Security - Alauda Container Platform

Menu

Security

Alauda Container Security

Alauda Container Security

Security and Compliance

Compliance

API Refiner

About Alauda Container Platform Compliance Service

Users and Roles

User

Security - Alauda Container Platform

Group

Role

IDP

User Policy

Multitenancy(Project)

Introduction
Project
Namespaces

Relationship Between Clusters, Projects, and Namespaces

Guides

Audit

Security - Alauda Container Platform

Introduction
Prerequisites
Procedure

Search Results

Telemetry

Install

Prerequisites

Installation Steps

Enable Online Operations

Uninstallation Steps

Certificates

Automated Kubernetes Certificate Rotation
Installation

How it works

Operation Considerations

cert-manager

Overview

How it works

Identifying cert-manager Managed Certificates

Related Resources

OLM Certificates

Certificate Monitoring
Certificate Status Monitoring

Built-in Alert Rules

Security - Alauda Container Platform

Alauda Container Security - Alauda Container Platform

Menu

Alauda Container Security

Alauda Container Security is a comprehensive security solution designed for Kubernetes and
containerized environments. It provides centralized management, automated vulnerability
scanning, policy enforcement, and compliance checks to help organizations secure their

container infrastructure across multiple clusters.

Alauda Container Security adopts a distributed, container-based architecture, consisting of
Central Services (for management, API, and Ul) and Secured Cluster Services (for monitoring,
policy enforcement, and data collection). It integrates with CI/CD pipelines, SIEM, logging

systems, and supports the built-in Scanner V4 vulnerability scanner.

Note

Because Alauda Container Security releases on a different cadence from Alauda Container
Platform, the Alauda Container Security documentation is now available as a separate

documentation set at Alauda Container Security ~.

https://docs.alauda.io/alauda-container-security/
https://docs.alauda.io/alauda-container-security/
https://docs.alauda.io/alauda-container-security/

Security and Compliance - Alauda Container Platform

Menu

Security and Compliance

Compliance

Introduction

Install Alauda Container Platform Compliance with Kyverno

Install via console
Install via YAML

Uninstallation Procedures

HowTo

API Refiner

Introduction
Product Introduction

Limitations

Security and Compliance - Alauda Container Platform

Install Alauda Container Platform API Refiner

Install via console
Install via YAML
Uninstallation Procedures

Default Configuration

About Alauda Container Platform Compliance Service

About Alauda Container Platform Compliance Service

Compliance - Alauda Container Platform

Menu

Compliance

Introduction

Introduction

Install Alauda Container Platform Compliance with Kyverno

Install Alauda Container Platform Compliance with Kyverno

Install via console
Install via YAML

Uninstallation Procedures

HowTo

Private Registry Access Configuration
Why Does Kyverno Need Registry Access?

Quick Start

Compliance - Alauda Container Platform

Image Signature Verification Policy
What is Image Signature Verification?
Quick Start

Common Use Cases

Image Signature Verification Policy with Secrets
Why Use Secrets for Public Keys?

Quick Start

Secret Creation Methods

Common Use Cases

Image Registry Validation Policy
What is Image Registry Validation?

Quick Start

Common Scenarios

Advanced Patterns

Best Practices

Container Escape Prevention Policy
What is Container Escape Prevention?

Quick Start

Core Container Escape Prevention Policies
Advanced Scenarios

Testing and Validation

Best Practices

Compliance - Alauda Container Platform

Security Context Enforcement Policy
What is Security Context Enforcement?

Quick Start

Core Security Context Policies

Advanced Scenarios

Testing and Validation

Network Security Policy
What is Network Security?
Quick Start

Core Network Security Policies
Advanced Scenarios

Testing and Validation

Volume Security Policy
What is Volume Security?
Quick Start

Core Volume Security Policies
Advanced Scenarios

Testing and Validation

Introduction - Alauda Container Platform

Menu

Introduction

ACP provides compliance functionality based on the open-source Kyverno component,

enabling organizations to define and enforce policies across their Kubernetes clusters.

This feature addresses the challenge of maintaining consistent security, governance, and
operational standards by allowing users to create custom policies using Kyverno's YAML
syntax and automatically validate resources against these policies.

The compliance functionality provides comprehensive violation monitoring and reporting
capabilities, offering both resource-level and policy-level views of compliance violations
through an intuitive interface, helping teams quickly identify non-compliant resources and take
appropriate remediation actions to maintain their desired security posture and regulatory
compliance.

INFO

For more information about Kyverno, read the Kyverno Documentation .

https://kyverno.io/docs/introduction/
https://kyverno.io/docs/introduction/
https://kyverno.io/docs/introduction/

Install Alauda Container Platform Compliance with Kyverno - Alauda Container Platform

Menu ON THIS PAGE >

Install Alauda Container Platform

Compliance with Kyverno

Alauda Container Platform Compliance with Kyverno is a platform service that integrates

Kyverno for managing compliance policies on the Alauda Container Platform.

TOC

Install via console

Install via YAML
1. Check available versions
2. Create a Modulelnfo

Uninstallation Procedures

Install via console

1. Navigate to Administrator
2. In the left navigation bar, click Marketplace > Cluster Plugins

3. Search for Alauda Container Platform Compliance with Kyverno and click to view its

details

4. Click Install to deploy the plugin

Install Alauda Container Platform Compliance with Kyverno - Alauda Container Platform

Install via YAML

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in global cluster :

NAME AGE
kyverno 4d20h

NAME AGE
kyverno-v4.0.4 4d21h

This indicates that the ModulePlugin kyverno exists in the cluster and version v4.0.4 is

published.

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

apiVersion: cluster.alauda.io/v1alphal
kind: ModuleInfo
metadata:
annotations:
cpaas.io/display-name: kyverno
cpaas.io/module-name: '{"en": "Alauda Container Platform Compliance for Kyverno",
"zh": "Alauda Container Platform Compliance for Kyverno"}'
labels:
cpaas.io/cluster-name: global
cpaas.io/module-name: kyverno
cpaas.io/module-type: plugin
cpaas.io/product: Platform-Center
name: kyverno-global
spec:

version: v4.2.0

Install Alauda Container Platform Compliance with Kyverno - Alauda Container Platform

Field explanations:

name : Temporary name for the cluster plugin. The platform will rename it after creation
based on the content, in the format <cluster-name>-<hash of content> , e.g., global-

€e98c99971eal1464aaa8054bdachab313 .

label cpaas.io/cluster-name : Specifies the cluster where the plugin should be installed.

label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.

.spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

e .spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

Uninstallation Procedures

1. Follow steps 1-3 from the installation process to locate the plugin

2. Click Uninstall to remove the plugin

HowTo - Alauda Container Platform

Menu

HowTo

Private Registry Access Configuration
Why Does Kyverno Need Registry Access?

Quick Start

Image Signature Verification Policy
What is Image Signature Verification?
Quick Start

Common Use Cases

Image Signature Verification Policy with Secrets
Why Use Secrets for Public Keys?

Quick Start

Secret Creation Methods

Common Use Cases

Image Registry Validation Policy
What is Image Registry Validation?

Quick Start

Common Scenarios

Advanced Patterns

Best Practices

HowTo - Alauda Container Platform

Container Escape Prevention Policy
What is Container Escape Prevention?

Quick Start

Core Container Escape Prevention Policies
Advanced Scenarios

Testing and Validation

Best Practices

Security Context Enforcement Policy
What is Security Context Enforcement?

Quick Start

Core Security Context Policies

Advanced Scenarios

Testing and Validation

Network Security Policy
What is Network Security?
Quick Start

Core Network Security Policies
Advanced Scenarios

Testing and Validation

Volume Security Policy
What is Volume Security?
Quick Start

Core Volume Security Policies
Advanced Scenarios

Testing and Validation

HowTo - Alauda Container Platform

Private Registry Access Configuration - Alauda Container Platform

Menu ON THIS PAGE >

Private Registry Access Configuration

This guide demonstrates how to configure Kyverno to access private container registries.
When Kyverno needs to verify image signatures or check image details, it requires proper
credentials to access private registries - just like a key card is needed to enter a secure
building.

TOC

Why Does Kyverno Need Registry Access?
Quick Start
1. Create Registry Secret
2. Configure Kyverno to Use the Secret (Recommended)

3. Kyverno Deployment Configuration

Why Does Kyverno Need Registry Access?

Kyverno needs to access registries when it:

Verifies image signatures: Downloads signature data to check if images are properly

signed

Checks image metadata: Reads image labels, annotations, and manifest information

Scans for vulnerabilities: Downloads images for security scanning

Validates image contents: Inspects what's actually inside container images

Private Registry Access Configuration - Alauda Container Platform

Think of it like a security guard who needs to check ID - Kyverno needs to "see" the images to
verify them.

Quick Start

1. Create Registry Secret

kubectl create secret docker-registry my-registry-secret \
--docker-server=registry.company.com \
--docker-username=<username> \
--docker-password=<password> \
--docker-email=<email@company.com> \

-n kyverno

2. Configure Kyverno to Use the Secret (Recommended)

apiVersion: v1
kind: ServiceAccount
metadata:
name: kyverno
namespace: kyverno
imagePullSecrets:

- name: my-registry-secret

3. Kyverno Deployment Configuration

If more control is needed, the Kyverno deployment can be modified directly:

Private Registry Access Configuration - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:
name: kyverno
namespace: kyverno
spec:
replicas: 1
selector:
matchLabels:
app: kyverno
template:
metadata:
labels:
app: kyverno
spec:
serviceAccountName: kyverno
imagePullSecrets:
- name: my-registry-secret
- name: gcr-secret
- name: dockerhub-secret
containers:
- name: kyverno
image: ghcr.io/kyverno/kyverno:latest
env:
- name: REGISTRY_CREDENTIAL_HELPERS
value: "ecr-login,gcr,acr-env" # Enable credential helpers

... other configuration

Image Signature Verification Policy - Alauda Container Platform

Menu ON THIS PAGE >

Image Signature Verification Policy

This guide demonstrates how to configure Kyverno to verify that container images are
properly signed before they can run in a Kubernetes cluster. Think of it like checking an ID

card - only images with valid "signatures” are allowed in.

TOC

What is Image Signature Verification?
Quick Start
1. Generate Keys
2. Sign Images
3. Create Basic Verification Policy
4. Test It
Common Use Cases
Scenario 1: Multiple Teams Need to Sign Critical Images
Scenario 2: Different Rules for Different Environments

Scenario 3: Using Certificates Instead of Keys

What is Image Signature Verification?

Image signature verification is like having a security guard check IDs at the door. It ensures:

* Images are authentic: They come from who they claim to come from

+ Images are untampered: No one has modified them after signing

Image Signature Verification Policy - Alauda Container Platform

¢ Only trusted images run: Unsigned or improperly signed images are blocked

¢ Audit trail: Track which images were verified and when

Quick Start

1. Generate Keys

cosign generate-key-pair

2. Sigh Images

cosign sign --key cosign.key registry.company.com/app:v1.0.0

3. Create Basic Verification Policy

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-signed-images
spec:
validationFailureAction: Enforce # Block unsigned images
background: false
rules:
- name: check-signatures
match:
any:
- resources:
kinds:
- Pod
verifyImages:
- imageReferences:
- "registry.company.com/*" # Check images from company registry
attestors:
- count: 1
entries:
- keys:
publicKeys: |-

Paste the cosign.pub content here
MFkwEwYHKoZIzj0CAQYIKoZIzj@DAQcDQGAE8NXRh95@IZbRj8Ra/NIsbqOPZr M

5/KAQN@/KjHcorm/J5yctVd7iEcnessRQjU917hmK06IWVGHpDgulyakZA==

mutateDigest: true # Convert tags to secure digest format

4. Test It

Apply the policy
kubectl apply -f signature-policy.yaml

Try to run an unsigned image (should fail)

kubectl run test --image=nginx:latest

Try to run a signed image (should work)

kubectl run test --image=registry.company.com/app:v1.0.0

Image Signature Verification Policy - Alauda Container Platform

Common Use Cases

Scenario 1: Multiple Teams Need to Sign Critical Images

For critical applications, both the development team AND security team might need to sign

images:

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-dual-signatures
spec:
validationFailureAction: Enforce
background: false
rules:
- name: critical-app-signatures
match:
any:
- resources:
kinds:
- Pod
verifyImages:
- imageReferences:
- "registry.company.com/critical/*"

attestors:

- count: 1
entries:
- keys:
publicKeys: |-

Security team's public key
MFkwEwYHKoZIzj0CAQYIKoZIzj@DAQcDQGAE8NXRh95@IZbRj8Ra/N9IsbqOPZr M
5/KAQN@/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6IWVGHpDgulyakZA==

- count: 1
entries:
- keys:
publicKeys: |-

Development team's public key
MFkwEwYHK0ZIzj0CAQYIKoZIzj@DAQcDQgAEyctVd7iEcnessRQjU917hmKO6IWY

GHpDguIyakZA8nXRh9501ZbRj8Ra/NIshqOPZr fM5/KAQNO/K jHcorm/]5==

mutateDigest: true

Scenario 2: Different Rules for Different Environments

Image Signature Verification Policy - Alauda Container Platform

Production needs strict verification, development can be more relaxed:

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: environment-specific-verification
spec:
validationFailureAction: Enforce
background: false
rules:
Strict rules for production
- name: production-must-be-signed
match:
any:
- resources:
kinds:
- Pod
namespaces:
- production
verifyImages:
- imageReferences:
- " # A1l images must be signed
failureAction: Enforce # Block if not signed
attestors:
- count: 1
entries:
- keys:
publicKeys: |-

Production signing key
MFkwEwYHKoZIzj0CAQYIKoZIzj@DAQcDQGAE8NXRhI50IZbRj8Ra/N9sbqOPZr M
5/KAQN@/KjHcorm/J5yctVd7iEcnessRQjU917hmKO6IWVGHpDgulyakZA==

mutateDigest: true

Relaxed rules for development
- name: development-warn-unsigned
match:
any:
- resources:
kinds:
- Pod
namespaces:
- development
- staging

Image Signature Verification Policy - Alauda Container Platform

verifyImages:
- imageReferences:
- "registry.company.com/*"
failureAction: Audit
attestors:
- count: 1
entries:
- keys:
publicKeys: |-

Development signing key
MFkwEwYHK0ZIzj0CAQYIKoZIzj@DAQcDQgAEyctVd7iEcnessRQjU917hmKO6IWV
GHpDguIyakZA8nXRh950IZbRj8Ra/N9sbqOPZrfM5/KAQNO/KjHcorm/J5==

mutateDigest: true
Scenario 3: Using Certificates Instead of Keys

For enterprise environments, X.509 certificates might be used:

cosign sign --cert company-cert.pem --cert-chain ca-chain.pem \

registry.company.com/myapp:v1.0.0

Image Signature Verification Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: certificate-verification
spec:
validationFailureAction: Enforce
background: false
rules:
- name: verify-with-certificates
match:
any:
- resources:
kinds:
- Pod
verifyImages:
- imageReferences:
- "registry.company.com/*"
attestors:
- count: 1
entries:
- certificates:

cert: |-

Company's signing certificate (replace with real certificate)
MIIDXTCCAkWgAwIBAgIJAKoK/heBjcOuMA@GCSqGSIb3DQEBBQUAMEUXCzAIBgNV
BAYTAKFVMRMwEQYDVQQIDApTb211LVNOYXRIMSEwHwWYDVQQKDBhIbnR1cm51dCBX
allRnaXRzIFBOeSBMdGQwHhcNMTcwODI4MTExNzQwWhcNMTgwODI4MTEXNzQwlWjBF
MQswCQYDVQQGEwJBVTETMBEGATUECAWKU29tZS1TdGFOZTERMBBGATUECgwYSW50
ZXJuZXQgV21kZ210cyBQdHkgTHRKMIIBI jANBgkghkiG9w@BAQEFAAOCAQSAMIIB
CgKCAQEAUUEXVilGcXIZ3ulNuL7wLrA7VkgJoGpB1YPmYn1S7s0bTgg0GSqMUvqU
BdLXcAo3ZCOXuKrBHB11tvcNdFHynfx0tkAOCZjirD6uQBrNPiQD1gMYMy14QIDAQAB
o1AwT jAdBgNVHQ4EFgQUhKs8VQFhVLp5J4W1sFVLOVgnQxwwHwYDVRO j BBgwF oAU
hKs8VQFhVLp5J4W1sFVLOVgnQxwwDAYDVROTBAUWAWEB/zANBgkqghk 1G9w@BAQUF
AAOCAQEAUUEXVilGcXIZ3ulNuL7wLrA7VkgJoGpB1YPmYn1S7s0bTgg0GSgMUvqU

rekor:
url: https://rekor.sigstore.dev
mutateDigest: true

Image Signature Verification Policy with Secrets - Alauda Container Platform

Menu ON THIS PAGE >

Image Signature Verification Policy with

Secrets

This guide demonstrates how to use Kubernetes Secrets to store public keys for Kyverno
image signature verification, providing better security and key management compared to
embedding keys directly in policies.

TOC

Why Use Secrets for Public Keys?
Quick Start
1. Generate and Store Keys in Secret
2. RBAC Configuration for Keyverno
3. Create Policy Using Secret Reference
4. Test the Configuration
Secret Creation Methods
Method 1: From File
Method 2: From Literal String
Method 3: From YAML Manifest
Common Use Cases
Scenario 1: Single Team with One Secret
Scenario 2: Multi-Team with Different Secrets
Scenario 3: Critical Images Requiring Multiple Signatures

Scenario 4: Offline Environment with Secrets

Image Signature Verification Policy with Secrets - Alauda Container Platform

Why Use Secrets for Public Keys?

Using Kubernetes Secrets for storing public keys offers several advantages:

« Enhanced Security: Keys are stored securely in the Kubernetes Secret store
o Easy Key Rotation: Update keys without modifying policies

e Access Control: Use RBAC to control who can access the secrets

Quick Start

1. Generate and Store Keys in Secret

cosign generate-key-pair

kubectl create secret generic cosign-public-key \
--from-file=cosign.pub=./cosign.pub \

--namespace=kyverno

kubectl get secret cosign-public-key -n kyverno

2. RBAC Configuration for Keyverno

Create Service Account for Kyverno

apiVersion: v1
kind: ServiceAccount
metadata:

name: kyverno-secret-reader

namespace: kyverno

Create Role for Secret Access

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: kyverno
name: secret-reader
rules:
- apiGroups: [""]
resources: ["secrets"]
verbs: ["get", "list", "watch"]

resourceNames: ["cosign-public-key", "team-keys"]

Bind Role to Service Account

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: read-secrets
namespace: kyverno
subjects:
- kind: ServiceAccount
name: kyverno-secret-reader
namespace: kyverno
roleRef:
kind: Role
name: secret-reader

apiGroup: rbac.authorization.k8s.1io

3. Create Policy Using Secret Reference

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: verify-with-secret
spec:
validationFailureAction: Enforce
background: false
rules:
- name: check-signatures
match:
any:
- resources:
kinds: [Pod]
verifyImages:
- imageReferences:
- "registry.company.com/*"
attestors:
- count: 1
entries:
- keys:
secret:
name: cosign-public-key
namespace: kyverno
key: cosign.pub
rekor:
url: https://rekor.sigstore.dev
mutateDigest: true

4. Test the Configuration

Image Signature Verification Policy with Secrets - Alauda Container Platform

cosign sign --key cosign.key registry.company.com/app:v1.0.0

kubectl apply -f verify-with-secret.yaml

kubectl run test --image=registry.company.com/app:v1.0.0

kubectl run test-fail --image=nginx:latest

Secret Creation Methods

Method 1: From File

kubectl create secret generic cosign-public-key \
--from-file=cosign.pub=./cosign.pub \

--namespace=kyverno

Method 2: From Literal String

kubectl create secret generic cosign-public-key \
--from-literal=cosign.pub="----- BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj@DAQcDQGAE8NXRh95@IZbRj8Ra/N9IsbqOPZr M

5/KAQN@/KjHcorm/J5yctVd71EcnessRQjU917hmKO6IWVGHpDgulyakZA==

--namespace=kyverno

Method 3: From YAML Manifest

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: v1
kind: Secret
metadata:
name: cosign-public-key
namespace: kyverno
labels:
app: kyverno
component: image-verification
type: Opaque
stringData:

cosign.pub: |

MFkwEwYHKoZIzj0CAQYIKoZIzj@DAQcDQGAE8NXRhI5@IZbRj8Ra/NIsbqOPZr M
5/KAQN@/KjHcorm/J5yctVd7iEcnessRQju917hmKO6IWVGHpDgulyakZA==

kubectl apply -f cosign-secret.yaml

Common Use Cases

Scenario 1: Single Team with One Secret

Simple setup where one team manages all image signatures:

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: single-team-verification
spec:
validationFailureAction: Enforce
background: false
rules:
- name: verify-team-signatures
match:
any:
- resources:
kinds: [Pod, Deployment, StatefulSet, DaemonSet]
exclude:
any:
- resources:

namespaces: [kube-system, kyverno]

verifyImages:
- imageReferences:
- "registry.company.com/*"

- "gcr.io/myproject/*"
failureAction: Enforce

attestors:
- count: 1
entries:
- keys:
secret:
name: team-cosign-key
namespace: kyverno
key: cosign.pub
rekor:

url: https://rekor.sigstore.dev
mutateDigest: true

verifyDigest: true

required: true

Scenario 2: Multi-Team with Different Secrets

Image Signature Verification Policy with Secrets - Alauda Container Platform

Different teams have their own signing keys and secrets:

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: multi-team-verification
spec:
validationFailureAction: Enforce
background: false

rules:

- name: verify-frontend-images
match:
any:
- resources:
kinds: [Pod]

namespaces: [frontend-*]

verifyImages:
- imageReferences:

- "registry.company.com/frontend/*"

attestors:
- count: 1
entries:
- keys:
secret:
name: frontend-team-key
namespace: kyverno
key: cosign.pub
rekor:

url: https://rekor.sigstore.dev

mutateDigest: true

required: true

- name: verify-backend-images
match:
any:
- resources:
kinds: [Pod]

namespaces: [backend-*]

verifyImages:

Image Signature Verification Policy with Secrets - Alauda Container Platform

- imageReferences:

- "registry.company.com/backend/*"

attestors:
- count: 1
entries:
- keys:
secret:
name: backend-team-key
namespace: kyverno
key: cosign.pub
rekor:

url: https://rekor.sigstore.dev

mutateDigest: true

required: true

Scenario 3: Critical Images Requiring Multiple Signatures

High-security environments where multiple teams must sign critical images:

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: critical-multi-signature
spec:
validationFailureAction: Enforce
background: false
rules:
- name: verify-critical-images
match:
any:
- resources:
kinds: [Pod]

namespaces: [production]

verifyImages:
- imageReferences:

- "registry.company.com/critical/*"

failureAction: Enforce

attestors:

- count: 1
entries:
- keys:
secret:
name: security-team-key
namespace: kyverno
key: security.pub
rekor:
url: https://rekor.sigstore.dev

- count: 1
entries:
- keys:
secret:
name: dev-team-key
namespace: kyverno
key: development.pub
rekor:
url: https://rekor.sigstore.dev

Image Signature Verification Policy with Secrets - Alauda Container Platform

- count: 1
entries:
- keys:
secret:
name: release-team-key
namespace: kyverno
key: release.pub
rekor:

url: https://rekor.sigstore.dev

mutateDigest: true

required: true
Scenario 4: Offline Environment with Secrets

Using secrets in air-gapped environments:

Image Signature Verification Policy with Secrets - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: offline-verification-with-secret
spec:
validationFailureAction: Enforce
background: false
rules:
- name: verify-offline-images
match:
any:

- resources.:

kinds: [Pod, Deployment, StatefulSet, DaemonSet]

verifyImages:
- imageReferences:
- "registry.internal.com/*"

- "airgap.company.com/*"

failureAction: Enforce

emitWarning: false

attestors:
- count: 1
entries:
- keys:
secret:

name: offline-cosign-key

namespace: kyverno

key: cosign.pub

Offline mode configuration

rekor:
url: ""
ignoreTlog: true

ignoreSCT: true

ctlog:
ignoreTlog: true

ignoreSCT: true

mutateDigest: true
verifyDigest: true

Empty URL for offline mode

¥ Ignore
¥ Ignore

¥ Ignore
¥ Ignore

transparency log
SCT

certificate transparency log
SCT

Image Signature Verification Policy with Secrets - Alauda Container Platform

required: true

Image Registry Validation Policy - Alauda Container Platform

= Menu ON THIS PAGE >

Image Registry Validation Policy

This guide demonstrates how to configure Kyverno to control which container registries can

be used in a Kubernetes cluster. It implements registry access control policies to ensure only
images from approved and trusted registries are deployed.

TOC

What is Image Registry Validation?
Quick Start
1. Block All Except Company Registry
2. Test It
Common Scenarios
Scenario 1: Allow Multiple Trusted Registries
Scenario 2: Different Rules for Different Environments
Scenario 3: Block Specific Risky Registries
Scenario 4: Team-Specific Registry Access
Advanced Patterns
Using Wildcards Effectively
Best Practices
Start with Warnings
Exclude System Namespaces

Common Issues

Image Registry Validation Policy - Alauda Container Platform

What is Image Registry Validation?

Registry validation provides centralized control over image sources. It enables:

+ Control image sources: Only allow images from trusted registries

* Block risky registries: Prevent use of unknown or compromised registries

+ Enforce compliance: Meet security requirements about image sources

+ Different rules per environment: Strict rules for production, relaxed for development

« Track usage: Monitor which registries are being utilized

Quick Start

1. Block All Except Company Registry

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: company-registry-only
spec:
validationFailureAction: Enforce
background: false
rules:
- name: check-registry
match:
any:
- resources:
kinds:
- Pod
validate:
message: "Only company registry allowed: registry.company.com"
pattern:
spec:
containers:

- image: "registry.company.com/*"

Image Registry Validation Policy - Alauda Container Platform

2. Test It

kubectl apply -f registry-policy.yaml

kubectl run test --image=nginx:latest

kubectl run test --image=registry.company.com/nginx:latest

Common Scenarios

Scenario 1: Allow Multiple Trusted Registries

Organizations typically use several registries:

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: multiple-trusted-registries
spec:
validationFailureAction: Enforce
background: false
rules:
- name: check-approved-registries
match:
any:
- resources:
kinds:
- Pod
validate:
message: "Images must come from approved registries: company registry, GCR, or
official Docker images"
anyPattern:
- spec:
containers:
- image: "registry.company.com/*"
- spec:
containers:
- image: "gcr.io/project-name/*"
- spec:
containers:
- image: "docker.io/library/*"
- spec:
containers:

- image: "quay.io/organization/*"

Scenario 2: Different Rules for Different Environments

Production environments should be strict, development can be more flexible:

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: environment-based-registry-rules
spec:
validationFailureAction: Enforce
background: false

rules:

- name: production-strict-registries
match:
any:
- resources:
kinds:
- Pod
namespaces:
- production
- prod-*
validate:
message: "Production only allows certified company images"
pattern:
spec:
containers:

- image: "registry.company.com/certified/*"

- name: development-flexible-registries
match:
any:
- resources:
kinds:
- Pod
namespaces:
- development
- dev-*
- staging
- test-*
validate:
message: "Development can use company registry, GCR, or official Docker images"
anyPattern:
- spec:
containers:

- image: "registry.company.com/*"

Image Registry Validation Policy - Alauda Container Platform

- spec:

containers:

- image: "gcr.io/dev-project/*"
- spec:

containers:

- image: "docker.io/library/*"
- spec:

containers:

- image: "docker.io/organization/*"
Scenario 3: Block Specific Risky Registries

Block specific registries while allowing others:

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: block-risky-registries
spec:
validationFailureAction: Enforce
background: false

rules:

- name: block-untrusted-registries
match:
any:
- resources:
kinds:
- Pod
validate:
message: "Images from untrusted-registry.com are not allowed"
deny:
conditions:
- key: "{{ request.object.spec.containers[?contains(image, 'untrusted-
registry.com')] | length(@) }}"
operator: GreaterThan
value: 0

- name: allow-only-official-dockerhub
match:
any:
- resources:
kinds:
- Pod
validate:
message: "Only official Docker Hub images are allowed (docker.io/library/*)"
deny:
conditions:
- key: "{{ request.object.spec.containers[?starts_with(image, 'docker.io/') &&
Istarts_with(image, 'docker.io/library/')] | length(@) }}"
operator: GreaterThan

value: 0

Scenario 4: Team-Specific Registry Access

Image Registry Validation Policy - Alauda Container Platform

Different teams can have access to different registries:

Image Registry Validation Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: team-specific-registries
spec:
validationFailureAction: Enforce
background: false

rules:

- name: frontend-team-registries
match:
any:
- resources:
kinds:
- Pod
namespaces:
- frontend-*
validate:
message: "Frontend team can use company registry and official Node.js images"
anyPattern:
- spec:
containers:
- image: "registry.company.com/*"
- spec:
containers:
- image: "docker.io/library/node:*"
- spec:
containers:

- image: "docker.io/library/nginx:*"

- name: data-team-registries
match:
any:
- resources:
kinds:
- Pod
namespaces:
- data-*
- ml-*
validate:
message: "Data team can use company registry and ML/AI images"
anyPattern:

Image Registry Validation Policy - Alauda Container Platform

- spec:

containers:

- image: "registry.company.com/*"
- spec:

containers:

- image: "docker.io/tensorflow/*"
- spec:

containers:

- image: "docker.io/pytorch/*"
- spec:

containers:

- image: "nvcr.io/nvidia/*"

Advanced Patterns

Using Wildcards Effectively

- image: "registry.company.com/*"
- image: "registry.company.com/team-a/*"
- image: "*/database:*"

- image: "gcr.io/project-*/app:*"

Best Practices

Start with Warnings

spec:
validationFailureAction: Audit

Exclude System Namespaces

Image Registry Validation Policy - Alauda Container Platform

rules:
- name: check-registries
match:
any:
- resources:
kinds:
- Pod
exclude:
any:
- resources:
namespaces:
- kube-system
- kyverno

- kube-public

Common Issues

1. Wrong image format:

o X registry.company.com:5000/app (missing protocol)

o registry.company.com/app:latest
2. Wildcard confusion:

o X registry.company.com* (missing slash)

o registry.company.com/*
3. Docker Hub format:

o X nginx (implicit docker.io)

o docker.io/library/nginx

Container Escape Prevention Policy - Alauda Container Platform

Menu ON THIS PAGE >

Container Escape Prevention Policy

This guide demonstrates how to configure Kyverno to prevent container escape attacks by
blocking high-risk container configurations that could allow containers to break out of their
isolation boundaries.

TOC

What is Container Escape Prevention?
Quick Start
1. Block Privileged Containers
2. Test the Policy
Core Container Escape Prevention Policies
Policy 1: Disallow Host Namespace Access
Policy 2: Disallow Host Path Mounts
Policy 3: Disallow Host Ports
Policy 4: Disallow Dangerous Capabilities
Policy 5: Require Non-Root Containers
Advanced Scenarios
Scenario 1: Environment-Specific Policies
Scenario 2: Workload-Specific Exceptions
Testing and Validation
Test Privileged Container
Test Host Namespace Access
Test Host Path Mount
Test Valid Secure Container

Best Practices

Container Escape Prevention Policy - Alauda Container Platform

1. Start with Audit Mode

2. Exclude System Namespaces

What is Container Escape Prevention?

Container escape prevention involves detecting and blocking dangerous container
configurations that could allow attackers to escape container isolation and gain access to the
host system. This includes:

e Privileged containers: Containers running with elevated privileges

+ Host namespace access: Containers sharing host PID, network, or IPC namespaces

e Host path mounts: Containers mounting host filesystem paths

+ Dangerous capabilities: Containers with excessive Linux capabilities

e Host port access: Containers binding to host network ports

Quick Start

1. Block Privileged Containers

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-privileged-containers
annotations:
policies.kyverno.io/title: Disallow Privileged Containers
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Privileged mode disables most security mechanisms and must not be allowed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: privileged-containers
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Privileged mode is disallowed. The fields
spec.containers[*].securityContext.privileged,
spec.initContainers[*].securityContext.privileged, and
spec.ephemeralContainers[*].securityContext.privileged
must be unset or set to false.
pattern:
spec:
=(ephemeralContainers):
- =(securityContext):
=(privileged): "false"
=(initContainers):
- =(securityContext):
=(privileged): "false"
containers:
- =(securityContext):

=(privileged): "false"

2. Test the Policy

Container Escape Prevention Policy - Alauda Container Platform

kubectl apply -f disallow-privileged-containers.yaml

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-privileged
spec:
containers:
- name: nginx
image: nginx
securityContext:
privileged: true
EOF

kubectl run test-normal --image=nginx

kubectl delete pod test-privileged test-normal --ignore-not-found

Core Container Escape Prevention Policies

Policy 1: Disallow Host Namespace Access

Prevent containers from accessing host namespaces:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-host-namespaces
annotations:
policies.kyverno.io/title: Disallow Host Namespaces
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Host namespaces (Process ID namespace, Inter-Process Communication namespace, and
network namespace) allow access to shared information and can be used to elevate
privileges. Pods should not be allowed access to host namespaces.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-namespaces
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Sharing the host namespaces is disallowed. The fields spec.hostNetwork,
spec.hostIPC, and spec.hostPID must be unset or set to false.
pattern:
spec:
=(hostPID): "false"
=(hostIPC): "false"
=(hostNetwork): "false"

Policy 2: Disallow Host Path Mounts

Block containers from mounting host filesystem paths:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-host-path
annotations:
policies.kyverno.io/title: Disallow Host Path
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod,Volume
policies.kyverno.io/description: >-
HostPath volumes let Pods use host directories and volumes in containers.
Using host resources can be used to access shared data or escalate privileges
and should not be allowed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-path
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
HostPath volumes are forbidden. The field spec.volumes[*].hostPath must be
unset.
pattern:
spec:
=(volumes):
- X(hostPath): "null"

Policy 3: Disallow Host Ports

Prevent containers from binding to host network ports:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-host-ports
annotations:
policies.kyverno.io/title: Disallow Host Ports
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Access to host ports allows potential snooping of network traffic and should not be
allowed, or at minimum restricted to a known list.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-ports-none
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Use of host ports is disallowed. The fields
spec.containers[*].ports[*].hostPort,
spec.initContainers[*].ports[*].hostPort, and
spec.ephemeralContainers[*].ports[*].hostPort
must either be unset or set to 0.
pattern:
spec:
=(ephemeralContainers):
- =(ports):
- =(hostPort): 0
=(initContainers):
- =(ports):
- =(hostPort): 0
containers:
- =(ports):
- =(hostPort): 0

Container Escape Prevention Policy - Alauda Container Platform

Policy 4: Disallow Dangerous Capabilities

Block containers from adding dangerous Linux capabilities:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-capabilities-strict
annotations:
policies.kyverno.io/title: Disallow Capabilities (Strict)
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Adding capabilities other than ‘NET_BIND_SERVICE' is disallowed. In addition,
all containers must explicitly drop ‘ALL' capabilities.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: require-drop-all
match:
any:
- resources:
kinds:
- Pod
preconditions:
all:
- key: "{{ request.operation || 'BACKGROUND' }}"
operator: NotEquals
value: DELETE
validate:
message: >-
Containers must drop ‘ALL‘ capabilities.
foreach:

- list: request.object.spec.[ephemeralContainers, initContainers, containers][]

deny:
conditions:
all:
- key: ALL

operator: AnyNotIn
value: "{{ element.securityContext.capabilities.drop || ‘[]1' }}"
- name: adding-capabilities
match:
any:
- resources:
kinds:

Container Escape Prevention Policy - Alauda Container Platform

- Pod
preconditions:
all:
- key: "{{ request.operation || 'BACKGROUND' }}"
operator: NotEquals
value: DELETE
validate:
message: >-
Any capabilities added other than NET_BIND_SERVICE are disallowed.
foreach:
- list: request.object.spec.[ephemeralContainers, initContainers, containers][]
deny:
conditions:
any:
- key: "{{ element.securityContext.capabilities.add || ‘[]% }}"
operator: AnyNotIn
value:
- NET_BIND_SERVICE

Policy 5: Require Non-Root Containers

Ensure containers run as non-root users:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-run-as-nonroot
annotations:
policies.kyverno.io/title: Require Run As Non-Root User
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Containers must run as a non-root user. This policy ensures runAsNonRoot is set to
true.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: run-as-non-root
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Running as root is not allowed. Either the field
spec.securityContext.runAsNonRoot
must be set to true, or the field
spec.containers[*].securityContext.runAsNonRoot
must be set to true.
anyPattern:
- spec:
securityContext:
runAsNonRoot: "true"
- spec:
containers:
- securityContext:

runAsNonRoot: "true"

Advanced Scenarios

Container Escape Prevention Policy - Alauda Container Platform

Scenario 1: Environment-Specific Policies

Different security levels for different environments:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: environment-container-security
spec:
validationFailureAction: Enforce
background: true

rules:

- name: production-strict-security
match:
any:
- resources:

kinds:

- Pod

namespaces:

- production

- prod-*

validate:
message: "Production environments require strict container security"

pattern:

spec:

=(hostPID): "false"

=(hostIPC): "false"

=(hostNetwork): "false"
securityContext:

runAsNonRoot: "true"
containers:

- securityContext:
privileged: "false"
runAsNonRoot: "true"
capabilities:

drop:
- ALL

- name: development-basic-security
match:
any:
- resources:
kinds:
- Pod

namespaces:

Container Escape Prevention Policy - Alauda Container Platform

- development
- dev-*
- staging
validate:
message: "Development environments require basic container security"
pattern:
spec:
=(hostPID): "false"
=(hostIPC): "false"
containers:
- securityContext:

=(privileged): "false"
Scenario 2: Workload-Specific Exceptions

Allow specific workloads with controlled exceptions:

Container Escape Prevention Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: workload-specific-security
spec:
validationFailureAction: Enforce
background: true
rules:
- name: system-workloads-exception
match:
any:
- resources:
kinds:
- Pod
exclude:
any:
- resources:
namespaces:
- kube-system
- kyverno
- resources:
kinds:
- Pod
names:
- "monitoring-*"
- "logging-*"
validate:
message: "Container security policies apply to application workloads"
pattern:
spec:
=(hostNetwork): "false"
containers:
- securityContext:
=(privileged): "false"

Testing and Validation

Test Privileged Container

Container Escape Prevention Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-privileged
Sspec:
containers:
- name: test
image: nginx
securityContext:
privileged: true
EOF

Test Host Namespace Access

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:

name: test-host-network
spec:

hostNetwork: true

containers:

- name: test

image: nginx

EOF

Test Host Path Mount

Container Escape Prevention Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-hostpath
spec:
containers:
- name: test
image: nginx
volumeMounts:
- name: host-vol
mountPath: /host
volumes:
- name: host-vol
hostPath:
path: /
EOF

Test Valid Secure Container

Container Escape Prevention Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-secure
spec:
securityContext:
runAsNonRoot: true
runAsUser: 1000
containers:
- name: test
image: nginx
securityContext:
allowPrivilegeEscalation: false
capabilities:

drop:

- ALL
readOnlyRootFilesystem: true
runAsNonRoot: true
runAsUser: 1000

EOF

Best Practices

1. Start with Audit Mode

spec:
validationFailureAction: Audit

2. Exclude System Namespaces

exclude:
any:
- resources:
namespaces:
- kube-system
- kyverno

- kube-public

Container Escape Prevention Policy - Alauda Container Platform

Security Context Enforcement Policy - Alauda Container Platform

Menu ON THIS PAGE >

Security Context Enforcement Policy

This guide demonstrates how to configure Kyverno to enforce proper security contexts for

containers, ensuring they run with appropriate security settings and restrictions.

TOC

What is Security Context Enforcement?
Quick Start
1. Require Non-Root Containers Policy
2. Test the Policy
Core Security Context Policies
Policy 1: Disallow Privilege Escalation
Policy 2: Require Specific User ID Range
Policy 3: Require Non-Root Groups
Policy 4: Restrict Seccomp Profiles
Policy 5: Require Dropping ALL Capabilities
Policy 6: Restrict AppArmor Profiles
Advanced Scenarios
Scenario 1: Environment-Specific Security Contexts
Scenario 2: Application-Specific Security Contexts
Scenario 3: Graduated Security Context Enforcement
Testing and Validation
Test Root Container (Should Fail)
Test Privilege Escalation (Should Fail)
Test Missing Capabilities Drop (Should Fail)

Test Valid Secure Container (Should Pass)

Security Context Enforcement Policy - Alauda Container Platform

What is Security Context Enforcement?

Security context enforcement involves controlling how containers run by setting security-

related parameters. Proper security context configuration prevents:

Root privilege escalation: Containers running as root user

Privilege escalation attacks: Containers gaining elevated permissions

Insecure process execution: Containers running with dangerous capabilities

Filesystem tampering: Containers with writable root filesystems

Security bypass: Containers circumventing security mechanisms

Quick Start

1. Require Non-Root Containers Policy

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-run-as-nonroot
annotations:
policies.kyverno.io/title: Require Run As Non-Root User
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Containers must run as a non-root user. This policy ensures runAsNonRoot is set to
true.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: run-as-non-root
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Running as root is not allowed. Either the field
spec.securityContext.runAsNonRoot
must be set to true, or the field
spec.containers[*].securityContext.runAsNonRoot
must be set to true.
anyPattern:
- spec:
securityContext:
runAsNonRoot: "true"
- spec:
containers:
- securityContext:

runAsNonRoot: "true"

2. Test the Policy

Security Context Enforcement Policy - Alauda Container Platform

kubectl apply -f require-run-as-nonroot.yaml

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-root
spec:
containers:
- name: nginx
image: nginx
securityContext:
runAsUser: @
runAsNonRoot: false
EOF

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-nonroot
spec:
securityContext:
runAsNonRoot: true
runAsUser: 1000
containers:
- name: nginx
image: nginx
EOF

kubectl delete pod test-root test-nonroot --ignore-not-found

Core Security Context Policies

Policy 1: Disallow Privilege Escalation

Security Context Enforcement Policy - Alauda Container Platform

Prevent containers from escalating privileges:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-privilege-escalation
annotations:
policies.kyverno.io/title: Disallow Privilege Escalation
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Privilege escalation, such as via set-user-ID or set-group-ID file mode, should not
be allowed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: privilege-escalation
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Privilege escalation is disallowed. The fields
spec.containers[*].securityContext.allowPrivilegeEscalation,
spec.initContainers[*].securityContext.allowPrivilegeEscalation,
and spec.ephemeralContainers[*].securityContext.allowPrivilegeEscalation
must be set to false.
pattern:
spec:
=(ephemeralContainers):
- securityContext:
allowPrivilegeEscalation: "false"
=(initContainers):
- securityContext:
allowPrivilegeEscalation: "false"
containers:
- securityContext:

allowPrivilegeEscalation: "false"

Security Context Enforcement Policy - Alauda Container Platform

Policy 2: Require Specific User ID Range

Ensure containers run with specific user IDs:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-user-id-range
annotations:
policies.kyverno.io/title: Require User ID Range
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Containers must run with a specific user ID range to prevent privilege escalation.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: user-id-range
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Containers must run with user ID between 1000 and 65535.
deny:
conditions:
any:
Check pod-level security context
- key: "{{ request.object.spec.securityContext.runAsUser || @ }}"
operator: LessThan
value: 1000
- key: "{{ request.object.spec.securityContext.runAsUser || @ }}"
operator: GreaterThan
value: 65535
Check container-level security contexts
- key: "{{ request.object.spec.containers[?securityContext.runAsUser &&
(securityContext.runAsUser < ‘1000 || securityContext.runAsUser > '65535')] | length(@)
"
operator: GreaterThan

value: 0

Security Context Enforcement Policy - Alauda Container Platform

Policy 3: Require Non-Root Groups

Ensure containers run with non-root group IDs:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-non-root-groups
annotations:
policies.kyverno.io/title: Require Non-Root Groups
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Containers should be required to run with a non-root group ID or supplemental
groups.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: non-root-groups
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Containers must run with non-root group ID. Either
spec.securityContext.runAsGroup
or spec.containers[*].securityContext.runAsGroup must be set and not be 0.
deny:
conditions:

any:

- key: "{{ request.object.spec.securityContext.runAsGroup || @ }}"
operator: Equals
value: 0

- key: "{{ request.object.spec.containers[?securityContext.runAsGroup == ‘0"]
| length(@) }}"
operator: GreaterThan

value: 0

Policy 4: Restrict Seccomp Profiles

Security Context Enforcement Policy - Alauda Container Platform

Enforce secure seccomp profiles:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-seccomp-strict
annotations:
policies.kyverno.io/title: Restrict Seccomp (Strict)
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Seccomp profile must be explicitly set to one of the allowed values.
Both the Unconfined profile and the absence of a profile are prohibited.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: seccomp-strict
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Use of custom Seccomp profiles is disallowed. The field
spec.securityContext.seccompProfile.type must be set to RuntimeDefault or
Localhost.
anyPattern:
- spec:
securityContext:
seccompProfile:
type: RuntimeDefault
- spec:
securityContext:
seccompProfile:
type: Localhost
- spec:
containers:
- securityContext:
seccompProfile:
type: RuntimeDefault
- spec:
containers:

Security Context Enforcement Policy - Alauda Container Platform

- securityContext:
seccompProfile:

type: Localhost
Policy 5: Require Dropping ALL Capabilities

Ensure containers drop all capabilities:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-drop-all-capabilities
annotations:
policies.kyverno.io/title: Require Drop ALL Capabilities
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Containers must drop all capabilities and only add back those that are specifically
needed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: require-drop-all
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Containers must drop ALL capabilities.
foreach:
- list: request.object.spec.[ephemeralContainers, initContainers, containers][]

deny:
conditions:
all:
- key: ALL

operator: AnyNotIn

value: "{{ element.securityContext.capabilities.drop || ‘[]1% }}"

Security Context Enforcement Policy - Alauda Container Platform

Policy 6: Restrict AppArmor Profiles

Control AppArmor profile usage:

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-apparmor-profiles
annotations:
policies.kyverno.io/title: Restrict AppArmor Profiles
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
On supported hosts, the runtime/default AppArmor profile is applied by default.
The baseline policy should prevent overriding or disabling the default AppArmor
profile.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: apparmor-profiles
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
AppArmor profile must be set to runtime/default or a custom profile.
Unconfined profiles are not allowed.
pattern:
metadata:
=(annotations):

=(container.apparmor.security.beta.kubernetes.io/*): "lunconfined"

Advanced Scenarios

Security Context Enforcement Policy - Alauda Container Platform

Scenario 1: Environment-Specific Security Contexts

Different security requirements for different environments:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: environment-security-contexts
spec:
validationFailureAction: Enforce
background: true

rules:

- name: production-strict-security
match:
any:
- resources:

kinds:

- Pod

namespaces:

- production

- prod-*

validate:
message: "Production environments require strict security contexts"

pattern:

spec:

securityContext:

runAsNonRoot: "true"
runAsUser: "1000-65535"
runAsGroup: "1000-65535"
seccompProfile:
type: RuntimeDefault
containers:

- securityContext:
allowPrivilegeEscalation: "false"
readOnlyRootFilesystem: "true"
runAsNonRoot: "true"
capabilities:

drop:
- ALL

- name: development-basic-security
match:
any:
- resources:
kinds:

Security Context Enforcement Policy - Alauda Container Platform

- Pod
namespaces:
- development
- dev-*
- staging
validate:
message: "Development environments require basic security contexts"
pattern:
spec:
containers:
- securityContext:
allowPrivilegeEscalation: "false"

runAsNonRoot: "true"

Scenario 2: Application-Specific Security Contexts

Different security contexts for different application types:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: application-security-contexts
spec:
validationFailureAction: Enforce
background: true

rules:

- name: database-security-context
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
app.type: database
validate:
message: "Database applications must use specific security contexts"
pattern:
spec:
securityContext:
runAsUser: "999"
runAsGroup: "999"
fsGroup: "999"
containers:
- securityContext:
runAsNonRoot: "true"

readOnlyRootFilesystem: "true"

- name: web-app-security-context
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
app.type: web
validate:
message: "Web applications must use standard security contexts"

Security Context Enforcement Policy - Alauda Container Platform
pattern:
spec:
containers:
- securityContext:
runAsNonRoot: "true"
allowPrivilegeEscalation: "false"
capabilities:
drop:
- ALL
add:
- NET_BIND_SERVICE

Scenario 3: Graduated Security Context Enforcement

Implement progressive security context requirements:

Security Context Enforcement Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: graduated-security-contexts
spec:
validationFailureAction: Enforce
background: true

rules:

- name: basic-security-level
match:
any:
- resources:
kinds:
- Pod
exclude:
any:
- resources:
namespaces:
- kube-system
- kyverno
validate:
message: "All containers must have basic security contexts"
pattern:
spec:
containers:
- securityContext:

allowPrivilegeEscalation: "false"

- name: enhanced-security-level
match:
any:
- resources:
kinds:
- Pod
namespaces:
- finance-*
- hr-*
- security-*
validate:
message: "Sensitive namespaces require enhanced security contexts"
pattern:

Security Context Enforcement Policy - Alauda Container Platform

spec:
securityContext:
runAsNonRoot: "true"

containers:

- securityContext:
readOnlyRootFilesystem: "true"
capabilities:

drop:
- ALL

- name: maximum-security-level
match:
any:
- resources:

kinds:

- Pod

namespaces:

- critical-*

- payment-*

validate:
message: "Critical namespaces require maximum security contexts"

pattern:

spec:

securityContext:

runAsNonRoot: "true"
runAsUser: "1000-1999"
runAsGroup: "1000-1999"
seccompProfile:
type: RuntimeDefault
containers:

- securityContext:
allowPrivilegeEscalation: "false"
readOnlyRootFilesystem: "true"
runAsNonRoot: "true"
capabilities:

drop:
- ALL

Testing and Validation

Test Root Container (Should Fail)

Security Context Enforcement Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-root-user
spec:
containers:
- name: test
image: nginx
securityContext:
runAsUser: 0
EOF

Test Privilege Escalation (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-privilege-escalation
spec:
containers:
- name: test
image: nginx
securityContext:
allowPrivilegeEscalation: true
EOF

Test Missing Capabilities Drop (Should Fail)

Security Context Enforcement Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-missing-drop-all
spec:
containers:
- name: test
image: nginx
securityContext:
capabilities:
add:
- NET_ADMIN
EOF

Test Valid Secure Container (Should Pass)

Security Context Enforcement Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-secure-context
spec:
securityContext:
runAsNonRoot: true
runAsUser: 1000
runAsGroup: 1000
seccompProfile:
type: RuntimeDefault
containers:
- name: test
image: nginx
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
runAsNonRoot: true
runAsUser: 1000
capabilities:
drop:
- ALL
add:
- NET_BIND_SERVICE
EOF

Network Security Policy - Alauda Container Platform

Menu ON THIS PAGE >

Network Security Policy

This guide demonstrates how to configure Kyverno to enforce network security policies that

control container network access and prevent network-based attacks.

TOC

What is Network Security?
Quick Start
1. Disallow Host Network Access
2. Test the Policy
Core Network Security Policies
Policy 1: Disallow Host Ports
Policy 2: Restrict Host Port Range
Policy 3: Require Network Policies
Policy 4: Restrict Service Types
Policy 5: Control Ingress Configurations
Policy 6: Restrict DNS Configuration
Advanced Scenarios
Scenario 1: Environment-Specific Network Policies
Scenario 2: Application-Specific Network Policies
Scenario 3: Network Segmentation Enforcement
Testing and Validation
Test Host Network Access (Should Fail)
Test Host Port Binding (Should Fail)
Test NodePort Service (Should Fail)

Test Valid Network Configuration (Should Pass)

Network Security Policy - Alauda Container Platform

What is Network Security?

Network security involves controlling how containers access and interact with network

resources. Proper network security prevents:

Host network access: Containers accessing host network interfaces

Privilege escalation via networking: Using network access to gain elevated permissions

Port scanning and reconnaissance: Unauthorized network discovery activities

Lateral movement: Containers accessing unintended network resources

Data exfiltration: Unauthorized network communications

Quick Start

1. Disallow Host Network Access

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-host-network
annotations:
policies.kyverno.io/title: Disallow Host Network
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Access to the host network allows potential snooping of network traffic and should
not be allowed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-network
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Use of host network is disallowed. The field spec.hostNetwork must be unset or
set to false.
pattern:
spec:
=(hostNetwork): "false"

2. Test the Policy

kubectl apply -f disallow-host-network.yaml

kubectl run test-hostnet --image=nginx --overrides='{"spec":{"hostNetwork":true}}'

kubectl run test-normal --image=nginx

Network Security Policy - Alauda Container Platform

Core Network Security Policies

Policy 1: Disallow Host Ports

Prevent containers from binding to host network ports:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-host-ports
annotations:
policies.kyverno.io/title: Disallow Host Ports
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Access to host ports allows potential snooping of network traffic and should not be
allowed, or at minimum restricted to a known list.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-ports-none
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Use of host ports is disallowed. The fields
spec.containers[*].ports[*].hostPort,
spec.initContainers[*].ports[*].hostPort, and
spec.ephemeralContainers[*].ports[*].hostPort
must either be unset or set to 0.
pattern:
spec:
=(ephemeralContainers):
- =(ports):
- =(hostPort): 0
=(initContainers):
- =(ports):
- =(hostPort): 0
containers:
- =(ports):
- =(hostPort): 0

Network Security Policy - Alauda Container Platform

Policy 2: Restrict Host Port Range

Allow specific host port ranges for controlled access:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-host-port-range
annotations:
policies.kyverno.io/title: Restrict Host Port Range
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Host ports, if used, must be within an allowed range to prevent conflicts and
security issues.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-port-range
match:
any:
- resources:
kinds:
- Pod
preconditions:
all:
- key: "{{ request.object.spec.containers[].ports[?hostPort] | length(@) }}"

operator: GreaterThan

value: @
validate:
message: >-
Host ports must be within the allowed range 30000-32767.
foreach:

- list: request.object.spec.[ephemeralContainers, initContainers, containers]

[].ports[]
preconditions:

any:
- key: "{{ element.hostPort }}"
operator: GreaterThan
value: 0
deny:
conditions:
any:
- key: "{{ element.hostPort }}"
operator: LessThan

Network Security Policy - Alauda Container Platform

value: 30000

- key: "{{ element.hostPort }}"
operator: GreaterThan
value: 32767

Policy 3: Require Network Policies

Ensure pods have associated NetworkPolicies for traffic control:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-network-policies
annotations:
policies.kyverno.io/title: Require Network Policies
policies.kyverno.io/category: Network Security
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod,NetworkPolicy
policies.kyverno.io/description: >-
Pods should have associated NetworkPolicies to control network traffic.
spec:
validationFailureAction: Enforce
background: false
rules:
- name: require-netpol
match:
any:
- resources:
kinds:
- Pod
exclude:
any:
- resources:
namespaces:
- kube-system
- kyverno
context:
- name: netpols
apiCall:
urlPath: "/apis/networking.k8s.io/v1/namespaces/{{ request.namespace
}}/networkpolicies”
jmesPath: "items[?spec.podSelector.matchLabels.app == '{{
request.object.metadata.labels.app }}'] | length(@)"
validate:
message: >-
Pods must have an associated NetworkPolicy. Create a NetworkPolicy that selects
this pod.
deny:
conditions:
all:
- key: "{{ netpols }}"
operator: Equals

Network Security Policy - Alauda Container Platform

value: 0
Policy 4: Restrict Service Types

Control which service types can be created:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-service-types
annotations:
policies.kyverno.io/title: Restrict Service Types
policies.kyverno.io/category: Network Security
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Service
policies.kyverno.io/description: >-
Restrict Service types to prevent exposure of services to external networks.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: restrict-nodeport
match:
any:
- resources:
kinds:
- Service
validate:
message: >-
NodePort services are not allowed. Use ClusterIP or LoadBalancer instead.
pattern:
spec:
type: "!NodePort"
- name: restrict-loadbalancer
match:
any:
- resources:
kinds:
- Service
namespaces:
- development
- dev-*
- staging
validate:
message: >-
LoadBalancer services are not allowed in development environments.
pattern:
spec:
type: "!LoadBalancer"

Network Security Policy - Alauda Container Platform

Policy 5: Control Ingress Configurations

Enforce secure Ingress configurations:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: secure-ingress-configuration
annotations:
policies.kyverno.io/title: Secure Ingress Configuration
policies.kyverno.io/category: Network Security
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Ingress
policies.kyverno.io/description: >-
Ingress resources must be configured securely with TLS and proper annotations.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: require-tls
match:
any:
- resources:
kinds:
- Ingress
validate:
message: >-
Ingress must use TLS. The field spec.tls must be specified.
pattern:
spec:
tls:
- hosts:
o D50
- name: require-security-annotations
match:
any:
- resources:
kinds:
- Ingress
validate:
message: >-
Ingress must have security annotations for SSL redirect and HSTS.
pattern:
metadata:
annotations:
nginx.ingress.kubernetes.io/ssl-redirect: "true"
nginx.ingress.kubernetes.io/force-ssl-redirect: "true"

Network Security Policy - Alauda Container Platform

Policy 6: Restrict DNS Configuration

Control DNS settings to prevent DNS-based attacks:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-dns-configuration
annotations:
policies.kyverno.io/title: Restrict DNS Configuration
policies.kyverno.io/category: Network Security
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
Restrict DNS configuration to prevent DNS hijacking and data exfiltration.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: restrict-dns-policy
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Custom DNS policy is not allowed. Use Default or ClusterFirst only.
pattern:
spec:
=(dnsPolicy): "Default | ClusterFirst"
- name: restrict-custom-dns
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Custom DNS configuration is not allowed in production environments.
pattern:
spec:
X(dnsConfig): "null"

Network Security Policy - Alauda Container Platform

Advanced Scenarios

Scenario 1: Environment-Specific Network Policies

Different network restrictions for different environments:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: environment-network-security
spec:
validationFailureAction: Enforce
background: true

rules:

- name: production-network-restrictions
match:
any:
- resources:
kinds:
- Pod
namespaces:
- production
- prod-*
validate:
message: "Production environments require strict network security"
pattern:
spec:
hostNetwork: "false"
dnsPolicy: "ClusterFirst"
containers:
- ports:
- =(hostPort): 0

- name: development-network-restrictions
match:
any:
- resources:
kinds:
- Pod
namespaces:
- development
- dev-*
- staging
validate:
message: "Development environments require basic network security"
pattern:
spec:

Network Security Policy - Alauda Container Platform

hostNetwork: "false"
Scenario 2: Application-Specific Network Policies

Different network policies for different application types:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: application-network-policies
spec:
validationFailureAction: Enforce
background: true

rules:

- name: database-network-policy
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
app.type: database
validate:
message: "Database applications cannot use host network or host ports”
pattern:
spec:
hostNetwork: "false"
containers:
- ports:
- =(hostPort): 0

- name: web-app-network-policy
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
app.type: web
validate:
message: "Web applications can only use standard HTTP/HTTPS ports"
foreach:
- list: request.object.spec.containers[].ports[]
deny:
conditions:

Network Security Policy - Alauda Container Platform

any:
- key: "{{ element.containerPort }}"

operator: AnyNotIn

value:

- 80

- 443

- 8080

- 8443

Scenario 3: Network Segmentation Enforcement

Enforce network segmentation between different tiers:

Network Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: network-segmentation-enforcement
spec:
validationFailureAction: Enforce
background: true
rules:
- name: frontend-backend-separation
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
tier: frontend
validate:
message: "Frontend pods cannot access backend network directly"
deny:
conditions:
any:
- key: "{{ request.object.metadata.labels.tier }}"
operator: Equals
value: backend
- name: require-network-labels
match:
any:
- resources:
kinds:
- Pod
exclude:
any:
- resources:
namespaces:
- kube-system
- kyverno
validate:
message: "Pods must have network tier labels for segmentation"
pattern:
metadata:
labels:
tier: "frontend | backend | database"

Network Security Policy - Alauda Container Platform

Testing and Validation

Test Host Network Access (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:

name: test-host-network
spec:

hostNetwork: true

containers:

- name: test

image: nginx

EOF

Test Host Port Binding (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-host-port
spec:
containers:
- name: test
image: nginx
ports:
- containerPort: 80
hostPort: 8080
EOF

Test NodePort Service (Should Fail)

Network Security Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1

kind: Service

metadata:

name: test-nodeport

spec:

type: NodePort

ports:

- port: 80
targetPort: 80
nodePort: 30080

selector:
app: test

EOF

Test Valid Network Configuration (Should Pass)

Network Security Policy - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-secure-network
labels:
app: web-app
tier: frontend
spec:
dnsPolicy: ClusterFirst
containers:
- name: test
image: nginx
ports:
- containerPort: 80
protocol: TCP
apiVersion: v1
kind: Service
metadata:
name: test-service
spec:
type: ClusterIP
ports:
- port: 80
targetPort: 80
selector:
app: web-app
EOF

Volume Security Policy - Alauda Container Platform

Menu

Volume Security Policy

ON THIS PAGE >

This guide demonstrates how to configure Kyverno to enforce volume security policies that

restrict dangerous volume types and configurations that could compromise container security.

TOC

What is Volume Security?
Quick Start
1. Restrict Volume Types
2. Test the Policy
Core Volume Security Policies
Policy 1: Disallow HostPath Volumes
Policy 2: Restrict HostPath Volumes (Controlled Access)
Policy 3: Disallow Privileged Volume Types
Policy 4: Require Read-Only Root Filesystem
Policy 5: Control Volume Mount Permissions
Advanced Scenarios
Scenario 1: Environment-Specific Volume Policies
Scenario 2: Application-Specific Volume Policies
Scenario 3: Volume Size and Resource Limits
Testing and Validation

Test HostPath Volume (Should Fail)

Volume Security Policy - Alauda Container Platform

What is Volume Security?

Volume security involves controlling which types of volumes containers can mount and how

they can access them. Proper volume security prevents:

Host filesystem access: Unauthorized access to host directories

Privilege escalation: Using volumes to gain elevated permissions

Data exfiltration: Accessing sensitive host data through volume mounts

Container escape: Breaking out of container isolation via volume access

Insecure volume types: Using volume types that bypass security controls

Quick Start

1. Restrict Volume Types

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-volume-types
annotations:
policies.kyverno.io/title: Restrict Volume Types
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod,Volume
policies.kyverno.io/description: >-
Only allow safe volume types. This policy restricts volumes to configMap, csi,
downwardAPI, emptyDir, ephemeral, persistentVolumeClaim, projected, and secret.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: restrict-volume-types
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Only the following types of volumes may be used: configMap, csi, downwardAPI,
emptyDir, ephemeral, persistentVolumeClaim, projected, and secret.
foreach:
- list: "request.object.spec.volumes || []"
deny:
conditions:
all:
- key: "{{ element.keys(@) }}"
operator: AnyNotIn
value:

- nName

configMap

- ¢si

- downwardAPI

- emptyDir

- ephemeral

- persistentVolumeClaim
- projected

- secret

Volume Security Policy - Alauda Container Platform

2. Test the Policy

Volume Security Policy - Alauda Container Platform

Apply the policy
kubectl apply -f restrict-volume-types.yaml

Try to create a pod with hostPath volume (should fail)
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-hostpath
spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- name: host-vol
mountPath: /host
volumes:
- name: host-vol
hostPath:
path: /
EOF

Create a test ConfigMap first
kubectl create configmap test-config --from-literal=key=value

Try to create a pod with allowed volume (should work)
cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-configmap
spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- name: config-vol
mountPath: /config
volumes:
- name: config-vol
configMap:
name: test-config
EOF

Volume Security Policy - Alauda Container Platform

kubectl delete pod test-hostpath test-configmap --ignore-not-found

kubectl delete configmap test-config --ignore-not-found

Core Volume Security Policies

Policy 1: Disallow HostPath Volumes

Prevent containers from mounting host filesystem paths:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-host-path
annotations:
policies.kyverno.io/title: Disallow Host Path
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod,Volume
policies.kyverno.io/description: >-
HostPath volumes let Pods use host directories and volumes in containers.
Using host resources can be used to access shared data or escalate privileges
and should not be allowed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-path
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
HostPath volumes are forbidden. The field spec.volumes[*].hostPath must be
unset.
pattern:
spec:
=(volumes):
- X(hostPath): "null"

Policy 2: Restrict HostPath Volumes (Controlled Access)

Allow specific hostPath volumes with read-only access:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: restrict-host-path-readonly
annotations:
policies.kyverno.io/title: Restrict Host Path (Read-Only)
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod,Volume
policies.kyverno.io/description: >-
HostPath volumes which are allowed must be read-only and restricted to specific
paths.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: host-path-readonly
match:
any:
- resources:
kinds:
- Pod
preconditions:
all:
- key: "{{ request.object.spec.volumes[?hostPath] | length(@) }}"

operator: GreaterThan

value: 0
validate:
message: >-

HostPath volumes must be read-only and limited to allowed paths.
foreach:
- list: "request.object.spec.volumes[?hostPath]"
deny:
conditions:

any:

- key: "{{ element.hostPath.path }}"
operator: AnyNotIn
value:
- "/var/log"
- "/var/lib/docker/containers"
- "/proc”
- "/sys"

Volume Security Policy - Alauda Container Platform

foreach:
- list: "request.object.spec.containers[].volumeMounts[?name]"
deny:
conditions:
any:

- key: "{{ element.readOnly || false }}"

operator: Equals

value: false
Policy 3: Disallow Privileged Volume Types

Block volume types that can bypass security controls:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: disallow-privileged-volumes
annotations:
policies.kyverno.io/title: Disallow Privileged Volume Types
policies.kyverno.io/category: Pod Security Standards (Baseline)
policies.kyverno.io/severity: high
policies.kyverno.io/subject: Pod,Volume
policies.kyverno.io/description: >-
Certain volume types are considered privileged and should not be allowed.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: disallow-privileged-volumes
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Privileged volume types are not allowed: hostPath, gcePersistentDisk,
awsElasticBlockStore, gitRepo, nfs, iscsi, glusterfs, rbd, flexVolume,
cinder, cephFS, flocker, fc, azureFile, azureDisk, vsphereVolume, quobyte,
portworxVolume, scalel0, storageos.
foreach:
- list: "request.object.spec.volumes || []"
deny:
conditions:
any:
- key: "{{ element.keys(@) }}"
operator: AnyIn
value:
- hostPath
- gcePersistentDisk
- awsElasticBlockStore
- gitRepo
- nfs
- iscsi
- glusterfs
- rhd

Volume Security Policy - Alauda Container Platform

- flexVolume

- cinder

- cephFS

- flocker

- fc

- azurefFile

- azureDisk

- vsphereVolume
- quobyte

- portworxVolume
- scalel0

- storageos
Policy 4: Require Read-Only Root Filesystem

Ensure containers use read-only root filesystems:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: require-readonly-rootfs
annotations:
policies.kyverno.io/title: Require Read-Only Root Filesystem
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod
policies.kyverno.io/description: >-
A read-only root file system helps to enforce an immutable infrastructure strategy;
the container only needs to write on the mounted volume that persists the state.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: readonly-rootfs
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Root filesystem must be read-only. Set readOnlyRootFilesystem to true.
foreach:
- list: request.object.spec.[ephemeralContainers, initContainers, containers][]
deny:
conditions:
any:
- key: "{{ element.securityContext.readOnlyRootFilesystem || false }}"
operator: Equals

value: false

Policy 5: Control Volume Mount Permissions

Restrict volume mount permissions and paths:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: control-volume-mounts
annotations:
policies.kyverno.io/title: Control Volume Mount Permissions
policies.kyverno.io/category: Pod Security Standards (Restricted)
policies.kyverno.io/severity: medium
policies.kyverno.io/subject: Pod,Volume
policies.kyverno.io/description: >-
Control where volumes can be mounted and with what permissions.
spec:
validationFailureAction: Enforce
background: true
rules:
- name: restrict-mount-paths
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Volume mounts to sensitive paths are not allowed.
foreach:
- list: request.object.spec.[ephemeralContainers, initContainers, containers]
[1.volumeMounts[]
deny:
conditions:

any:

- key: "{{ element.mountPath }}"
operator: Anyln
value:
- "/etc"
- "/root"
- "/var/run/docker.sock"
- "/var/lib/kubelet”
- "/var/lib/docker"
- "/usr/bin"
- "/usr/sbhin"
- "/sbin"
- "/bin"

Volume Security Policy - Alauda Container Platform

- name: require-readonly-sensitive-mounts
match:
any:
- resources:
kinds:
- Pod
validate:
message: >-
Mounts to /proc and /sys must be read-only.
foreach:
- list: request.object.spec.[ephemeralContainers, initContainers, containers]
[].volumeMounts|]
preconditions:
any:
- key: "{{ element.mountPath }}"
operator: AnyIn
value:
- "/proc"
- "/sys"
deny:
conditions:
any:
- key: "{{ element.readOnly || false }}"
operator: Equals

value: false

Advanced Scenarios

Scenario 1: Environment-Specific Volume Policies

Different volume restrictions for different environments:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: environment-volume-security
spec:
validationFailureAction: Enforce
background: true

rules:

- name: production-volume-restrictions
match:
any:
- resources:
kinds:
- Pod
namespaces:
- production
- prod-*
validate:
message: "Production environments allow only secure volume types"
foreach:
- list: "request.object.spec.volumes || []"
deny:
conditions:
all:
- key: "{{ element.keys(@) }}"
operator: AnyNotIn
value:
- name
- configMap
- secret
- persistentVolumeClaim

- emptyDir

- name: development-volume-restrictions
match:
any:
- resources:
kinds:
- Pod
namespaces:

- development

Volume Security Policy - Alauda Container Platform

- dev-*
- staging
validate:
message: "Development environments allow additional volume types"
foreach:
- list: "request.object.spec.volumes || []"
deny:
conditions:
any:
- key: "{{ element.keys(@) }}"
operator: AnyIn
value:
- hostPath

- nfs
Scenario 2: Application-Specific Volume Policies

Different volume policies for different application types:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: application-volume-policies
spec:
validationFailureAction: Enforce
background: true

rules:

- name: database-volume-policy
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
app.type: database
validate:
message: "Database applications must use persistent volumes"
pattern:
spec:
volumes:
- persistentVolumeClaim: {}

- name: web-app-volume-policy
match:
any:
- resources:
kinds:
- Pod
selector:
matchLabels:
app.type: web
validate:
message: "Web applications can only use safe volume types"
foreach:
- list: "request.object.spec.volumes || []"
deny:
conditions:
all:
- key: "{{ element.keys(@) }}"

Volume Security Policy - Alauda Container Platform
operator: AnyNotIn

value:

- nhame

configMap

secret

emptyDir

projected
Scenario 3: Volume Size and Resource Limits

Control volume sizes and resource usage:

Volume Security Policy - Alauda Container Platform

apiVersion: kyverno.io/v1
kind: ClusterPolicy
metadata:
name: volume-resource-limits
Spec:
validationFailureAction: Enforce
background: true
rules:
- name: limit-emptydir-size
match:
any:
- resources:
kinds:
- Pod
validate:
message: "EmptyDir volumes must have size limits"
foreach:
- list: "request.object.spec.volumes[?emptyDir]"
deny:
conditions:
any:
- key: "{{ element.emptyDir.sizelimit || "" }}"
operator: Equals
value: ""
- name: limit-emptydir-memory
match:
any:
- resources:
kinds:
- Pod
validate:
message: "EmptyDir memory volumes are not allowed"
foreach:
- list: "request.object.spec.volumes[?emptyDir]"
deny:
conditions:
any:
- key: "{{ element.emptyDir.medium || "' }}"
operator: Equals

value: "Memory"

Volume Security Policy - Alauda Container Platform

Testing and Validation

Test HostPath Volume (Should Fail)

cat <<EOF | kubectl apply -f -
apiVersion: v1
kind: Pod
metadata:
name: test-hostpath
spec:
containers:
- name: nginx
image: nginx
volumeMounts:
- name: host-vol
mountPath: /host
volumes:
- name: host-vol
hostPath:
path: /
EOF

API Refiner - Alauda Container Platform

Menu

API Refiner

Introduction
Product Introduction

Limitations

Install Alauda Container Platform API Refiner
Install via console

Install via YAML

Uninstallation Procedures

Default Configuration

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

TOC

Product Introduction

Limitations

Product Introduction

ACP API Refiner is a data filtering service provided by the Alauda Container Platform that
enhances multi-tenant security and data isolation in Kubernetes environments. It filters
Kubernetes API response data based on user permissions, projects, clusters, and

namespaces, while also supporting field-level filtering, inclusion, and data desensitization.

Limitations

The following limitations apply to ACP API Refiner:

¢ Resources must contain specific tenant-related labels for data isolation:

cpaas.io/project

e cpaas.io/cluster

cpaas.io/namespace

kubernetes.io/metadata.name

Introduction - Alauda Container Platform

e Optional: cpaas.io/creator
o LabelSelector queries do not support logical OR operations
o Platform-level userbindings are not filtered

o Filtering is only applied to GET and LIST API operations

Install Alauda Container Platform API| Refiner - Alauda Container Platform

Menu ON THIS PAGE >

Install Alauda Container Platform API

Refiner

Alauda Container Platform API Refiner is a platform service that filters Kubernetes API
response data. It provides filtering capabilities by project, cluster, and namespace, and

supports field exclusion, inclusion, and desensitization in APl responses.

TOC

Install via console
Install via YAML
1. Check available versions
2. Create a Modulelnfo
Uninstallation Procedures
Default Configuration
Filtered Resources

Field Desensitization

Install via console

1. Navigate to Administrator
2. In the left navigation bar, click Marketplace > Cluster Plugins

3. Select the global cluster in the top navigation bar

Install Alauda Container Platform API| Refiner - Alauda Container Platform
4. Search for Alauda Container Platform API Refiner and click to view its details

5. Click Install to deploy the plugin

Install via YAML

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in global cluster :

NAME AGE
apirefiner 4d26h

NAME AGE
apirefiner-v4.0.4 4d21h

This indicates that the ModulePlugin apirefiner exists in the cluster and version v4.0.4 is

published.

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

Install Alauda Container Platform API Refiner - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModulelInfo
metadata:
annotations:
cpaas.io/display-name: apirefiner
cpaas.io/module-name: '{"en": "Alauda Container Platform API Refiner", "zh": "Alauda
Container Platform API Refiner"}'
labels:
cpaas.io/cluster-name: global
cpaas.io/module-name: apirefiner
cpaas.io/module-type: plugin
cpaas.io/product: Platform-Center
name: apirefiner-global
spec:
version: v4.2.0-default.1.98f0543e4

Field explanations:

name : Temporary name for the cluster plugin. The platform will rename it after creation
based on the content, in the format <cluster-name>-<hash of content> , €.g., global-
ee98c9991eal1464aaa8054bdachab313 .

label cpaas.io/cluster-name : APl Refiner only can be installed in the global cluster, keep

this filed as global.
label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.
.spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

.spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

Uninstallation Procedures

1. Follow steps 1-4 from the installation process to locate the plugin

2. Click Uninstall to remove the plugin

Install Alauda Container Platform API| Refiner - Alauda Container Platform

Default Configuration

Filtered Resources

The following resources are filtered by default:

Resource API Version
namespaces vl
projects auth.alauda.io/vl

clustermodules cluster.alauda.io/vlalpha2

clusters clusterregistry.k8s.io/vlalphal

Field Desensitization

By default, the following field is desensitized:

e metadata.annotations.cpaas.io/creator

About Alauda Container Platform Compliance Service - Alauda Container Platform

Menu

About Alauda Container Platform

Compliance Service

Compliance Service is a platform module designed to support STIG compliance scanning and
MicroOS operating system scanning. It provides out-of-the-box compliance scanning

capabilities with support for scheduled scanning and comprehensive reporting.

Note

Because Compliance Service releases on a different cadence from Alauda Container Platform, the
Compliance Service documentation is now available as a separate documentation set at

Compliance Service 7.

https://docs.alauda.io/compliance-service/
https://docs.alauda.io/compliance-service/
https://docs.alauda.io/compliance-service/

Users and Roles - Alauda Container Platform

Menu

Users and Roles

User

Introduction
User Sources
User Management Rules

User Lifecycle

Guides

Group

Introduction
Group Introduction

Group Types

Guides

Role

Users and Roles - Alauda Container Platform

Introduction
Role Introduction
System Roles

Custom Roles

Guides

IDP

Introduction
Overview

Supported Integration Methods

Guides

Troubleshooting

User Policy

Introduction
Overview
Configure Security Policy

Available Policies

Users and Roles - Alauda Container Platform

User - Alauda Container Platform

Menu

User

Introduction

Introduction
User Sources
User Management Rules

User Lifecycle

Guides

Manage User Roles
Add Roles

Remove Roles

Create User

Steps

User Management
Reset Local User Password
Update User Expiry Date
Activate User

Disable User

Add User to Local User Group
Delete User

Batch Operations

User - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

The platform supports user authentication and login verification for all users.

TOC

User Sources
Local Users
Third-Party Users
LDAP Users
OIDC Users
Other Third-Party Users
User Management Rules

User Lifecycle

User Sources

Local Users

o Administrator account created during platform deployment
¢ Accounts created through the platform interface

o Users added through local dex configuration file

Third-Party Users

Introduction - Alauda Container Platform

LDAP Users

Enterprise users synchronized from LDAP servers

Accounts are imported through IDP (ldentity Provider) integration

Source is displayed as the IDP configuration name

Integration is configured through IDP settings

OIDC Users

¢ Third-party platform users authenticated via OIDC protocol
e Source is displayed as the IDP configuration name

¢ Integration is configured through IDP settings

WARNING

For OIDC users added to a project before their first login:

» Source is displayed as "-" until successful platform login

» After successful login, source changes to the IDP configuration name

Other Third-Party Users

¢ Users authenticated through supported dex connectors (e.g., GitHub, Microsoft)

¢ For more information, refer to the dex official documentation -~

User Management Rules

WARNING

Please note the following important rules:

» Local usernames must be unique across all user types

» Third-party users (OIDC/LDAP) with matching usernames are automatically associated

» Associated users inherit permissions from existing accounts

https://github.com/dexidp/dex
https://github.com/dexidp/dex
https://github.com/dexidp/dex

Introduction - Alauda Container Platform

» Users can log in through their respective sources

« Only one user record is displayed per username in the platform

e User source is determined by the most recent login method

User Lifecycle

The following table describes different user statuses on the platform:

Status

Normal

Disabled

Locked

Invalid

Description
User account is active and can log in to the platform

User account is inactive and cannot log in. Contact platform administrator

for activation.

Possible reasons:
- No login for 90+ consecutive days
- Account expiration

- Manual disable by administrator

Account is temporarily locked due to 5 failed login attempts within 24

hours.

Details:
- Lock duration: 20 minutes
- Can be manually unlocked by administrator

- Account becomes available after lock period

LDAP-synchronized account that has been deleted from the LDAP server.

Note: Invalid accounts cannot log in to the platform

Menu

Guides

Manage User Roles
Add Roles

Remove Roles

Create User

Steps

User Management
Reset Local User Password
Update User Expiry Date
Activate User

Disable User

Add User to Local User Group
Delete User

Batch Operations

Guides - Alauda Container Platform

Manage User Roles - Alauda Container Platform

= Menu ON THIS PAGE >

Manage User Roles

Platform administrators can manage roles for other users (not their own account) to grant or

revoke permissions.

TOC

Add Roles
Steps
Remove Roles

Steps

Add Roles

Steps

1. In the left navigation bar, click Users > User Management
2. Click the username of the target user

3. Scroll to the Role List section

4. Click Add Role

5. In the role assignment dialog:

e Select a role from the Role Name dropdown

¢ Choose the role's permission scope (cluster, project, or namespace)

Manage User Roles - Alauda Container Platform

e Click Add

NOTE

Important Notes:

e You can add multiple roles to a user

Each role can only be added once per user

Already assigned roles appear in the dropdown but cannot be selected

The Cluster Administrator role cannot be assigned for the global cluster

Remove Roles

Steps

1. In the left navigation bar, click Users > User Management
2. Click the username of the target user

3. Scroll to the Role List section

4. Click Remove next to the role you want to remove

5. Confirm the removal

WARNING

Role Management Permissions:

e Only platform administrators can manage roles for other users

« Users cannot modify roles for their own account

Create User - Alauda Container Platform

Menu ON THIS PAGE >

Create User

Users with platform administrator roles can create local users and assign roles to them

through the platform interface.

TOC

Steps

Steps

1. In the left navigation bar, click Users > User Management
2. Click Create User

3. Configure the following parameters:

Parameter Description

Select a password generation method:
Password Type
Random: System generates a secure random password

Custom: User manually enters a password

Password Enter or generate a password based on the selected type.

Password Requirements:

- Length: 8-32 characters

Create User - Alauda Container Platform

Parameter Description

- Must contain letters and numbers

- Must contain special characters (~!0#$%\&*() -_=+7)

Password Field Features:
- Click the eye icon to show/hide password

- Click the copy icon to copy password

User's email address:
] - Must be unique
Mailbox _
- Can be used as login username

- Associated with user's name

Set the user's account validity period:

o) Options:
Validity Period o
- Permanent: No time limit

- Custom: Set start and end times using the Time Range

dropdown
Roles Assign one or more roles to the user

. Toggle switch to control post-creation behavior:
Continue _ _
] - On: Redirects to new user creation page
Creating _
- Off: Shows user details page

4. Click Create

NOTE

After successful user creation:

 If "Continue Creating" is enabled, you'll be redirected to create another user

 If disabled, you'll see the created user's details page

User Management - Alauda Container Platform

Menu ON THIS PAGE >

User Management

The platform provides flexible user management capabilities, supporting both individual user
management and batch operations for improved efficiency in specific scenarios (e.g., on-site

or off-site teams).

WARNING

Important Restrictions:

» System-generated accounts cannot be managed (platform administrator role, local source)
« Currently logged-in users cannot manage their own accounts

» For personal account modifications (display name, password), please use the personal

information page

TOC

Reset Local User Password
Steps

Update User Expiry Date
Steps

Activate User
Steps

Disable User
Steps

Add User to Local User Group

Steps

User Management - Alauda Container Platform

Delete User
Steps
Batch Operations

Steps

Reset Local User Password

Users with platform management permissions can reset passwords for other local users.

Steps

1. In the left navigation bar, click Users > User Management
2. Click the icon next to the target user's record

3. Click Reset Password

4. In the dialog box, select a password type:

 Random: System generates a secure random password

e Custom: Enter a new password manually

NOTE

Password Requirements:

» Length: 8-32 characters
e Must contain letters and numbers

o Must contain special characters (~!1@#$%/\&*() -_=+?)
Password Field Features:

» Click eye icon to show/hide password

» Click copy icon to copy password

User Management - Alauda Container Platform

5. Click Reset

Update User Expiry Date

You can update expiry dates for users in normal, disabled, or locked status. Users

exceeding their expiry date will be automatically disabled.

Steps

1. In the left navigation bar, click Users > User Management
2. Click Update Expiry Date next to the target user

3. In the dialog box, select an expiry date option:

¢ Permanent: No time limit

e Custom: Set start and end times using the Time Range dropdown

4. Click Update

Activate User

You can activate users in disabled or locked status.

NOTE

Activation Behavior:

 |If user is within expiry date: expiry date remains unchanged

 If user has expired: expiry date becomes Permanent

Steps

1. In the left navigation bar, click Users > User Management

User Management - Alauda Container Platform
2. Click Activate next to the target user
3. Click Activate in the confirmation dialog

4. User status will change to normal

Disable User

You can disable users in normal or locked status within their expiry date. Disabled users

cannot log in but can be reactivated.

Steps

1. In the left navigation bar, click Users > User Management
2. Click the icon next to the target user

3. Click Disable and confirm

Add User to Local User Group

You can add users with Source as Local or LDAP to one or more local user groups.

WARNING

Group Role Behavior:

» Users automatically inherit roles from their groups
» Group roles are only visible on the group's details page (Configure Roles tab)

« Individual user role lists only show directly assigned roles

Steps

1. In the left navigation bar, click Users > User Management

2. Click the icon next to the target user

User Management - Alauda Container Platform

3. Click Add to User Group
4. Select one or more local user groups

5. Click Add

Delete User

Platform administrators can delete any user except the currently logged-in account, including:

o IDP-configured users
e Users with source -

e Local users

Steps

1. In the left navigation bar, click Users > User Management
2. Click the icon next to the target user
3. Click Delete

4. Click Confirm

Batch Operations

You can perform batch operations for:

Updating validity periods

Activating users

Disabling users

Deleting users

Steps

1. In the left navigation bar, click Users > User Management

User Management - Alauda Container Platform
2. Select one or more users using checkboxes

3. Click Batch Operations and select an action:

Update Validity

Activate

Deactivate

Delete

NOTE

Batch Operation Details:

Update Validity: Set permanent or custom time range

Activate: Confirm activation in dialog

Deactivate: Confirm deactivation in dialog

Delete: Enter current account password and confirm

Group - Alauda Container Platform

Menu

Group

Introduction

Introduction
Group Introduction

Group Types

Guides

Manage User Group Roles
Add Role to Group

Remove Role from Group

Create Local User Group
Create User Group

Manage User Groups

Manage Local User Group Membership
Prerequisites
Import Members

Remove Members

Group - Alauda Container Platform

Introduction - Alauda Container Platform

= Menu ON THIS PAGE >

Introduction

TOC

Group Introduction
Group Types
Local User Group

IDP-Synchronized User Group

Group Introduction

The platform supports user management through user groups. By managing group roles, you
can efficiently:

« Grant platform operation permissions to multiple users simultaneously

¢ Revoke permissions from multiple users at once

+ Implement batch role-based access control

For example, when personnel changes occur within an enterprise and you need to grant new
project or namespace operation permissions to multiple users, you can:

1. Create a user group

2. Import relevant users as group members

3. Configure project and namespace roles for the group

4. Apply unified permissions to all group members

Introduction - Alauda Container Platform

Group Types

The platform supports two types of groups:

Local User Group

Created directly on the platform

Source is displayed as Local

Can be updated or deleted

Supports:

e Adding or removing users from any source

¢ Adding or removing roles

IDP-Synchronized User Group

e Synchronized from connected IDP (LDAP, Azure AD)
e Source is displayed as the connected IDP name
o Cannot be updated or deleted

e Supports:

¢ Adding or removing roles

o Cannot manage group members (add or remove)

Guides - Alauda Container Platform

Menu

Guides

Manage User Group Roles
Add Role to Group

Remove Role from Group

Create Local User Group
Create User Group

Manage User Groups

Manage Local User Group Membership
Prerequisites
Import Members

Remove Members

Manage User Group Roles - Alauda Container Platform

= Menu ON THIS PAGE >

Manage User Group Roles

Users with platform management permissions can manage roles for both local user groups

and IDP-synchronized user groups.

TOC

Add Role to Group
Steps
Remove Role from Group

Steps

Add Role to Group

Steps

1. In the left navigation bar, click Users > User Group Management
2. Click the name of the target user group
3. On the Configure Role tab, click Add Role

4. Click to add a role

NOTE

Role Assignment Rules:

Manage User Group Roles - Alauda Container Platform
» You can add multiple roles to a group

« Each role can only be added once to the same group

5. Select the role name from the dropdown

6. Choose the role's permission scope (cluster, project, or namespace)

7. Click Add

Remove Role from Group

WARNING

When you remove a role from a group:

« All permissions granted by that role to group members will be revoked

e This action cannot be undone

Steps

1. In the left navigation bar, click Users > User Group Management
2. Click the name of the target user group
3. On the Configure Role tab, click Remove next to the role

4. Click Confirm to remove the role

Create Local User Group - Alauda Container Platform

= Menu ON THIS PAGE >

Create Local User Group

Local user groups allow you to implement role-based access control for multiple users from
any source.

TOC

Create User Group
Steps

Manage User Groups

Create User Group

Steps

1. In the left sidebar, click Users > User Group Management
2. Click Create User Group

3. Enter the following information:

* Name: The name of the user group

o Description: A description of the group's purpose

4. Click Create

Create Local User Group - Alauda Container Platform

Manage User Groups

You can manage user groups by clicking the icon on the list page or clicking Operations in

the upper right corner on the details page.

Operation Description

Update group information based on the group source:

- For groups with Source as Local : Can update both name

Update User Group and description
- For groups with Source as IDP name : Can only update

description

Delete Local User .
Delete user groups with Source as Local

Group

WARNING

When you delete a group:

o All group members will be removed
« All roles assigned to the group will be removed

e This action cannot be undone

Manage Local User Group Membership - Alauda Container Platform

Menu ON THIS PAGE >

Manage Local User Group Membership

Only users with Platform Management permissions can manage local user group

memberships.

TOC

Prerequisites

Import Members
Steps

Remove Members

Steps

Prerequisites

WARNING

Before managing group memberships, please note the following limitations:

Only users with Platform Management permissions can manage groups and their members

» System accounts and currently logged-in accounts cannot be managed (imported to or removed

from groups)

Each local user group can have a maximum of 5000 members

» When a group reaches the 5000-member limit, no further imports are allowed

Manage Local User Group Membership - Alauda Container Platform

Import Members

You can import users from the platform into local user groups for unified permission

management.

TIP

Users imported into a group will automatically inherit all operational permissions assigned to that

group.

Steps

1. In the left navigation bar, click Users > User Group Management
2. Click the name of the local user group where you want to add members
3. On the Group Member Management tab, click Import Member

4. Select one or more users from the platform by checking the boxes next to their

usernames/display names

5. Click Import

NOTE

» You can only select users who are not currently members of the group

« Use the Import All button to import all users in the list at once

Remove Members

When you remove a user from a group, all operational permissions granted to that user

through the group will be automatically revoked.

Steps

Manage Local User Group Membership - Alauda Container Platform
1. In the left navigation bar, click Users > User Group Management
2. Click the name of the local user group where you want to remove members

3. On the Group Member Management tab, you can remove members in two ways:

¢ Click Remove next to the member's name and confirm

o Select one or more members using checkboxes, then click Batch Remove and confirm

Menu

Role

Introduction

Introduction
Role Introduction
System Roles

Custom Roles

Guides

Create Role
Basic Information Configuration
View Configuration

Permission Configuration

Manage Custom Roles
Update Basic Information
Update Role Permissions
Copy Existing Role

Delete Custom Role

Role - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

TOC

Role Introduction
System Roles

Custom Roles

Role Introduction

The platform's user role management is implemented using Kubernetes RBAC (Role-Based
Access Control). This system enables flexible permission configuration by associating roles

with users.

A role represents a collection of permissions for operating Kubernetes resources on the

platform. These permissions include:

o Creating resources
» Viewing resources
o Updating resources

» Deleting resources

Roles classify and combine permissions for different resources. By assigning roles to users

and setting permission scopes, you can quickly grant resource operation permissions.

Permissions can be revoked just as easily by removing roles from users.

A role can have:

Introduction - Alauda Container Platform

« One or more resource types

+ One or more operation permissions

e Multiple users assigned to it

For example:

e Role A: Can only view and create projects

* Role B: Can create, view, update, and delete users, projects, and hamespaces

System Roles

To meet common permission configuration scenarios, the platform provides the following

default system roles. These roles enable flexible access control for platform resources and

efficient permission management for users.

Role Name

Platform

Administrator

Platform Auditors

Cluster
Administrator
(Alpha)

Project

Administrator

namespace-admin-

system

Description

Has full access to all business and resources

on the platform

Can view all platform resources and
operation records, but has no other

permissions

Manages and maintains cluster resources

with full access to all cluster-level resources

Manages namespace administrators and

namespace quotas

Manages namespace members and role

assignments

Role Level

Platform

Platform

Cluster

Project

Namespace

Introduction - Alauda Container Platform
Role Name Description Role Level

Develops, deploys, and maintains custom

Developers Namespace

applications within namespaces

Custom Roles

The platform supports custom roles to enhance resource access control scenarios. Custom
roles offer several advantages over system roles:

¢ Flexible permission configuration

 Ability to update role permissions

¢ Option to delete roles when no longer needed

WARNING

Exercise caution when updating or deleting custom roles. Deleting a custom role will automatically
revoke all permissions granted by that role to bound users.

Menu

Guides

Create Role
Basic Information Configuration
View Configuration

Permission Configuration

Manage Custom Roles
Update Basic Information
Update Role Permissions
Copy Existing Role

Delete Custom Role

Guides - Alauda Container Platform

Create Role - Alauda Container Platform

= Menu ON THIS PAGE >

Create Role

Users with platform role permissions can create custom roles with permissions that are less
than or equal to their own role permissions based on actual usage scenarios. When creating a
role, you can configure:

e Platform functional module operation permissions

¢ Access permissions for user-defined resources (Kubernetes CRD)

TOC

Basic Information Configuration
Role Type
View Configuration

Permission Configuration

Basic Information Configuration

1. In the left navigation bar, click Users > Roles.
2. Click Create Role.

3. Configure the role's basic information:

Role Type

When assigning roles to users, the permission scope will be limited based on the role type:

Create Role - Alauda Container Platform
« Platform Role: Displays all platform permissions

e Project Role: Displays permissions under:

Project Management

Container Platform

Service Mesh

DevOps

Middleware

 Namespace Role: Displays permissions under:

Project Management

Container Platform

Service Mesh

DevOps

Middleware

4. Click Next.

View Configuration

In the view configuration section, you control the role's permission to access specified views.

Views that are not selected will not be displayed in the top navigation for users with this role.

NOTE
1. Your account's role permissions limit which view cards you can configure. For example:

« If your account doesn't have the Project Management view permission
« The Project Management view card will be grayed out when creating a role

» You can only create roles with permissions equal to or lower than your own role
2. View Entry Status:

« |If a view's Show Entry is turned off in the Products function

Create Role - Alauda Container Platform

e The view's permissions in Permission Configuration will still take effect

« The view will be temporarily inaccessible until the entry is enabled

» Once enabled, the previously selected permissions will work normally

Permission Configuration

1. Click Add Custom Permission in the upper left corner of the page.

2. Configure permissions for the role to operate custom resources (Kubernetes CRD):

Parameter

Group Name

Resource Name

Operation

Permission

3. Click Create.

Description

The name of the permission group. Groups are displayed below

the permission module in the order they were added.

The name of the resource. Press Enter to add multiple custom

resource names.

The permission to operate the resource.

Manage Custom Roles - Alauda Container Platform

Menu ON THIS PAGE >

Manage Custom Roles

This guide describes how to manage custom roles on the platform, including:

+ Updating basic information and permissions
¢ Copying existing roles to create new ones

¢ Deleting custom roles

TOC

Update Basic Information
Steps

Update Role Permissions
Steps

Copy Existing Role
Steps

Delete Custom Role

Steps

Update Basic Information

You can update the display name and description of custom roles on the platform.

Steps

Manage Custom Roles - Alauda Container Platform
1. In the left navigation bar, click Users > Roles
2. Click the name of the role to be updated
3. Click Actions > Update in the upper right corner

4. Update the role's:

e Display name

o Description

5. Click Update

Update Role Permissions

You can update the permission information of custom roles, including:

e Adding new operation permissions for platform resources
» Removing existing permissions

e Modifying permissions for custom resources

Steps

1. In the left navigation bar, click Users > Roles

2. Click the name of the role to be updated

3. Click Actions > Update Role Permissions in the upper right corner of the permission area
4. Make your changes on the Update Role Permissions page

5. Click Confirm

Copy Existing Role

You can create a new role by copying an existing role (system or custom). The new role will
inherit all permission information from the source role, which you can then modify based on

your needs.

Manage Custom Roles - Alauda Container Platform

WARNING

The permissions of the new role cannot exceed the permissions of the role to which the creator

belongs.

Steps

1. In the left navigation bar, click Users > Roles
2. Click the name of the role to be copied
3. Click Actions > Copy as new role in the upper right corner

4. On the Copy as new role page, configure:

Name

Display name

Description

Type

5. Click Create

Delete Custom Role

You can delete custom roles that are no longer in use.

WARNING

When you delete a custom role:

e The role's binding relationships with users will be removed
» Users assigned to this role will lose all permissions granted by the role

e The role will be removed from users' role lists

Steps

Manage Custom Roles - Alauda Container Platform
1. In the left navigation bar, click Users > Roles
2. Click the name of the role to be deleted
3. Click Actions > Delete in the upper right corner
4. Enter the role name to confirm deletion

5. Click Delete

IDP - Alauda Container Platform

Menu

IDP

Introduction

Introduction
Overview

Supported Integration Methods

Guides

LDAP Management
LDAP Overview

Supported LDAP Types

LDAP Terminology

Add LDAP

LDAP Configuration Examples
Synchronize LDAP Users

Relevant Operations

IDP - Alauda Container Platform

OIDC Management
Overview of OIDC
Adding OIDC

Adding OIDC via YAML

Relevant Operations

Troubleshooting

Delete User
Problem Description

Solution

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

TOC

Overview
Supported Integration Methods
LDAP Integration

OIDC Integration

Overview

The platform integrates with Dex identity authentication service, enabling you to use Dex's
pre-implemented connectors for platform account authentication through IDP configuration.

For more information, refer to the Dex official documentation .

Supported Integration Methods

LDAP Integration

If your enterprise uses LDAP (Lightweight Directory Access Protocol) for user management,

you can configure LDAP on the platform to connect with your enterprise's LDAP server.
LDAP Integration Benefits:

¢ Enables communication between platform and LDAP server

https://github.com/dexidp/dex
https://github.com/dexidp/dex
https://github.com/dexidp/dex

Introduction - Alauda Container Platform

¢ Allows enterprise users to log in with LDAP credentials

+ Automatically synchronizes enterprise user accounts to the platform

OIDC Integration

The platform supports integration with IDP services using the OpenlD Connect (OIDC)

protocol for third-party user authentication.
OIDC Integration Benefits:

e Enables users to log in with third-party accounts
e Supports enterprise IDP services

e Provides secure authentication through OIDC protocol

NOTE

For authentication using other connectors not mentioned above, please contact technical support.

Menu

Guides

LDAP Management
LDAP Overview

Supported LDAP Types

LDAP Terminology

Add LDAP

LDAP Configuration Examples
Synchronize LDAP Users

Relevant Operations

OIDC Management
Overview of OIDC
Adding OIDC

Adding OIDC via YAML

Relevant Operations

Guides - Alauda Container Platform

LDAP Management - Alauda Container Platform

Menu

LDAP Management

ON THIS PAGE >

Platform administrators can add, update, and delete LDAP services on the platform.

TOC

LDAP Overview
Supported LDAP Types
OpenLDAP
Active Directory
LDAP Terminology
OpenLDAP Common Terms
Active Directory Common Terms
Add LDAP
Prerequisites
Steps
Basic Information
Search Settings
LDAP Configuration Examples
LDAP Connector Configuration
User Filter Examples
Group Search Configuration Examples
Examples of AND(&) and OR(|) Operators in LDAP Filters
Synchronize LDAP Users
Procedure of Operation

Relevant Operations

LDAP Management - Alauda Container Platform

LDAP Overview

LDAP (Lightweight Directory Access Protocol) is a mature, flexible, and well-supported
standard mechanism for interacting with directory servers. It organizes data in a hierarchical
tree structure to store enterprise user and organization information, primarily used for

implementing single sign-on (SSO).

NOTE

LDAP Key Features:

Enables communication between clients and LDAP servers

Supports data storage, retrieval, and search operations

Provides client authentication capabilities

Facilitates integration with other systems

For more information, refer to the LDAP official documentation .

Supported LDAP Types

OpenLDAP

OpenLDAP is an open-source implementation of LDAP. If your organization uses open-source
LDAP for user authentication, you can configure the platform to communicate with the LDAP
service by adding LDAP and configuring relevant parameters.

NOTE

OpenLDAP Integration:

» Enables platform authentication for LDAP users

e Supports standard LDAP protocols

https://ldap.com/?spm=a2c4g.11186623.2.12.38e87d4cjSb0uh
https://ldap.com/?spm=a2c4g.11186623.2.12.38e87d4cjSb0uh
https://ldap.com/?spm=a2c4g.11186623.2.12.38e87d4cjSb0uh

LDAP Management - Alauda Container Platform

» Provides flexible user management

For more information about OpenLDAP, refer to the OpenLDAP official documentation .

Active Directory

Active Directory is Microsoft's LDAP-based software for providing directory storage services in
Windows systems. If your organization uses Microsoft Active Directory for user management,

you can configure the platform to communicate with the Active Directory service.

NOTE

Active Directory Integration:

» Enables platform authentication for AD users
e Supports Windows domain integration

» Provides enterprise-level user management

LDAP Terminology

OpenLDAP Common Terms

Term Description Example
dc (Domain _
Domain component dc=example,dc=com
Component)

ou (Organizational

Organizational unit ou=People,dc=example,dc=com
Unit)

ch (Common Name) Common name cn=admin, dc=example,dc=com

uid (User ID) User ID uid=example

https://www.openldap.org/doc
https://www.openldap.org/doc
https://www.openldap.org/doc

LDAP Management - Alauda Container Platform
Term Description Example

objectClass (Object

Object class objectClass=inetOrgPerson
Class)
mail (Mail) Malil mail=example@126.com
givenName (Given .
Given name givenName=xq
Name)
sn (Surname) Surname sn=ren
objectClass:
User group objectClass: groupOfNames
groupOfNames
Group member
member (Member) _ member=cn=admin,dc=example,dc=com
attribute
User group
memberOf memberO0f=cn=users,dc=example,dc=com

membership attribute

Active Directory Common Terms

Term Description Example
] Domain
dc (Domain Component) dc=example,dc=com
component

Organizational

ou (Organizational Unit) _ ou=People,dc=example,dc=cor
unit
Common .

cn (Common Name) cn=admin,dc=example,dc=com
name

_ B userPrincipalName=example
sAMAccountName/userPrincipalName User identifier
sAMAccountName=example

] AD user .
objectClass: user _ objectClass=user
object class

Term
mail (Mail)
displayName
givenName (Given Name)
sh (Surname)

objectClass: group

member (Member)

memberOf

Add LDAP

TIP

LDAP Management - Alauda Container Platform

Description

Mail

Display name

Given name

Surname

User group

Group
member

attribute

User group
membership

attribute

After successful LDAP integration:

» Users can log in to the platform using their enterprise accounts

Example

mail=example@126.com

displayName=example

givenName=xq

sn=ren

objectClass: group

member=CN=Admin, DC=example

member0f=CN=Users, DC=examp

« Multiple additions of the same LDAP will overwrite previously synchronized users

Prerequisites

Before adding LDAP, prepare the following information:

e LDAP server address
¢ Administrator username

¢ Administrator password

LDAP Management - Alauda Container Platform

¢ Other required configuration details

Steps

1. In the left navigation bar, click Users > IDPs

2. Click Add LDAP

3. Configure the following parameters:

Basic Information

Parameter
Server Address
Username
Password
Login Box Username

Prompt

Search Settings

NOTE

Search Settings Purpose:

Description
LDAP server access address (e.g., 192.168.156.141:31758)
LDAP administrator DN (e.g., cn=admin,dc=example,dc=com)
LDAP administrator account password

Prompt message for username input (e.g., "Please enter

your username")

» Matches LDAP user entries based on specified conditions

» Extracts key user and group attributes

» Maps LDAP attributes to platform user attributes

Parameter

Object Type

Description

ObjectClass for users:

- OpenLDAP: inetOrgPerson

LDAP Management - Alauda Container Platform

Parameter Description
- Active Directory: organizationalPerson

- Groups: posixGroup

Attribute used as login username:
Login Field - OpenLDAP: mail (email address)

- Active Directory: userPrincipalName

) o LDAP filter conditions for user/group filtering
Filter Conditions
Example: (&(cn=John*)(givenName=*xq*))

Search Starting Point Base DN for user/group search (e.g., dc=example,dc=org)

Search scope:
Search Scope - sub : entire directory subtree

- one : one level below starting point

Unique user identifier:
Login Attribute - OpenLDAP: uid

- Active Directory: distinguishedName
Name Attribute Object name attribute (default: cn)

Emalil attribute:
Email Attribute - OpenLDAP: mail

- Active Directory: userPrincipalName
Group Member Attribute Group member identifier (default: uid)

Group Attribute User group relationship attribute (default: memberuid)

4. In the IDP Service Configuration Validation section:

o Enter a valid LDAP account username and password
e The username must match the Login Field setting

» Click to verify the configuration

5. (Optional) Configure LDAP Auto-Sync Policy:

LDAP Management - Alauda Container Platform
o Enable Auto-Sync Users switch
¢ Set synchronization rules

e Use online tool ~ to verify CRON expressions

6. Click Add

NOTE

After adding LDAP:

» Users can log in before synchronization
» User information syncs automatically on first login

» Auto-sync occurs based on configured rules

LDAP Configuration Examples

LDAP Connector Configuration

The following example shows how to configure an LDAP connector:

https://tool.lu/crontab/
https://tool.lu/crontab/
https://tool.lu/crontab/

LDAP Management - Alauda Container Platform

apiVersion: dex.coreos.com/v1

kind: Connector

id: ldap # Connector ID
name: ldap # Connector display name
type: ldap # Connector type is LDAP
metadata:

name: ldap

namespace: cpaas-system
spec:

config:
LDAP server address and port
host: 1ldap.example.com:636
DN and password for the service account used by the connector.
This DN is used to search for users and groups.
bindDN: uid=serviceaccount,cn=users,dc=example,dc=com
Service account password, required when creating a connector.

bindPW: password

Login account prompt. For example, username

usernamePrompt: SSO Username

User search configuration
userSearch:
Start searching from the base DN
baseDN: cn=users,dc=example,dc=com
LDAP query statement, used to search for users.
For example: "(&(objectClass=person)(uid=<username>))"

filter: (&(objectClass=organizationalPerson))

The following fields are direct mappings of user entry attributes.

User ID attribute

idAttr: uid

Required. Attribute to map to email

emailAttr: mail

Required. Attribute to map to username

nameAttr: cn

Login username attribute

Filter condition will be converted to "(<attr>=<username>)", such as
(uid=example).

username: uid

Extended attributes
phoneAttr: phone

LDAP Management - Alauda Container Platform

groupSearch:

baseDN: cn=groups,dc=freeipa,dc=example,dc=com

filter: "(objectClass=group)"

groupAttr: member
userAttr: uid

nameAttr: cn

User Filter Examples

LDAP Management - Alauda Container Platform

(&(objectClass=person))

(&(objectClass=person)(departmentNumber=1000))

(&(objectClass=user)(!(userAccountControl:1.2.840.113556.1.4.803:=2)))

(&(objectClass=person)(mail=*@example.com))

(&(objectClass=person)(member0f=cn=developers,ou=groups,dc=example,dc=com))

(&(objectClass=user)(lastLogon>=20240101000000.0Z))

(&(objectClass=person)(!(uid=admin))(!(uid=system)))

(&(objectClass=person)(mobile=*))

(&(objectClass=person) (| (ou=IT)(ou=HR) (ou=Finance)))

(&
(objectClass=person)
(| (department=IT)(department=Engineering))
(!'(title=Intern))

(manager=cn=John Doe,ou=People,dc=example,dc=com)

Group Search Configuration Examples

LDAP Management - Alauda Container Platform

(objectClass=groupOfNames)

(&(objectClass=groupOfNames) (cn=dev-*))

(&(objectClass=groupOfNames) (member=*))

(&(objectClass=groupOfNames) (member=uid=john, ou=People,dc=example,dc=com))

(&(objectClass=group) (| (groupType=-2147483646) (groupType=-2147483644)))

(&(objectClass=groupOfNames) (description=*admin*))

(&(objectClass=groupOfNames) (! (cn=system*)))

(&(objectClass=group0fNames) (| (cn=admins)(cn=developers)(cn=operators)))

(&(objectClass=groupOfNames) (ou=IT))

(&
(objectClass=groupOfNames)
(| (cn=prod-*) (cn=dev-*))
(!(cn=deprecated-*))

(owner=cn=admin, dc=example,dc=com)

Examples of AND(&) and OR(]) Operators in LDAP Filters

LDAP Management - Alauda Container Platform

AND operator (&) - All conditions must be met
Syntax: (&(conditionl)(condition2)(condition3)...)

Multiple attribute AND example
(&
(objectClass=person)
(mail=*@example.com)
(title=Engineer)

(manager=*)

OR operator (|) - At least one condition must be met
Syntax: (|(condition1)(condition2)(condition3)...)

Multiple attribute OR example
(|
(department=IT)
(department=HR)
(department=Finance)

Combining AND and OR
(&
(objectClass=person)
(1
(department=IT)
(department=R&D)

)
(employeeType=FullTime)

Complex condition combination
(&
(objectClass=person)
(1
(&
(department=IT)
(title=*Engineer¥*)
)
(&
(department=R&D)
(title=*Developer¥*)

LDAP Management - Alauda Container Platform

)

(!(status=Inactive))

(| (manager=*) (isManager=TRUE))

Synchronize LDAP Users

After successfully synchronizing LDAP users to the platform, you can view the synchronized
users in the user list.

You can configure an automatic synchronization policy when adding LDAP (which can be

updated later) or manually trigger synchronization after adding LDAP successfully. Here's how
to manually trigger a synchronization operation.

Notes:

* Newly added users in the LDAP integrated with the platform can log in to the platform
before performing the user synchronization operation. Once they successfully log in to the

platform, their information will be automatically synchronized to the platform.
o Users deleted from LDAP will have an Invalid status after synchronization.
¢ The default validity period for newly synchronized users is Permanent.

¢ Synchronized users with the same name as existing users (local users, IDP users) are
automatically associated. Their permissions and validity period will be consistent with

existing users. They can log in to the platform using the login method corresponding to their

respective sources.

Procedure of Operation

1. In the left navigation bar, click Users > IDPs.
2. Click the LDAP name that you want to manually synchronize.
3. Click Actions > Sync user in the upper-right corner.

4. Click Sync.

LDAP Management - Alauda Container Platform

Notes: If you manually close the synchronization prompt dialog, a confirmation dialog will
appear to confirm the closure. After closing the synchronization prompt dialog, the system
will continue to synchronize users. If you remain on the user list page, you will receive
synchronization result feedback. If you leave the user list page, you will not receive

synchronization results.

Relevant Operations

You can click the
on the right in the list page or click Actions in the upper-right corner on the details page to

update or delete LDAP as needed.

Operation Description

Update the configuration information of the added LDAP or the LDAP
Auto-Sync Policy.

Update

LDAP Note: After updating LDAP, users currently synchronized to the platform

through this LDAP will also be updated. Users removed from LDAP will
become invalid in the platform user list. You can clean up junk data by

executing the operation to clean up invalid users.

After deleting LDAP, all users synchronized to the platform through this
LDAP will have an Invalid status (the binding relationship between users
and roles remains unchanged), and they cannot log in to the platform.

—— After re-integrating, synchronization needs to be re-executed to activate
elete

LDAP

users.

Tips: After deleting IDP, if you need to delete users and user groups
synchronized to the platform through LDAP, check the checkbox Clean

IDP Users and User Groups below the prompt box.

0OIDC Management - Alauda Container Platform

Menu ON THIS PAGE >

OIDC Management

The platform supports the OIDC (OpenID Connect) protocol, enabling platform administrators
to log in using third-party accounts after adding OIDC configuration. Platform administrators

can also update and delete configured OIDC services.

TOC

Overview of OIDC
Adding OIDC
Procedure of Operation
Adding OIDC via YAML
Example: Configuring OIDC Connector

Relevant Operations

Overview of OIDC

OIDC (OpenID Connect) is an identity authentication standard protocol based on the OAuth
2.0 protocol. It uses an OAuth 2.0 authorization server to provide user identity authentication
for third-party clients and passes the corresponding identity authentication information to the

client.

OIDC allows all types of clients (including server-side, mobile, and JavaScript clients) to
request and receive authenticated sessions and end-user information. This specification suite

is extensible, allowing participants to use optional features such as identity data encryption,

OIDC Management - Alauda Container Platform

OpenlD Provider discovery, and session management when meaningful. For more

information, refer to the OIDC official documentation .

Adding OIDC

By adding OIDC, you can use third-party platform accounts to log in to the platform.

Note: After OIDC users successfully log in to the platform, the platform will use the user's
emalil attribute as the unique identifier. OIDC-supported third-party platform users must have

an email attribute; otherwise, they will not be able to log in to the platform.

Procedure of Operation

1. In the left navigation bar, click Users > IDPs.
2. Click Add OIDC.

3. Configure the Basic Information parameters.

4. Configure the OIDC Server Configuration parameters:

Identity Provider URL: The issuer URL, which is the access address of the OIDC

identity provider.

¢ Client ID: The client identifier for the OIDC client.

o Client Secret: The secret key for the OIDC client.

» Redirect URI: The callback address after logging in to the third-party platform, which is
the URL of the dex issuer + /callback .

e Logout URL: The address visited by the user after performing the Logout operation. If

empty, the logout address will be the platform's initial login page.

5. In the IDP Service Configuration Validation area, enter the Username and Password of

a valid OIDC account to verify the configuration.

https://openid.net/connect/
https://openid.net/connect/
https://openid.net/connect/

OIDC Management - Alauda Container Platform

Tip: If the username and password are incorrect, an error will be reported during addition,

indicating invalid credentials, and OIDC cannot be added.

6. Click Create.

Adding OIDC via YAML

In addition to form configuration, the platform also supports adding OIDC through YAML,
which allows for more flexible configuration of authentication parameters, claim mappings,

user group synchronization, and other advanced features.

Example: Configuring OIDC Connector

The following example demonstrates how to configure an OIDC connector for integrating with
OIDC identity authentication services. This configuration example is suitable for the following

scenarios:

1. Need to integrate OIDC as an identity authentication server.
2. Need to support user group information synchronization.

3. Need to customize logout redirect address.

4. Need to configure specific OIDC scopes.

5. Need to customize claim mappings.

OIDC Management - Alauda Container Platform

apiVersion: dex.coreos.com/v1
kind: Connector

Connector basic information

id: oidc # Connector unique identifier
name: oidc # Connector display name
type: oidc # Connector type is 0IDC
metadata:

annotations:

cpaas.io/description: "11" # Connector description
name: oidc
namespace: cpaas-system

Spec:
config:

0IDC server configuration

Configure server connection information, including server address, client

credentials, and callback address
issuer: http://auth.com/auth/realms/master
clientID: dex

0IDC server address
Client ID

Service account secret key, valid when creating Connector resources for the first

time

clientSecret: xxxxxxx

redirectURI: https://example.com/dex/callback
match the address registered by the 0IDC client

Security configuration

Callback address, must

Configure SSL verification and user information acquisition method

insecureSkipVerify: true

verification, it is recommended to set to false in a produc
getUserInfo: false

additional user information through the UserInfo endpoint

Logout configuration
Configure the redirect address after user logout
logoutURL: https://test.com

be customized to the page jumped after user logout

Scope configuration

Whether to skip SSL
tion environment
Whether to obtain

Logout redirect address, can

Configure the required authorization scope, ensure that the OIDC server supports

these scopes
scopes:
- openid
basic authentication

- profile

Required, used for 0IDC

Optional, used to obtain

OIDC Management - Alauda Container Platform

- email

claimMapping:
email: email

groups: groups

phone:
preferred_username: preferred_username

claimExtra:
- field: xxx

type: string

groupsKey: groups

insecureEnableGroups: false

Relevant Operations

You can click the
on the right in the list page or click Actions in the upper-right corner on the details page to

update or delete OIDC as needed.

Operation

Update
oIDC

Delete
oIDC

OIDC Management - Alauda Container Platform
Description

Update the added OIDC configuration. After updating the OIDC
configuration information, the original users and authentication methods

will be reset and synchronized according to the current configuration.

Delete OIDC that is no longer used by the platform. After deleting OIDC,
all users synchronized to the platform through this OIDC will have an
Invalid status (the binding relationship between users and roles remains
unchanged), and they cannot log in to the platform. After re-integrating,

users can be activated by successfully logging in to the platform.

Tip: After deleting IDP, if you need to delete users and user groups
synchronized to the platform through OIDC, check the checkbox Clean

IDP Users and User Groups below the prompt box.

Troubleshooting - Alauda Container Platform

Menu

Troubleshooting

Delete User
Problem Description

Solution

Delete User - Alauda Container Platform

Menu ON THIS PAGE >

Delete User

TOC

Problem Description
Solution
Clean up deleted IDP users

Clean up deleted local users

Problem Description
Issue: When creating or synchronizing a new user, the system indicates that the user already
exists. How should you handle this?

For security reasons, the platform prevents creating new users (both local and IDP users) with

names that match previously deleted users. This limitation applies to:

e Creating new local users with names matching deleted users

¢ Synchronizing IDP users with names matching deleted users
After upgrading to the current version, you may encounter this issue when:

o Creating new users with names that match users deleted before the upgrade

¢ Synchronizing new users with names that match users deleted before the upgrade

Delete User - Alauda Container Platform

Solution

To resolve this issue, you need to clean up the deleted user information by executing specific

scripts on your global cluster control nodes.
Clean up deleted IDP users
Execute the following command on any control node of your global cluster:

kubectl delete users -1 'auth.cpaas.io/user.connector_id=<IDP

Name>,auth.cpaas.io/user.state=deleted’

Example:

kubectl delete users -1

"auth.cpaas.io/user.connector_id=github,auth.cpaas.io/user.state=deleted’

Clean up deleted local users

Execute these two scripts in sequence on any control node of your global cluster:

1. Clean up user passwords:

kubectl get users -1
'auth.cpaas.io/user.connector_id=local,auth.cpaas.io/user.state=deleted' | awk '{print

$1}' | xargs kubectl delete password -n cpaas-system

2. Clean up users:

kubectl delete users -1

"auth.cpaas.io/user.connector_id=1local,auth.cpaas.io/user.state=deleted’

Menu

User Policy

Introduction
Overview
Configure Security Policy

Available Policies

User Policy - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

The platform provides comprehensive user security policies to enhance login security and

protect against malicious attacks.

TOC

Overview
Configure Security Policy
Steps

Available Policies

Overview

The platform supports the following security policies:

Password security management

User account disablement

User account locking

User notifications

Access control

Configure Security Policy

Introduction - Alauda Container Platform

Steps

1. In the left navigation bar, click User Role Management > User Security Policy
2. Click Update in the top right corner
3. Configure the security policies as needed

4. Click Update to save changes

WARNING

Policy Configuration Notes:

Check the box before a policy to enable it

Uncheck the box to disable a policy

Disabled policies retain their configuration data

Previous settings are restored when re-enabling a policy

Available Policies

Policy Description

Enables dual authentication for password-based login:

o - Users receive verification codes via specified notification
User Authentication

] methods
Policy . N :
- Supports various notification servers (e.g., Enterprise
Communication Tool Server)
Password Security Manages password requirements:
Policy

First Login:

- Forces password change on first platform login

Regular Updates:

- Requires password change after specified period (e.g., 90

Policy

User Disablement

Policy

User Locking Policy

Notification Policy

Introduction - Alauda Container Platform

Description

days)

- Prevents login until password is updated

Automatically disables inactive accounts:

- Triggers after specified period of no login

Protects against brute force attacks:

Lock Conditions:
- Triggers after specified number of failed login attempts

within 24 hours

Lock Duration:
- Account remains locked for specified minutes

- Automatically unlocks after lock period expires

Manages user notifications:

- Sends initial password via email after user creation

Introduction - Alauda Container Platform

Policy Description

Manages user sessions and access:

Session Management:
- Auto-logs out inactive sessions after specified time

- Limits maximum concurrent online users

Browser Control:

- Ends session when all product tabs are closed

- Prevents multiple logins from same client
Access Control

'note

Important Notes:

- Access Control only affects new logins after policy update
- Browser tab restoration may not trigger session end

- Only last login is allowed per client when preventing

repeated login

Multitenancy(Project) - Alauda Container Platform

Menu

Multitenancy(Project)

Introduction

Introduction
Project
Namespaces

Relationship Between Clusters, Projects, and Namespaces

Guides

Create Project

Procedure

Manage Project Quotas
What is ProjectQuota?

How it works

When to use ProjectQuota
Quota keys and units
Allocation strategy tips

Best practices and FAQs

Multitenancy(Project) - Alauda Container Platform

Manage Project
Update Basic Project Information

Delete Project

Manage Project Cluster
Introduction
Add a Cluster

Remove a Cluster

Manage Project Members
Import Members

Remove Members

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

TOC

Project
Namespaces

Relationship Between Clusters, Projects, and Namespaces

Project

A project is a resource isolation unit that enables multi-tenant usage scenarios in enterprises.
It divides resources from one or more clusters into isolated environments, ensuring both
resource and personnel isolation. Projects can represent different subsidiaries, departments,

or project teams within an enterprise. Through project management, you can achieve:

* Resource isolation between project teams
e Quota management within tenants

o Efficient resource allocation and control

Namespaces

Namespaces are smaller, mutually isolated resource spaces within a project. They serve as
workspaces for users to implement their production workloads. Key characteristics of

namespaces include:

Introduction - Alauda Container Platform

Multiple namespaces can be created under a project

Total resource quota of all namespaces cannot exceed the project quota

Resource quotas are allocated more granularly at the namespace level

Container sizes (CPU, memory) are limited at the namespace level

Improved resource utilization through fine-grained control

Relationship Between Clusters, Projects, and

Namespaces

The platform's resource hierarchy follows these rules:

* A project can utilize resources (CPU, memory, storage) from multiple clusters, and a cluster

can allocate resources to multiple projects.

e Multiple namespaces can be created under a project, with their combined resource quotas

not exceeding the total project resources.

¢ A namespace's resource quota must come from a single cluster, and a namespace can

only belong to one project.

Guides - Alauda Container Platform

Menu

Guides

Create Project

Procedure

Manage Project Quotas
What is ProjectQuota?

How it works

When to use ProjectQuota
Quota keys and units
Allocation strategy tips

Best practices and FAQs

Manage Project
Update Basic Project Information

Delete Project

Manage Project Cluster
Introduction
Add a Cluster

Remove a Cluster

Guides - Alauda Container Platform

Manage Project Members
Import Members

Remove Members

Create Project - Alauda Container Platform

Menu ON THIS PAGE >

Create Project

Before your project team starts working, you can create a project based on the existing cluster
resources on the platform. The project will be isolated from other projects (tenants) in terms of
both resources and personnel. When creating a project, you can allocate resources according
to your project scale and actual business needs. The project can utilize resources from
multiple clusters on the platform.

WARNING

When creating a project, the platform will automatically create a namespace with the same name
as the project in the associated clusters to isolate platform-level resources. Please do not modify
this namespace or its resources.

TOC

Procedure

Procedure

1. In the Project Management view, click Create Project.

2. On the Basic information page, configure the following parameters:

Create Project - Alauda Container Platform

Parameter Description

The name of the project, which cannot be the same as an existing
project name or any name in the project name blacklist. Otherwise, the

project cannot be created.

Name _ L .
Note: The project name blacklist includes special namespace names

under platform clusters: cpaas-system , cert-manager , default ,
global-credentials , kube-ovn , kube-public , kube-system , nsx-

system , alauda-system , kube-federation-system , ALL-ALL , and true .

The cluster(s) associated with the project, where the administrator can
allocate resource quotas. Click the drop-down selection box to select

Cluster one or more clusters.

Note: Clusters in abnormal state cannot be selected.

3. Click Next and in the project quota setting step, read Manage Resource Quotas to set the

resource quotas to be allocated to the current project for the selected clusters.

4. Click Create Project.

Manage Project Quotas - Alauda Container Platform

Menu ON THIS PAGE >

Manage Project Quotas

This guide explains how ACP extends Kubernetes ResourceQuota with a project-level
aggregate quota (ProjectQuota). ProjectQuota lets you cap the sum of ResourceQuotas
across all namespaces in a project, so you can plan and govern capacity at the project level

while still delegating limits to individual namespaces.

TOC

What is ProjectQuota?
How it works

When to use ProjectQuota
Quota keys and units
Allocation strategy tips

Best practices and FAQs

What is ProjectQuota?

¢ ResourceQuota (Kubernetes native) limits resources per namespace (CPU, memory,

object counts, etc.). For concepts, keys, and usage, please refer to:
e Resource Quotas

¢ ProjectQuota defines a project-wide upper bound: the total of all namespace
ResourceQuotas within the project must not exceed the project's hard limits for the same

keys.

http://localhost:4173/container_platform/developer/building_application/namespace/resource_quota.html

Manage Project Quotas - Alauda Container Platform

In short: ResourceQuota caps a single namespace; ProjectQuota caps the sum across all
namespaces in a project.

How it works

o Workflow order: define or adjust the ProjectQuota first, then allocate per-namespace

ResourceQuotas within that project budget.

e Scope: ProjectQuota applies to a platform project and governs all namespaces that belong
to it.

» Aggregate enforcement at admission time:
e When creating or updating a namespace's ResourceQuota, the platform computes the

aggregate for the same keys (for example, limits.cpu, requests.memory , pods) across

all namespaces in the project, including the incoming change.

e The request is allowed only if the new aggregate remains less than or equal to the
corresponding ProjectQuota hard limits. Otherwise, the change is rejected with an

explanatory error.
¢ Execution model:

¢ ProjectQuota constrains what can be allocated via namespace ResourceQuotas (pre-
allocation), not the instantaneous runtime usage. Actual consumption remains governed

by each namespace's ResourceQuota and the scheduler.

When to use ProjectQuota

o Budget/capacity governance per project: allocate a fixed CPU/memory/object budget, then

subdivide across namespaces.

o Multi-team or multi-environment projects (for example, dev / staging / prod) that share a

common upper bound.

¢ Preventing quota drift: keep a single "big bucket" at the project layer so namespace quotas

do not silently inflate over time.

Manage Project Quotas - Alauda Container Platform

Quota keys and units

ProjectQuota supports the same common keys as ResourceQuota (non-exhaustive):

¢ Compute and memory: limits.cpu, limits.memory , requests.cpu, requests.memory

+ Workload/object counts: pods , services , configmaps , secrets, pvc , and more
Units and counting rules:

¢ CPU uses cores (for example, 2, 500m)
* Memory uses bytes (for example, 86i)
e Object-style keys use integer counts

If the sum of the corresponding keys across all namespaces approaches or exceeds the

ProjectQuota hard limit, ACP blocks further ResourceQuota creation or expansion for that key.

Allocation strategy tips

¢ Define the project "big bucket" first (ProjectQuota), then split it into per-namespace

ResourceQuotas for teams/environments.
o Keep 10% - 30% headroom for spikes and elastic scaling.

+ Review regularly: reclaim underused quota and reassign; raise consistently constrained

namespaces, and adjust the project cap accordingly.

Best practices and FAQs

¢ Q:Increasing a namespace's limits.memory fails with an error about exceeding project

quota. Why?

e A: The project's ProjectQuota hard limit for that key would be exceeded by the
requested change. Reduce other namespaces' quotas, or raise the project cap first and

then retry the namespace change.

Manage Project Quotas - Alauda Container Platform

¢ Q: I raised the ProjectQuota, but workloads still won't schedule.

¢ A: Ensure each namespace's ResourceQuota is also increased appropriately and verify

underlying cluster/node capacity.

« Recommendation: Manage ProjectQuota as part of your normal change control, aligned

with capacity planning (nodes/storage) and budget management.

Manage Project - Alauda Container Platform

Menu ON THIS PAGE >

Manage Project

This guide explains how to update basic information and project quotas for a specified project,

or delete the project.

TOC

Update Basic Project Information
Procedure
Delete Project

Procedure

Update Basic Project Information

Update basic information for a specified project, such as display name and description.

Procedure

1. In the Project Management view, click on the project name to be updated.
2. In the left navigation pane, click Details.

3. Click Actions > Update Basics in the upper right corner.

4. Modify or enter the Display name and Description.

5. Click Update.

Manage Project - Alauda Container Platform

Delete Project

Delete projects that are no longer in use.

WARNING

After the project is deleted, the resources occupied by the project in the cluster will be released.

Procedure

1. In the Project Management view, click on the project name to be deleted.
2. In the left navigation bar, click Details.
3. Click Actions > Delete Project in the upper right corner.

4. Enter the name of the project and click Delete.

Manage Project Cluster - Alauda Container Platform

Menu ON THIS PAGE >

Manage Project Cluster

This guide explains how to manage cluster associations for a project. You can add clusters to

allocate their resources to the project, or remove clusters to reclaim the allocated resources.

TOC

Introduction

Add a Cluster
Procedure

Remove a Cluster

Procedure

Introduction

You can add clusters to a project to allocate their resources, or remove clusters to reclaim the

allocated resources. This functionality is useful in the following scenarios:

When project resources are insufficient for business operations

When a newly created or added cluster needs to be allocated to an existing project

When cluster resources need to be reclaimed from a project

When a specific project needs exclusive access to a cluster

Add a Cluster

Manage Project Cluster - Alauda Container Platform

Add a cluster to a project and set its resource quota.

Procedure

1. In the Project Management view, click on the project name where you want to add the

cluster.

2. In the left navigation bar, click Details.

3. Click Actions > Add Cluster in the upper right corner.

4. Select the cluster and set the resource quota to be allocated to the current project. The

following resources can be configured:

CPU (cores)

Memory (Gi)

Storage (Gi)

PVC count (number)

Pods (number)

vGPU (virtual GPU)/MPS/pGPU (physical GPU, cores)

Video memory quota

NOTE

» GPU resource quota can only be configured when GPU plugins are deployed in the cluster.

When GPU resources are GPU-Manager or MPS GPU, vMemory quota can also be

configured.

GPU Units: 100 units of virtual cores are equivalent to 1 physical core (1 pGPU = 1 core = 100

GPU-Manager core = 100 MPS core), and pGPU units can only be allocated in whole numbers.
GPU-Manager 1 unit of memory is equal to 256 Mi, MPS GPU 1 unit of memory is equal to 1 Gi,
and 1024 Mi = 1 Gi.

If no quota is set for a certain type of resource, it defaults to Unlimited. This means that the

project can use the available resources of the corresponding type in the cluster as needed,

Manage Project Cluster - Alauda Container Platform
without a maximum limit.

» The value of the project quota set should be within the quota range displayed on the page.
Under each resource quota input box, the allocated quota and total amount of that resource will

be displayed for reference.

5. Click Add.

Remove a Cluster

Remove a cluster associated with a project.

WARNING

» After removing a cluster, the project cannot use the business resources under the removed

cluster.

e When the cluster to be removed is abnormal, the resources under the abnormal cluster cannot

be cleaned up. It is recommended to fix the cluster before removing it.

Procedure

1. In the Project Management view, click on the project name where you want to remove the

cluster.
2. In the left navigation bar, click Details.
3. Click Actions > Remove Cluster in the upper right corner.

4. In the pop-up Remove Cluster dialog box, enter the name of the cluster to be removed,

and then click the Remove button to successfully remove the cluster.

Manage Project Members - Alauda Container Platform

Menu ON THIS PAGE >

Manage Project Members

This guide explains how to manage project members, including importing members and

assigning project-related roles.

TOC

Import Members
Constraints and Limitations
Procedure
Import from Member List
Import OIDC Users
Remove Members

Procedure

Import Members

You can grant users operation permissions for the project and its namespaces by importing
existing platform users or adding OIDC users. You can assign roles such as project
administrators, namespace administrators, developers, or custom roles with project and

namespace management permissions.

Constraints and Limitations

¢ When no OIDC IDP is configured on the platform:

Manage Project Members - Alauda Container Platform

o Only existing platform users can be imported as project members, including:

OIDC users who have successfully logged in

Users synchronized through LDAP

Local users

Users added to other projects as OIDC users (with source marked as -)
¢ When an OIDC IDP is configured:

e You can add valid OIDC accounts that meet the input requirements
e Account validity cannot be verified during addition

e Ensure the account is valid, or it won't be able to log in normally

+ System default administrator users and the currently logged-in user cannot be imported

Procedure

1. In the Project Management view, click on the project name to be managed.
2. In the left navigation bar, click Members.
3. Click Import Member.

4. Choose either Member List or OIDC Users.

Import from Member List

You can import either all users or selected users from the member list.

TIP

Use the user group dropdown menu in the upper right corner and the search box to filter users by

username.

To import all users:

1. Select Member List.

Manage Project Members - Alauda Container Platform

2. Click the Bind dropdown menu and select the role to assign to all users.

If the role requires a namespace, select it from the Namespaces dropdown menu.
3. Click Import All.
To import specific users:
1. Select Member List.
2. Select one or more users using the checkboxes.

3. Click the Bind dropdown menu and select the role to assign to the selected users.

If the role requires a namespace, select it from the Namespaces dropdown menu.

4. Click Import.

Import OIDC Users
1. Select OIDC Users.
2. Click Add to create a member record (repeat for multiple members).

3. Enter the OIDC-authenticated username in the Name field.

WARNING

Ensure the username corresponds to an account that can be authenticated by the configured OIDC

system, or login will fail.

4. Select the role from the Roles dropdown menu.

If the role requires a namespace, select it from the Namespaces dropdown menu.
5. Click Import.
After successful import, you can view:

e The member in the project member list

¢ The user in Platform Management > Users

e Source shows as "-" until first login/sync

Manage Project Members - Alauda Container Platform

e Source updates after successful login/sync

Remove Members

Remove a project member to revoke their permissions.

Procedure

1. In the Project Management view, click on the project name.

2. In the left navigation bar, click Members.

TIP

Use the dropdown list next to the search box to filter members by Name, Display name, or User
Group.

3. Click Remove next to the member you want to remove.

4. Confirm removal in the prompt dialog.

Menu

Introduction
Prerequisites
Procedure

Search Results

Audit - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

The platform'’s auditing function provides time-ordered operation records related to users and
system security. This helps you analyze specific issues and quickly resolve problems that

occur in clusters, custom applications, and other areas.
Through auditing, you can track various changes in the Kubernetes cluster, including:

e What changes occurred in the cluster during a specific time period
¢ Who performed these changes (system components or users)

o Details of important change events (e.g., POD parameter updates)
¢ Event outcomes (success or failure)

o Operator location (internal or external to the cluster)

o User operation records (updates, deletions, management operations) and their results

TOC

Prerequisites
Procedure

Search Results

Prerequisites

Your account must have platform management or platform auditing permissions.

Introduction - Alauda Container Platform

Procedure

1. In the left navigation bar, click Auditing.
2. Select the auditing scope from the tabs:

e User Operations: View operation records of users who have logged in to the platform

o System Operations: View system operation records (operators start with system:)

3. Configure query conditions to filter auditing events:

Query .
. Description
Condition
Operator Username or system account name of the operator (default: All)
] Type of operation (create, update, delete, manage, rollback, stop,
Actions
etc., default: All)
Clusters Cluster containing the operated resource (default: All)
Resource
Type of the operated resource (default: All)
Type
Resource
N Name of the operated resource (supports fuzzy search)
ame

4. Click Search.

TIP

» Use the Time Range dropdown to set the audit time range (default: Last 30 Minutes). You can
select a preset range or customize one.

e Click the refresh icon to update search results.

e Click the export icon to download results as a .csv file.

Introduction - Alauda Container Platform

Search Results

The search results display the following information:

Parameter Description
Operator Username or system account name of the operator

Type of operation (create, update, delete, manage, rollback, stop,

Actions
etc.)
Resource
Name and type of the operated resource
Namel/Type
Clusters Cluster containing the operated resource
Namespaces Namespace containing the operated resource
Client IP IP address of the client used to execute the operation

) Operation outcome based on API return code (2xx = success,
Operation Result _
other = failure)

Operation Time Timestamp of the operation

Click the Details button to view the complete audit record in
JSON format in the Audit Details dialog box

Details

Menu

Telemetry

Install

Prerequisites

Installation Steps

Enable Online Operations

Uninstallation Steps

Telemetry - Alauda Container Platform

Install - Alauda Container Platform

Menu ON THIS PAGE >

Install

ACP Telemetry is a platform service that collects telemetry data from clusters for online
operations and maintenance. It collects system metrics and uploads them to Alauda Cloud for
monitoring and analysis.

TOC

Prerequisites
Installation Steps
Enable Online Operations

Uninstallation Steps

Prerequisites

Before installation, ensure that:

¢ The Alauda Container Platform has a valid license

e The global cluster has internet access

Installation Steps

1. Navigate to Administrator

2. In the left navigation bar, click Marketplace > Cluster Plugins

Install - Alauda Container Platform
3. Select the global cluster in the top navigation bar
4. Search for ACP Telemetry and click to view its details

5. Click Install to deploy the plugin

Enable Online Operations

1. In the left navigation bar, click System Settings > Platform Maintenance

2. Click the On button for Online Operations

Uninstallation Steps

1. Follow steps 1-4 from the installation process to locate the plugin

2. Click Uninstall to remove the plugin

Certificates - Alauda Container Platform

Menu

Certificates

Automated Kubernetes Certificate Rotation

cert-manager

OLM Certificates

Certificate Monitoring

Automated Kubernetes Certificate Rotation - Alauda Container Platform

Menu ON THIS PAGE >

Automated Kubernetes Certificate Rotation

This guide helps you install, understand, and operate the Kubernetes Certificate Rotator in

ACP to automate the rotation of Kubernetes certificates within your clusters.

TOC

Installation
How it works
Rotation Process

Operation Considerations

Installation

See Cluster Plugin for installation instructions.

Note:
e Currently supported:

e On-Premises clusters

e DCS clusters

How it works

http://localhost:4173/container_platform/extend/cluster_plugin.html

Automated Kubernetes Certificate Rotation - Alauda Container Platform

This plugin handles automatic rotation for the following certificates.

Certificate file

apiserver.crt

apiserver-etcd-client.crt

apiserver-kubelet-client.crt

front-proxy-client.crt

etcd/server.crt

etcd/peer.crt

/root/.kube/config, admin.conf,

super-admin.conf

controller-manager.conf

scheduler.conf

kubelet.crt

kubelet-client-current.pem

Rotation Process

1. Load certificate information

Function

Server certificate for kube-apiserver

Client certificate for kube-apiserver

to access etcd

Client certificate for kube-apiserver

to access kubelet

Client certificate for kube-apiserver

to access aggregated API servers

Server certificate for etcd

Peer communication certificate

between etcd members

Client certificate in kubeconfig for

cluster administration

Client certificate in kubeconfig for

kube-controller-manager

Client certificate in kubeconfig for

kube-scheduler
Server certificate for kubelet

Client certificate for kubelet

(referenced by kubelet.conf)

Node Type

Control

Plane Node

Control

Plane Node

Control

Plane Node

Control

Plane Node

Control

Plane Node

Control

Plane Node

Control

Plane Node

Control

Plane Node

Control

Plane Node

All Nodes

All Nodes

Automated Kubernetes Certificate Rotation - Alauda Container Platform

The initial step involves gathering metadata for all target certificates. Since these
certificates are stored in different paths on the host, their contents must be read from the
respective files. To achieve this, a temporary Pod is created on the target node with the
certificate directories mounted, allowing the Pod to read the information. The certificate's
information is collected once per day. Certificate details (paths, expiration) are maintained
in the ConfigMap cpaas-system/node-local-certs-<node-name> . The encrypted CA certificate

is stored in Secret cpaas-system/kubernetes-ca .

. Rotation Trigger Condition

The notBefore and notAfter fields of the certificate indicate the validity period. Rotation is

triggered if the remaining validity period is less than 20% or 30 days.

. Rotation queue

Certificates requiring rotation are placed in a queue for processing. The rotation program
evaluates recent rotation activities and the urgency of pending tasks to decide whether to
process them immediately. This prevents potential cluster health issues caused by the

simultaneous rotation of multiple certificates.

. Generate new certificates

The rotation program generates new certificates based on internally stored CA information.
The rotation process creates a temporary Pod on the target node with the necessary

certificate directories mounted, allowing for controlled file modifications.

. Restart the components

Requiring restart:

kube-apiserver : It needs to be restarted to load the new certificates. During restart, it
regenerates its internal loopback certificate (valid for one year, used only internally and

can not be externally rotated).

kube-controller-manager : It needs to be restarted to reload the kubeconfig file.

kube-scheduler : It needs to be restarted to reload the kubeconfig file.

kubelet : It needs to be restarted to reload the server certificate.

Restart method: Add annotations to the respective static Pods' YAML files to trigger the

kubelet to recreate the Pods. To restart kubelet, mount the host filesystem with hostPID is

Automated Kubernetes Certificate Rotation - Alauda Container Platform

true and run "systemctl restart kubelet" in the container.
Auto-reloading:
e Etcd can auto-reload the certificates.

6. Rotation Timelines

o kubelet certificates: Rotate at 61 days (91-day validity)

o Control plane certificates: Rotate at 292 days (365-day validity)

Operation Considerations

If kubelet isin an abnormal state during the rotation window and cannot rotate certificates

automatically, manual rotation is required:
Operators must manually renew the certificates.

Run the following commands to renew the certificates manually:

cert-renew --ca-cert <ca-cert-path> --ca-key <ca-key-path> --days <days> <certificate or

kubeconfig 1> <certificate or kubeconfig 2> ...

For example to renew the kubelet.crt :

cert-renew --ca-cert /etc/kubernetes/pki/ca.crt --ca-key /etc/kubernetes/pki/ca.key --
days 91 /etc/kubernetes/pki/kubelet.crt

To download and prepare the cert-renew tool, run:

curl "$(kubectl get services -n cpaas-system frontend -o
jsonpath="{.spec.clusterIP}'):8080/cluster-cert-rotator/download/cert-renew" -o ./cert-

renew && chmod +x ./cert-renew

Optionally, download renew-all.sh to renew all certificates on the node:

Automated Kubernetes Certificate Rotation - Alauda Container Platform

curl "$(kubectl get services -n cpaas-system frontend -o
jsonpath="{.spec.clusterIP}'):8080/cluster-cert-rotator/download/renew-all.sh" -o

./renew-all.sh

cert-manager - Alauda Container Platform

= Menu ON THIS PAGE >

cert-manager

Each cluster will automatically deploy Certificate for cert-manager

cert-manager is a native Kubernetes certificate management controller that automatically
generates and manages TLS certificates based on Certificate resources. Many components
in Kubernetes clusters use cert-manager to manage their TLS certificates, ensuring secure
communication.

TOC

Overview

How it works

Identifying cert-manager Managed Certificates
Common Labels and Annotations

Related Resources

Overview

Cert-manager manages the lifecycle of certificates through Kubernetes Custom Resource
Definitions (CRDs):

¢ Certificate: Defines the certificates that need to be managed

¢ Issuer/Clusterissuer: Defines certificate issuers

+ CertificateRequest: Internal resource for processing certificate requests

cert-manager - Alauda Container Platform

How it works

When a Certificate resource is created, cert-manager automatically:

1. Generates private keys and certificate signing requests
2. Obtains signed certificates from the specified Issuer
3. Stores certificates and private keys in Kubernetes Secrets

Additionally, cert-manager monitors the validity period of certificates and renews them before

they expire to ensure continuous service availability.

Identifying cert-manager Managed Certificates

Certificates managed by cert-manager have corresponding Secret resources with type
kubernetes.io/tls and specific labels and annotations.

Common Labels and Annotations

Secret resources managed by cert-manager typically contain the following labels and

annotations:
Labels:

e controller.cert-manager.io/fao: "true" : ldentifies that this Secret is managed by cert-

manager and enables filtered Secret caching by the controller.
Annotations:

e cert-manager.io/certificate-name : Certificate name

e cert-manager.io/common-name : Common name of the certificate
e cert-manager.io/alt-names : Alternative names of the certificate
e cert-manager.io/ip-sans : IP addresses of the certificate

e cert-manager.io/issuer-kind : Type of certificate issuer

e cert-manager.io/issuer-name : Name of certificate issuer

cert-manager - Alauda Container Platform
e cert-manager.io/issuer-group : APl group of the issuer

e cert-manager.io/uri-sans : URI Subject Alternative Names

Related Resources

o cert-manager Official Documentation ~

https://cert-manager.io/docs/
https://cert-manager.io/docs/
https://cert-manager.io/docs/

OLM Certificates - Alauda Container Platform

Menu

OLM Certificates

All certificates for Operator Lifecycle Manager (OLM) components — including olm-
operator , catalog-operator , packageserver , and marketplace-operator — are automatically

managed by the system.

When installing Operators that define webhooks or API services in their
ClusterServiceVersion (CSV) object, OLM automatically generates and rotates the required
certificates.

Certificate Monitoring - Alauda Container Platform

Menu ON THIS PAGE >

Certificate Monitoring

Cluster Enhancer provides monitoring capabilities for certificates used in Kubernetes

clusters. The monitoring scope includes:

1. Kubernetes component certificates, including control plane and kubelet server/client

certificates (including kubeconfig client certificates)

2. Certificates of components running in the cluster, implemented by inspecting all

Secrets with type kubernetes.io/tls
3. Server certificates actually used by kube-apiserver (including internal loopback

certificates for self-access) by accessing the kubernetes Endpoints

Users can find and install Cluster Enhancer in the Administrator view by navigating to
Marketplace > Cluster Plugins in the left navigation.

TOC

Certificate Status Monitoring
Built-in Alert Rules
Kubernetes Certificate Alerts

Platform Components Certificate Alerts

Certificate Status Monitoring

The expiration status of certificates can be viewed through the metric

certificate_expires_status . The expiration time of certificates can be viewed through the

Certificate Monitoring - Alauda Container Platform

metric certificate_expires_time .

The current certificate status and expiration time can be viewed in the Certificate Status sub-
tab. To access this sub-tab, go to the Administrator view, navigate to Clusters > Clusters,

select a specific cluster, then go to the Monitoring tab.

Built-in Alert Rules

Cluster Enhancer provides built-in alert rules cpaas-certificates-rule with the following

alerts:

Kubernetes Certificate Alerts

Rule Level

The expiration time of the kubernetes certificate is about to expire (less than

. Medium
30 days) <= 30d and last 1 minutes
The expiration time of the kubernetes certificate is about to expire (less than i
[
10 days) <= 10d and last 1 minutes ¥
Kubernetes certificate has expired <= 0d and last 1 minutes Critical
Platform Components Certificate Alerts
Rule Level
The expiration time of the platform components certificate is about to expire Med
edium
(less than 30 days) <= 30d and last 1 minutes
The expiration time of the platform components certificate is about to expire -
9

(less than 10 days) <= 10d and last 1 minutes

Platform components certificate has expired <= 0d and last 1 minutes Critical

	Security
	Alauda Container Security
	Security and Compliance
	Compliance
	Introduction
	Install Alauda Container Platform Compliance with Kyverno
	TOC
	Install via console
	Install via YAML
	1. Check available versions
	2. Create a ModuleInfo

	Uninstallation Procedures

	HowTo
	Private Registry Access Configuration
	TOC
	Why Does Kyverno Need Registry Access?
	Quick Start
	1. Create Registry Secret
	2. Configure Kyverno to Use the Secret (Recommended)
	3. Kyverno Deployment Configuration

	Image Signature Verification Policy
	TOC
	What is Image Signature Verification?
	Quick Start
	1. Generate Keys
	2. Sign Images
	3. Create Basic Verification Policy
	4. Test It

	Common Use Cases
	Scenario 1: Multiple Teams Need to Sign Critical Images
	Scenario 2: Different Rules for Different Environments
	Scenario 3: Using Certificates Instead of Keys

	Image Signature Verification Policy with Secrets
	TOC
	Why Use Secrets for Public Keys?
	Quick Start
	1. Generate and Store Keys in Secret
	2. RBAC Configuration for Keyverno
	3. Create Policy Using Secret Reference
	4. Test the Configuration

	Secret Creation Methods
	Method 1: From File
	Method 2: From Literal String
	Method 3: From YAML Manifest

	Common Use Cases
	Scenario 1: Single Team with One Secret
	Scenario 2: Multi-Team with Different Secrets
	Scenario 3: Critical Images Requiring Multiple Signatures
	Scenario 4: Offline Environment with Secrets

	Image Registry Validation Policy
	TOC
	What is Image Registry Validation?
	Quick Start
	1. Block All Except Company Registry
	2. Test It

	Common Scenarios
	Scenario 1: Allow Multiple Trusted Registries
	Scenario 2: Different Rules for Different Environments
	Scenario 3: Block Specific Risky Registries
	Scenario 4: Team-Specific Registry Access

	Advanced Patterns
	Using Wildcards Effectively

	Best Practices
	Start with Warnings
	Exclude System Namespaces
	Common Issues

	Container Escape Prevention Policy
	TOC
	What is Container Escape Prevention?
	Quick Start
	1. Block Privileged Containers
	2. Test the Policy

	Core Container Escape Prevention Policies
	Policy 1: Disallow Host Namespace Access
	Policy 2: Disallow Host Path Mounts
	Policy 3: Disallow Host Ports
	Policy 4: Disallow Dangerous Capabilities
	Policy 5: Require Non-Root Containers

	Advanced Scenarios
	Scenario 1: Environment-Specific Policies
	Scenario 2: Workload-Specific Exceptions

	Testing and Validation
	Test Privileged Container
	Test Host Namespace Access
	Test Host Path Mount
	Test Valid Secure Container

	Best Practices
	1. Start with Audit Mode
	2. Exclude System Namespaces

	Security Context Enforcement Policy
	TOC
	What is Security Context Enforcement?
	Quick Start
	1. Require Non-Root Containers Policy
	2. Test the Policy

	Core Security Context Policies
	Policy 1: Disallow Privilege Escalation
	Policy 2: Require Specific User ID Range
	Policy 3: Require Non-Root Groups
	Policy 4: Restrict Seccomp Profiles
	Policy 5: Require Dropping ALL Capabilities
	Policy 6: Restrict AppArmor Profiles

	Advanced Scenarios
	Scenario 1: Environment-Specific Security Contexts
	Scenario 2: Application-Specific Security Contexts
	Scenario 3: Graduated Security Context Enforcement

	Testing and Validation
	Test Root Container (Should Fail)
	Test Privilege Escalation (Should Fail)
	Test Missing Capabilities Drop (Should Fail)
	Test Valid Secure Container (Should Pass)

	Network Security Policy
	TOC
	What is Network Security?
	Quick Start
	1. Disallow Host Network Access
	2. Test the Policy

	Core Network Security Policies
	Policy 1: Disallow Host Ports
	Policy 2: Restrict Host Port Range
	Policy 3: Require Network Policies
	Policy 4: Restrict Service Types
	Policy 5: Control Ingress Configurations
	Policy 6: Restrict DNS Configuration

	Advanced Scenarios
	Scenario 1: Environment-Specific Network Policies
	Scenario 2: Application-Specific Network Policies
	Scenario 3: Network Segmentation Enforcement

	Testing and Validation
	Test Host Network Access (Should Fail)
	Test Host Port Binding (Should Fail)
	Test NodePort Service (Should Fail)
	Test Valid Network Configuration (Should Pass)

	Volume Security Policy
	TOC
	What is Volume Security?
	Quick Start
	1. Restrict Volume Types
	2. Test the Policy

	Core Volume Security Policies
	Policy 1: Disallow HostPath Volumes
	Policy 2: Restrict HostPath Volumes (Controlled Access)
	Policy 3: Disallow Privileged Volume Types
	Policy 4: Require Read-Only Root Filesystem
	Policy 5: Control Volume Mount Permissions

	Advanced Scenarios
	Scenario 1: Environment-Specific Volume Policies
	Scenario 2: Application-Specific Volume Policies
	Scenario 3: Volume Size and Resource Limits

	Testing and Validation
	Test HostPath Volume (Should Fail)

	API Refiner
	Introduction
	TOC
	Product Introduction
	Limitations

	Install Alauda Container Platform API Refiner
	TOC
	Install via console
	Install via YAML
	1. Check available versions
	2. Create a ModuleInfo

	Uninstallation Procedures
	Default Configuration
	Filtered Resources
	Field Desensitization

	About Alauda Container Platform Compliance Service
	Users and Roles
	User
	Introduction
	TOC
	User Sources
	Local Users
	Third-Party Users
	LDAP Users
	OIDC Users
	Other Third-Party Users

	User Management Rules
	User Lifecycle

	Guides
	Manage User Roles
	TOC
	Add Roles
	Steps

	Remove Roles
	Steps

	Create User
	TOC
	Steps

	User Management
	TOC
	Reset Local User Password
	Steps

	Update User Expiry Date
	Steps

	Activate User
	Steps

	Disable User
	Steps

	Add User to Local User Group
	Steps

	Delete User
	Steps

	Batch Operations
	Steps

	Group
	Introduction
	TOC
	Group Introduction
	Group Types
	Local User Group
	IDP-Synchronized User Group

	Guides
	Manage User Group Roles
	TOC
	Add Role to Group
	Steps

	Remove Role from Group
	Steps

	Create Local User Group
	TOC
	Create User Group
	Steps

	Manage User Groups

	Manage Local User Group Membership
	TOC
	Prerequisites
	Import Members
	Steps

	Remove Members
	Steps

	Role
	Introduction
	TOC
	Role Introduction
	System Roles
	Custom Roles

	Guides
	Create Role
	TOC
	Basic Information Configuration
	Role Type

	View Configuration
	Permission Configuration

	Manage Custom Roles
	TOC
	Update Basic Information
	Steps

	Update Role Permissions
	Steps

	Copy Existing Role
	Steps

	Delete Custom Role
	Steps

	IDP
	Introduction
	TOC
	Overview
	Supported Integration Methods
	LDAP Integration
	OIDC Integration

	Guides
	LDAP Management
	TOC
	LDAP Overview
	Supported LDAP Types
	OpenLDAP
	Active Directory

	LDAP Terminology
	OpenLDAP Common Terms
	Active Directory Common Terms

	Add LDAP
	Prerequisites
	Steps
	Basic Information
	Search Settings

	LDAP Configuration Examples
	LDAP Connector Configuration
	User Filter Examples
	Group Search Configuration Examples
	Examples of AND(&) and OR(|) Operators in LDAP Filters

	Synchronize LDAP Users
	Procedure of Operation

	Relevant Operations

	OIDC Management
	TOC
	Overview of OIDC
	Adding OIDC
	Procedure of Operation

	Adding OIDC via YAML
	Example: Configuring OIDC Connector

	Relevant Operations

	Troubleshooting
	Delete User
	TOC
	Problem Description
	Solution
	Clean up deleted IDP users
	Clean up deleted local users

	User Policy
	Introduction
	TOC
	Overview
	Configure Security Policy
	Steps

	Available Policies

	Multitenancy(Project)
	Introduction
	TOC
	Project
	Namespaces
	Relationship Between Clusters, Projects, and Namespaces

	Guides
	Create Project
	TOC
	Procedure

	Manage Project Quotas
	TOC
	What is ProjectQuota?
	How it works
	When to use ProjectQuota
	Quota keys and units
	Allocation strategy tips
	Best practices and FAQs

	Manage Project
	TOC
	Update Basic Project Information
	Procedure

	Delete Project
	Procedure

	Manage Project Cluster
	TOC
	Introduction
	Add a Cluster
	Procedure

	Remove a Cluster
	Procedure

	Manage Project Members
	TOC
	Import Members
	Constraints and Limitations
	Procedure
	Import from Member List
	Import OIDC Users

	Remove Members
	Procedure

	Audit
	Introduction
	TOC
	Prerequisites
	Procedure
	Search Results

	Telemetry
	Install
	TOC
	Prerequisites
	Installation Steps
	Enable Online Operations
	Uninstallation Steps

	Certificates
	Automated Kubernetes Certificate Rotation
	TOC
	Installation
	How it works
	Rotation Process

	Operation Considerations

	cert-manager
	TOC
	Overview
	How it works
	Identifying cert-manager Managed Certificates
	Common Labels and Annotations

	Related Resources

	OLM Certificates
	Certificate Monitoring
	TOC
	Certificate Status Monitoring
	Built-in Alert Rules
	Kubernetes Certificate Alerts
	Platform Components Certificate Alerts

