubectl get secret -n rook-ceph \

$(kubectl get cephblockpool.ceph.rook.io <block-pool-name> -n rook-ceph -o
jsonpath="{.status.info.rbdMirrorBootstrapPeerSecretName}') \

-0 jsonpath="{.data.token}"' | base64 -d

Block Storage Disaster Recovery - Alauda Container Platform

Output

eyJmc21kIjoiMjc2N2I3ZmEtY2YwY100N. . .

Parameters:

e <block-pool-name> : Block storage pool name.
3/ Create Peer Token Secret in Secondary Cluster

Execute the following command on the Secondary cluster's Control node:

Command

kubectl -n rook-ceph create secret generic rbd-primary-site-secret \
--from-literal=token=<token> \

--from-literal=pool=<block-pool-name>

Output

secret/rbd-primary-site-secret created

Parameters:

o <token> : Token obtained from Step 2.

e <block-pool-name> : Block storage pool name.

4/ Enable Mirroring for Secondary Cluster's Block

Storage Pool

7£ Execute the following command on the Secondary cluster's Control node:

Command

Block Storage Disaster Recovery - Alauda Container Platform

kubectl -n rook-ceph patch cephblockpool <block-pool-name> --type merge -p \
q
"spec": {
"mirroring": {

"enabled": true,

"mode": "image",

"peers": {

"secretNames": [
"rbd-primary-site-secret"

Output

cephblockpool.ceph.rook.io/<block-pool-name> patched

Parameters:

e <block-pool-name> : Block storage pool name.

Deploy Mirror Daemon in Secondary Cluster

This daemon is responsible for monitoring and managing RBD mirror synchronization

processes, including data synchronization and error handling.

Execute the following command on the Secondary cluster's Control node:

Command

Block Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: ceph.rook.io/v1
kind: CephRBDMirror
metadata:

name: rbd-mirror

namespace: rook-ceph
spec:

count: 1
EOF

Output

cephrbdmirror.ceph.rook.io/rbd-mirror created

6 Verify Mirror Status

Execute the following command on the Secondary cluster's Control node:

Command

kubectl get cephblockpools.ceph.rook.io <block-pool-name> -n rook-ceph -o

jsonpath="{.status.mirroringStatus.summary}’

Output

{"daemon_health":"0K", "health":"0K", "image_health":"0K", "states":{}}

Parameters:

e <block-pool-name> : Block storage pool name.

7’ Enable Replication Sidecar

This feature enables efficient data replication and synchronization without interrupting

primary application operations, enhancing system reliability and availability.

1. Deploy csiaddons-controller

Block Storage Disaster Recovery - Alauda Container Platform

Execute the following commands on both Primary and Secondary clusters' Control

nodes:

» Click to view

Parameters:
e <registry> : Registry address of platform.
2. Enable csi sidecar

Execute the following commands on both Primary and Secondary clusters' Control

nodes:

kubectl patch cm rook-ceph-operator-config -n rook-ceph --type json --patch \
[
{
"op": "add",
"path": "/data/CSI_ENABLE_OMAP_GENERATOR",

"value": "true"

¥

{
"op": "add",
"path": "/data/CSI_ENABLE_CSIADDONS",
"value": "true"

}

Create VolumeReplicationClass

Execute the following commands on both Primary and Secondary clusters' Control

nodes:

Command

Block Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: replication.storage.openshift.io/v1alphal
kind: VolumeReplicationClass
metadata:
name: rbd-volumereplicationclass
Spec:
provisioner: rook-ceph.rbd.csi.ceph.com
parameters:
mirroringMode: snapshot
schedulingInterval: "<scheduling-interval>" 0
replication.storage.openshift.io/replication-secret-name: rook-csi-rbd-
provisioner
replication.storage.openshift.io/replication-secret-namespace: rook-ceph
EOF

Output

volumereplicationclass.replication.storage.openshift.io/rbd-volumereplicationclass

created

1. <scheduling-interval> : Scheduling interval, (e.g., schedulinginterval: "1h" indicates

execution every 1 hour.)
Enable Mirror for PVC

Execute the following command on the Primary cluster's Control node:

Command

Block Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: replication.storage.openshift.io/v1alphal
kind: VolumeReplication
metadata:
name: <vr—name>0
namespace: <namespace> 0
Spec:
autoResync: false
volumeReplicationClass: rbd-volumereplicationclass
replicationState: primary
dataSource:
apiGroup: ""
kind: PersistentVolumeClaim
name: <pvc—name>e
EOF

Output

volumereplication.replication.storage.openshift.io/<mirror-pvc-name> created

1. <vr-name> : The name of the VolumeReplication object, recommended to be the same

as the PVC name.

2. <namespace> : The namespace to which the VolumeReplication belongs, which must

be the same as the PVC namespace.

3. <pvc-name> : The name of the PVC for which Mirror needs to be enabled.

Note After enabling, the RBD image in the Secondary cluster becomes read-only.

Failover

When the Primary cluster fails, it is necessary to switch the primary-backup relationship of the

RBD image.

Prerequisites

Block Storage Disaster Recovery - Alauda Container Platform

o The Kubernetes resources of the Primary cluster have been backed up and restored to the

Secondary cluster, including PVCs, PVs, application workloads, etc.

Procedures

417 VolumeReplication

Execute the following command on the Secondary cluster's Control node:

cat << EOF | kubectl apply -f -
apiVersion: replication.storage.openshift.io/v1alphal
kind: VolumeReplication
metadata:
name: <vr-name> (@)
namespace: <namespace> 0
spec:
autoResync: false
dataSource:
apiGroup: ""
kind: PersistentVolumeClaim
name: <mirror—pvc—name>°
replicationHandle: ""
replicationState: primary
volumeReplicationClass: rbd-volumereplicationclass

EOF

1. <vr-name> : VolumeReplication name.
2. <namespace> : PVC namespace.

3. <mirror-pvc-name> : The name of the PVC.

Note After creation, the RBD image on the Secondary cluster becomes primary and is

writable.

Object Storage Disaster Recovery - Alauda Container Platform

Menu ON THIS PAGE >

Object Storage Disaster Recovery

The Ceph RGW Multi-Site feature is a cross-cluster asynchronous data replication mechanism
designed to synchronize object storage data between geographically distributed Ceph
clusters, providing High Availability (HA) and Disaster Recovery (DR) capabilities.

TOC

Terminology
Prerequisites
Procedures
Create Object Storage in Primary Cluster
Configure External Access for Primary Zone
Obtain access-key and secret-key
Create Secondary Zone and Configure Realm Sync
Configure External Access for Secondary Zone
Check Ceph Object Storage Synchronization Status
Failover

Procedures

Terminology

Object Storage Disaster Recovery - Alauda Container Platform

Term Explanation
Primary o _
The cluster currently providing storage services.
Cluster
Secondary
The standby cluster used for backup purposes.
Cluster

+ Realm: The highest-level logical grouping in Ceph object storage.
It represents a complete object storage namespace, typically used
for multi-site replication and synchronization. A Realm can span
different geographical locations or data centers.

Realm, . o - .
o ZoneGroup: A logical grouping within a Realm, containing multiple
ZoneGroup, o o
. Zones. ZoneGroups enable data synchronization and replication
one
across Zones, usually within the same geographical region.

e Zone: Alogical grouping within a ZoneGroup that physically stores
data. Each Zone manages and stores objects independently and
can have its own data/metadata pool configurations.

Prerequisites

* Prepare two clusters available for deploying Rook-Ceph (Primary and Secondary clusters)

with network connectivity between them.
¢ Both clusters must use the same platform version (v3.12 or later).
e Ensure no Ceph object storage is deployed on either the Primary or Secondary cluster.

+ Refer to the Create Storage Service documentation to deploy Operator and create clusters.
Do not proceed with object storage pool creation via the wizard after cluster creation.

Instead, use CLI tools for configuration as described below.

Procedures

This guide provides a synchronization solution between two Zones in the same ZoneGroup.

Object Storage Disaster Recovery - Alauda Container Platform

1) Create Object Storage in Primary Cluster

This step creates the Realm, ZoneGroup, Primary Zone, and Primary Zone's gateway
resources.

Execute the following commands on the Control node of the Primary cluster:

1. Set Parameters

export REALM_NAME=<realm-name>

export ZONE_GROUP_NAME=<zonegroup-name>

export PRIMARY_ZONE_NAME=<primary-zone-name>

export PRIMARY_OBJECT_STORE_NAME=<primary-object-store-name>

Parameters description:

e <realm-name> : Realm name.
e <zonegroup-name> : ZoneGroup name.
e <primary-zone-name> : Primary Zone name.

e <primary-object-store-name> : Gateway name.

2. Create Object Storage

Command

Object Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: ceph.rook.io/v1
kind: CephObjectRealm
metadata:

name: $REALM_NAME

namespace: rook-ceph

apiVersion: ceph.rook.io/v1
kind: CephObjectZoneGroup
metadata:

name: $ZONE_GROUP_NAME

namespace: rook-ceph
spec:

realm: $REALM_ NAME

apiVersion: ceph.rook.io/v1
kind: CephObjectZone
metadata:
name: $PRIMARY_ZONE_NAME
namespace: rook-ceph
spec:
zoneGroup: $ZONE_GROUP_NAME
metadataPool:
failureDomain: host
replicated:
size: 3
requireSafeReplicaSize: true
dataPool:
failureDomain: host
replicated:
size: 3
requireSafeReplicaSize: true
parameters:
compression_mode: none

preservePoolsOnDelete: false

apiVersion: ceph.rook.io/v1
kind: CephObjectStore
metadata:

Object Storage Disaster Recovery - Alauda Container Platform

name: $PRIMARY_OBJECT_STORE_NAME
namespace: rook-ceph
spec:
gateway:
port: 7480
instances: 2
zone:
name: $PRIMARY_ZONE_NAME
EOF

Output

cephobjectrealm.ceph.rook.io/<realm-name> created
cephobjectzonegroup.ceph.rook.io/<zonegroup-name> created
cephobjectzone.ceph.rook.io/<primary-zone-name> created

cephobjectstore.ceph.rook.io/<primary-object-store-name> created

Configure External Access for Primary Zone

1. Obtain the UID of the ObjectStore

export PRIMARY_OBJECT_STORE_UID=$(kubectl -n rook-ceph get cephobjectstore
$PRIMARY_OBJECT_STORE_NAME -0 jsonpath='{.metadata.uid}")

2. Create an external access Service

Object Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
name: rook-ceph-rgw-$PRIMARY_OBJECT_STORE_NAME-external
namespace: rook-ceph
labels:
app: rook-ceph-rgw
rook_cluster: rook-ceph
rook_object_store: $PRIMARY_OBJECT_STORE_NAME
ownerReferences:
- apiVersion: ceph.rook.io/v1
kind: CephObjectStore
name: $PRIMARY_OBJECT_STORE_NAME
uid: $PRIMARY_OBJECT_STORE_UID
spec:
ports:
- name: rgw
port: 7480
targetPort: 7480
protocol: TCP
selector:
app: rook-ceph-rgw
rook_cluster: rook-ceph
rook_object_store: $PRIMARY_OBJECT_STORE_NAME
sessionAffinity: None
type: NodePort
EOF

3. Add external endpoints to the CephObjectZone.

IP=$(kubectl get nodes -1 'node-role.kubernetes.io/control-plane' -o
jsonpath="{.items[0@].status.addresses[?(@.type=="InternalIP")].address}"' | cut -
d" " -f1 | tr -d "\n")

PORT=$(kubectl -n rook-ceph get svc rook-ceph-rgw-$PRIMARY_OBJECT_STORE_NAME-
external -o jsonpath="{.spec.ports[@].nodePort}")

ENDPOINT=http://$IP:$PORT

kubectl -n rook-ceph patch cephobjectzone $PRIMARY_ZONE_NAME --type merge -p "
{\"spec\":{\"customEndpoints\":[\"$ENDPOINT\"]}}"

Object Storage Disaster Recovery - Alauda Container Platform

3) Obtain access-key and secret-key

kubectl -n rook-ceph get secrets $REALM_NAME-keys -o jsonpath='{.data.access-key}'
kubectl -n rook-ceph get secrets $REALM_NAME-keys -o jsonpath='{.data.secret-key}'

4/ Create Secondary Zone and Configure Realm Sync

This section explains how to create the Secondary Zone and configure synchronization

by pulling Realm information from the Primary cluster.
Execute the following commands on the Control node of the Secondary cluster:

1. Set Parameters

export REALM_NAME=<realm-name>

export ZONE_GROUP_NAME=<zonegroup-name>

export PRIMARY_ZONE_NAME=<primary-zone-name>

export PRIMARY_OBJECT_STORE_NAME=<primary-object-store-name>

export REALM_ENDPOINT=<realm-endpoint>
export ACCESS_KEY=<access-key>

export SECRET_KEY=<secret-key>

export SECONDARY_ZONE_NAME=<secondary-zone-name>
export SECONDARY_OBJECT_STORE_NAME=<secondary-object-store-name>

Parameters description:

<realm-name> : Realm name.

e <zone-group-name> : ZoneGroup name.

e <primary-zone-name> : Primary Zone name.

e <primary-object-store-name> . Gateway name.

e <realm-endpoint> : External address obtained from the Primary cluster.
e <access-key> : AK obtain from here.

o <secret-key> : SK obtain from here.

e <secondary-zone-name> : Secondary Zone name.

Object Storage Disaster Recovery - Alauda Container Platform

e <secondary-object-store-name> : Secondary Gateway name.

2. Create Secondary Zone and Configure Realm Sync

Object Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: v1
kind: Secret
metadata:
name: $REALM_NAME-keys
namespace: rook-ceph
data:
access-key: $ACCESS_KEY
secret-key: $SECRET_KEY

apiVersion: ceph.rook.io/v1
kind: CephObjectRealm
metadata:

name: $REALM_NAME

namespace: rook-ceph
spec:

pull:

endpoint: $REALM_ENDPOINT

apiVersion: ceph.rook.io/v1
kind: CephObjectZoneGroup
metadata:

name: $ZONE_GROUP_NAME

namespace: rook-ceph
spec:

realm: $REALM_NAME

apiVersion: ceph.rook.io/v1
kind: CephObjectZone
metadata:
name: $SECONDARY_ZONE_NAME
namespace: rook-ceph
spec:
zoneGroup: $ZONE_GROUP_NAME
metadataPool:
failureDomain: host
replicated:
size: 3
requireSafeReplicaSize: true
dataPool:

Object Storage Disaster Recovery - Alauda Container Platform

failureDomain: host
replicated:
size: 3
requireSafeReplicaSize: true
preservePoolsOnDelete: false

apiVersion: ceph.rook.io/v1
kind: CephObjectStore
metadata:
name: $SECONDARY_OBJECT_STORE_NAME
namespace: rook-ceph
spec:
gateway:
port: 7480
instances: 2
zone:
name: $SECONDARY_ZONE_NAME
EOF

Configure External Access for Secondary Zone

1. Obtain UID of Secondary Gateway

export SECONDARY_OBJECT_STORE_UID=$(kubectl -n rook-ceph get cephobjectstore
$SECONDARY_OBJECT_STORE_NAME -0 jsonpath='{.metadata.uid}")

2. Create an external access Service

Object Storage Disaster Recovery - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: v1
kind: Service
metadata:
name: rook-ceph-rgw-$SECONDARY_OBJECT_STORE_NAME-external
namespace: rook-ceph
labels:
app: rook-ceph-rgw
rook_cluster: rook-ceph
rook_object_store: $SECONDARY_OBJECT_STORE_NAME
ownerReferences:
- apiVersion: ceph.rook.io/v1
kind: CephObjectStore
name: $SECONDARY_OBJECT_STORE_NAME
uid: $SECONDARY_OBJECT_STORE_UID
spec:
ports:
- name: rgw
port: 7480
targetPort: 7480
protocol: TCP
selector:
app: rook-ceph-rgw
rook_cluster: rook-ceph
rook_object_store: $SECONDARY_OBJECT_STORE_NAME
sessionAffinity: None
type: NodePort
EOF

3. Add external endpoints to the Secondary CephObjectZone

IP=$(kubectl get nodes -1 'node-role.kubernetes.io/control-plane' -o
jsonpath="{.items[0@].status.addresses[?(@.type=="InternalIP")].address}"' | cut -
d" " -f1 | tr -d "\n")

PORT=$(kubectl -n rook-ceph get svc rook-ceph-rgw-$SECONDARY_OBJECT_STORE_NAME-
external -o jsonpath="{.spec.ports[@].nodePort}")

ENDPOINT=http://$IP:$PORT

kubectl -n rook-ceph patch cephobjectzone $SECONDARY_ZONE_NAME --type merge -p "
{\"spec\":{\"customEndpoints\":[\"$ENDPOINT\"]}}"

Object Storage Disaster Recovery - Alauda Container Platform

6 Check Ceph Object Storage Synchronization Status

Execute the following commands in the rook-ceph-tools pod of the Primary cluster

kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get po -1 app=rook-ceph-tools

-0 jsonpath="'{range .items[*]}{@.metadata.name}') -- bash

radosgw-admin sync status

Output example

realm d713eec8-6ec4-4f71-9eaf-379be18e551b (india)
zonegroup ccf9e@b2-df95-4e0a-8933-3b17bb64c52b7 (shared)
zone 04daab24-5bbd-4c17-9cf5-b1981fd7ff79 (primary)
current time 2022-09-15T06:53:527
zonegroup features enabled: resharding
metadata sync no sync (zone is master)
data sync source: 596319d2-4ffe-4977-ace1-8dd1790db9fb (secondary)
syncing
full sync: 0/128 shards
incremental sync: 128/128 shards

data is caught up with source

data is caught up with source means sync status is healthy.

Failover

When the Primary cluster fails, it is necessary to promote the Secondary Zone to the Primary
Zone. After the switch, the Secondary Zone's gateway can continue to provide object storage

services.

Procedures

Execute the following commands in the rook-ceph-tools pod of the Secondary cluster

Object Storage Disaster Recovery - Alauda Container Platform
kubectl -n rook-ceph exec -it $(kubectl -n rook-ceph get po -1 app=rook-ceph-tools -o
jsonpath="{range .items[*]}{@.metadata.name}"') -- bash

radosgw-admin zone modify --rgw-realm=<realm-name> --rgw-zonegroup=<zone-group-name> --
rgw-zone=<secondary-zone-name> --master

Parameters

e <realm-name> : Realm name.
e <zone-group-name> : Zone Group name.

e <secondary-zone-name> : Secondary Zone name.

Update the optimization parameters - Alauda Container Platform

Menu ON THIS PAGE >

Update the optimization parameters

The platform supports filling in optimization parameters in Ceph configuration file format when
creating a storage cluster, but does not provide a way to modify them through the interface

after creation. You need to manually update them according to the following steps.

TOC

Procedure

Procedure

1. First, update the storage optimization parameters to the Configmap named rook-config-
override-user , replace the .data.config field, and set the value of the

.metadata.annotations[rook.cpaas.io/need-sync] field to true . For example:

Update the optimization parameters - Alauda Container Platform

apiVersion: v1
data:
config: |
[global]
mon_memory_target=1073741824
mds_cache_memory_1limit=2147483648
osd_memory_target=4147483648
kind: ConfigMap
metadata:
annotations:
cpaas.io/creator: admin
cpaas.io/updated-at: "2022-03-01T12:24:047"
rook.cpaas.io/need-sync: "true"
rook.cpaas.io/sync-status: synced
creationTimestamp: "2022-03-01T12:24:047"
finalizers:
- rook.cpaas.io/config-merge
name: rook-config-override-user
namespace: default
resourceVersion: "38816864"
uid: ce3a8f3e-6453-4bdd-bff0-e16cf7d5d5fa

2. Execute ceph tell [mon|osd|mgr|mds|rgw].* config set [key] [value] in the Pod of rook-

ceph-tools to apply the configuration in real time.

3. To start the Pod of tools, edit the ClusterServiceVersion (CSV) under the rook-ceph

namespace and set the replicas value of rook-ceph-tools in the Deployments section to 1.

Create ceph object store user - Alauda Container Platform

Menu

Create ceph object store user

ON THIS PAGE >

We allows creation and customization of object store users through the custom resource

definitions (CRDS).

TOC

Prerequisites
Procedure
Create User
Allow create user in other namespaces

Get user information

Prerequisites

¢ The object storage pool has been created

Procedure

1) Create User

Execute commands on the control node of the cluster.

Create ceph object store user - Alauda Container Platform

cat << EOF | kubectl apply -f -
apiVersion: ceph.rook.io/v1
kind: CephObjectStoreUser
metadata:
name: <name>
namespace: <namespace>
spec:
store: <ObjectStore>
displayName: <displayName>
clusterNamespace: <clusterNamespace>
quotas:
maxBuckets: -1
maxSize: -1

maxObjects: -1

capabilities:
user: "*"
bucket: "*"
EOF
Parameters

Parameters Description

name The name of the object store user to create.

hamespace The namespace of the object store user is created.

displayName The display name.
The namespace where the parent CephCluster and
CephObjectStore are found. If not specified, the user must
be in the same namespace as the cluster and object store.

clusterNamespace _ _
To enable this feature, the CephObjectStore

allowUsersInNamespaces must include the namespace of
this user.
) The object store in which the user will be created. This

ObjectStore _
matches the name of the object storage pool.

quotas optional

This represents quota limitation can be set on the user.

Create ceph object store user - Alauda Container Platform

Parameters Description

e maxBuckets: The maximum bucket limit for the user. Set to
-1 indicates no restriction.

e maxSize: Maximum size limit of all objects across all the
user's buckets. Setto -1 indicates no restriction.

e maxObjects: Maximum number of objects across all the

user's buckets. Setto -1 indicates no restriction.

optional
Ceph allows users to be given additional permissions. This
setting can currently only be used during the creation of
the object store user. If a user's capabilities need modified,
the user must be deleted and re-created. See the Ceph
docs ~ for more info. We supports adding read , write ,
read,write , or * permissions for the following resources:

e user

e buckets

e usage

capabilities e metadata

e ZONe

e roles

* info

e amz-cache

* bilog

e mdlog

o datalog

e user-policy

e odic-provider

o ratelimit

Allow create user in other namespaces

If a CephObjectStoreUser is created in a namespace other than the Rook cluster
namespace, the namespace must be added to this list of allowed namespaces, or
specify "*" to allow all namespaces. This is useful for applications that need object store

credentials to be created in their own namespace.

https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities
https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities
https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities
https://docs.ceph.com/en/latest/radosgw/admin/#add-remove-admin-capabilities

Create ceph object store user - Alauda Container Platform

Execute commands on the control node of the cluster.

kubectl -n rook-ceph patch cephobjectstore <ObjectStore> --type merge -p '{"spec":

{"allowUsersInNamespaces":["*"]}}"

Get user information

Execute commands on the control node of the cluster.

user_secret=$(kubectl -n <namespace> get cephobjectstoreuser <user-name> -o

jsonpath="{.status.info.secretName}")

kubectl -n <namespace> get secret $user_secret -o jsonpath="{.data.AccessKey}' |

baseb4 --decode

kubectl -n <namespace> get secret $user_secret -o jsonpath='{.data.SecretKey}' |

baseb4 --decode

MinlO Object Storage - Alauda Container Platform

Menu

MinlO Object Storage

Introduction

Introduction

Install

Install
Prerequisites
Procedure

Related Information

Architecture

Architecture

Core Components:
Deployment Architecture:
Multi-Pool Expansion:

Conclusion:

MinlO Object Storage - Alauda Container Platform

Concepts

Core Concepts

Guides

Adding a Storage Pool
Notes

Procedure

Monitoring & Alerts
Monitoring

Alerts

How To

Data Disaster Recovery
Applicable Scenarios
Terminology

Prerequisites

Operation Steps

Related Operations

Introduction - Alauda Container Platform

Menu

Introduction

Alauda Container Platform (ACP) Object Storage with MinlO is an object storage service
licensed under the Apache License v2.0. It is compatible with the Amazon S3 cloud storage
service interface, making it particularly suitable for storing large volumes of unstructured data,
such as images, videos, log files, backup data, and container/virtual machine images. An

object file can range in size from a few KB to a maximum of 5T.
The main advantages are as follows:

o Simplicity: Minimalism is the guiding design principle of MinlO, allowing for out-of-the-box
functionality. Simplicity reduces the chances of errors, increases uptime, and enhances

reliability while also boosting performance.

» High Performance: MinlO is a world leader in object storage. On standard hardware,

read/write speeds can reach up to 183 GB/sec and 171 GB/sec.

¢ Scalability: Multiple small to medium-sized, easily manageable clusters can be
established, supporting the aggregation of multiple clusters into a super-large resource
pool across data centers, rather than directly adopting a large-scale, centrally managed

distributed cluster.

e Cloud-Native: Compliant with all native cloud computing architectures and build
processes, and incorporates the latest technologies and concepts in cloud computing,

making object storage more user-friendly for Kubernetes.

Install - Alauda Container Platform

Menu ON THIS PAGE >

Install

Alauda Container Platform (ACP) Object Storage with MinlO is an object storage service
based on the Apache License v2.0 open-source protocol. It is compatible with the Amazon S3
cloud storage service interface and is ideal for storing large volumes of unstructured data,
such as images, videos, log files, backup data, and container/virtual machine images. An

object file can be of any size, ranging from a few kilobytes to a maximum of 5 terabytes.

TOC

Prerequisites
Procedure
Deploy Alauda Container Platform Storage Essentials
Deploy Operator
Create Cluster
Create Bucket
Upload/Download Files
Related Information
Redundancy Factor Mapping Table

Storage Pool Overview

Prerequisites

* MinlO is built on underlying storage, so please ensure that a storage class has been

created in the current cluster. TopoLVM is recommended.

Install - Alauda Container Platform

o Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

» Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

o Download the Alauda Container Platform (ACP) Object Storage with MinlO installation

package corresponding to your platform architecture.

« Upload the Alauda Container Platform (ACP) Object Storage with MinlO installation

package using the Upload Packages mechanism.

Procedure

1) Deploy Alauda Container Platform Storage Essentials

1. Login, go to the Administrator page.

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter

Channel

Installation
Mode

Installation

Place

Upgrade
Strategy

Recommended Configuration
The default channel is stable .

Cluster : All namespaces in the cluster share a single
Operator instance for creation and management, resulting in

lower resource usage.

Select Recommended , Namespace only support acp-storage.

Manual : When there is a new version in the Operator Hub,

manual confirmation is required to upgrade the Operator to

Install - Alauda Container Platform

Parameter Recommended Configuration

the latest version.

2) Deploy Operator

1. In the left navigation bar, click Storage > Object Storage.

2. Click Configure Now.

3. On the Deploy MinlO Operator wizard page, click Deploy Operator at the bottom
right.

* Once the page automatically proceeds to the next step, it indicates that the

Operator deployment was successful.

« If the deployment fails, refer to the interface prompts to Clean Up Deployed

Information and Retry, and redeploy the Operator.

3 Create Cluster

1. On the Create Cluster wizard page, configure the basic information.

Parameter Description

Access key ID. A unique identifier associated with a private
Access

K access key; used with the access key ID to encrypt and sign
ey

requests.

Private access key used in conjunction with the access key ID
Secret Key to encrypt and sign requests, identify the sender, and prevent

request tampering.

2. In the Resource Configuration area, configure specifications as per the following
instructions.

Parameter

Small

scale

Medium

scale

Large

scale

Custom

Install - Alauda Container Platform

Description

Suitable for handling up to 100,000 objects, supporting
concurrent access of no more than 50 in test environments or
data backup scenarios. The CPU resource request and limit are
set to 2 cores by default, and the memory resource request and

limit are set to 4 Gi.

Designed for enterprise-level applications requiring storage of
1,000,000 objects and capable of handling up to 200 concurrent
requests. The CPU resource request and limit are set to 4 cores
by default, and the memory resource request and limit are set to
8 Gi.

Designed for group users with storage needs of 10,000,000
objects and handling up to 500 concurrent requests, suitable for
high-load scenarios. The CPU resource request and limit are set
to 8 cores by default, and the memory resource request and

limit are set to 16 Gi.

Offers flexible configuration options for professional users with
specific needs, ensuring precise matching of service scale and
performance requirements. Note: When configuring custom

specifications, ensure that:

e The CPU resource request is greater than 100 m.

e The memory resource request is greater than or equal to 2
Gi.

e The CPU and memory resource limits are greater than or

equal to the resource requests.

3. In the Storage Pool area, configure related information as per the following

instructions.

Parameter

Instance

Number

Single
Storage

Volume

Underlying

Storage

Storage

Nodes

Install - Alauda Container Platform
Description

Increasing the number of instances in a MinlO cluster can
significantly enhance system performance and reliability,
ensuring high data availability. However, too many instances

can lead to the following issues:

e Increased resource consumption.

 If a node hosts multiple instances, a node failure may
cause multiple instances to go offline simultaneously,

reducing overall cluster reliability.
Note:

e The minimum number of instances that can be entered is
4.

« If the number of instances is greater than 16, the entered

value must be a multiple of 8.

e When adding additional storage pools, the number of
instances must be no less than the first storage pool's

number of instances.

Capacity of a single storage volume PVC. Each storage
service manages one storage volume. After entering the
capacity of a single storage volume, the platform will
automatically calculate the storage pool capacity and other
information, which can be viewed in the Storage Pool

Overview.

The underlying storage used by the MinlO cluster. Please
select a storage class that has been created in the current

cluster. TopoLVM is recommended.

Select the storage nodes required by the MinlO cluster. It is
recommended to use 4-16 storage nodes. The platform will

deploy one storage service for each selected storage node.

Install - Alauda Container Platform

Parameter Description

Storage N _
Pool For specific parameters and calculation formulas, please refer
00
) to Storage Pool Overview.
Overview

4. In the Access Configuration area, configure related information as per the following

instructions.

Parameter Description
External When enabled, it supports cross-cluster access to MinlO; when
Access disabled, it only supports access within the cluster.

Supports HTTP and HTTPS; when selecting HTTPS, you need
to enter the Domain and import the Public Key and Private
Key of the domain name certificate.

Note:

» When the access protocol is HTTP, pods within the cluster
can access MinlO directly via the obtained IP or domain
name without configuring IP address and domain name
mapping; nodes within the cluster can access MinlO directly

Protocol via the obtained IP, and if domain name access is required,
manual configuration of IP address and domain name
mapping is needed; external access can be done directly via
the obtained IP.

* When the access protocol is HTTPS, access to MinlO via IP
is not possible both inside and outside the cluster. Manual
configuration of the mapping between the obtained IP
address and the domain name entered during cluster

creation is required to access normally via the domain name.

Access

e NodePort: Opens a fixed port on each compute node host to
Method

expose the service externally. When configuring domain
name access, it is recommended to use VIP for domain

name resolution to ensure high availability.

Install - Alauda Container Platform

Parameter Description

o LoadBalancer: Uses a load balancer to forward traffic to
backend services. Before use, please ensure that the
MetalLB plugin is deployed in the current cluster and there

are available IPs in the external address pool.

5. Click Create Cluster at the bottom right.

o Once the page automatically proceeds to Cluster Details, it indicates that the

cluster creation was successful.

o If the cluster remains in the creation process, you can click Cancel. After
cancellation, the deployed cluster information will be cleaned up, and you can

return to the cluster creation page to recreate the cluster.

Create Bucket

Log in to the control node of the cluster and use the command to create a bucket.

1. On the cluster details page, click the Access Method tab to view the MinlO access

address, or use the following command to query.

kubectl get svc -n <tenant ns> minio | grep -w minio | awk '{print $3}'

Note:

e Replace tenant ns with the actual namespace minio-system .

o Example: kubectl get svc -n minio-system minio | grep -w minio | awk '{print

$3}'

2. Obtain the mc command.

wget https://dl.min.io/client/mc/release/linux-amd64/mc -0 /bin/mc && chmod a+x
/bin/mc

3. Configure MinlO cluster alias.

Install - Alauda Container Platform

o |PVv4:

mc --insecure alias set <minio cluster alias> http://<minio endpoint>:<port>

<accessKey> <secretKey>

e |PV6:

mc --insecure alias set <minio cluster alias> http://[<minio endpoint>]:<port>
<accessKey> <secretKey>

¢ Domain Name:

mc --insecure alias set <minio cluster alias> http://<domain name>:<port>
<accessKey> <secretKey>
mc --insecure alias set <minio cluster alias> https://<domain name>:<port>

<accessKey> <secretKey>

Note:

o Enter the IP address obtained in step 1 for minio endpoint .

o Enter the Access Key and Secret Key created during cluster creation for

accesskey and secretKey .

o Configuration examples:

e IPv4: mc --insecure alias set myminio http://12.4.121.250:80 07Apples@
07Apples@

e IPVv6: mc --insecure alias set myminio http://[2004::192:168:143:117]:80
07Apples@ 07Apples@

e Domain Name: mc --insecure alias set myminio http://test.minio.alauda:80
07Apples@ 07Apples@ or mc --insecure alias set myminio

https://test.minio.alauda:443 07Apples@ @7Apples@

4. Create a bucket.

mc --insecure mb <minio cluster alias>/<bucket name>

Install - Alauda Container Platform

>/ Upload/Download Files

Once the bucket is created, you can use the command line to upload files to the bucket
or download existing files from the bucket.

1. Create a file for upload testing. This step can be skipped if uploading an existing file.
touch <file name>

2. Upload files to the bucket.
mc --insecure cp <file name> <minio cluster alias>/<bucket name>

3. View files in the bucket to confirm successful upload.
mc --insecure 1ls <minio cluster alias>/<bucket name>

4. Delete uploaded files.

mc --insecure rm <minio cluster alias>/<bucket name>/<file name>

Related Information

Redundancy Factor Mapping Table

Note: When adding additional storage pools, the redundancy factor needs to be calculated

based on the number of instances in the first storage pool.

Instance Number Redundancy Factor

Install - Alauda Container Platform
Instance Number Redundancy Factor

>=8 4

Storage Pool Overview

Storage Pool Overview Parameter Calculation Formula

When the Instance Number < 16,
Usable C " Usable Capacity = Single Storage
sable Capaci
pactty Volume Capacity x (Instance

Number - Redundancy Factor).

When the number of instances > 16, Usable
Capacity = Single Storage Volume Capacity x
(Instance Number - 4 x (Instance Number + 15) /
16). The result of "4 x (Instance Number + 15) /

16" should be rounded down.

Total Capacity = Instance
Total Capacity Numbers x Single Storage

Volume Capacity

When the Instance Number > 2 x
]] Redundancy Factor, Number of
Number of failover storage services tolerated .
Tolerable Fault Storage Services

= Redundancy Factor.

When the Instance Number = 2 x Redundancy
Factor, the number of tolerable fault storage

services = Redundancy Factor - 1

Architecture - Alauda Container Platform

= Menu ON THIS PAGE >

Architecture

Alauda Container Platform (ACP) Object Storage with MinlO is a high-performance,
distributed object storage system designed for cloud-native environments. It leverages
erasure coding, distributed storage pools, and high-availability mechanisms to ensure data
durability and scalability in Kubernetes.

TOC

Core Components:
Deployment Architecture:
Multi-Pool Expansion:

Conclusion:

Core Components:

e MinlO Operator: Manages the deployment and upgrade of MinlO clusters.
* MinlO Peer: Configures and manages MinlO's site replication functionality.

e MinlO Pool: The core component of MinlO, responsible for handling object storage

requests. Each pool corresponds to a StatefulSet and provides storage resources.

Deployment Architecture:

Architecture - Alauda Container Platform

Deploying MinlO in Kubernetes requires defining a MinlO tenant, specifying the number of
server instances (pods) and the number of volumes (drives) per instance. Each MinlO server
is managed via a StatefulSet, ensuring stable identities and persistent storage. MinlO
aggregates all drives into one or more erasure sets and applies erasure coding for fault

tolerance.

Multi-Pool Expansion:

MinlO clusters can scale by adding additional server pools, each with its own erasure set.
While this provides greater storage capacity, it introduces complexity in cluster maintenance
and reduces overall cluster reliability. A failure in any server pool can render the entire MinlO

cluster unavailable, even if other pools remain operational.

Conclusion:

MinlO is a highly scalable, cloud-native object storage solution that balances performance and
reliability. When architecting a MinlO cluster, it is crucial to carefully design storage pools,
configure erasure coding settings, and implement high-availability strategies to ensure data

integrity and operational stability in Kubernetes environments.

Concepts - Alauda Container Platform

Menu

Concepts

Core Concepts

Core Concepts - Alauda Container Platform

Menu

Core Concepts

« Erasure Coding (EC): MinlO employs Reed-Solomon erasure coding to break objects into
data and parity shards, distributing them across multiple drives to ensure fault tolerance.
For example, in a 16-drive setup, data can be split into 12 data shards and 4 parity shards,

allowing the system to rebuild data even if up to 4 drives falil.

e Server Pools & Erasure Sets: MinlO Server Pools are logical groupings of storage
resources, where each pool consists of multiple nodes sharing storage and compute
capabilities. Within a pool, drives are automatically organized into one or more Erasure
Sets.

« Data Distribution: When an object is stored, it is split into data and parity shards and

distributed across different drives within an erasure set.

e Redundancy Model: Erasure sets form the fundamental unit of data redundancy,

ensuring resiliency based on configured data-to-parity shard ratios.

o Scalability: A single MinlO storage pool can contain multiple erasure sets, and new data

is always written to the erasure set with the most available capacity.

Menu

Guides

Adding a Storage Pool
Notes

Procedure

Monitoring & Alerts
Monitoring

Alerts

Guides - Alauda Container Platform

Adding a Storage Pool - Alauda Container Platform

= Menu ON THIS PAGE >

Adding a Storage Pool

A storage pool refers to a logical partition used for storing data. Different types of underlying
storage can be used simultaneously within the same storage cluster to meet various business
needs.

In addition to the storage pools created during the configuration of object storage, you can
also add additional storage pools.

TOC

Notes

Procedure

Notes

Adding a storage pool will cause a brief interruption in the MinlO service, but it will
automatically recover to a normal state afterward.

Procedure

1. Go to Administrator.

2. Click on Storage Management > Object Storage in the left navigation bar.

Adding a Storage Pool - Alauda Container Platform

3. Under the Cluster Information tab, scroll down to the Storage Pool section and click Add

Storage Pool.

4. Configure the relevant parameters according to the instructions below.

Parameter Description

The underlying storage used by the MinlO cluster. Please select an

Underlying o _ _
existing storage class created in the current cluster, with TopoLVM
Storage
recommended.
Select the storage nodes required for the MinlO cluster. It is
recommended to use 4-16 storage nodes; the platform will deploy 1
Storage)
- storage service for each selected storage node.
odes
Note: When using 3 storage nodes, to ensure reliability, 2 storage
services will be deployed for each node.
The capacity of a single storage volume PVC. Each storage service
Single manages 1 storage volume, and once the capacity of a single
Storage storage volume is entered, the platform will automatically calculate
Volume the storage pool capacity and other information, which can be

viewed in the Storage Pool Overview.

5. Click Confirm.

Monitoring & Alerts - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring & Alerts

The object storage system comes with built-in monitoring and alerting capabilities, covering
storage clusters, service health, and resource utilization. It also supports configurable
notification policies to keep your operations team informed. Real-time monitoring insights help
with performance tuning and operational decision-making, while automated alerts ensure the

stability and reliability of your storage system.

TOC

Monitoring
Storage Overview
Cluster Monitoring
Object Monitoring

Alerts
Configuring Notifications
Handling Alerts

Post-Incident Analysis

Monitoring

By default, the platform collects key metrics on storage clusters and service status. You can
access real-time monitoring data under Storage Management > Object Storage >
Monitoring.

Monitoring & Alerts - Alauda Container Platform

Storage Overview

This section provides a high-level view of storage system health, service status, and raw
capacity utilization. If the storage status is abnormal, alert details will indicate the root cause,

helping you diagnose and resolve issues efficiently.

Cluster Monitoring

Track raw capacity usage and I/O performance trends across your storage cluster. This helps

identify storage bottlenecks, optimize resource allocation, and ensure smooth data operations.

Object Monitoring

Monitor access patterns, including total request counts and failed requests. These insights
help analyze storage workload and detect anomalies that may indicate service disruptions or

security risks.

Alerts

The platform comes with pre-configured alerting policies to detect anomalies and trigger
notifications when predefined thresholds are reached. These built-in rules cover essential

areas such as component health, capacity usage, and user data integrity.

Configuring Notifications

To ensure timely responses, configure notification policies in the Operations Center. Alerts
can be sent via email, SMS, or other channels to notify the right personnel. Fine-tune your

settings to match your organization's incident response workflow.

Handling Alerts

o Cluster in "Alert" state: A warning has been triggered, and system stability may be at risk.
Check the Live Alerts section for details, identify the root cause, and take corrective

actions.

Monitoring & Alerts - Alauda Container Platform

+ Cluster in "Failure" state: The storage cluster is no longer operational. Immediate

intervention is required to restore service availability.

The platform categorizes alerts into different severity levels, helping teams prioritize incident

response:
Severity Description
Critical A system failure impacting business operations or causing data loss.
ritica
Immediate action required.
vof A known issue that may lead to functionality breakdowns, potentially
ajor : . .
disrupting business processes.
] A potential risk that, if unaddressed, could impact performance or
Warning

availability.

Post-Incident Analysis

The Alert History logs all past incidents, providing valuable data for post-mortem analysis
and system improvements. When reviewing past alerts, consider the following:
1. What were the exact symptoms when the incident occurred?

2. Are certain alerts repeating over time? Can proactive measures be taken to prevent

recurrence?
3. Did a specific time window show a spike in alerts? Was it caused by an operational issue or

an external factor? Should the response strategy be adjusted?

By continuously analyzing alert patterns and refining monitoring strategies, teams can

enhance system resilience, minimize downtime, and ensure seamless storage operations.

Menu

How To

Data Disaster Recovery
Applicable Scenarios
Terminology

Prerequisites

Operation Steps

Related Operations

How To - Alauda Container Platform

Data Disaster Recovery - Alauda Container Platform

Menu ON THIS PAGE >

Data Disaster Recovery

MinlO supports the establishment of a disaster recovery center through remote data backup
or active-active deployment to ensure that original data is not lost or damaged in the event of
a disaster, thereby guaranteeing data security and reliability.

TOC

Applicable Scenarios
Terminology
Prerequisites
Operation Steps

Related Operations

Applicable Scenarios

+ Hot Backup: There are two data centers in the same city or in different locations, one
primary and one backup. Data is replicated in real-time from the primary cluster to the
backup cluster to ensure data consistency. When a disaster occurs in the primary cluster,
business traffic can be seamlessly switched to the backup cluster to ensure business

continuity.

o City-Level Active-Active: In a city-level active-active (multi-cluster) architecture, there are
two data centers located in different clusters. Both data centers are active and can receive
business traffic simultaneously. When one data center encounters a disaster, business can

continue running uninterrupted in the other data center.

Data Disaster Recovery - Alauda Container Platform

Terminology

Primary Cluster: Refers to the cluster that is currently active and processing business
requests. It is the source of the data or the initiator of operations. In the primary cluster,
data is created, modified, or updated, and business traffic is first sent to this cluster for

processing.

Target Cluster: Refers to the cluster that receives data replication, migration, or failover. It
is typically in a backup or standby state, waiting to receive data from the primary cluster or
take over business traffic. When the primary cluster fails or needs to switch, the target
cluster will receive data copies from the primary cluster or take over business traffic to
ensure business continuity. In an active-active scenario, both clusters can serve as each

other's target cluster.

Prerequisites

Both the primary cluster and the target cluster must have external network access enabled.

For specific configuration methods, please refer to Create Object Storage.

The primary cluster must use the LoadBalancer access method, while the target cluster is

recommended to support load balancing functionality.

The primary cluster and the target cluster must use the same access protocaol, i.e., either
both use HTTP or both use HTTPS.

When using the HTTPS protocol, both the primary cluster and the target cluster need to

configure DNS resolution for themselves and each other.

When using the HTTPS protocol, it is recommended that both the primary cluster and the
target cluster use CA-signed certificates to ensure secure and trusted communication; if
self-signed certificates are used, both parties must import and trust each other's self-signed

certificates to establish a secure HTTPS connection successfully.

Operation Steps

Data Disaster Recovery - Alauda Container Platform

1. Enter Administrator.

2. In the left navigation bar, click Storage Management > Object Storage.

3. On the Data Disaster Recovery tab, click Add Target Cluster.

4. Configure the relevant parameters for the target cluster according to the following

instructions.

Parameter Description
Access The external access address of the target cluster, starting with http://
Address or https://.

The Access Key ID for the target cluster. A unique identifier
Access Key associated with the private access key; used in conjunction with the

private access key to encrypt requests.

The private access key used in conjunction with the Access Key ID
Secret Key to encrypt requests, identify the sender, and prevent request

modification.

5. Click Add.

o Upon successful addition, you will be able to view the status of the target cluster and the

synchronization status between clusters.

Parameter Description
Cluster The status of the target cluster, including Healthy, Abnormal, or
Status Unknown.
Buckets The number of buckets pending synchronization and those

already synchronized.

¢ In hot backup scenarios, pending synchronization refers to
the number of buckets that the primary cluster needs to

synchronize with the target cluster.

« In city-level active-active scenarios, pending synchronization

refers to the total number of buckets that need to be

Data Disaster Recovery - Alauda Container Platform

Parameter Description

synchronized between the primary and target clusters.

The number of objects that failed to synchronize in the bucket.
Objects Note: This number is for reference only, as MinlO synchronizes

related file configurations during synchronization.
The network ingress and egress rate of the primary cluster.

Network ¢ In hot backup scenarios, the network ingress rate is always 0.

Traffic Rate « In city-level active-active scenarios, both ingress and egress

rates have data.

« If the addition of the target cluster fails, you can click Re-add to clear the cluster
information and return to the add target cluster page, where you can re-add the target

cluster.

Related Operations

When disaster recovery is no longer needed, you can click Remove Target Cluster.
Removing the target cluster does not delete the data that has been synchronized; if any data
is currently synchronizing, it will be interrupted.

TopoLVM Local Storage - Alauda Container Platform

TopoLVM Local Storage

Introduction

Introduction

Install

Install
Prerequisites

Procedure

Guides

Device Management
Prerequisites

Adding Devices

TopoLVM Local Storage - Alauda Container Platform

Monitoring and Alerting
Monitoring

Alerts

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero
Prerequisites
Limitations

Procedure

Introduction - Alauda Container Platform

Menu

Introduction

TopoLVM is a Container Storage Interface (CSI) plugin designed specifically for Kubernetes,

aimed at providing efficient and convenient management of local storage volumes.

Key features and advantages:

Local Volume Management: TopoLVM focuses on managing local storage devices (such
as disks and SSDs) on Kubernetes nodes. Compared to traditional network storage, local

volumes offer lower latency and higher performance.

Topology Awareness: TopoLVM can recognize the topology of Kubernetes clusters (e.g.,
nodes, availability zones), allowing it to automatically allocate storage volumes to the same

node based on the actual scheduling location of Pods, further optimizing performance.

Dynamic Volume Allocation: TopoLVM supports dynamically creating, deleting, and
resizing storage volumes without manual intervention, significantly simplifying operations

and reducing complexity.

Deep Integration with Kubernetes: As a CSI plugin, TopoLVM seamlessly integrates with
Kubernetes storage management APIs, enabling users to manage local volumes directly

through standard Kubernetes resource objects such as PersistentVolumeClaims.

In summary, TopoLVM addresses common challenges associated with using local storage in

Kubernetes, such as manual management, lack of topology awareness, and insufficient

dynamic allocation capabilities. It provides a more efficient and user-friendly solution for

applications requiring high-performance local storage, such as databases and caches.

Install - Alauda Container Platform

Menu ON THIS PAGE >

Install

Local storage is a software-defined server-local storage solution that provides a simple, easy-
to-maintain, and high-performance local storage service capability. Based on the community's
TopoLVM solution, it achieves persistent volume orchestration management of local storage
through the system's LVM approach.

TOC

Prerequisites
Procedure
Deploy Alauda Container Platform Storage Essentials

Deploy Storage

Prerequisites

e The lvm2 package must be installed on each node of the storage cluster. If not installed,

please execute the yum install -y lvm2 command on the node.

 Download the Alauda Container Platform Storage Essentials installation package

corresponding to your platform architecture.

+ Upload the Alauda Container Platform Storage Essentials installation package using

the Upload Packages mechanism.

 Download the Alauda Build of TopoLVM installation package corresponding to your

platform architecture.

Install - Alauda Container Platform

e Upload the Alauda Build of TopoLVM installation package using the Upload Packages

mechanism.

Procedure

1) Deploy Alauda Container Platform Storage Essentials

1. Login, go to the Administrator page.
2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Container Platform Storage Essentials, click Install, and navigate

to the Install Alauda Container Platform Storage Essentials page.

Configuration Parameters:

Parameter Recommended Configuration
Channel The default channel is stable .

Cluster : All namespaces in the cluster share a single

Installation ' . o
. Operator instance for creation and management, resulting in
ode

lower resource usage.
Installation

Select Recommended , Namespace only support acp-storage.
Place

Manual : When there is a new version in the Operator Hub,
Upgrade o .

manual confirmation is required to upgrade the Operator to
Strategy

the latest version.

2 Deploy Storage
1. Go to Administrator.

2. In the left navigation bar, click Storage Management > Local Storage.

3. Click Configure Now.

Install - Alauda Container Platform

4. On the Install Operator wizard page, click Start Deployment.

e When the page automatically proceeds to the next step, it indicates that the

Operator deployment was successful.

 If the deployment fails, please refer to the interface prompts for resolution. Then

click Clean Up and redeploy the Operator.

5. On the Create Cluster wizard page, add devices.

Parameter

Select
Node

Device

Class

Device

Type

Storage

Device

Snapshot

Description

Node with at least 1 bare disk.

Each device class corresponds to a set of storage devices with
the same characteristics. It is recommended to fill in the name

based on the disk nature, such as hdd, ssd.

Only disk types are supported.

For example, /dev/sda. If there are multiple disks, they can be

added one by one.

When enabled, it supports creating PVC snapshots and using
the snapshots to configure new PVCs for quick backup and
recovery of business data.

If the snapshot was not enabled when creating the storage,
you can still enable it as needed in the Operations section of
the storage cluster details page.

Note: Before use, please ensure that the Volume Snapshot

Plugin has been deployed for the current cluster.

o Click Next. When the page automatically proceeds to the next step, it indicates

that the cluster deployment was successful.

« If the creation fails, please refer to the interface prompts and clean up resources in

a timely manner.

http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html
http://localhost:4173/container_platform/configure/storage/functions/snapshot_con.html

Parameter

Name

Display

Name

Device

Class

File System

Recycling
Policy

Access
Mode

Allocation

Project

Install - Alauda Container Platform

6. On the Create Storage Class wizard page, configure the relevant parameters.

Description

The name of the storage class. It must be unique within the

current cluster.

A name that helps you identify or filter, such as a Chinese

description of the storage class.

The device class is a way to categorize storage devices in

TopoLVM. Each device class corresponds to a set of storage
devices with the same characteristics. If there are no special
requirements, you can use the Auto-Allocated device class

from the cluster.

- XFS is a high-performance journaling file system adept at
handling parallel I/O workloads, supporting large file processing
and providing smooth data transfer.

- EXT4 is a journaling file system in Linux, offering extent file
storage methods and supporting large file processing. The file
system can reach a capacity of 1 EiB, with a maximum

supported file size of 16 TiB.

The recycling policy for persistent volumes.

- Delete: When the persistent volume claim is deleted, the
bound persistent volume is also deleted.

- Retain: Even if the persistent volume claim is deleted, the

bound persistent volume will still be retained.

ReadWriteOnce (RWO): Can be mounted by a single node in

read-write mode.

This type of persistent volume claim can only be created in
specific projects.

If no project is assigned temporarily, the project can also be
Updated later.

7. Click Next and walit for the resource creation to complete.

Install - Alauda Container Platform

Menu

Guides

Device Management
Prerequisites

Adding Devices

Monitoring and Alerting
Monitoring

Alerts

Guides - Alauda Container Platform

Device Management - Alauda Container Platform

Menu

Device Management

ON THIS PAGE >

Whether for initial deployment or resource expansion, you need to map the available disks on

the node into storage devices for use and management.

Storage devices with similar characteristics are typically used in a centralized manner, and

these devices are categorized under Device Classes in local storage. Using device classes is

equivalent to directly using disks, ensuring zero loss and high performance, while also

reducing application awareness and dependence on specific devices.

Storage Node

Device Class SSD Device Class HDD Device Class ...

- - =

/dev/sda /dev/sda /dev/sda

Iy

/dev/sdb /dev/sdN /dev/sdb /dev/sdN /dev/sdb /dev/sdN

TOC

Prerequisites

Adding Devices

Prerequisites

Device Management - Alauda Container Platform

¢ Atleast 1 Device Class (deviceClasses.classes) must have been added when creating the

local storage cluster, including devices in the device class.

e There must be at least 1 bare disk present on the node.

Adding Devices

1. Go to Administrator.
2. In the left navigation bar, click Storage Management > Local Storage.
3. In the Details tab, click Add Storage Node.

4. Configure the related parameters according to the instructions below.

Parameter Description
Storage _
A node that has at least 1 bare disk.
Node
—_ Each device class corresponds to a group of storage devices with
evice
- the same characteristics; it is recommended to name it according to
ass
the nature of the disks, e.g., hdd, ssd.
For example, /dev/sda. If there are multiple disks, they can be added
one by one.
Storage
Device _ _ _
Note: The storage device should be the entire hard disk, not a
partition on the hard disk, as this will cause errors.
5. Click Add.

Note: If the device class status is Unavailable due to the lack of added devices, you can

proceed with the following operations.

6. Switch to the Storage Devices tab and click Add Storage Device.

7. Add devices according to the prompts on the interface.

Device Management - Alauda Container Platform

8. Click Add.

Monitoring and Alerting - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring and Alerting

Local storage provides out-of-the-box monitoring metrics collection and alerting capabilities.
Once the platform monitoring component is enabled, monitoring and alerts can be configured
based on storage clusters, storage performance, and storage capacity, with support for

configuring notification policies.

The intuitively presented monitoring data can be utilized to support decision making for
operational inspections or performance tuning, and a comprehensive alerting mechanism will

help ensure the stable operation of the storage system.

TOC

Monitoring
Performance Monitoring
Capacity Monitoring
Alerts
Configuring Notifications
Handling Alerts

Post-Mortem Analysis

Monitoring

Performance Monitoring

Monitoring and Alerting - Alauda Container Platform

By default, the platform collects commonly used performance monitoring metrics such as read
and write bandwidth, IOPS, and latency for local storage. Real-time monitoring data for these
metrics can be viewed on the Monitoring tab of the Local Storage page under Storage
Management. The platform displays these metrics visually through graphs and charts,
allowing administrators to clearly observe current storage performance and quickly identify

potential issues.

Capacity Monitoring

Since local storage can only use locally available storage resources on nodes, users must
ensure there is sufficient available capacity on the nodes before declaring local storage to

avoid issues caused by over-declaring.

To assist with this, the platform provides detailed capacity monitoring in the Details section of
local storage, categorized by device types. Users can check available storage space clearly
displayed in numerical and graphical formats. If any device type shows insufficient available

capacity, space should be cleared or additional disk devices added before using local storage.

Alerts

The platform includes a set of default alerting policies. If resources become abnormal or
monitoring data reaches a warning threshold, alerts are automatically triggered. The
preconfigured alerting policies effectively cover common operational needs, including alerts

for cluster health status and device type capacity.

Configuring Notifications

To ensure alerts are received in a timely manner, notification policies should be configured in
the operations center. Notifications can be sent through email, SMS, or other methods to
relevant personnel, prompting immediate attention to resolve issues or prevent failures. Users
can access the notification policy settings directly from the operations center interface.
Detailed instructions on configuring alerts can be found in the [Creating Alert Policies]

documentation.

Handling Alerts

Monitoring and Alerting - Alauda Container Platform

 If the health status of the storage cluster changes to Alert , administrators should
investigate immediately. The Details section provides information for troubleshooting and
resolving these issues. Common causes include abnormal node services or problems with

specific device types.

Inspection Corresponding
Cause

Item Status

Caused by abnormal node services or

Health Status Alert . _
device type issues.

Node isin a notready state, possibly due

Service Status Unknown _
to network failures or power outages.

Device Type _ The disk in use may not be a raw disk, or
Unavailable o o
Status it might be missing.

o Real-time alerts triggered on the Alert tab require prompt attention, even if the storage
cluster status currently appears Healthy . Quick responses prevent escalation into more

serious issues. The following table outlines alert levels and their implications:

Alert]
Meaning
Level
Critical Indicates significant issues causing platform service interruptions or
ritica
data loss, with severe impacts.
- Known issues potentially affecting platform functionality and normal
ajor _ _
business operations.
. Risk of operational issues exists; timely intervention needed to avoid
Warning

impact on normal business operations.

Post-Mortem Analysis

The Alert History logs all alerts triggered previously that no longer require immediate action.

During post-mortem analysis, consider the following:

o What specific abnormalities were observed at the time of the incident?

Monitoring and Alerting - Alauda Container Platform

* Are there patterns of specific alerts repeatedly occurring? How can these be proactively
prevented in the future?

* Was there a surge in alerts during specific periods linked to external factors or operational

incidents? Should operational strategies be adjusted accordingly?

How To - Alauda Container Platform

Menu

How To

Backup and Restore TopoLVM Filesystem PVCs with Velero
Prerequisites
Limitations

Procedure

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

Menu ON THIS PAGE >

Backup and Restore TopoLVM Filesystem
PVCs with Velero

Velero enables backup and restoration of Persistent Volume Claims (PVCs) and Persistent
Volumes (PVs) for TopoLVM filesystems. This functionality is integrated into the platform.

This guide applies specifically to TopoLVM filesystem PVCs.

TOC

Prerequisites

Limitations

Procedure
Step 1: Configure Backup Repository
Step 2: Perform Backup

Step 3: Restore Cluster

Prerequisites

1. Deploy the "Alauda Container Platform Data Backup for Velero" via the

Marketplace/Cluster Plugins.

2. Configure an S3-compatible storage for Velero's BackupStoragelocation . Use platform-

provided Ceph or MinlO object storage.

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

Limitations

1. The S3 storage must have sufficient free space to store all PV data from the target cluster.

2. During restoration, the namespace quota and storage class must support the total capacity
of all PVCs.

Procedure

Step 1: Configure Backup Repository

1. Ensure an S3-compatible storage is available.

2. Navigate to Administrator > Cluster Management > Backup and Restore > Backup

Repository.

3. Create a backup repository using the object storage credentials.

Step 2: Perform Backup

1. Label the PVCs and associated pods to be backed up:

Velero needs a pod to restore a Filesystem PVC. The pod mounts the PVC for Velero to
import data; without a pod, the PVC remains Pending. For complex apps, pause the
application and attach the PVC to a lightweight pod (e.g., Nginx) for backup/restore, then

restore the original app configuration post-restoration.

kubectl label pvc -n <namespace> <pvc-name> velero-backup=true

kubectl label pod -n <namespace> <pod-name> velero-backup=true

2. Go to Backup and Restore and create a new backup:
o Select Backup Kubernetes Resources and PVC Data Volumes.
¢ Choose the namespaces containing the data to back up.

o Configure the backup with the following settings:

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

apiVersion: velero.io/v1
kind: Schedule
metadata:
name: <backup-name>
namespace: cpaas-system
annotations:
cpaas.io/description: "'
spec:
template:
includedNamespaces:
- <namespace>
includedResources:
= Uk
labelSelector:
matchLabels:
velero-backup: 'true'
excludedNamespaces: []
excludedResources: []
defaultVolumesToFsBackup: true
storagelocation: default
ttl: 720h
schedule: '@every 876000h'
skipImmediately: false
status:

phase: Enabled

3. After the backup completes, verify the data in the S3 bucket (e.g., MinlO):

mc 1s <minio-alias>/<bucket-name>/<backup-path>/<namespace>/

Example output:

[2025-03-14 00:18:33 CST] 155B STANDARD config
[2025-03-14 09:04:56 CST] OB data/
[2025-03-14 09:04:56 CST] @B index/
[2025-03-14 09:04:56 CST] @B keys/
[2025-03-14 09:04:56 CST] OB snapshots/

Step 3: Restore Cluster

Backup and Restore TopoLVM Filesystem PVCs with Velero - Alauda Container Platform

1. In the target cluster, configure the same S3 bucket as used for the backup. Velero will

automatically detect the existing backup.

2. Navigate to Backup and Restore and create a restore task:

¢ Select the namespace(s) to restore.
¢ In the advanced configuration, map the original namespace to the target namespace if
needed.
3. Execute the restore operation.

4. After restoration, verify:

o PVC names match the original cluster.

¢ Application data in the PVCs is intact and accessible.

	Storage
	Ceph Distributed Storage
	Introduction
	TOC
	Feature Overview
	Storage Solution Comparison
	Creating a Storage Cluster
	Accessing External Storage

	Install
	Create Standard Type Cluster
	TOC
	Prerequisites
	Prepare Package
	Prepare Infrastructure

	Precautions
	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Deploy Operator
	Create Cluster
	Create Storage Pool

	Related Operations
	Create Stretch Type Cluster
	Cleanup Distributed Storage

	Create Stretch Type Cluster
	TOC
	Terminology
	Typical Deployment Scheme
	Component Description
	Disaster Recovery Explanation

	Constraints and Limitations
	Prerequisites
	Procedure
	Tagging Nodes
	Create Storage Service

	Related Operations
	Create Standard Type Cluster
	Cleanup Distributed Storage

	Architecture
	TOC
	Technical architecture

	Core Concepts
	Core Concepts
	TOC
	Rook Operator
	Ceph CSI
	Ceph module functions

	Guides
	Accessing Storage Services
	TOC
	Prerequisites
	Prepare Package
	Prepare Storage
	Open Ports
	Obtain Authentication Information (External Ceph)

	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Access Storage

	Follow-up Actions

	Managing Storage Pools
	TOC
	Creating a Storage Pool
	Procedure

	Deleting a Storage Pool
	Procedure

	Viewing Object Storage Pool Addresses
	Procedure

	Node-specific Component Deployment
	TOC
	Update Component Deployment Configuration
	Precautions
	Procedure

	Restart Storage Components
	Procedure

	Adding Devices/Device Classes
	TOC
	Adding Device Classes
	Notes
	Procedure

	Adding Devices
	Procedure

	Hard Disk Status

	Monitoring and Alerts
	TOC
	Monitoring
	Storage Overview
	Performance Monitoring
	Component Monitoring

	Alerts
	Configure Notifications
	Handling Alerts
	Fault Review

	How To
	Configure a Dedicated Cluster for Distributed Storage
	TOC
	Architecture
	Infrastructure requirements
	Platform requirements
	Cluster requirements
	Resource requirements
	Storage device requirements
	Storage device type requirements
	Capacity planning
	Capacity monitoring and expansion

	Network requirements
	Network Isolation
	Network interface speed requirements

	Procedure
	Deploy Operator
	Create ceph cluster
	Create storage pools
	Create file pool
	Create block pool
	Create object pool

	Follow-up Actions

	Cleanup Distributed Storage
	TOC
	Precautions
	Procedure
	Deleting VolumeSnapshotClasses
	Deleting StorageClasses
	Deleting Storage Pools
	Deleting ceph-cluster
	Deleting rook-operator
	Execute Cleanup Script
	Cleanup Script
	Precautions
	Procedure

	Disaster Recovery
	File Storage Disaster Recovery
	TOC
	Terminology
	Backup Configuration
	Prerequisites
	Procedure
	Enable the Mirror for the file storage pool in the Secondary cluster
	Obtain the Peer Token
	Create Peer Secret in the Primary cluster
	Enable the Mirror for the file storage pool in the Primary cluster
	Deploy the Mirror Daemon in the Primary cluster

	Failover
	Prerequisites

	Block Storage Disaster Recovery
	TOC
	Terminology
	Backup Configuration
	Prerequisites
	Procedures
	Enable Mirroring for Primary Cluster's Block Storage Pool
	Retrieve Peer Token
	Create Peer Token Secret in Secondary Cluster
	Enable Mirroring for Secondary Cluster's Block Storage Pool
	Deploy Mirror Daemon in Secondary Cluster
	Verify Mirror Status
	Enable Replication Sidecar
	Create VolumeReplicationClass
	Enable Mirror for PVC

	Failover
	Prerequisites
	Procedures
	创建 VolumeReplication

	Object Storage Disaster Recovery
	TOC
	Terminology
	Prerequisites
	Procedures
	Create Object Storage in Primary Cluster
	Configure External Access for Primary Zone
	Obtain access-key and secret-key
	Create Secondary Zone and Configure Realm Sync
	Configure External Access for Secondary Zone
	Check Ceph Object Storage Synchronization Status

	Failover
	Procedures

	Update the optimization parameters
	TOC
	Procedure

	Create ceph object store user
	TOC
	Prerequisites
	Procedure
	Create User
	Allow create user in other namespaces
	Get user information

	MinIO Object Storage
	Introduction
	Install
	TOC
	Prerequisites
	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Deploy Operator
	Create Cluster
	Create Bucket
	Upload/Download Files

	Related Information
	Redundancy Factor Mapping Table
	Storage Pool Overview

	Architecture
	TOC
	Core Components:
	Deployment Architecture:
	Multi-Pool Expansion:
	Conclusion:

	Concepts
	Core Concepts
	Guides
	Adding a Storage Pool
	TOC
	Notes
	Procedure

	Monitoring & Alerts
	TOC
	Monitoring
	Storage Overview
	Cluster Monitoring
	Object Monitoring

	Alerts
	Configuring Notifications
	Handling Alerts
	Post-Incident Analysis

	How To
	Data Disaster Recovery
	TOC
	Applicable Scenarios
	Terminology
	Prerequisites
	Operation Steps
	Related Operations

	TopoLVM Local Storage
	Introduction
	Install
	TOC
	Prerequisites
	Procedure
	Deploy Alauda Container Platform Storage Essentials
	Deploy Storage

	Guides
	Device Management
	TOC
	Prerequisites
	Adding Devices

	Monitoring and Alerting
	TOC
	Monitoring
	Performance Monitoring
	Capacity Monitoring

	Alerts
	Configuring Notifications
	Handling Alerts
	Post-Mortem Analysis

	How To
	Backup and Restore TopoLVM Filesystem PVCs with Velero
	TOC
	Prerequisites
	Limitations
	Procedure
	Step 1: Configure Backup Repository
	Step 2: Perform Backup
	Step 3: Restore Cluster

