
Observability

Overview

Overview

Monitoring

Introduction

Install

Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin via console

Install the ACP Monitoring with Prometheus Plugin via YAML

Install the ACP Monitoring with VictoriaMetrics Plugin via console

Install the ACP Monitoring with VictoriaMetrics Plugin via YAML

Architecture

Menu

Observability - Alauda Container Platform

Concepts
Monitoring

Alarms

Notifications

Monitoring Dashboard

Guides

How To

Distributed Tracing

Introduction
Usage Limitations

Install
Installing the Jaeger Operator

Deploying a Jaeger Instance

Installing the OpenTelemetry Operator

Deploying OpenTelemetry Instances

Enable Feature Switch

Uninstall Tracing

Observability - Alauda Container Platform

Architecture
Core Components

Data Flow

Concepts

Telemetry

OpenTelemetry

Span

Trace

Instrumentation

OpenTelemetry Collector

Jaeger

Guides

How To

Troubleshooting

Logs

Introduction

Observability - Alauda Container Platform

Install
Installation Planning

Install Alauda Container Platform Log Storage with ElasticSearch via console

Install Alauda Container Platform Log Storage with ElasticSearch via YAML

Install Alauda Container Platform Log Storage with Clickhouse via console

Install Alauda Container Platform Log Storage with Clickhouse via YAML

Install Alauda Container Platform Log Collector Plugin

Install Alauda Container Platform Log Collector Plugin via YAML

Architecture

Concepts
Open Source Components

Core Functionality Concepts

Key Technical Terms

Data Flow Model

Guides

How To

Events

Observability - Alauda Container Platform

Introduction
Usage Limitations

Events
Operation Procedures

Event Overview

Inspection

Introduction
Usage Limitations

Architecture
Inspection

Component Health Status

Guides

Observability - Alauda Container Platform

The Observability module is a core feature of the ACP platform that provides comprehensive

monitoring and observability capabilities for cloud-native applications.

This module integrates four essential observability pillars:

Synthetic monitoring (probe) for proactive endpoint testing

Centralized logging for unified log management and analysis

Real-time monitoring for metrics collection and alerting

Distributed tracing for end-to-end request tracking across microservices

By combining these capabilities into a single platform, it enables organizations to achieve

complete visibility into application performance, rapidly diagnose issues, ensure system

reliability, and optimize user experience across their entire technology stack.

Overview

Menu

Overview - Alauda Container Platform

Monitoring

Introduction

Introduction

Install

Install
Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin via console

Install the ACP Monitoring with Prometheus Plugin via YAML

Install the ACP Monitoring with VictoriaMetrics Plugin via console

Install the ACP Monitoring with VictoriaMetrics Plugin via YAML

Architecture

Menu

Monitoring - Alauda Container Platform

Monitoring Module Architecture
Overall Architecture Explanation

Monitoring System

Alerting System

Notification System

Monitoring Component Selection Guide
Important Notes

Component List

Architecture Comparison

Feature Comparison

Installation Scheme Suggestions

Monitor Component Capacity Planning

Assumptions and Methodology

Prometheus

VictoriaMetrics

Concepts

Concepts
Monitoring

Alarms

Notifications

Monitoring Dashboard

Monitoring - Alauda Container Platform

Guides

Management of Metrics
Viewing Metrics Exposed by Platform Components

Viewing All Metrics Stored by Prometheus / VictoriaMetrics

Viewing All Built-in Metrics Defined by the Platform

Integrating External Metrics

Management of Alert
Function Overview

Key Features

Functional Advantages

Creating Alert Policies via UI

Creating Resource Alerts via CLI

Creating Event Alerts via CLI

Creating Alert Policies via alert Templates

Setting Silence for Alerts

Recommendations for Configuring Alert Rules

Management of Notification
Feature Overview

Key Features

Notification Server

Notification Contact Group

Notification Template

Notification rule

Set Notification Rule for Projects

Monitoring - Alauda Container Platform

Management of Monitoring Dashboards
Function Overview

Manage Dashboards

Manage Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

Management of Probe

Function Overview

Blackbox Monitoring

Blackbox Alerts

Customizing BlackboxExporter Monitoring Module

Create Blackbox Monitoring Items and Alerts via CLI

Reference Information

How To

Backup and Restore of Prometheus Monitoring Data
Feature Overview

Use Cases

Prerequisites

Procedures to Operate

Operation Results

Learn More

Next Procedures

Monitoring - Alauda Container Platform

VictoriaMetrics Backup and Recovery of Monitoring Data
Function Overview

Use Cases

Prerequisites

Procedures

Operation Result

Learn More

Follow-up Actions

Collect Network Data from Custom-Named Network Interfaces

Function Overview

Use Case

Prerequisites

Procedures to Operate

Operation Results

Learn More

Subsequent Actions

Monitoring - Alauda Container Platform

The Monitoring module is a core component of the ACP platform's observability suite that

provides comprehensive monitoring and alerting capabilities for platform administrators and

operations teams.

This module delivers four essential monitoring capabilities:

Metrics collection for real-time performance data gathering from clusters, nodes,

applications, and containers

Dashboards for intuitive visualization and analysis of system health and performance

trends

Alerting for proactive detection of issues through customizable rules and thresholds

Notifications for timely delivery of alert information to operations personnel

By integrating these capabilities with open-source components like Prometheus and

VictoriaMetrics, it enables organizations to maintain system reliability, prevent downtime,

reduce operational costs, and ensure optimal performance across their entire infrastructure.

Introduction

Menu

Introduction - Alauda Container Platform

Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin via console

Installation Procedures

Access Method

Install the ACP Monitoring with Prometheus Plugin via YAML

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

Install the ACP Monitoring with VictoriaMetrics Plugin via console

Prerequisites

Installation Procedures

Install the ACP Monitoring with VictoriaMetrics Plugin via YAML

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

Install

TOC

Overview

Menu ON THIS PAGE

Install - Alauda Container Platform

The monitoring component serves as the infrastructure for monitoring, alerting, inspection,

and health checking functions within the observability module. This document describes how

to install the ACP Monitoring with Prometheus plugin or the ACP Monitoring with

VictoriaMetrics plugin within a cluster.

Before install the monitoring components, please ensure the following conditions are met:

The appropriate monitoring component has been selected by referring to the Monitoring

Component Selection Guide.

When install in a workload cluster, ensure that the global cluster can access port 11780 of

the workload cluster.

If you need to use storage classes or persistent volume storage for monitoring data, please

create the corresponding resources in the Storage section in advance.

1. Navigate to App Store Management > Cluster Plugins and select the target cluster.

2. Locate the ACP Monitoring with Prometheus plugin and click Install.

3. Configure the following parameters:

Parameter Description

Scale

Configuration

Supports three configurations: Small Scale, Medium Scale,

and Large Scale:

- Default values are set based on the recommended load test

values of the platform

- You can choose or customize quotas based on the actual

Installation Preparation

Install the ACP Monitoring with Prometheus
Plugin via console

Installation Procedures

Install - Alauda Container Platform

Parameter Description

cluster scale

- Default values will be updated with platform versions; for

fixed configurations, custom settings are recommended

Storage Type

- LocalVolume: Local storage with data stored on specified

nodes

- StorageClass: Automatically generates persistent volumes

using a storage class

- PV: Utilizes existing persistent volumes

Note: Storage configuration cannot be modified after

Installation

Replica Count
Sets the number of monitoring component pods

Note: Prometheus supports only single-node installation

Parameter

Configuration

Data parameters for the monitoring component can be

adjusted as needed

4. Click Install to complete the installation.

Once installation is complete, the components can be accessed at the following addresses

(replace <> with actual values):

Component Access Address

Thanos <platform_access_address>/clusters/<cluster>/prometheus

Prometheus <platform_access_address>/clusters/<cluster>/prometheus-0

Alertmanager <platform_access_address>/clusters/<cluster>/alertmanager

Access Method

Install the ACP Monitoring with Prometheus
Plugin via YAML

Install - Alauda Container Platform

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

This indicates that the ModulePlugin prometheus exists in the cluster and version v4.1.0 is

published.

Create a ModuleInfo resource to install the plugin without any configuration parameters:

1. Check available versions

2. Create a ModuleInfo

kubectl get moduleplugin | grep prometheus

prometheus 30h

kubectl get moduleconfig | grep prometheus

prometheus-v4.1.0 30h

Install - Alauda Container Platform

Reference for resources settings, example prometheus:

kind: ModuleInfo

apiVersion: cluster.alauda.io/v1alpha1

metadata:

 name: global-prometheus

 labels:

 cpaas.io/cluster-name: global

 cpaas.io/module-name: prometheus

 cpaas.io/module-type: plugin

spec:

 version: v4.1.0

 config:

 storage:

 type: LocalVolume

 capacity: 40

 nodes:

 - xxx.xxx.xxx.xx

 path: /cpaas/monitoring

 storageClass: ""

 pvSelectorK: ""

 pvSelectorV: ""

 replicas: 1

 components:

 prometheus:

 retention: 7

 scrapeInterval: 60

 scrapeTimeout: 45

 resources: null

 nodeExporter:

 port: 9100

 resources: null

 alertmanager:

 resources: null

 kubeStateExporter:

 resources: null

 prometheusAdapter:

 resources: null

 thanosQuery:

 resources: null

 size: Small

Install - Alauda Container Platform

For more details, please refer to the Monitor Component Capacity Planning

YAML field reference (VictoriaMetrics):

Field path Description

metadata.labels.cpaas.io/cluster-name
Target cluster name where the

plugin is installed.

metadata.labels.cpaas.io/module-name Must be victoriametrics .

metadata.labels.cpaas.io/module-type Must be plugin .

metadata.name
ModuleInfo name (e.g.,

<cluster>-victoriametrics).

spec.version Plugin version to install.

spec.config.storage.type
Storage type: LocalVolume ,

StorageClass , or PV .

spec.config.storage.capacity

Storage size for VictoriaMetrics

(Gi). Minimum 30 Gi

recommended.

spec.config.storage.nodes

Node list when

storage.type=LocalVolume . Up to

1 node supported.

spec:

 config:

 components:

 prometheus:

 resources:

 limits:

 cpu: 2000m

 memory: 2000Mi

 requests:

 cpu: 1000m

 memory: 1000Mi

Install - Alauda Container Platform

Field path Description

spec.config.storage.path
LocalVolume path when

storage.type=LocalVolume .

spec.config.storage.storageClass
StorageClass name when

storage.type=StorageClass .

spec.config.storage.pvSelectorK
PV selector key when

storage.type=PV .

spec.config.storage.pvSelectorV
PV selector value when

storage.type=PV .

spec.replicas
Replica count; LV does not

support multiple replicas.

spec.config.components.vmstorage.retention
Data retention days for

vmstorage.

spec.config.components.vmagent.scrapeInterval

Scrape interval seconds; applies

to ServiceMonitors without

interval .

spec.config.components.vmagent.scrapeTimeout
Scrape timeout seconds; must be

less than scrapeInterval .

spec.config.components.vmstorage.resources Resource settings for vmstorage.

spec.config.components.nodeExporter.port
Node Exporter port (default

9100).

spec.config.components.nodeExporter.resources
Resource settings for Node

Exporter.

spec.config.components.alertmanager.resources
Resource settings for

Alertmanager.

spec.config.components.kubeStateExporter.resources
Resource settings for Kube State

Exporter.

Install - Alauda Container Platform

Field path Description

spec.config.components.prometheusAdapter.resources

Resource settings for

Prometheus Adapter (used for

HPA/custom metrics).

spec.config.components.vmagent.resources Resource settings for vmagent.

spec.config.size
Monitoring scale: Small ,

Medium , or Large .

Since the ModuleInfo name changes upon creation, locate the resource via label to check the

plugin status and version:

Field explanations:

NAME : ModuleInfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

STATUS : Installation status; Running means successfully installed and running

TARGET_VERSION : Intended installation version

CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

3. Verify installation

kubectl get moduleinfo -l cpaas.io/module-name=victoriametrics

NAME CLUSTER MODULE

DISPLAY_NAME STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-e671599464a5b1717732c5ba36079795 global victoriametrics

victoriametrics Running v4.1.0 v4.1.0 v4.1.0

Install - Alauda Container Platform

If only install the VictoriaMetrics agent, ensure that the VictoriaMetrics Center has been

installed in another cluster.

1. Navigate to App Store Management > Cluster Plugins and select the target cluster.

2. Locate the ACP Monitoring with VictoriaMetrics plugin and click Install.

3. Configure the following parameters:

Parameter Description

Scale

Configuration

Supports three configurations: Small Scale, Medium Scale,

and Large Scale:

- Default values are set based on the recommended load

test values of the platform

- You can choose or customize quotas based on the actual

cluster scale

- Default values will be updated with platform versions; for

fixed configurations, custom settings are recommended

Install Agent Only

- Off: Install the complete VictoriaMetrics component suite

- On: Install only the VMAgent collection component, which

relies on the VictoriaMetrics Center

VictoriaMetrics

Center

Select the cluster where the complete VictoriaMetrics

component has been installed

Storage Type - LocalVolume: Local storage with data stored on specified

nodes

- StorageClass: Automatically generates persistent volumes

Install the ACP Monitoring with VictoriaMetrics
Plugin via console

Prerequisites

Installation Procedures

Install - Alauda Container Platform

Parameter Description

using a storage class

- PV: Utilizes existing persistent volumes

Replica Count

Sets the number of monitoring component pods:

- LocalVolume storage type does not support multiple

replicas

- For other storage types, please refer to on-screen prompts

for configuration

Parameter

Configuration

Data parameters for the monitoring component can be

adjusted

Note: Data may temporarily exceed the retention period

before being deleted

4. Click Install to complete the installation.

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

This indicates that the ModulePlugin victoriametrics exists in the cluster and version v4.1.0

is published.

Install the ACP Monitoring with VictoriaMetrics
Plugin via YAML

1. Check available versions

kubectl get moduleplugin | grep victoriametrics

victoriametrics 30h

kubectl get moduleconfig | grep victoriametrics

victoriametrics-v4.1.0 30h

Install - Alauda Container Platform

Create a ModuleInfo resource to install the plugin without any configuration parameters:

2. Create a ModuleInfo

Install - Alauda Container Platform

kind: ModuleInfo

apiVersion: cluster.alauda.io/v1alpha1

metadata:

 name: business-1-victoriametrics

 labels:

 cpaas.io/cluster-name: business-1

 cpaas.io/module-name: victoriametrics

 cpaas.io/module-type: plugin

spec:

 version: v4.1.0

 config:

 storage:

 type: LocalVolume

 capacity: 40

 nodes:

 - xxx.xxx.xxx.xx

 path: /cpaas/monitoring

 storageClass: ""

 pvSelectorK: ""

 pvSelectorV: ""

 replicas: 1

 agentOnly: false

 agentReplicas: 1

 crossClusterDependency:

 victoriametrics: ""

 components:

 nodeExporter:

 port: 9100

 resources: null

 vmstorage:

 retention: 7

 resources: null

 kubeStateExporter:

 resources: null

 vmalert:

 resources: null

 prometheusAdapter:

 resources: null

 vmagent:

 scrapeInterval: 60

 scrapeTimeout: 45

 resources: null

 vminsert:

Install - Alauda Container Platform

Reference for resources settings, example prometheus:

For more details, please refer to the Monitor Component Capacity Planning

YAML field reference (Prometheus):

Field path Description

metadata.labels.cpaas.io/cluster-name
Target cluster name where the

plugin is installed.

metadata.labels.cpaas.io/module-name Must be prometheus .

metadata.labels.cpaas.io/module-type Must be plugin .

metadata.name
ModuleInfo name (e.g.,

<cluster>-prometheus).

spec.version Plugin version to install.

spec.config.storage.type
Storage type: LocalVolume ,

StorageClass , or PV .

 resources: null

 alertmanager:

 resources: null

 vmselect:

 resources: null

 size: Small

spec:

 config:

 components:

 vmagent:

 resources:

 limits:

 cpu: 2000m

 memory: 2000Mi

 requests:

 cpu: 1000m

 memory: 1000Mi

Install - Alauda Container Platform

Field path Description

spec.config.storage.capacity

Storage size for Prometheus

(Gi). Minimum 30 Gi

recommended.

spec.config.storage.nodes

Node list when

storage.type=LocalVolume . Up to

1 node supported.

spec.config.storage.path
LocalVolume path when

storage.type=LocalVolume .

spec.config.storage.storageClass
StorageClass name when

storage.type=StorageClass .

spec.config.storage.pvSelectorK
PV selector key when

storage.type=PV .

spec.config.storage.pvSelectorV
PV selector value when

storage.type=PV .

spec.replicas
Replica count; only applicable to

StorageClass / PV types.

spec.config.components.prometheus.retention Data retention days.

spec.config.components.prometheus.scrapeInterval

Scrape interval seconds; applies

to ServiceMonitors without

interval .

spec.config.components.prometheus.scrapeTimeout
Scrape timeout seconds; must be

less than scrapeInterval .

spec.config.components.prometheus.resources
Resource settings for

Prometheus.

spec.config.components.nodeExporter.port
Node Exporter port (default

9100).

Install - Alauda Container Platform

Field path Description

spec.config.components.nodeExporter.resources
Resource settings for Node

Exporter.

spec.config.components.alertmanager.resources
Resource settings for

Alertmanager.

spec.config.components.kubeStateExporter.resources
Resource settings for Kube State

Exporter.

spec.config.components.prometheusAdapter.resources
Resource settings for

Prometheus Adapter.

spec.config.components.thanosQuery.resources
Resource settings for Thanos

Query.

spec.config.size
Monitoring scale: Small ,

Medium , or Large .

Since the ModuleInfo name changes upon creation, locate the resource via label to check the

plugin status and version:

Field explanations:

NAME : ModuleInfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

3. Verify installation

kubectl get moduleinfo -l cpaas.io/module-name=prometheus

NAME CLUSTER MODULE

DISPLAY_NAME STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-e671599464a5b1717732c5ba36079795 global prometheus prometheus

Running v4.1.0 v4.1.0 v4.1.0

Install - Alauda Container Platform

STATUS : Installation status; Running means successfully installed and running

TARGET_VERSION : Intended installation version

CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

Install - Alauda Container Platform

Architecture

Monitoring Module Architecture

Overall Architecture Explanation

Monitoring System

Alerting System

Notification System

Monitoring Component Selection Guide

Important Notes

Component List

Architecture Comparison

Feature Comparison

Installation Scheme Suggestions

Monitor Component Capacity Planning
Assumptions and Methodology

Prometheus

VictoriaMetrics

Menu

Architecture - Alauda Container Platform

Overall Architecture Explanation

Monitoring Module Architecture

TOC

Menu ON THIS PAGE

Monitoring Module Architecture - Alauda Container Platform

Monitoring System

Data Collection and Storage

Data Query and Visualization

Alerting System

Alert Rule Management

Alert Processing Workflow

Real-time Alert Status

Notification System

Notification Configuration Management

Notification Server Management

The monitoring system consists of the following core functional modules:

1. Monitoring System

Data Collection and Storage: Collecting and persisting monitoring metrics from multiple

sources

Data Query and Visualization: Providing flexible query and visualization capabilities for

monitoring data

2. Alerting System

Alert Rule Management: Configuring and managing alert policies

Alert Triggering and Notification: Evaluating alert rules and dispatching notifications

Real-time Alert Status: Providing a real-time view of the current alert status of the

system

3. Notification System

Notification Configuration: Managing notification templates, contact groups, and policies

Notification Server: Managing the configuration of various notification channels

Overall Architecture Explanation

Monitoring Module Architecture - Alauda Container Platform

1. Prometheus/VictoriaMetrics Operator Responsibilities:

Load and validate monitoring collection configurations

Load and validate alert rule configurations

Synchronize configurations to Prometheus/VictoriaMetrics instances

2. Sources of Monitoring Data:

Nevermore: Generates log-related metrics

Warlock: Generates event-related metrics

Prometheus/VictoriaMetrics: Discovers and collects various exporters' metrics via

ServiceMonitor

1. Monitoring Data Query Process:

The browser initiates a query request (Path: /platform/monitoring.alauda.io/v1beta1)

ALB forwards the request to the Courier component

Courier API processes the query:

Built-in Metrics: Obtains PromQL through the indicators interface and queries

Custom Metrics: Directly forwards PromQL to the monitoring component

The monitoring dashboard retrieves data and displays it

2. Monitoring Dashboard Management Process:

Users access the global cluster ALB (Path:

/kubernetes/cluster_name/apis/ait.alauda.io/v1alpha2/MonitorDashboard)

ALB forwards the request to the Erebus component

Erebus routes the request to the target monitoring cluster

Monitoring System

Data Collection and Storage

Data Query and Visualization

Monitoring Module Architecture - Alauda Container Platform

The Warlock component is responsible for:

Validating the legality of the monitoring dashboard configuration

Managing the MonitorDashboard CR resource

The alert rule configuration process:

1. Users access the global cluster ALB (Path:

/kubernetes/cluster_name/apis/monitoring.coreos.com/v1/prometheusrules)

2. The request passes through ALB -> Erebus -> target cluster kube-apiserver

3. Responsibilities of each component:

Prometheus/VictoriaMetrics Operator:

Validating the legality of alert rules

Managing PrometheusRule CR

Nevermore: Listening for and processing log alert metrics

Warlock: Listening for and processing event alert metrics

1. Alert Evaluation:

PrometheusRule/VMRule defines alert rules

Prometheus/VictoriaMetrics evaluates rules periodically

2. Alert Notification:

Alerts are sent to Alertmanager once triggered

Alertmanager -> ALB -> Courier API

Courier API is responsible for dispatching notifications

Alerting System

Alert Rule Management

Alert Processing Workflow

Monitoring Module Architecture - Alauda Container Platform

3. Alert Storage:

Alert history is stored in ElasticSearch/ClickHouse

1. Status Collection:

The global cluster Courier generates metrics:

cpaas_active_alerts: Current active alerts

cpaas_active_silences: Current silence configurations

Global Prometheus collects every 15 seconds

2. Status Display:

The front-end queries and displays real-time status via Courier API

The management process for notification templates, notification contact groups, and

notification policies is as follows:

1. Users access the standard API of the global cluster via a browser

Access path: /apis/ait.alauda.io/v1beta1/namespaces/cpaas-system

2. Managing related resources:

Notification Template: apiVersion: "ait.alauda.io/v1beta1", kind: "NotificationTemplate"

Notification Contact Group: apiVersion: "ait.alauda.io/v1beta1", kind: "NotificationGroup"

Notification Policy: apiVersion: "ait.alauda.io/v1beta1", kind: "Notification"

3. Courier is responsible for:

Validating the legality of notification templates

Real-time Alert Status

Notification System

Notification Configuration Management

Monitoring Module Architecture - Alauda Container Platform

Validating the legality of notification contact groups

Validating the legality of notification policies

1. Users access the global cluster's ALB via a browser

Access path: /kubernetes/global/api/v1/namespaces/cpaas-system/secrets

2. Managing and submitting notification server configurations

Resource name: platform-email-server

3. Courier is responsible for:

Validating the legality of the notification server configuration

Notification Server Management

Monitoring Module Architecture - Alauda Container Platform

When installing cluster monitoring, the platform provides two monitoring components for you

to choose from: VictoriaMetrics and Prometheus. This article will detail the characteristics and

applicable scenarios of these two components, helping you make the most suitable choice.

Important Notes

Component List

Prometheus Related Components

VictoriaMetrics Related Components

Architecture Comparison

Prometheus Architecture

VictoriaMetrics Architecture

Feature Comparison

Installation Scheme Suggestions

Monitoring Installation Architecture Overview

Prometheus Installation Method

VictoriaMetrics Installation Method

Selection Recommendations

Scenarios Suitable for Using VictoriaMetrics

Scenarios Suitable for Using Prometheus

Monitoring Component Selection Guide

TOC

Menu ON THIS PAGE

Monitoring Component Selection Guide - Alauda Container Platform

Only one of VictoriaMetrics or Prometheus can be selected when installing cluster

monitoring components.

Starting from version 3.18, VictoriaMetrics has been upgraded to Beta status, which meets

production environment usage conditions.

VictoriaMetrics is suitable for scenarios with high availability requirements and multi-cluster

monitoring.

Prometheus is suitable for single-cluster monitoring scenarios, especially for smaller

scales.

Component

Name
Function Description

Prometheus

Server

Core server responsible for collecting, storing, and querying

monitoring data

Exporters
Monitoring data collection components that expose monitoring

metrics via HTTP interfaces

AlertManager Alert management center, handling alert rules and notifications

PushGateway
Supports push mode for monitoring data, used for data transfer in

special network environments

Important Notes

Component List

Prometheus Related Components

VictoriaMetrics Related Components

Monitoring Component Selection Guide - Alauda Container Platform

Component

Name
Function Description

VMStorage Monitoring data storage engine

VMInsert
Data writing component responsible for data distribution and

storage

VMSelect Query service component providing data querying capabilities

VMAlert Alert rule evaluation and handling component

VMAgent Monitoring metric collection component

Prometheus is a mature open-source monitoring system and is the second graduated project

of CNCF after Kubernetes. It has the following characteristics:

Powerful data collection capabilities.

Flexible query language PromQL.

A comprehensive ecosystem.

Supports cluster monitoring at a thousand-node scale.

VictoriaMetrics is a next-generation high-performance time series database and monitoring

solution with the following advantages:

Higher data compression ratio.

Lower resource consumption.

Native support for cluster high availability.

Simpler operation and maintenance management.

Architecture Comparison

Prometheus Architecture

VictoriaMetrics Architecture

Monitoring Component Selection Guide - Alauda Container Platform

Feature Prometheus VictoriaMetrics Description

High

Availability

Installation

❌ ✅

VictoriaMetrics supports

true cluster high availability

with better data consistency

Single Node

Installation
✅ ✅

Both support single-node

installation mode

Long-term

Data Storage

Requires

remote storage

Natively

supported

VictoriaMetrics is more

suitable for long-term data

storage

Resource

Efficiency
Higher Better

VictoriaMetrics has better

resource utilization

Community

Support
Very mature

Rapidly

developing

Prometheus has a larger

community ecosystem

Feature Comparison

Installation Scheme Suggestions

Monitoring Installation Architecture Overview

Monitoring Component Selection Guide - Alauda Container Platform

The above diagram shows the installation architecture and data flow of the monitoring

components supported by the platform. The platform provides the following two installation

methods for selection:

Note: When replacing monitoring components, please ensure that existing components are

completely uninstalled, and monitoring data does not support cross-component migration.

This method corresponds to the architecture of cluster4 in the above diagram:

Uses Prometheus components to collect and process monitoring data.

Queries and displays data through the monitoring panel.

Suitable for single-cluster scenarios.

Prometheus Installation Method

Monitoring Component Selection Guide - Alauda Container Platform

VictoriaMetrics supports the following two installation modes:

1. Single Cluster Installation Mode

Corresponds to the architecture of cluster2 in the above diagram.

All VictoriaMetrics components are installed in the same cluster.

Uses VMAgent to collect data and write to VictoriaMetrics.

VMAlert is responsible for alert rule evaluation.

Queries and displays data through the monitoring panel. Tip: It is recommended to use

this mode when data scale is below 1 million per second.

2. Multi-Cluster Installation Mode

Corresponds to the architecture of cluster1/cluster2/cluster3 in the above diagram.

Installs VMAgent in the workload cluster as a data collection agent.

VMAgent writes data into VictoriaMetrics in the central monitoring cluster.

Supports unified monitoring management across multiple clusters. Tip: Ensure that

VictoriaMetrics services are installed in the monitoring cluster before installing VMAgent.

High Performance and Scalability Needs: Suitable for monitoring scenarios that handle

high-throughput data and long-term storage.

Cost-Effectiveness Considerations: Need to optimize storage and computing resource

costs.

High Availability Requirements: Requires high availability assurance for monitoring

components.

Multi-Cluster Management: Requires unified management of monitoring data across

multiple clusters.

VictoriaMetrics Installation Method

Selection Recommendations

Scenarios Suitable for Using VictoriaMetrics

Scenarios Suitable for Using Prometheus

Monitoring Component Selection Guide - Alauda Container Platform

Single Cluster with Small Scale: Monitoring scale is small, with no high availability

requirements.

Existing Prometheus Users: Already have a complete Prometheus monitoring system.

Simple Stability Requirements: Pursuing a simple and reliable monitoring solution.

Deep Ecosystem Integration: Closely integrated with the Prometheus ecosystem, with

high migration costs.

Monitoring Component Selection Guide - Alauda Container Platform

The monitor component is responsible for storing metrics data collected from one or more

clusters in the platform. Therefore, you need to assess your monitor scale in advance and

plan the resources needed for the monitor component according to the guidelines in this

document.

Assumptions and Methodology

Prometheus

Small Scale — 10 worker nodes, 500 double-container Pods

Medium Scale — 50 worker nodes, 2000 double-container Pods

Large Scale — 500 worker nodes, 10000 double-container Pods

VictoriaMetrics

Small Scale — 10 worker nodes, 500 double-container Pods

Medium Scale — 50 worker nodes, 2000 double-container Pods

Large Scale — 500 worker nodes, 10000 double-container Pods

Data in this document comes from controlled lab performance reports and is intended as a

sizing baseline for production planning.

Retention for disk examples is 7 days; adjust proportionally for other retention targets.

Monitor Component Capacity Planning

TOC

Assumptions and Methodology

Menu ON THIS PAGE

Monitor Component Capacity Planning - Alauda Container Platform

Storage baseline matches the warning above (SSD, ~6000 IOPS, ~250MB/s read/write,

independent mount).

Test workloads exercised typical monitoring pages such as "acp ns overview page" and

"platform region detail page".

Below are sizing recommendations by scale for Prometheus and related components (Thanos

Query, Thanos Sidecar, etc.).

Metric ingestion rate: ~2800 samples/second

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
Note

courier-api courier 2 2C 4Gi - -

kube-

prometheus-

thanos-

query

thanos-

query
1 1C 1Gi - -

prometheus-

kube-

prometheus-

0

prometheus 1 2C 8Gi 20G

~10G

write

over

days

Metric ingestion rate: ~7294 samples/second

Prometheus

Small Scale — 10 worker nodes, 500 double-container
Pods

Medium Scale — 50 worker nodes, 2000 double-container
Pods

Monitor Component Capacity Planning - Alauda Container Platform

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
Note

courier-api courier 2 4C 4Gi - -

kube-

prometheus-

thanos-

query

thanos-

query
1 2.5C 8Gi - -

prometheus-

kube-

prometheus-

0

prometheus 1 4C 8Gi 40G

~30G

write

over

days

Metric ingestion rate: ~41575 samples/second

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
N

courier-api courier 2 6C 4Gi - -

kube-

prometheus-

thanos-

query

thanos-

query
1 2C 6Gi -

In-fie

depl

may

repli

prometheus-

kube-

prometheus-

0

prometheus 1 8C 20Gi 100G

Pea

~15G

~69G

over

Large Scale — 500 worker nodes, 10000 double-container
Pods

VictoriaMetrics

Monitor Component Capacity Planning - Alauda Container Platform

Below are sizing recommendations by scale for VictoriaMetrics components.

Metric ingestion rate: ~3274 samples/second

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
Notes

courier-api courier 1 2C 4Gi - -

vmselect-

cluster
proxy 1 1C 200Mi - -

vmselect vmselect 1 500m 1Gi - -

vmstorage-

cluster
vmstorage 1 500m 2Gi 3G

~1.5G

write

over 7

days

Metric ingestion rate: ~6940 samples/second

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
Notes

courier-api courier 2 4C 4Gi - -

vmselect-

cluster
proxy 1 1C 200Mi - -

vmselect vmselect 1 2C 2Gi - -

Small Scale — 10 worker nodes, 500 double-container
Pods

Medium Scale — 50 worker nodes, 2000 double-container
Pods

Monitor Component Capacity Planning - Alauda Container Platform

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
Notes

vmstorage-

cluster
vmstorage 1 2C 2Gi 10G

~2.6G

write

over 7

days

Metric ingestion rate: ~34300 samples/second

Component Container Replicas
CPU

Limit

Memory

Limit

Disk (if

applicable)
Note

courier-api courier 2 6C 4Gi - -

vmselect-

cluster
proxy 1 2C 200Mi - -

vmselect vmselect 1 5C 3Gi - -

vmstorage-

cluster
vmstorage 1 2C 6Gi 30G

~16.8

write

over 7

days

Large Scale — 500 worker nodes, 10000 double-container
Pods

Monitor Component Capacity Planning - Alauda Container Platform

Monitoring

Metrics

PromQL

Built-in Indicators

Exporter

ServiceMonitor

Alarms

Alarm Rules

Alarm Policies

Notifications

Notification Policies

Notification Templates

Monitoring Dashboard

Dashboard

Panels

Data Sources

Variables

Concepts

TOC

Monitoring

Menu ON THIS PAGE

Concepts - Alauda Container Platform

Metrics are used to quantitatively describe the operating status of a system, and each metric

consists of four basic elements:

Metric Name: Used to identify the monitored object, such as cpu_usage

Metric Value: Specific measurement value, such as 85.5

Timestamp: Records the time of measurement

Labels: Used for multidimensional data classification, such as {pod="nginx-1",

namespace="default"}

PromQL is the query language for Prometheus, used to query and aggregate metric data from

the monitoring system.

The platform has preset a series of commonly used monitoring metrics based on long-term

operational experience. You can directly use these metrics when configuring alarm rules or

creating monitoring dashboards without additional configuration.

The Exporter is a component for collecting monitoring data, with primary responsibilities

including:

Collecting raw monitoring data from the target system

Transforming data into a standard time-series metric format

Providing metric data for querying via HTTP interface

ServiceMonitor is used to declaratively manage monitoring configurations and primarily

defines:

Metrics

PromQL

Built-in Indicators

Exporter

ServiceMonitor

Concepts - Alauda Container Platform

The selection criteria for monitoring targets

Configuration of metric collection interfaces

Execution parameters for collection tasks (intervals, timeouts, etc.)

Alarm rules define the specific conditions for triggering alarms:

Alarm Expression: Describes the conditions for triggering an alarm using PromQL

statements

Alarm Threshold: Explicit boundary values for trigger

Duration: Duration for which the conditions must be continuously met

Alarm Level: Distinguishes the severity of alarms (e.g., P0/P1/P2)

Alarm policies organize multiple alarm rules together for unified configuration:

Alarm Targets: The target scope of the rules

Notification Method: The channels for sending alarms

Sending Interval: The time interval for repeated alarm notifications

Notification policies manage the rules for sending alarm messages:

Recipients: Target users for alarm notifications

Notification Channels: Supported message sending methods

Alarms

Alarm Rules

Alarm Policies

Notifications

Notification Policies

Concepts - Alauda Container Platform

Notification Templates: Definition of message content format

Notification templates customize the display format of alarm messages:

Title Template: Format of the alarm message title

Content Template: Organization of alarm details

Variable Replacement: Supports dynamic data filling

A dashboard is a collection of multiple related panels, providing an overall view of the system

status. It supports flexible layout arrangements and can organize panels in rows or columns.

Panels are visual representations of monitoring data, supporting various display types.

The configuration of monitoring data sources. Currently, only the monitoring components of

the current cluster are supported as data sources, and custom data sources are not supported

for now.

Variables serve as placeholders for values and can be used in metric queries. Through the

variable selector at the top of the dashboard, you can dynamically adjust query conditions,

allowing chart content to update in real-time.

Notification Templates

Monitoring Dashboard

Dashboard

Panels

Data Sources

Variables

Concepts - Alauda Container Platform

Guides

Management of Metrics

Viewing Metrics Exposed by Platform Components

Viewing All Metrics Stored by Prometheus / VictoriaMetrics

Viewing All Built-in Metrics Defined by the Platform

Integrating External Metrics

Management of Alert

Function Overview

Key Features

Functional Advantages

Creating Alert Policies via UI

Creating Resource Alerts via CLI

Creating Event Alerts via CLI

Creating Alert Policies via alert Templates

Setting Silence for Alerts

Recommendations for Configuring Alert Rules

Menu

Guides - Alauda Container Platform

Management of Notification
Feature Overview

Key Features

Notification Server

Notification Contact Group

Notification Template

Notification rule

Set Notification Rule for Projects

Management of Monitoring Dashboards

Function Overview

Manage Dashboards

Manage Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

Management of Probe

Function Overview

Blackbox Monitoring

Blackbox Alerts

Customizing BlackboxExporter Monitoring Module

Create Blackbox Monitoring Items and Alerts via CLI

Reference Information

Guides - Alauda Container Platform

The platform's monitoring system is based on the metrics collected by Prometheus /

VictoriaMetrics. This document will guide you on how to manage these metrics.

Viewing Metrics Exposed by Platform Components

Viewing All Metrics Stored by Prometheus / VictoriaMetrics

Prerequisites

Procedures

Viewing All Built-in Metrics Defined by the Platform

Prerequisites

Procedures

Integrating External Metrics

Prerequisites

Procedures

The monitoring method for the cluster components within the platform is to extract metrics

exposed via ServiceMonitor . Metrics in the platform are publicly available through the

Management of Metrics

TOC

Viewing Metrics Exposed by Platform
Components

Menu ON THIS PAGE

Management of Metrics - Alauda Container Platform

/metrics endpoint. You can view the exposed metrics of a specific component in the platform

using the following example command:

Sample Output:

You can view the list of available metrics in the cluster to help you write the PromQL you need

based on these metrics.

1. You have obtained your user Token

2. You have obtained the platform address

Run the following command to get the list of metrics using the curl command:

Viewing All Metrics Stored by Prometheus /
VictoriaMetrics

Prerequisites

Procedures

curl -s http://<Component IP>:<Component metrics port>/metrics | grep 'TYPE\|HELP'

HELP controller_runtime_active_workers Number of currently used workers per controller

TYPE controller_runtime_active_workers gauge

HELP controller_runtime_max_concurrent_reconciles Maximum number of concurrent

reconciles per controller

TYPE controller_runtime_max_concurrent_reconciles gauge

HELP controller_runtime_reconcile_errors_total Total number of reconciliation errors

per controller

TYPE controller_runtime_reconcile_errors_total counter

HELP controller_runtime_reconcile_time_seconds Length of time per reconciliation per

controller

Management of Metrics - Alauda Container Platform

Sample Output:

To simplify user usage, the platform has built in a large number of commonly used metrics.

You can directly use these metrics when configuring alerts or monitoring dashboards without

needing to define them yourself. The following will introduce you to how to view these metrics.

1. You have obtained your user Token

2. You have obtained the platform address

Run the following command to get the list of metrics using the curl command:

Viewing All Built-in Metrics Defined by the
Platform

Prerequisites

Procedures

curl -k -X 'GET' -H 'Authorization: Bearer <Your token>' 'https://<Your platform

access address>/v2/metrics/<Your cluster name>/prometheus/label/__name__/values'

{

 "status": "success",

 "data": [

 "ALERTS",

 "ALERTS_FOR_STATE",

 "advanced_search_cached_resources_count",

 "alb_error",

 "alertmanager_alerts",

 "alertmanager_alerts_invalid_total",

 "alertmanager_alerts_received_total",

 "alertmanager_cluster_enabled"]

}

Management of Metrics - Alauda Container Platform

Sample Output:

curl -k -X 'GET' -H 'Authorization: Bearer <Your token>' 'https://<Your platform

access address>/v2/metrics/<Your cluster name>/indicators'

Management of Metrics - Alauda Container Platform

[

 {

 "alertEnabled": true, 1

 "annotations": {

 "cn": "CPU utilization of containers in the compute component",

 "descriptionEN": "Cpu utilization for pods in workload",

 "descriptionZH": "CPU utilization of containers in the compute component",

 "displayNameEN": "CPU utilization of the pods",

 "displayNameZH": "CPU utilization of containers in the compute component",

 "en": "Cpu utilization for pods in workload",

 "features": "SupportDashboard", 2

 "summaryEN": "CPU usage rate {{.externalLabels.comparison}}

{{.externalLabels.threshold}} of Pod ({{.labels.pod}})",

 "summaryZH": "CPU usage rate {{.externalLabels.comparison}}

{{.externalLabels.threshold}} of pod ({{.labels.pod}})"

 },

 "displayName": "CPU utilization of containers in the compute component",

 "kind": "workload",

 "multipleEnabled": true, 3

 "name": "workload.pod.cpu.utilization",

 "query": "avg by (kind,name,namespace,pod) (avg by

(kind,name,namespace,pod,container)

(cpaas_advanced_container_cpu_usage_seconds_total_irate5m{kind=~\"

{{.kind}}\",name=~\"{{.name}}\",namespace=~\"

{{.namespace}}\",container!=\"\",container!=\"POD\"}) / avg by

(kind,name,namespace,pod,container)

(cpaas_advanced_kube_pod_container_resource_limits{kind=~\"{{.kind}}\",name=~\"

{{.name}}\",namespace=~\"{{.namespace}}\",resource=\"cpu\"}))", 4

 "summary": "CPU usage rate {{.externalLabels.comparison}}

{{.externalLabels.threshold}} of pod ({{.labels.pod}})",

 "type": "metric",

 "unit": "%",

 "legend": "{{.namespace}}/{{.pod}}",

 "variables": [5

 "namespace",

 "name",

 "kind"

]

 }

]

Management of Metrics - Alauda Container Platform

1. Whether this metric supports being used for configuring alerts

2. Whether this metric supports being used in monitoring dashboards

3. Whether this metric supports being used when configuring alerts for multiple

resources

4. The PromQL statement defined for the metric

5. The variables that can be used in the PromQL statement of the metric

In addition to the built-in metrics of the platform, you can also integrate metrics exposed by

your applications or third-party applications via ServiceMonitor or PodMonitor . This section

uses the Elasticsearch Exporter installed in pod form in the same cluster as an example for

explanation.

You have installed your application and exposed metrics through specified interfaces. In this

document, we assume your application is installed in the cpaas-system namespace and has

exposed the http://<elasticsearch-exporter-ip>:9200/_prometheus/metrics endpoint.

1. Create a Service/Endpoint for the Exporter to expose metrics

Integrating External Metrics

Prerequisites

Procedures

Management of Metrics - Alauda Container Platform

2. Create a ServiceMonitor object to describe the metrics exposed by your application:

apiVersion: v1

kind: Service

metadata:

 labels:

 chart: elasticsearch

 service_name: cpaas-elasticsearch

 name: cpaas-elasticsearch

 namespace: cpaas-system

spec:

 clusterIP: 10.105.125.99

 ports:

 - name: cpaas-elasticsearch

 port: 9200

 protocol: TCP

 targetPort: 9200

 selector:

 service_name: cpaas-elasticsearch

 sessionAffinity: None

 type: ClusterIP

Management of Metrics - Alauda Container Platform

1. To which Prometheus should the ServiceMonitor be synchronized; the operator will

listen to the corresponding ServiceMonitor resource based on the

serviceMonitorSelector configuration of the Prometheus CR. If the

ServiceMonitor's labels do not match the serviceMonitorSelector configuration of

the Prometheus CR, this ServiceMonitor will not be monitored by the operator.

2. The operator will listen to which namespaces of ServiceMonitor based on the

serviceMonitorNamespaceSelector configuration of the Prometheus CR; if the

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

 labels:

 app: cpaas-monitor

 chart: cpaas-monitor

 heritage: Helm

 prometheus: kube-prometheus 1

 release: cpaas-monitor

 name: cpaas-elasticsearch-Exporter

 namespace: cpaas-system 2

spec:

 jobLabel: service_name 3

 namespaceSelector: 4

 any: true

 selector: 5

 matchExpressions:

 - key: service_name

 operator: Exists

 endpoints:

 - port: cpaas-elasticsearch 6

 path: /_prometheus/metrics 7

 interval: 60s 8

 honorLabels: true

 basicAuth: 9

 password:

 key: ES_PASSWORD

 name: acp-config-secret

 username:

 key: ES_USER

 name: acp-config-secret

Management of Metrics - Alauda Container Platform

ServiceMonitor is not in the serviceMonitorNamespaceSelector of the Prometheus

CR, this ServiceMonitor will not be monitored by the operator.

3. Metrics collected by Prometheus will add a job label, with the value being the

service label value corresponding to jobLabel.

4. The ServiceMonitor matches the corresponding Service based on the

namespaceSelector configuration.

5. The ServiceMonitor matches the Service based on the selector configuration.

6. The ServiceMonitor matches the Service's port based on port configuration.

7. The access path to the Exporter, default is /metrics.

8. The interval at which Prometheus scrapes the Exporter metrics.

9. If authentication is required to access the Exporter path, authentication information

needs to be added; it also supports bearer token, tls authentication, and other

methods.

3. Check if the ServiceMonitor is being monitored by Prometheus

Access the UI of the monitoring component to check if the job cpaas-elasticsearch-

exporter exists.

Prometheus UI address: https://<Your platform access address>/clusters/<Cluster

name>/prometheus-0/targets

VictoriaMetrics UI address: https://<Your platform access

address>/clusters/<Cluster name>/vmselect/vmui/?#/metrics

Management of Metrics - Alauda Container Platform

Function Overview

Key Features

Functional Advantages

Creating Alert Policies via UI

Prerequisites

Procedures

Selecting Alert Type

Configuring Alert Rules

Other Configurations

Additional Notes

Creating Resource Alerts via CLI

Prerequisites

Procedures

Creating Event Alerts via CLI

Prerequisites

Procedures

Creating Alert Policies via alert Templates

Prerequisites

Procedures

Creating Alert Template

Creating Alert Policies Using alert Templates

Setting Silence for Alerts

Management of Alert

TOC

Menu ON THIS PAGE

Management of Alert - Alauda Container Platform

Setting via UI

Setting via CLI

Recommendations for Configuring Alert Rules

The alert management function of the platform aims to help users comprehensively monitor

and promptly detect system anomalies. By utilizing pre-installed system alerts and flexible

custom alert capabilities, combined with standardized alert templates and a tiered

management mechanism, it provides a complete alert solution for operation and maintenance

personnel.

Whether it's platform administrators or business personnel, they can conveniently configure

and manage alert policies within their respective permission scopes for effective monitoring of

platform resources.

Built-in System Alert Policies: Rich alert rules are preset based on common fault

diagnosis ideas for global clusters and workload clusters.

Custom Alert Rules: Supports the creation of alert rules based on various data sources,

including preset monitoring indicators, custom monitoring indicators, black-box monitoring

items, platform log data, and platform event data.

Alert Template Management: Supports the creation and management of standardized

alert templates for quick application to similar resources.

Alert Notification Integration: Supports the push of alert information to operation and

maintenance personnel through various channels.

Alert View Isolation: Distinguishes between platform management alerts and business

alerts, ensuring that personnel in different roles focus on their respective alert information.

Real-time Alert Viewing: Provides real-time alerts, offering concentrated displays of the

number of resources currently experiencing alerts and detailed alert information.

Function Overview

Key Features

Management of Alert - Alauda Container Platform

Alert History Viewing: Supports the viewing of historical alert records over a period,

facilitating the analysis of recent monitoring alert conditions by operation and maintenance

personnel and administrators.

Comprehensive Monitoring Coverage: Supports monitoring of various resource types

such as clusters, nodes, and computing components, and comes with rich built-in system

alert policies that can be used without additional configuration.

Efficient Alert Management: Standardized configurations through alert templates enhance

operational efficiency, and the separation of alert views makes it easier for personnel in

different roles to quickly locate relevant alerts.

Timely Problem Detection: alert notifications are automatically triggered to ensure timely

problem detection, supporting multi-channel alert pushing for proactive problem avoidance.

Robust Permission Management: Strict access control for alert policies ensures that alert

information is secure and manageable.

A notification policy is configured (if you need to configure automatic alert notifications).

Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

1. Navigate to Operation and Maintenance Center > alerts > alert Policies.

2. Click Create Alert Policy.

Functional Advantages

Creating Alert Policies via UI

Prerequisites

Procedures

Management of Alert - Alauda Container Platform

3. Configure basic information.

Resource Alert

Alert types categorized by resource type (e.g., deployment status under a namespace).

Resource selection description:

Defaults to "Any" if no parameter is selected, supporting automatic association with

newly added resources.

When "Select All" is chosen, it only applies to the current resource.

When multiple namespaces are selected, resource names support regular expressions

(e.g., cert.*).

Event Alert

Alert types categorized by specific events (e.g., abnormal Pod status).

By default, selects all resources under the specified resource and supports automatic

association with newly added resources.

Click Add Alert Rule and configure the following parameters based on the alert type:

Resource Alert Parameters

Parameter Description

Expression
Monitoring metric algorithm in Prometheus format, e.g.,

rate(node_network_receive_bytes{instance="$server",device!~"lo"}[5m])

Metric Unit
Custom monitoring metric unit, can be entered manually or selected from

platform preset units

Legend

Parameter

Controls the name corresponding to the curve in the chart, formatted as

{{.LabelName}} , e.g., {{.hostname}}

Selecting Alert Type

Configuring Alert Rules

Management of Alert - Alauda Container Platform

Parameter Description

Time

Range
Time window for log/event queries

Log

Content

Query fields for log content (e.g., Error), where multiple query fields are

linked by OR

Event

Reason

Query fields for event reasons (Reason, e.g., BackOff, Pulling, Failed,

etc.), where multiple query fields are linked by OR

Trigger

Condition

Condition consisting of comparison operators, alert thresholds, and

duration (optional). Determines if an alert is triggered based on the

comparison of real-time values/log count/event count against the alert

threshold, as well as the duration of real-time values within the alert

threshold range.

alert Level

Divided into four levels: Critical, Serious, Warning, and Info. You can set

a reasonable alert level according to the impact of the alert rules on

business for the corresponding resources.

Event Alert Parameters

Parameter Description

Time Range Time window for event queries

Event Monitoring

Item

Supports monitoring event levels or event reasons, where multiple

fields are linked by OR

Trigger Condition Based on event count for comparison judgement

alert Level Same definition as resource alert levels

1. Select one or more created notification policies.

2. Configure alert sending intervals.

Global: Use platform default configuration.

Other Configurations

Management of Alert - Alauda Container Platform

Custom: Different sending intervals can be set based on alert levels.

When "Do Not Repeat" is selected, notifications will only be sent when the alert is

triggered and recovered.

1. In the "More" options of the alert rule, labels and annotations can be set.

2. Please refer to the Prometheus Alerting Rules Documentation for configuring labels and

annotations.

3. Note: Do not use the $value variable in labels, as this may cause alert exceptions.

A notification policy is configured (if you need to configure automatic alert notifications).

Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

1. Create a new YAML configuration file named example-alerting-rule.yaml .

2. Add PrometheusRule resources to the YAML file and submit it. The following example

creates a new alert policy called policy:

Additional Notes

↗

Creating Resource Alerts via CLI

Prerequisites

Procedures

Management of Alert - Alauda Container Platform

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

apiVersion: monitoring.coreos.com/v1

kind: PrometheusRule

metadata:

 annotations:

 alert.cpaas.io/cluster: global # The name of the cluster where the alert is located

 alert.cpaas.io/kind: Cluster # The type of resource,

 alert.cpaas.io/name: global # The resource object, supporting single, multiple

(separated by |), or any (.*)

 alert.cpaas.io/namespace: cpaas-system # The namespace where the alert object is

located, supporting single, multiple (separated by |), or any (.*)

 alert.cpaas.io/notifications: '["test"]'

 alert.cpaas.io/repeat-config:

'{"Critical":"never","High":"5m","Medium":"5m","Low":"5m"}'

 alert.cpaas.io/rules.description: '{}'

 alert.cpaas.io/rules.disabled: '[]'

 alert.cpaas.io/subkind: ''

 cpaas.io/description: ''

 cpaas.io/display-name: policy # The display name of the alert policy

 labels:

 alert.cpaas.io/owner: System

 alert.cpaas.io/project: cpaas-system

 cpaas.io/source: Platform

 prometheus: kube-prometheus

 rule.cpaas.io/cluster: global

 rule.cpaas.io/name: policy

 rule.cpaas.io/namespace: cpaas-system

 name: policy

 namespace: cpaas-system

spec:

 groups:

 - name: general # alert rule name

 rules:

 - alert: cluster.pod.status.phase.not.running-tx1ob-e998f0b94854ee1eade5ae79279e00

 annotations:

 alert_current_value: '{{ $value }}' # Notification of the current value, keep

default

 expr: (count(min by(pod)(kube_pod_container_status_ready{}) !=1) or on()

vector(0))>2

 for: 30s # Duration

 labels:

 alert_cluster: global # The name of the cluster where the alert is located

 alert_for: 30s # Duration

 alert_indicator: cluster.pod.status.phase.not.running # The name of the alert

()

Management of Alert - Alauda Container Platform

A notification policy is configured (if you need to configure automatic alert notifications).

Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Creating Event Alerts via CLI

Prerequisites

Procedures

rule indicator (custom alert indicator name as custom)

 alert_indicator_aggregate_range: '30' # The aggregation time for the alert rul

in seconds

 alert_indicator_blackbox_name: '' # Black-box monitoring item name

 alert_indicator_comparison: '>' # The comparison method for the alert rule

 alert_indicator_query: '' # Query for the logs of the alert rule (only for log

alerts)

 alert_indicator_threshold: '2' # The threshold for the alert rule

 alert_indicator_unit: '' # The indicator unit for the alert rule

 alert_involved_object_kind: Cluster # The type of the object to which the aler

rule belongs:

Cluster|Node|Deployment|Daemonset|Statefulset|Middleware|Microservice|Storage|VirtualMachi

 alert_involved_object_name: global # The name of the object to which the alert

rule belongs

 alert_involved_object_namespace: '' # The namespace of the object to which the

alert rule belongs

 alert_name: cluster.pod.status.phase.not.running-tx1ob # The name of the alert

rule

 alert_namespace: cpaas-system # The namespace where the alert rule is located

 alert_project: cpaas-system # The project name of the object to which the aler

rule belongs

 alert_resource: policy # The name of the alert policy where the alert rule is

located

 alert_source: Platform # The data type of the alert policy where the alert rul

is located: Platform-Platform Data Business-Business Data

 severity: High # The severity level of the alert rule: Critical-Critical, High

Serious, Medium-Warning, Low-Info

Management of Alert - Alauda Container Platform

1. Create a new YAML configuration file named example-alerting-rule.yaml .

2. Add PrometheusRule resources to the YAML file and submit it. The following example

creates a new alert policy called policy2:

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1

kind: PrometheusRule

metadata:

 annotations:

 alert.cpaas.io/cluster: global

 alert.cpaas.io/events.scope:

 '[{"names":["argocd-gitops-redis-ha-

haproxy"],"kind":"Deployment","operator":"=","namespaces":["*"]}]'

 # names: The resource name for the event alert; operator is ineffective if name

is empty.

 # kind: The type of resource that triggers the event alert.

 # namespace: The namespace where the resource that triggers the event alert

belongs. An empty array indicates a non-namespaced resource; when ns is ['*'], it

indicates all namespaces.

 # operator: Selector =, !=, =~, !~

 alert.cpaas.io/kind: Event # The type of alert, Event (event alert)

 alert.cpaas.io/name: '' # Used for resource alerts; remains empty for event alerts

 alert.cpaas.io/namespace: cpaas-system

 alert.cpaas.io/notifications: '["acp-qwtest"]'

 alert.cpaas.io/repeat-config:

'{"Critical":"never","High":"5m","Medium":"5m","Low":"5m"}'

 alert.cpaas.io/rules.description: '{}'

 alert.cpaas.io/rules.disabled: '[]'

 cpaas.io/description: ''

 cpaas.io/display-name: policy2

 labels:

 alert.cpaas.io/owner: System

 alert.cpaas.io/project: cpaas-system

 cpaas.io/source: Platform

 prometheus: kube-prometheus

 rule.cpaas.io/cluster: global

 rule.cpaas.io/name: policy2

 rule.cpaas.io/namespace: cpaas-system

 name: policy2

 namespace: cpaas-system

spec:

 groups:

 - name: general

 rules:

 - alert: cluster.event.count-6sial-34c9a378e3b6dda8401c2d728994ce2f

 # 6sial-34c9a378e3b6dda8401c2d728994ce2f can be customized to ensure

uniqueness

 annotations:

'{{ $ }}'

Management of Alert - Alauda Container Platform

Creating Alert Policies via alert Templates

 alert_current_value: '{{ $value }}' # Notification of the current value,

keep as default

 expr: round(((avg

 by(kind,namespace,name,reason)

(increase(cpaas_event_count{namespace=~".*",id="policy2-cluster.event.count-6sial"}

[300s])))

 + (avg

 by(kind,namespace,name,reason)

(abs(increase(cpaas_event_count{namespace=~".*",id="policy2-cluster.event.count-

6sial"}[300s])))))

 / 2)>2

 # The id in the policy2 needs to be the name of the alert policy; 6sial must

match the preceding alert rule name

 for: 15s # Duration

 labels:

 alert_cluster: global # The name of the cluster where the alert is located

 alert_for: 15s # Duration

 alert_indicator: cluster.event.count # The name of the alert rule

indicator (custom alert indicator name as custom)

 alert_indicator_aggregate_range: '300' # The aggregation time for the

alert rule, in seconds

 alert_indicator_blackbox_name: ''

 alert_indicator_comparison: '>' # The comparison method for the alert rule

 alert_indicator_event_reason: ScalingReplicaSet # Event reason.

 alert_indicator_threshold: '2' # The threshold for the alert rule

 alert_indicator_unit: pieces # The indicator unit for the alert rule;

remains unchanged for event alerts

 alert_involved_object_kind: Event

 alert_involved_object_options: Single

 alert_name: cluster.event.count-6sial # The name of the alert rule

 alert_namespace: cpaas-system # The namespace where the alert rule is

located

 alert_project: cpaas-system # The project name of the object to which the

alert rule belongs

 alert_repeat_interval: 5m

 alert_resource: policy2 # The name of the alert policy where the alert

rule is located

 alert_source: Platform # The data type of the alert policy where the alert

rule is located: Platform-Platform Data Business-Business Data

 severity: High # The severity level of the alert rule: Critical-Critical,

High-Serious, Medium-Warning, Low-Info

Management of Alert - Alauda Container Platform

alert templates are a combination of alert rules and notification policies targeted at similar

resources. Through alert templates, it is easy and quick to create alert policies for clusters,

nodes, or computing components on the platform.

A notification policy is configured (if you need to configure automatic alert notifications).

Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Templates.

2. Click Create alert Template.

3. Configure the basic information of the alert template.

4. In the alert Rules section, click Add alert Rule, and follow the parameter descriptions

below to add alert rules:

Parameter Description

Expression
Monitoring metric algorithm in Prometheus format, e.g.,

rate(node_network_receive_bytes{instance="$server",device!~"lo"}[5m])

Metric Unit
Custom monitoring metric unit, can be entered manually or selected from

platform preset units

Legend

Parameter

Controls the name corresponding to the curve in the chart, formatted as

{{.LabelName}} , e.g., {{.hostname}}

Time

Range
Time window for log/event queries

Log

Content

Query fields for log content (e.g., Error), where multiple query fields are

linked by OR

Prerequisites

Procedures

Creating Alert Template

Management of Alert - Alauda Container Platform

Parameter Description

Event

Reason

Query fields for event reasons (Reason, e.g., BackOff, Pulling, Failed,

etc.), where multiple query fields are linked by OR

Trigger

Condition

Condition consisting of comparison operators, alert thresholds, and

duration (optional).

alert Level

Divided into four levels: Critical, Serious, Warning, and Info. You can set

a reasonable alert level according to the impact of the alert rules on

business for the corresponding resources.

5. Click Create.

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Policies. Tip: You can switch the target cluster through the top navigation bar.

2. Click the expand button next to the Create alert Policy button > Template Create alert

Policy.

3. Configure some parameters, referring to the descriptions below:

Parameter Description

Template

Name

The name of the alert template to use. The templates are categorized

by cluster, node, and computing component. Upon selecting a template,

you can view the alert rules, notification policies, and other information

set within the alert template.

Resource

Type

Select whether the template is an alert policy template for Cluster,

Node, or Computing Component; the corresponding resource name

will be displayed.

4. Click Create.

Creating Alert Policies Using alert Templates

Setting Silence for Alerts

Management of Alert - Alauda Container Platform

Supports silencing alerts for clusters, nodes, and computing components. By setting silence

for specific alert policies, you can control that all rules under the alert policy do not send

notification messages when triggered during the set silence period. Permanent silence and

custom time silence can be set.

For example: When the platform is upgraded or maintained, many resources may show

abnormal statuses, leading to numerous triggered alerts, which cause operation and

maintenance personnel to frequently receive alert notifications before the upgrade or

maintenance is completed. Setting silence for the alert policy can prevent this situation.

Note: When the silence status persists until the silence end time, the silence setting will be

automatically cleared.

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Policies.

2. Click the operation button on the right side of the alert policy to be silenced > Set Silence.

3. Toggle alert Silence switch to open it.

Tip: This switch controls whether the silence setting takes effect. To cancel silence, simply

turn off the switch.

4. Configure relevant parameters according to the descriptions below:

Tip: If no silence range or resource name is selected, it defaults to Any, meaning that

subsequent Delete/Add resource actions will correspond to Delete Silence/Add Silence

alert policies; if "Select All" is chosen, it will only apply to the currently selected resource

range, and subsequent Delete/Add resource actions will not be processed.

Parameter Description

Silence

Range
The scope of resources where the silence setting takes effect.

Resource

Name
The name of the resource object targeted by the silence setting.

Setting via UI

Management of Alert - Alauda Container Platform

Parameter Description

Silence

Time

The time range for alert silence. The alert will enter silence state at

the start of the silence time, and if the alert policy remains in an alert

state or triggers alerts after the silence end time, alert notifications will

resume. Permanent: The silence setting will last until the alert policy

is deleted. Custom: Custom settings for the start time and end time of

silence, with the time interval not less than 5 minutes.

5. Click Set.

Tip: From the moment silence is set until the start of silence, the silence status of the alert

policy is considered Silence Waiting. During this period, when rules in the policy trigger

alerts, notifications will be sent normally; after silence starts until it ends, the silence status

of the alert policy is Silencing, and when rules in the policy trigger alerts, notifications will

not be sent.

1. Specify the resource name of the alert policy you want to set silence for and execute the

following command:

2. Modify the resource as shown in the example to add silence annotations and submit.

Setting via CLI

kubectl edit PrometheusRule <TheNameOfThealertPolicyYouWantToSet>

Management of Alert - Alauda Container Platform

Recommendations for Configuring Alert Rules

apiVersion: monitoring.coreos.com/v1

kind: PrometheusRule

metadata:

 annotations:

 alert.cpaas.io/cluster: global

 alert.cpaas.io/kind: Node

 alert.cpaas.io/name: 0.0.0.0

 alert.cpaas.io/namespace: cpaas-system

 alert.cpaas.io/notifications: '[]'

 alert.cpaas.io/rules.description: '{}'

 alert.cpaas.io/rules.disabled: '[]'

 alert.cpaas.io/rules.version: '23'

 alert.cpaas.io/silence.config:

 '{"startsAt":"2025-02-08T08:01:37Z","endsAt":"2025-02-

22T08:01:37Z","creator":"leizhu@alauda.io","resources":{"nodes":

[{"name":"192.168.36.11","ip":"192.168.36.11"},

{"name":"192.168.36.12","ip":"192.168.36.12"},

{"name":"192.168.36.13","ip":"192.168.36.13"}]}}'

 # The silence configuration for node-level alert policies, including start time,

end time, creator, etc.; if the silence range includes specific nodes, please append

the resources.node information as shown above. If you need silence for all resources,

you do not need the resources field.

 # alert.cpaas.io/silence.config: '{"startsAt":"2025-02-

08T08:04:50Z","endsAt":"2199-12-31T00:00:00Z","creator":"leizhu@alauda.io","name":

["alb-operator-ctl","apollo"],"namespace":["cpaas-system"]}'

 # The silence configuration for workload-level alert policies, including start

time, end time, creator, etc.; if the silence range includes specific workloads,

please append name and namespace information as shown above. If you need silence for

all resources, you do not need the name and namespace fields.

 # Setting the endsAt field to 2199-12-31T00:00:00Z indicates permanent silence.

 alert.cpaas.io/subkind: ''

 cpaas.io/creator: leizhu@alauda.io

 cpaas.io/description: ''

 cpaas.io/display-name: policy3

 cpaas.io/updated-at: 2025-02-08T08:01:42Z

 labels:

 ## Exclude irrelevant information

Management of Alert - Alauda Container Platform

More alert rules do not always equate to better outcomes. Redundant or complex alert rules

can lead to alert storms and increase your maintenance burden. It is recommended that you

read the following guidelines before configuring alert rules to ensure that custom rules can

achieve their intended purposes while remaining efficient.

Use the Fewest New Rules Possible: Create only those rules that meet your specific

requirements. By using the fewest number of rules, you can create a more manageable

and centralized alert system in the monitoring environment.

Focus on Symptoms Rather than Causes: Create rules that notify users of symptoms

rather than the root causes of those symptoms. This ensures that when relevant symptoms

occur, users can receive alerts and may investigate the root causes that triggered the

alerts. Using this strategy can significantly reduce the total number of rules you need to

create.

Plan and Assess Your Needs Before Making Changes: First, clarify which symptoms are

important and what actions you want users to take when these symptoms occur. Then

evaluate existing rules to decide if you can modify them to achieve your objectives without

creating new rules for each symptom. By modifying existing rules and carefully creating

new ones, you can help simplify the alert system.

Provide Clear Alert Messages: When you create alert messages, include descriptions of

symptoms, possible causes, and recommended actions. The information included should

be clear, concise, and provide troubleshooting procedures or links to additional relevant

information. Doing so helps users quickly assess situations and respond appropriately.

Set Severity Levels Reasonably: Assign severity levels to your rules to indicate how

users should respond when symptoms trigger alerts. For instance, classify alerts with a

severity level of Critical, signaling that immediate action is required from relevant

personnel. By establishing severity levels, you can help users decide how to respond upon

receiving alerts and ensure prompt responses to urgent issues.

Management of Alert - Alauda Container Platform

Feature Overview

Key Features

Notification Server

Corporate Communication Tool Server

Email Server

Webhook Type Server

Notification Contact Group

Notification Template

Create Notification Template

Reference Variables

Special Formatting Markup Language in Emails

Notification rule

Prerequisites

Operation Procedures

Set Notification Rule for Projects

Prerequisites

Operation Procedures

Management of Notification

TOC

Feature Overview

Menu ON THIS PAGE

Management of Notification - Alauda Container Platform

With notifications, you can integrate the platform's monitoring and alerting features to promptly

send pre-warning information to notification recipients, reminding relevant personnel to take

necessary measures to resolve issues or avoid failures.

Notification Server: The notification server provides services for sending notification

messages to notification contact groups on the platform, such as an email server.

Notification Contact Group: A notification contact group is a set of notification recipients

with similar logical characteristics, which can reduce your maintenance burden by allowing

a categorization of entities that receive notification messages.

Notification Template: A notification template is a standardized structure composed of

custom content, content variables, and content format parameters. It is used to standardize

the content and format of alert notification messages for notification strategies. For

example, customizing the subject and content of email notifications.

Notification rule: A notification rule is a collection of rules defining how to send notification

messages to specific contacts. It is essential to use a notification rule for scenarios such as

alerts, inspections, and login authentication that require notifying external services.

The notification server provides services for sending notification messages to recipients on the

platform. The platform currently supports the following notification servers:

Corporate Communication Tool Server: Supports integration with WeChat Work,

DingTalk, and Feishu built-in applications for sending notifications to individuals.

Email Server: Sends notifications via email using an email server.

Webhook Type Server: Supports integration with corporate WeChat group bots, DingTalk

group bots, Feishu group bots, or sending WebHooks to your designated server.

WARNING

Key Features

Notification Server

Management of Notification - Alauda Container Platform

Only one corporate communication tool server can be added.

WeChat Work

1. Configure the notification server parameters as per the example below. Once parameters

are filled in, switch to the global cluster in Cluster Management > Resource

Management and create the resource object.

2. After the creation, you need to update the user's WeChat Work ID in the platform's User

Role Management > User Management or in the user's Personal Information to ensure

the user can receive messages normally.

DingTalk

1. Configure the notification server parameters as per the example below. Once parameters

are filled in, switch to the global cluster in Cluster Management > Resource

Corporate Communication Tool Server

WeChat Work corpId, corpSecret, agentId acquisition methods can be referenced in the

official documentation: https://developer.work.weixin.qq.com/document/path/90665

apiVersion: v1

kind: Secret

type: NotificationServer

metadata:

 labels:

 cpaas.io/notification.server.type: CorpWeChat

 cpaas.io/notification.server.category: Corp

 name: platform-corp-wechat-server

 namespace: cpaas-system

data:

 displayNameZh: 企业微信 # Server's Chinese display name, encoded in

base64 by default

 displayNameEn: WeChat # Server's English display name, encoded in base64

by default

 corpId: # Corporate ID, encoded in base64 by default

 corpSecret: # Application secret, encoded in base64 by default

 agentId: # Corporate application ID, encoded in base64 by

default

Management of Notification - Alauda Container Platform

Management and create the resource object.

2. After the creation, you need to update the user's DingTalk ID in the platform's User Role

Management > User Management or in the user's Personal Information to ensure the

user can receive messages normally.

Feishu

1. Configure the notification server parameters as per the example below. Once parameters

are filled in, switch to the global cluster in Cluster Management > Resource

Management and create the resource object.

DingTalk appKey, appSecret, agentId acquisition method: https://open-

dev.dingtalk.com/fe/app#/corp/app

apiVersion: v1

kind: Secret

type: NotificationServer

metadata:

 labels:

 cpaas.io/notification.server.type: CorpDingTalk

 cpaas.io/notification.server.category: Corp

 name: platform-corp-dingtalk-server

 namespace: cpaas-system

data:

 displayNameZh: 钉钉 # Server's Chinese display name, encoded in

base64 by default

 displayNameEn: DingTalk # Server's English display name, encoded in base64

by default

 appKey: # Application key, encoded in base64 by default

 appSecret: # Application secret, encoded in base64 by default

 agentId: # Application agent_id, encoded in base64 by

default

Management of Notification - Alauda Container Platform

2. After the creation, you need to update the user's Feishu ID in the platform's User Role

Management > User Management or in the user's Personal Information to ensure the

user can receive messages normally.

1. In the left navigation bar, click Platform Settings > Notification Server.

2. Click Configure Now.

3. Refer to the following instructions to configure the relevant parameters.

Parameter Description

Service

Address

The address of the notification server supporting the SMTP

protocol, e.g., smtp.yeah.net .

Port
The port number for the notification server. When Use SSL is

checked, the SSL port number must be entered.

Server

Configuration

Use SSL: Secure Socket Layer (SSL) is a standard security

technology. The SSL switch is used to control whether to

Email Server

Feishu appId, appSecret acquisition methods: https://open.feishu.cn/app/

apiVersion: v1

kind: Secret

type: NotificationServer

metadata:

 labels:

 cpaas.io/notification.server.type: CorpFeishu

 cpaas.io/notification.server.category: Corp

 name: platform-corp-feishu-server

 namespace: cpaas-system

data:

 displayNameZh: 飞书 # Server's Chinese display name, encoded in

base64 by default

 displayNameEn: Feishu # Server's English display name, encoded in base64

by default

 appId: # Application ID, encoded in base64 by default

 appSecret: # Application secret, encoded in base64 by default

Management of Notification - Alauda Container Platform

Parameter Description

establish an encrypted link between the server and client.

Skip Insecure Verification: The insecureSkipVerify switch is

used to control whether to verify the client certificate and server

hostname. If enabled, certificates and the consistency between

the hostname in the certificate and the server hostname will not

be verified.

Sender Email
The sender's email account in the notification server, used for

sending notification emails.

Enable

Authentication

If authentication is required, please configure the username and

authorization code for the email server.

4. Click OK.

Supports integration with corporate WeChat group bots, DingTalk group bots, Feishu group

bots, or sending HTTP requests to your designated Webhook server.

Corporate WeChat Group Bot

1. In the left navigation bar, click Cluster Management > Cluster.

2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ZmFsc2UK , which is the base64 encoded value of false.

DingTalk Group Bot

1. In the left navigation bar, click Cluster Management > Cluster.

Webhook Type Server

kubectl patch secret -n cpaas-system platform-wechat-server -p '{"data":

{"enable":"dHJ1ZQo="}}'

Management of Notification - Alauda Container Platform

2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ZmFsc2UK , which is the base64 encoded value of false.

Feishu Group Bot

1. In the left navigation bar, click Cluster Management > Cluster.

2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ZmFsc2UK , which is the base64 encoded value of false.

Webhook Server

1. In the left navigation bar, click Cluster Management > Cluster.

2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ZmFsc2UK , which is the base64 encoded value of false.

kubectl patch secret -n cpaas-system platform-dingtalk-server -p '{"data":

{"enable":"dHJ1ZQo="}}'

kubectl patch secret -n cpaas-system platform-feishu-server -p '{"data":

{"enable":"dHJ1ZQo="}}'

kubectl patch secret -n cpaas-system platform-webhook-server -p '{"data":

{"enable":"dHJ1ZQo="}}'

Management of Notification - Alauda Container Platform

A notification contact group is a set of notification recipients with similar logical characteristics.

For example, you can set an operations and maintenance team as a notification contact group

for easy selection and management when configuring notification strategies.

INFO

1. The platform supports various notification servers, and the corresponding configuration options

for notification types will be displayed based on the notification server configuration.

2. If you need to use a Webhook type server as a notification recipient, you must configure the

relevant URL in the notification contact group.

1. In the left navigation bar, click Operations Center > Notifications.

2. Switch to the Notification Contact Group tab.

3. Click Create Notification Contact Group and configure the relevant parameters as per

the instructions below.

Parameter Description

Email

Add an email to the entire notification contact group.

The platform will send notifications to this email and

all contacts' emails in the group.

Webhook URL/WeChat

Group Bot/DingTalk

Group Bot/Feishu Group

Bot

Please fill in the corresponding notification method

URL based on the configured notification server. Once

configured, contacts in this group will be notified using

this method.

Contact Configuration

Click Add Contact to add existing platform users to

the contact group. Ensure the accuracy of the

selected contacts' contact information (phone, email,

interface callback) to avoid missing message

notifications.

Notification Contact Group

Management of Notification - Alauda Container Platform

4. Click Add.

A notification template is a standardized structure composed of custom content, content

variables, and content format parameters. It is used to standardize the content and format of

alert notification messages for notification strategies.

Platform administrators or operations personnel can set notification templates to customize

the content and format of notification messages based on different alert notification methods,

helping users quickly get critical alert information and improve operational efficiency.

INFO

The platform supports various notification servers, and the corresponding notification type

templates will be displayed according to the notification server configuration. If no notification server

is configured, the corresponding notification templates will not be displayed by default.

1. In the left navigation bar, click Operations Center > Notifications.

2. Switch to the Notification Template tab.

3. Click Create Notification Template.

4. In the Basic Information section, configure the following parameters.

Parameter Description

Message

Type

Select the type of message according to the purpose of the

notification.

Alert Message: Sends alert messages triggered by alert rules, in

conjunction with the platform's alerting functionality;

Component Exception Message: Sends notification information

triggered by exceptions in certain components.

Notification Template

Create Notification Template

Management of Notification - Alauda Container Platform

5. In the Template Configuration section, reference different template types to configure

variables and content formatting parameters.

INFO

1. The content of the template can only consist of variables, variable display names, and special

formatting markup language supported by the platform. Variables and other elements can be

freely combined as long as they comply with the syntax rules.

2. Only variables supported by the platform can be used in the template. You can modify variable

display names and content formats, but you cannot modify the variable itself. Refer to Reference

Variables, and Special Formatting Markup Language in Emails.

3. The platform provides default notification template content for various notification types based

on actual operational scenarios, which can meet most notification message setting needs. If

there are no special requirements, you may directly use the default template content.

6. Click Create.

Variables are the keys of labels or annotations in notification messages (NotificationMessage),

formatted as {{.labelKey}} . To facilitate users in quickly obtaining key information, custom

display names can be assigned to variables; for example: Alert Level: {{

.externalLabels.severity }} .

When a notification rule sends notification messages to users based on a notification

template, the variables in the template will reference the corresponding label values in the

notification message (actual monitoring data). Ultimately, monitoring data will be sent to users

in a standardized content format.

The platform provides the following basic variables by default:

Display

Name
Variable Description

Alert Status {{ .externalLabels.status }} For example: Alerting.

Reference Variables

Management of Notification - Alauda Container Platform

Display

Name
Variable Description

Alert Level {{ .externalLabels.severity }} For example: Critical.

Alert

Cluster
{{ .labels.alert_cluster }}

For example: Cluster 1

where the alert occurred.

Alert Object {{ .externalLabels.object }}

The type and name of the

resource where the alert

occurred, e.g., node

192.168.16.53.

rule Name {{ .labels.alert_resource }}
The name of the alert rule,

e.g., cpaas-node-rules.

Alert

Description
{{ .externalLabels.summary }} Description of the alert rule.

Trigger

Value
{{ .externalLabels.currentValue }}

The monitored value that

triggered the alert.

Alert Time

{{ dateFormatWithZone .startsAt

"2006-01-02 15:04:05"

"Asia/Chongqing" }}

The start time of the alert.

Recovery

Time

{{ dateFormatWithZone .endsAt "2006-

01-02 15:04:05" "Asia/Chongqing" }}
The end time of the alert.

Metric Name {{ .labels.alert_indicator }}
Name of the monitoring

metric.

In email notifications, common HTML format tags and their instructions are referenced in the

table below:

Special Formatting Markup Language in Emails

Management of Notification - Alauda Container Platform

Content

Element
Tag Description

Text -

Supports input of

Chinese/English text

content.

Font

Set Font

Color

Bold Font

Set font format.

Title
<h1>Level 1 Title</h1> , supports up to h6

(header 6).
Set title level.

Paragraph <p>Paragraph</p>
Insert regular paragraph

text.

Quote <q>Quote</q>
Insert short quoted

content.

Hyperlink Hyperlink Insert a hyperlink.

A notification rule is a collection of rules defining how to send notification messages to specific

contacts. It is essential to use notification strategies for scenarios requiring notification to

external services, such as alerts, inspections, and login authentication.

INFO

The platform supports various notification servers, and the notification modes corresponding to

notification types will be displayed based on the notification server configuration. If no notification

server is configured, the corresponding notification modes will not be displayed by default.

Notification rule

Prerequisites

Management of Notification - Alauda Container Platform

To use the Corporate Communication Tool Server to notify contacts, users must first modify

their contact information in Personal Information by entering their WeChat Work ID .

1. In the left navigation bar, click Operations Center > Notifications.

2. Click Create Notification rule and configure the relevant parameters as per the following

instructions.

Parameter Description

Notification

Contact Group

A notification contact group is a logical set of notification

recipients, which the platform will notify using the specified

notification method.

Notification

Recipients

Choose to add one or more notification recipients, and the

platform will send notifications according to the recipients'

Personal Information contact methods.

Notification

Method

Supports multiple methods including WeChat Work, DingTalk,

Feishu, Corporate WeChat Group Bot, DingTalk Group Bot,

Feishu Group Bot, WebHook URL, and supports multiple

selections.

Note: Some parameters will be displayed after configuring the

notification server.

Notification

Template
Select the notification template to display notification information.

3. Click Create.

The platform's notification strategies, notification templates, and notification contact groups

are tenant-isolated. As a project administrator, you will not be able to view or use notification

strategies, notification templates, or notification contact groups configured by other projects or

Operation Procedures

Set Notification Rule for Projects

Management of Notification - Alauda Container Platform

platform administrators. Therefore, you need to refer to this document to configure suitable

notification strategies for your project.

1. You have contacted the platform administrator to complete the notification server setup.

2. If you need to notify through corporate communication tools, you also need to ensure that

the contacts to be notified have correctly configured their communication tool IDs in

Personal Information.

1. In the Project Management view, click Project Name.

2. In the left navigation bar, click Notifications.

3. Switch to the Notification Contact Group tab, refer to Notification Contact Group to create

a notification contact group.

TIP

If you do not need to manage notification contacts through a notification contact group or do not

need to notify a webhook type notification server, you can skip this step.

4. Switch to the Notification Template tab, refer to Notification Template to create a

notification template.

5. Switch to the Notification rule tab, refer to Notification rule to create a notification rule.

Prerequisites

Operation Procedures

Management of Notification - Alauda Container Platform

Function Overview

Main Features

Advantages

Use Cases

Prerequisites

Relationship Between Monitoring Dashboards and Monitoring Components

Manage Dashboards

Create a Dashboard

Import Dashboard

Add Variables

Add Panels

Add Groups

Switch Dashboards

Other Operations

Manage Panels

Panel Description

Panel Configuration Description

General Parameters

Special Parameters for Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

Common Functions

Management of Monitoring Dashboards

TOC

Menu ON THIS PAGE

Management of Monitoring Dashboards - Alauda Container Platform

Common Variables

Variable Use Case One

Variable Use Case Two

Notes When Using Built-in Metrics

The platform provides powerful dashboard management functionality designed to replace

traditional Grafana tools, offering users a more comprehensive and flexible monitoring

experience. This feature aggregates various monitoring data from within the platform,

presenting a unified monitoring view that significantly enhances your configuration efficiency.

Supports configuring custom monitoring dashboards for both business views and platform

views.

Enables viewing publicly shared dashboards configured in platform views from business

views, with data isolated based on the namespace to which the business belongs.

Supports managing panels within the dashboard, allowing users to add, delete, modify

panels, zoom in/out panels, and move panels through drag-and-drop.

Allows setting custom variables within the dashboard for filtering query data.

Supports configuring groups within the dashboard for managing the panels. Groups can be

displayed repeatedly based on custom variables.

Supported panel types include: trend、step line chart、bar chart、horizontal bar chart、

bar gauge chart、gauge chart、table、stat chart、XY chart、pie chart、text.

One-click import feature for Grafana dashboards.

Supports user-customized monitoring scenarios without being constrained by predefined

templates, truly achieving a personalized monitoring experience.

Function Overview

Main Features

Advantages

Management of Monitoring Dashboards - Alauda Container Platform

Provides a rich array of visualization options, including line charts, bar charts, pie charts,

and flexible layout and styling options.

Integrates seamlessly with the platform's role permissions, allowing business views to

define their own monitoring dashboards while ensuring data isolation.

Deep integration with various functionalities of the container platform, enabling instant

access to monitoring data for containers, networks, storage, etc., providing users with

comprehensive performance observation and fault diagnosis.

Fully compatible with Grafana dashboard JSON, allowing easy migration from Grafana for

continued use.

IT Operations Management: As part of the IT operations team, you can use the

monitoring dashboards to unify the display and management of various performance

metrics of the container platform, such as CPU, memory, network traffic, etc. By

customizing monitoring reports and alert rules, you can promptly detect and pinpoint

system issues, enhancing operational efficiency.

Application Performance Analysis: For application developers and testers, monitoring

dashboards offer various rich visualization options to intuitively display application running

states and resource consumption. You can customize dedicated monitoring views tailored

to different application scenarios to deeply analyze application performance bottlenecks

and provide a basis for optimization.

Multi-Cluster Management: For users managing multiple container clusters, monitoring

dashboards can aggregate monitoring data from disparate clusters, allowing you to grasp

the overall operational state of the system at a glance.

Fault Diagnosis: When a system issue occurs, monitoring dashboards provide you with

comprehensive performance data and analytical tools to quickly pinpoint the root cause of

the problem. You can swiftly view fluctuations in relevant monitoring metrics based on alert

information for in-depth fault analysis.

Currently, monitoring dashboards only support viewing monitoring data collected by

monitoring components installed in the platform. Therefore, you should prepare as follows

before configuring a monitoring dashboard:

Use Cases

Prerequisites

Management of Monitoring Dashboards - Alauda Container Platform

Ensure that the cluster for which you want to configure the monitoring dashboard has

monitoring components installed, specifically the ACP Monitor with Prometheus or ACP

Monitor with VictoriaMetrics plugin.

Ensure that the data you wish to display on the dashboard has been collected by the

monitoring components.

Monitoring dashboard resources are stored in the Kubernetes cluster. You can switch views

between different clusters using the Cluster tab at the top.

Monitoring dashboards depend on the monitoring components in the cluster for querying

data sources. Therefore, before using monitoring dashboards, ensure that the current

cluster has successfully installed monitoring components and that they are operating

normally.

The monitoring dashboard will default to requesting monitoring data from the corresponding

cluster. If you install the VictoriaMetrics plugin in proxy mode in the cluster, we will request

the storage cluster for you to query the corresponding data for this cluster without the need

for special configuration.

A dashboard is a collection composed of one or more panels, organized and arranged in one

or more rows to provide a clear view of relevant information. These panels can query raw data

from data sources and transform it into a series of visual effects supported by the platform.

1. Click Create Dashboard, reference the following instructions to configure relevant

parameters.

Relationship Between Monitoring Dashboards and
Monitoring Components

Manage Dashboards

Create a Dashboard

Management of Monitoring Dashboards - Alauda Container Platform

Parameter Description

Folder
The folder where the dashboard resides; you can input or select an

existing folder.

Label
Label for the monitoring dashboard; you can quickly find existing

dashboards by filtering through the top labels during the switch.

Set as Main

Dashboard

If enabled, this will set the current dashboard as the main dashboard

upon successful creation; when re-entering the monitoring

dashboard feature, the main dashboard data will be displayed by

default.

Variables

Add variables when creating the dashboard to reference as metric

parameters in the added panels, which can also be used as filters on

the dashboard homepage.

2. After adding, click Create to finish creating the dashboard. Next, you need to add

variables, add panels, and add groups to complete the overall layout design.

The platform supports direct import of Grafana JSON to convert it into a monitoring dashboard

for display.

Currently, only Grafana JSON of version V8+ is supported; lower versions will be prohibited

from being imported.

If any panels within the imported dashboard are not within the platform's supported scope,

they may be displayed as unsupported panel types, but you can modify the panel's

settings to achieve normal display.

After importing the dashboard, you can perform any management actions as usual, which

will not differ from panels created in the platform.

1. In the variable form area, click Add.

Import Dashboard

Add Variables

Management of Monitoring Dashboards - Alauda Container Platform

Query

Variables of type Query allow you to filter data based on the feature dimensions of time

series. The query expression can be specified to dynamically calculate and generate query

results.

Parameter Description

Query

Settings

When defining query settings, besides using PromQL to query time

series, the platform also provides some common variables and

functions. Reference Common Functions and Variables.

Regular

Expression

By using regular expressions, you can filter out the desired values

from the content returned by the variable queries. This makes each

option name in the variable more expected. You can preview if the

filtered values meet expectations in Variable Value Preview.

Selection

Settings

- Multiple Selection: When selected from the top filters on the

dashboard homepage, allows the selection of multiple options

simultaneously. You need to reference this variable in the query

expression of the panels to view the data corresponding to the

variable value.

- All: If checked, an option containing All will be enabled in the filter

options to select all variable data.

Constant

Constant Variables are static variables with fixed values that remain unchanged throughout

the dashboard, commonly used for storing environment identifiers, fixed thresholds, or

configuration parameters that need to be referenced across multiple panels without displaying

as filter options.

Parameter Description

Constant Value The value of the constant variable.

Custom

Management of Monitoring Dashboards - Alauda Container Platform

Custom Variables allow users to define a predefined list of static options that appear as

dropdown filters on the dashboard, commonly used for manual selection of specific services,

teams, or categories without requiring dynamic data queries.

Parameter Description

Custom

Settings

Enter option values separated by commas, using the format

display_name : value for each option (e.g., Production : prod, Staging :

stage, Development : dev), or simply list values directly if display name

equals value.

Textbox

Textbox Variables are variables that allow users to enter text directly, commonly used for

specifying specific values or parameters that do not require dynamic data queries.

Parameter Description

Textbox Value The default value of the textbox variable.

2. Click OK to add one or more variables.

Add multiple panels to the currently created monitoring dashboard to display data information

for different resources.

Tip: You can customize the size of a panel by clicking the lower right corner; click anywhere

on the panel to rearrange the order of the panels.

1. Click Add Panel, reference the following instructions to configure relevant parameters.

Panel Preview: The area will dynamically display the data information corresponding to the

added metrics.

Add Metric: Configure the panel title and monitoring metrics in this area.

Adding Method: Supports using built-in metrics or using natively customized metrics. Both

methods will take the union and be effective simultaneously.

Add Panels

Management of Monitoring Dashboards - Alauda Container Platform

Built-in Metrics: Select commonly used metrics and legend parameters built into the

platform to display the data information under the current panel.

Note: All metrics added to the panel must have a unified unit; it is not possible to add

metrics with multiple units to one panel.

Native: Customize the metric unit, metric expression, and legend parameters. The

metric expression follows PromQL syntax; for details, please refer to PromQL Official

Documentation .

Legend Parameters: Control the names corresponding to the curves in the panels. Text or

templates can be used:

Rule: The input value must be in the format {{.xxxx}} ; for example, {{.hostname}} will

replace it with the value corresponding to the hostname label returned by the

expression.

Tip: If you input an incorrectly formatted legend parameter, the names corresponding to

the curves in the panel will be displayed in their original format.

Instant Switch: When the Instant switch is turned on, it will query instant values through

Prometheus's Query interface and sort them, as in statistical charts and gauge charts. If off,

it will use the query_range method to calculate, querying a series of data over a specific

time period.

Panel Settings: Supports selecting different panel types for visualizing metric data. Please

refer to Manage Panels.

2. Click Save to complete adding the panels.

3. You can add one or more panels within the dashboard.

4. After adding the panels, you can use the following operations to ensure the display and

size of the panels meet your expectations.

Click the lower right corner of the panel to customize its size.

Click anywhere on the panel to rearrange the order of the panels.

Click the Edit button to modify the panel settings.

Click the Delete button to delete the panel.

↗

Management of Monitoring Dashboards - Alauda Container Platform

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

Click the Copy button to copy the panel.

5. After adjusting, click the Save button on the dashboard page to save your modifications.

Groups are logical dividers within the dashboard that can group panels together.

1. Click the Add Panel drop-down menu > Add Group, and reference the following

instructions to configure relevant parameters.

Group: The name of the group.

Repeat: Supports disabling repeats or selecting variables for the current panels.

Disable Repeat: Do not select a variable, and use the default created group.

Parameter Variables: Select the variables created in the current panels, and the

monitoring dashboard will generate a row of identical sub-groups for each corresponding

value of the variable. Sub-groups do not support modifications, deletions, or moving of

the panels.

2. After adding the group, you can perform the following operations on the group to manage

the panel display within the dashboard.

Groups can be collapsed or expanded to hide part of the content in the dashboard.

Panels within collapsed groups will not send queries.

Move the panel into the group to allow that panel to be managed by that group. The

group will manage all panels between it and the next group.

When a group is folded, you can also move all panels managed by that group together.

The folding and unfolding of groups also constitutes an adjustment to the dashboard. If

you want to maintain this state when reopening this dashboard next time, please click

the Save button.

Set the created custom monitoring dashboard as the main dashboard. When re-entering the

monitoring dashboard feature, the main dashboard data will be displayed by default.

Add Groups

Switch Dashboards

Management of Monitoring Dashboards - Alauda Container Platform

1. In the left navigation bar, click Operations Center > Monitoring > Monitoring

Dashboards.

2. By default, the main monitoring dashboard is entered. Click Switch Dashboard.

3. You can find dashboards by filtering through labels or searching by name, and switch main

dashboards via the Main Dashboard switch.

You can click the operation button on the right side of the dashboard page to perform actions

on the dashboard as needed.

Operation Description

YMAL

Opens the actual CR resource code of the dashboard stored in the

Kubernetes cluster. You can modify all content in the dashboard by

editing parameters in the YAML.

Export

Expression

You can export the metrics and corresponding query expressions

used in the current dashboard in CSV format.

Copy
Copies the current dashboard; you can edit the panels as needed

and save it as a new dashboard.

Settings
Modifies the basic information of the current dashboard, such as

changing labels and adding more variables.

Delete Deletes the current monitoring dashboard.

The platform provides various visualization methods to support different use cases. This

chapter will mainly introduce these panel types, configuration options, and usage methods.

Other Operations

Manage Panels

Panel Description

Management of Monitoring Dashboards - Alauda Container Platform

No.
Panel

Name
Description Suggested Use Cases

1
Trend

Chart

Displays the trend of

data over time via one

or more line

segments.

Shows trends over time, such as

changes in CPU utilization, memory

usage, etc.

2
Step Line

Chart

Builds on the line

chart by connecting

data points with

horizontal and vertical

segments to form a

step-like structure.

Suitable for displaying the timestamps

of discrete events, such as the

number of alerts.

3 Bar Chart

Uses vertical

rectangular bars to

represent the

magnitude of data,

where the height of

the bars represents

value.

Bar charts are intuitive for comparing

value differences, beneficial for

discovering patterns and anomalies,

suitable for scenarios focusing on

value changes, such as the number

of pods, number of nodes, etc.

4
Horizontal

Bar Chart

Similar to the bar

chart but uses

horizontal rectangular

bars to represent

data.

When there are many data

dimensions, horizontal bar charts can

better utilize spatial layout and

improve readability.

5
Gauge

Chart

Uses half or ring

shapes to represent

the current value of an

indicator and its

proportion of the total.

Intuitively reflects the current status of

key monitoring indicators, such as

system CPU utilization and memory

usage. It is recommended to use alert

thresholds with color changes to

indicate abnormal conditions.

6 Gauge Bar

Chart

Uses vertical

rectangular bars to

display the current

Intuitively reflects the current status of

key indicators, such as target

completion progress and system load.

Management of Monitoring Dashboards - Alauda Container Platform

No.
Panel

Name
Description Suggested Use Cases

value of indicators

and their proportion.

When multiple categories of the same

indicator exist, the gauge bar chart is

more recommended, such as

available disk space or utilization.

7 Pie Chart

Uses sectors to

display the

proportional

relationship of parts to

the whole.

Suitable for demonstrating the

composition of overall data across

different dimensions, such as the

proportions of 4XX, 3XX, and 2XX

response codes over a period.

8 Table

Organizes data in a

row-column format,

making it easy to view

and compare specific

values.

Suitable for displaying structured

multi-dimensional data, such as

detailed information of nodes,

detailed information of pods, etc.

9 Stat Chart

Displays the current

value of a single key

indicator, typically

requiring textual

explanation.

Suitable for showing real-time values

of important monitoring indicators,

such as numbers of pods, number of

nodes, current alert count, etc.

10
Scatter

Plot

Uses Cartesian

coordinates to plot a

series of data points,

reflecting the

correlation between

two variables.

Suitable for analyzing relationships

between two indicators, discovering

patterns such as linear correlation

and clustering through the distribution

of data points, helping unearth

relationships between metrics.

11 Text Card

Displays key textual

information in a card

format, usually

containing a title and

a brief description.

Suitable for presenting textual

information, such as panel

descriptions and troubleshooting

explanations.

Management of Monitoring Dashboards - Alauda Container Platform

Parameter Description

Basic

Information

Select the appropriate panel type based on the selected metric data

and add titles and descriptions; you can add one or more links, which

can be quickly accessed by selecting the corresponding link name

next to the title.

Standard

Settings

Units used for native metric data. Additionally, gauge charts and

gauge bars also support configuring the Total Value field, which will

display as the percentage of Current Value/Total Value in the chart.

Tooltips
Tooltips are the display switch for real-time data when hovering over

the panels and support selected sorting.

Threshold

Parameters

Configure the threshold switch for the panels; when enabled, the

threshold will be shown in selected colors in the panels, allowing for

threshold sizing.

Value

Set the calculation method for values, such as the most recent value

or minimal value. This configuration option is only applicable to stat

charts and gauge charts.

Value

Mapping

Redefine specified values, ranges,regex or special such as defining

100 as full load. This configuration option is only applicable to stat

charts, tables, and gauge charts.

Panel

Type
Parameter Description

Trend

Chart

Graph Style You can choose between a line chart or an area chart as

the display style; line charts focus more on reflecting the

trend changes of indicators, while area charts draw more

Panel Configuration Description

General Parameters

Special Parameters for Panels

Management of Monitoring Dashboards - Alauda Container Platform

Panel

Type
Parameter Description

attention to changes in total and partial proportions.

Choose based on your actual needs.

Gauge

Chart

Gauge

Chart

Settings

Show Direction: When you need to view multiple metrics

in a single chart, you can set whether these metrics are

arranged horizontally or vertically.

Unit Redefinition: You can set independent units for each

metric; if not set, the platform will display units from the

Standard Settings.

Stat

Chart

Stat Chart

Settings

Show Direction: When you need to view multiple metrics

in a single chart, you can set whether these metrics are

arranged horizontally or vertically.

Graph Mode: You can add a graph to the stat chart to

display the trend of the metric over time.

Pie

Chart

Pie Chart

Settings

Maximum Number of Slices: You can set this parameter

to reduce the number of slices in the pie chart to lessen

the interference of categories with comparatively low

proportions but high quantities. Excess slices will be

merged and displayed as Others.

Label Display Fields: You can set the fields displayed in

the pie chart labels.

Pie

Chart
Graph Style You can choose either pie or donut as the display style.

Table Table

Settings Hide Columns: You can reduce the number of columns in

the table with this parameter to focus on some primary

column information.

Column Alignment: You can modify the alignment of data

within the column using this parameter.

Management of Monitoring Dashboards - Alauda Container Platform

Panel

Type
Parameter Description

Display Name and Unit: You can modify the column

names and units used through this parameter.

Text

Card
Graph Style

Style: You can choose to edit the content you wish to

display in the text card in either a rich-text editing box or

HTML.

1. Create a new YAML configuration file named example-dashboard.yaml .

2. Add the MonitorDashboard resource to the YAML file and submit it. The following example

creates a monitoring dashboard named demo-v2-dashboard1:

Create Monitoring Dashboards via CLI

Management of Monitoring Dashboards - Alauda Container Platform

kind: MonitorDashboard

apiVersion: ait.alauda.io/v1alpha2

metadata:

 annotations:

 cpaas.io/dashboard.version: '3'

 cpaas.io/description: '{"zh":"描述信息","en":""}' # Description field

 cpaas.io/operator: admin

 labels:

 cpaas.io/dashboard.folder: demo-v2-folder1 # Folder

 cpaas.io/dashboard.is.home.dashboard: 'False' # Is it the main dashboard?

 name: demo-v2-dashboard1 # Name

 namespace: cpaas-system # Namespace (all management view creations will occur in

this ns)

spec:

 body: # All information fields

 titleZh: 更新显示名称 # Built-in field for Chinese display name (this field is

created under the Chinese language)

 title: english_display_name # Built-in field for English display name (this field

is created under the English language) Built-in dashboards can set bilingual

translations.

 templating: # Custom variables

 list:

 - hide: 0 # 0 means not hidden; 1 means only the label is hidden; 2 means both

label and value are hidden

 label: 集群 # Built-in variable display name (label is set to the

appropriate name based on the language, e.g., cluster in English)

 name: cluster # Built-in variable name (unique)

 options: # Define dropdown options; if a query retrieves data, it will use

requested data; otherwise, it will use options. A default value can be set (generally

only used for setting default values)

 - selected: false # Whether to default select

 text: global

 value: global

 type: custom # Custom variable type; currently, only built-in (custom) and

query are supported (Importing Grafana will support constant custom interval (after

import, it will be changed to a custom variable and will not support auto))

 - allValue: '' # Select all, passing options with the format xxx|xxx|xxx; can

set allValue for conversion (Grafana retrieves all data for the current variable as

xxx|xxx|xxx, adjustments will ensure consistency)

 current: null # Current value of the variable; if not set, defaults to the

first in the list

 definition: query_result(kube_namespace_labels) # Query expression for data

Management of Monitoring Dashboards - Alauda Container Platform

retrieval

 hide: 0 # 0 means not hidden; 1 means only the label is hidden; 2 means both

label and value are hidden

 includeAll: true # Whether to select all

 label: ns # Built-in variable display name

 multi: true # Whether multiple selections are allowed

 name: ns # Variable name (unique)

 options: []

 query: ''

 regex: /.*namespace=\"(.*?)\".*/ # Regex expression for extracting variable

values

 sort: 2 # Sorting: 1 - ascending alphabetical order; 2 - descending

alphabetical order (only these two support temporarily); 3 - ascending numerical

order; 4 - descending numerical order

 type: query # Custom variable type

 time: # Dashboard time

 from: now-30m # Start time

 to: now # End time

 repeat: '' # Row repeat configuration; chooses custom variable

 collapsed: 'false' # Row collapsed or expanded configuration

 description: '123' # Description (tooltip after title)

 targets: # Data sources

 - indicator: cluster.node.ready # Metric

 expr: sum (cpaas_pod_number{cluster=\"\"}>0) # PromQL expression

 instant: false # Query mode true retrieves data at a specific time

 legendFormat: '' # Legend

 range: true # Default querying range when retrieving data

 refId: 指标1 # Unique identifier for display name of data source

 gridPos: # Information on the dashboard's positional layout

 h: 8 # Height

 w: 12 # Width (width corresponds to 24 grid units)

 x: 0 # Horizontal position

 y: 0 # Vertical position

 panels: # Panel data

 title: 图表标题tab # Panel name

 type: table # Panel type; currently supports timeseries, barchart, stat, gauge,

table, bargauge, row, text, pie (step chart, scatter plot, bar chart, configurable

through drawStyle attribute)

 id: a2239830-492f-4d27-98f3-cb7ecb77c56f # Unique identifier

 links: # Links

 - targetBlank: true # Open in a new tab

 title: '1' # Name

 url: '1' # URL address

 transformations: # Data transformations

Management of Monitoring Dashboards - Alauda Container Platform

 - id: 'organize' # Type organize; used for sorting, rearranging order, showing

fields, whether to display

 options:

 excludeByName: # Hidden fields

 cluster_cpu_utilization: true

 indexByName: # Sort

 cluster_cpu_utilization: 0,

 Time: 1

 renameByName: # Rename

 Time: ''

 cluster_cpu_utilization: '222'

 - id: 'merge' # Merging data

 options:

 fieldConfig: # For defining panel properties and appearance

 defaults: # Default configuration

 custom: # Custom graphic attributes

 align: 'left' # Table alignment: left, center, right

 cellOptions: # Table threshold configuration

 type: color-text # Only supports text for threshold color settings

 spanNulls: false # true connects null values; false does not connect;

number == 0 connects null values according to 0

 drawStyle: line # Panel types: line, bars for bar charts, points for point

charts

 fillOpacity: 20 # Exists when drawStyle is area (currently does not

support configuration, area defaults to 20)

 thresholdsStyle: # Configures how to display thresholds (currently only

supports line)

 mode: line # Threshold display format (area not supported currently)

 lineInterpolation: 'stepBefore' # Step chart configuration; defaults to

only supporting stepBefore (stepAfter will be supported later)

 decimals: 3 # Decimal points

 min: 0 # Minimum value (currently not supported for page configuration, only

supports imports that have been adapted)

 max: 1 # Maximum value (page configuration only applies to stat gauge

barGauge pie)

 unit: '%' # Unit

 mappings: # Value mapping configuration (currently only supports value and

range types; special types supported on data)

 - options: # Value mapping rules

 '1': # Corresponding value

 index: 0

 text: 'Running' # Displayed as Running when value is 1

 type: value # Value mapping type

 - options: # Range mapping rules

Management of Monitoring Dashboards - Alauda Container Platform

 from: 2 # Range start value

 to: 3 # Range end value

 result: # Mapping result

 index: 1

 text: 'Error' # Values from 2 to 3 will display as Error

 type: range # Mapping type for range

 - type: special # Mapping type for special scenarios

 options:

 match: null # nan null null+nan empty true false

 result:

 text: xxx

 index: 2

 thresholds: # Threshold configuration

 mode: absolute # Threshold configuration mode, absolute value mode

(currently only supports absolute and percentage mode; percentage mode is not

supported yet)

 steps: # Threshold steps

 - color: '#a7772f' # Threshold color

 value: '2' # Threshold value

 - color: '#007AF5' # Default value with no value is the Base

 overrides: # Override configuration

 - matcher:

 id: byName # Match based on field name

 options: node # Corresponding name

 properties: # Override configuration; id currently only supports

displayName unit

 - id: displayName # Display name override

 value: '1' # Overridden display name

 - id: unit # Unit override

 value: GB/s # Unit value

 - id: noValue # No value display

 value: No value display

 options:

 orientation: horizontal # Control the layout direction of panels; applies to

gauge and barGauge (stat will be supported later)

 legend: # Legend configuration

 calcs: # Calculating methods (only displays when the legend position is on

the right)

 - latest # Currently only supports most recent value

 placement: right # Legend position (right or bottom; defaults to bottom)

 placementRightTop: '' # Configuration for the upper right

 showLegend: true # Whether to display the legend

 tooltip: # Tooltips

 mode: multi # Mode dual selection (only multi-mode supported) All data

Management of Monitoring Dashboards - Alauda Container Platform

When defining query settings, besides using PromQL to set queries, the platform provides

some common functions as follows for your reference in customizing query settings.

Function Purpose

label_names() Returns all labels in Prometheus, e.g., label_names().

label_values(label)
Returns all selectable values for the label name in all

monitored metrics in Prometheus, e.g., label_values(job).

label_values(metric,

label)

Returns all selectable values for the label name in the

specified metric in Prometheus, e.g., label_values(up, job).

metrics(metric)
Returns all metric names that satisfy the defined regex

pattern in the metric field, e.g., metrics(cpaas_active).

Common Functions and Variables

Common Functions

displayed when the mouse hovers over

 sort: asc # Sorting: asc or desc

 reduceOptions: # Value calculating method (used for aggregating data)

 calcs: # Calculating methods (latest, minimum, maximum, average, sum)

 - latest

 limit: 3 # Pie limits the number of slices

 textMode: 'value' # Stat configuration; defines style for displaying metric

value; options are auto, value, value_and_name, name, none (currently not supported in

the page configuration, but supported in imports)

 colorMode: 'value' # Stat configuration; defines color mode for displaying

metric values; options are none, value, background (defaults to value; not supported

in configuration but adapted in import)

 displayLabels: ['name', 'value', 'percent'] # Fields displayed in pie chart

labels

 pieType: 'pie' # Pie chart type; options are pie and donut

 mode: 'html' # Text chart type mode; options are html and richText

 content: '<div>xxx</div>' # Content for text chart type

 footer:

 enablePagination: true # Table pagination enabled

Management of Monitoring Dashboards - Alauda Container Platform

Function Purpose

query_result(query)
Returns the query result for the specified Prometheus query,

e.g., query_result(up).

While defining query settings, you can combine common functions into variables to quickly

define custom variables. Here are some common variable definitions available for your

reference:

Variable

Name
Query Function

cluster label_values(cpaas_cluster_info,cluster)

node label_values(node_load1, instance)

namespace query_result(kube_namespace_labels)

deployment
label_values(kube_deployment_spec_replicas{namespace="$namespace"},

deployment)

daemonset
label_values(kube_daemonset_status_number_ready{namespace="$namespace"},

daemonset)

statefulset
label_values(kube_statefulset_replicas{namespace="$namespace"},

statefulset)

pod label_values(kube_pod_info{namespace=~"$namespace"}, pod)

vmcluster label_values(up, vmcluster)

daemonset
label_values(kube_daemonset_status_number_ready{namespace="$namespace"},

daemonset)

Common Variables

Variable Use Case One

Management of Monitoring Dashboards - Alauda Container Platform

Using the query_result(query) function to query the value: node_load5 , and extract the IP.

1. In Query Settings, fill in query_result(node_load5) .

2. In the Variable Value Preview area, the preview example is node_load5{container="node-

exporter",endpoint="metrics",host_ip="192.168.178.182",instance="192.168.178.182:9100"} .

3. In Regular Expression, fill in /.*instance="(.*?):.*/ to filter the value.

4. In the Variable Value Preview area, the preview example is 192.168.176.163 .

1. Add the first variable: namespace, using the query_result(query) function to query the

value: kube_namespace_labels , and extract the namespace.

Query Settings: query_result(kube_namespace_labels) .

Variable Value Preview: kube_namespace_labels{container="exporter-kube-state",

endpoint="kube-state-metrics", instance="12.3.188.121:8080", job="kube-state",

label_cpaas_io_project="cpaas-system", namespace="cert-manager", pod="kube-prometheus-

exporter-kube-state-55bb6bc67f-lpgtx", project="cpaas-system", service="kube-prometheus-

exporter-kube-state"} .

Regular Expression: /.+namespace=\"(.*?)\".*/ .

In the Variable Value Preview area, the preview example includes multiple

namespaces such as argocd , cpaas-system , and more.

2. Add the second variable: deployment, and reference the variable created earlier:

Query Settings: kube_deployment_spec_replicas{namespace=~"$namespace"} .

Regular Expression: /.+deployment="(.*?)",.*/ .

3. Add a panel to the current dashboard and reference the previously added variables, for

example:

Metric Name: pod Memory Usage under Compute Components.

Variable Use Case Two

Management of Monitoring Dashboards - Alauda Container Platform

Key-Value Pair: kind : Deployment , name : $deployment , namespace : $namespace .

4. Once you have added the panels and saved them, you can view the corresponding panel

information on the dashboard homepage.

WARNING

The following metrics use custom variables namespace , name , and kind , which do not support

multiple selections or selecting all.

namespace only supports selecting a specific namespace;

name only supports three types of computing components: deployment , daemonset ,

statefulset ;

kind only supports specifying one of the types: Deployment , DaemonSet , StatefulSet .

workload.cpu.utilization

workload.memory.utilization

workload.network.receive.bytes.rate

workload.network.transmit.bytes.rate

workload.gpu.utilization

workload.gpu.memory.utilization

workload.vgpu.utilization

workload.vgpu.memory.utilization

Notes When Using Built-in Metrics

Management of Monitoring Dashboards - Alauda Container Platform

Function Overview

Blackbox Monitoring

Prerequisites

Procedures for Operation

Blackbox Alerts

Prerequisites

Procedures for Operation

Customizing BlackboxExporter Monitoring Module

Procedures for Operation

Create Blackbox Monitoring Items and Alerts via CLI

Prerequisites

Procedures for Operation

Reference Information

The probe feature of the platform is realized based on Blackbox Exporter, allowing users to

probe the network via ICMP, TCP, or HTTP to quickly identify faults occurring on the platform.

Unlike white-box monitoring systems, which rely on various monitoring metrics already

available on the platform, blackbox monitoring focuses on the outcomes. When white-box

Management of Probe

TOC

Function Overview

Menu ON THIS PAGE

Management of Probe - Alauda Container Platform

monitoring cannot cover all factors affecting service availability, blackbox monitoring can

swiftly detect faults and issue alerts based on those faults. For example, if an API endpoint is

abnormal, blackbox monitoring can promptly expose such issues to users.

WARNING

The probe function does not support using ICMP to detect IPv6 addresses on nodes with kernel

versions 3.10 and below. To use this scenario, please upgrade the kernel version on the node to

3.11 or higher.

To create a blackbox monitoring item, you can choose the ICMP, TCP, or HTTP probing

method to periodically probe the specified target address.

The monitoring components must be installed in the cluster, and the monitoring components

must be functioning properly.

1. In the left navigation bar, click Operations Center > Monitoring > Blackbox Monitoring.

Tip: Blackbox monitoring is a cluster-level feature. Click on the top navigation bar to switch

between clusters.

2. Click Create Blackbox Monitoring Item.

3. Refer to the following instructions to configure the relevant parameters.

Parameter Description

Probing

Method

ICMP: Probes by pinging the domain name or IP address entered in

the Target Address to check the server's availability.

TCP: Probes the business port of the host by listening on the

Blackbox Monitoring

Prerequisites

Procedures for Operation

Management of Probe - Alauda Container Platform

Parameter Description

<domain:port> or <IP:port> specified in the Target Address.

HTTP: Probes the URL entered in Target Address to check website

connectivity.

Tip: The HTTP probing method only supports GET requests by

default; for POST requests, please refer to Customizing the

BlackboxExporter Monitoring Module.

Probing

Interval
The interval time for probing.

Target

Address

The target address for probing, with a maximum of 128 characters.

The input format for the target address varies by probing method:

ICMP: A domain name or IP address, e.g., 10.165.94.31 .

TCP: <domain:port> or <IP:port> , e.g., 172.19.155.133:8765 .

HTTP: A URL that starts with http or https, e.g., http://alauda.cn/ .

4. Click Create.

Once created successfully, you can view the latest probing results in real time on the list

page, and based on the blackbox monitoring items, you can create alert policies. When a

fault is detected, an alert will be automatically triggered to notify the relevant personnel for

resolution.

WARNING

After successfully creating the blackbox monitoring items, the system requires about 5 minutes to

synchronize the configuration. During this synchronization period, probing will not occur and

probing results cannot be viewed.

Blackbox Alerts

Prerequisites

Management of Probe - Alauda Container Platform

The monitoring components must be installed in the cluster, and the monitoring

components must be functioning properly.

The blackbox monitoring item must have been successfully created, and the system must

have finished synchronizing the configuration so that probing results are visible on the

blackbox monitoring page.

1. In the left navigation bar, click Operations Center > Alerts > Alert Policies.

Tip: Alert policies are a cluster-level feature. Click on the top navigation bar to switch

between clusters. Please ensure you switch to the cluster where the blackbox monitoring

item has just been configured.

2. Click Create Alert Policy.

3. Refer to the following instructions to configure the relevant parameters; for more parameter

information, please refer to Create Alert Policies.

Alert Type: Please select Resource Alert.

Resource Type: Please select Cluster.

Click Add Alert Rule.

Alert Type: Please select Blackbox Alert.

Blackbox Monitoring Item: Please select the desired blackbox monitoring item.

Metric Name: Please select the metric you wish to monitor and alert on. The current

supported metrics by the platform are Connectivity and HTTP Status Code.

Connectivity: This metric can be selected for all blackbox monitoring items, where

the trigger condition “!= 1” indicates that the target address of the blackbox

monitoring item is unreachable.

HTTP Status Code: This metric can be selected when the probing method of the

chosen blackbox monitoring item is HTTP. You can input a three-digit positive integer

Procedures for Operation

Management of Probe - Alauda Container Platform

as the value for the trigger condition, for example, if the condition is set to “> 299”, it

means alerts are fired when the response codes are 3XX, 4XX, or 5XX.

Notification Policy: Please select your pre-configured policy.

Click Add.

4. Click Create. After the alert policy submission, you can see this alert policy in the alert

policy list.

You can also enhance the functionalities of blackbox monitoring by adding customized

monitoring modules to the BlackboxExporter configuration file. For example, by adding the

http_post_2xx module to the configuration file, when the probing method of blackbox

monitoring is set to HTTP , it would then be able to probe the status of POST request methods.

The configuration file for blackbox monitoring is located within the namespace where the

Prometheus component of the cluster is installed, with the default name being cpaas-monitor-

prometheus-blackbox-exporter , which can be modified as needed based on the actual name.

TIP

This configuration file is a ConfigMap resource related to the namespace, which can be quickly

viewed and updated through the platform's management feature, Cluster Management >
Resource Management.

1. Update the configuration file of blackbox monitoring by adding customizable monitoring

modules to key modules .

Taking the addition of the http_post_2xx module as an example:

Customizing BlackboxExporter Monitoring
Module

Procedures for Operation

Management of Probe - Alauda Container Platform

For complete YAML examples of the blackbox monitoring configuration file, please refer to

Reference Information.

2. Activate the configuration by choosing one of the following methods.

Restart the Blackbox Exporter Component cpaas-monitor-prometheus-blackbox-

exporter by deleting its Pod.

Execute the following command to call the reload API and refresh the configuration file:

Notification policies must be configured (if you require alert automatic notifications).

The target cluster must have monitoring components installed.

1. Create a new YAML configuration file named example-probe.yaml .

Create Blackbox Monitoring Items and Alerts via
CLI

Prerequisites

Procedures for Operation

blackbox.yaml: |

 modules:

 http_post_2xx: # HTTP POST probing module

 prober: http

 timeout: 5s

 http:

 method: POST # Request method for probing

 headers:

 Content-Type: application/json

 body: '{}' # Body content sent with the probe

curl -X POST -v <Pod IP>:9115/-/reload

Management of Probe - Alauda Container Platform

2. Add the PrometheusRule resource to the YAML file and submit it. The following example

creates a new alert policy named prometheus-liveness :

3. Create a new YAML configuration file named example-alerting-rule.yaml .

4. Add the PrometheusRule resource to the YAML file and submit it. The following example

creates a new alert policy named policy :

apiVersion: monitoring.coreos.com/v1

kind: Probe

metadata:

 annotations:

 cpaas.io/creator: jhshi@alauda.io # Creator of the probe item

 cpaas.io/updated-at: '2021-05-25T08:08:45Z' # Last update time of the probe item

 cpaas.io/display-name: 'Prometheus prober' # Description of the probe item

 creationTimestamp: '2021-05-10T02:04:33Z' # Creation time of the probe item

 labels:

 prometheus: kube-prometheus # Label value used for prometheus's name

 name: prometheus-liveness # Name of the probe item

 namespace: cpaas-system # Namespace used for the prometheus's namespace

spec:

 jobName: prometheus-liveness # Name of the probe item

 prober:

 url: cpaas-monitor-prometheus-blackbox-exporter:9115 # URL for Blackbox metrics,

retrieved from features

 module: http_2xx # Name of the probe item's module

 targets:

 staticConfig:

 static:

 - http://www.prometheus.io # Target address of the probe item

 labels:

 module: http_2xx # Name of the probe item's module

 prober: http # Probing method of the probe item

 interval: 30s # Probe interval for the probe item

 scrapeTimeout: 10s

Management of Probe - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1

kind: PrometheusRule

metadata:

 annotations:

 alert.cpaas.io/cluster: global # Name of the cluster where the alert resides

 alert.cpaas.io/kind: Cluster # Resource type

 alert.cpaas.io/name: global # Name of the cluster where the blackbox monitoring

item resides

 alert.cpaas.io/namespace: cpaas-system # Namespace used for the prometheus's

namespace, keep defaults

 alert.cpaas.io/notifications: '["test"]'

 alert.cpaas.io/repeat-config:

'{"Critical":"never","High":"5m","Medium":"5m","Low":"5m"}'

 alert.cpaas.io/rules.description: '{}'

 alert.cpaas.io/rules.disabled: '[]'

 alert.cpaas.io/subkind: ''

 cpaas.io/description: ''

 cpaas.io/display-name: policy # Display name of the alert policy

 labels:

 alert.cpaas.io/owner: System

 alert.cpaas.io/project: cpaas-system

 cpaas.io/source: Platform

 prometheus: kube-prometheus

 rule.cpaas.io/cluster: global

 rule.cpaas.io/name: policy

 rule.cpaas.io/namespace: cpaas-system

 name: policy

 namespace: cpaas-system

spec:

 groups:

 - name: general # Name of the alert rules

 rules:

 - alert: cluster.blackbox.probe.success-y97ah-9833444d918cab96c43e9ab6efc172cf

 annotations:

 alert_current_value: '{{ $value }}' # Current value for notification, keep

default

 expr:

 max by (job, instance) (probe_success{job=~"test",

 instance=~"https://demo.at-servicecenter.com/"})!=1

 # Connectivity alert scenario, be sure to modify the blackbox monitoring

item name and target address

 for: 30s # Duration

 labels:

Management of Probe - Alauda Container Platform

 alert_cluster: global # Name of the cluster where the alert resides

 alert_for: 30s # Duration

 alert_indicator: cluster.blackbox.probe.success # Keep unchanged

 alert_indicator_aggregate_range: '0' # Keep unchanged

 alert_indicator_blackbox_instance: https://demo.at-servicecenter.com/ #

Blackbox monitoring target address

 alert_indicator_blackbox_name: test # Blackbox monitoring item name

 alert_indicator_comparison: '!=' # Keep configuration unchanged for

connectivity alerts

 alert_indicator_query: '' # Used for log alerts, no need to configure this

parameter

 alert_indicator_threshold: '1' # Threshold for the alert rule, 1 indicates

connectivity, keep unchanged

 alert_indicator_unit: '' # Unit of the alert rule's metrics

 alert_involved_object_kind: Cluster # Keep unchanged for blackbox alerts

 alert_involved_object_name: global # Cluster where the blackbox monitoring

item resides

 alert_involved_object_namespace: '' # Namespace of the object to which the

alert rule belongs

 alert_name: cluster.blackbox.probe.success-y97ah # Name of the alert rule

 alert_namespace: cpaas-system # Namespace where the alert rule resides

 alert_project: cpaas-system # Name of the project of the object to which

the alert rule belongs

 alert_resource: policy # Name of the alert policy where the alert rule

resides

 alert_source: Platform # Type of data for the alert rule: Platform-

platform data, Business- business data

 severity: High # Alert rule level: Critical- disaster, High- serious,

Medium- warning, Low- tip

 - alert: cluster.blackbox.http.status.code-235el-

99b0095b6b6669415043e14ae84f43bc

 annotations:

 alert_current_value: '{{ $value }}'

 alert_notifications: '["message"]'

 expr:

 max by(job, instance) (probe_http_status_code{job=~"test",

 instance=~"https://demo.at-servicecenter.com/"})>200

 # HTTP status code alert scenario, be sure to modify the blackbox

monitoring item name and target address

 for: 30s

 labels:

 alert_cluster: global

 alert_for: 30s

 alert_indicator: cluster.blackbox.http.status.code

Management of Probe - Alauda Container Platform

A complete example of the YAML configuration file for blackbox monitoring is as follows:

Reference Information

 alert_indicator_aggregate_range: '0'

 alert_indicator_blackbox_instance: https://demo.at-servicecenter.com/

 alert_indicator_blackbox_name: test

 alert_indicator_comparison: '>'

 alert_indicator_query: ''

 alert_indicator_threshold: '299' # Threshold for alert rules, in HTTP

status code alert scenarios, should be a three-digit number, for example, statuses

greater than 299 (3XX, 4XX, 5XX) indicate an error

 alert_indicator_unit: ''

 alert_involved_object_kind: Cluster

 alert_involved_object_name: global

 alert_involved_object_namespace: ''

 alert_involved_object_options: Single

 alert_name: cluster.blackbox.http.status.code-235el

 alert_namespace: cpaas-system

 alert_project: cpaas-system

 alert_resource: policy33

 alert_source: Platform

 severity: High

Management of Probe - Alauda Container Platform

apiVersion: v1

data:

 blackbox.yaml: |

 modules:

 http_2xx_example: # Example of HTTP probing

 prober: http

 timeout: 5s # Timeout for probing

 http:

 valid_http_versions: ["HTTP/1.1", "HTTP/2.0"] # The Version

in the returned information, generally defaults

 valid_status_codes: [] # Defaults to 2xx # Range of

valid response codes; if the returned code is within this range, it is considered a

successful probe

 method: GET # Request method

 headers: # Request headers

 Host: vhost.example.com

 Accept-Language: en-US

 Origin: example.com

 no_follow_redirects: false # Indicates whether to allow redirection

 fail_if_ssl: false

 fail_if_not_ssl: false

 fail_if_body_matches_regexp:

 - "Could not connect to database"

 fail_if_body_not_matches_regexp:

 - "Download the latest version here"

 fail_if_header_matches: # Verifies that no cookies are set

 - header: Set-Cookie

 allow_missing: true

 regexp: '.*'

 fail_if_header_not_matches:

 - header: Access-Control-Allow-Origin

 regexp: '(*|example\.com)'

 tls_config: # TLS configuration for https requests

 insecure_skip_verify: false

 preferred_ip_protocol: "ip4" # defaults to "ip6" # Preferred IP

protocol version

 ip_protocol_fallback: false # No fallback to "ip6"

 http_post_2xx: # Example of HTTP probing with Body

 prober: http

 timeout: 5s

 http:

 method: POST # Request method for probing

 headers:

Management of Probe - Alauda Container Platform

 Content-Type: application/json

 body: '{"username":"admin","password":"123456"}' # Body

carried during probing

 http_basic_auth_example: # Example of probing with username and password

 prober: http

 timeout: 5s

 http:

 method: POST

 headers:

 Host: "login.example.com"

 basic_auth: # Username and password to be added during probing

 username: "username"

 password: "mysecret"

 http_custom_ca_example:

 prober: http

 http:

 method: GET

 tls_config: # Specify the root certificate to use during

probing

 ca_file: "/certs/my_cert.crt"

 http_gzip:

 prober: http

 http:

 method: GET

 compression: gzip # Compression method used during probing

 http_gzip_with_accept_encoding:

 prober: http

 http:

 method: GET

 compression: gzip

 headers:

 Accept-Encoding: gzip

 tls_connect: # Example of TCP probing

 prober: tcp

 timeout: 5s

 tcp:

 tls: true # Indicates whether to use TLS

 tcp_connect_example:

 prober: tcp

 timeout: 5s

 imap_starttls: # Example of configuring probing for IMAP mail

servers

 prober: tcp

 timeout: 5s

Management of Probe - Alauda Container Platform

 tcp:

 query_response:

 - expect: "OK.*STARTTLS"

 - send: ". STARTTLS"

 - expect: "OK"

 - starttls: true

 - send: ". capability"

 - expect: "CAPABILITY IMAP4rev1"

 smtp_starttls: # Example of configuring probing for SMTP mail

servers

 prober: tcp

 timeout: 5s

 tcp:

 query_response:

 - expect: "^220 ([^]+) ESMTP (.+)$"

 - send: "EHLO prober\r"

 - expect: "^250-STARTTLS"

 - send: "STARTTLS\r"

 - expect: "^220"

 - starttls: true

 - send: "EHLO prober\r"

 - expect: "^250-AUTH"

 - send: "QUIT\r"

 irc_banner_example:

 prober: tcp

 timeout: 5s

 tcp:

 query_response:

 - send: "NICK prober"

 - send: "USER prober prober prober :prober"

 - expect: "PING :([^]+)"

 send: "PONG ${1}"

 - expect: "^:[^]+ 001"

 icmp_example: # Example configuration for ICMP probing

 prober: icmp

 timeout: 5s

 icmp:

 preferred_ip_protocol: "ip4"

 source_ip_address: "127.0.0.1"

 dns_udp_example: # Example of DNS queries using UDP

 prober: dns

 timeout: 5s

 dns:

 query_name: "www.prometheus.io" # Domain name to resolve

Management of Probe - Alauda Container Platform

 query_type: "A" # Type corresponding to the domain name

 valid_rcodes:

 - NOERROR

 validate_answer_rrs:

 fail_if_matches_regexp:

 - ".*127.0.0.1"

 fail_if_all_match_regexp:

 - ".*127.0.0.1"

 fail_if_not_matches_regexp:

 - "www.prometheus.io.\t300\tIN\tA\t127.0.0.1"

 fail_if_none_matches_regexp:

 - "127.0.0.1"

 validate_authority_rrs:

 fail_if_matches_regexp:

 - ".*127.0.0.1"

 validate_additional_rrs:

 fail_if_matches_regexp:

 - ".*127.0.0.1"

 dns_soa:

 prober: dns

 dns:

 query_name: "prometheus.io"

 query_type: "SOA"

 dns_tcp_example: # Example of DNS queries using TCP

 prober: dns

 dns:

 transport_protocol: "tcp" # defaults to "udp"

 preferred_ip_protocol: "ip4" # defaults to "ip6"

 query_name: "www.prometheus.io"

kind: ConfigMap

metadata:

 annotations:

 skip-sync: 'true'

 labels:

 app.kubernetes.io/instance: cpaas-monitor

 app.kubernetes.io/managed-by: Tiller

 app.kubernetes.io/name: prometheus-blackbox-exporter

 helm.sh/chart: prometheus-blackbox-exporter-1.6.0

 name: cpaas-monitor-prometheus-blackbox-exporter

 namespace: cpaas-system

Management of Probe - Alauda Container Platform

Management of Probe - Alauda Container Platform

How To

Backup and Restore of Prometheus Monitoring Data

Feature Overview

Use Cases

Prerequisites

Procedures to Operate

Operation Results

Learn More

Next Procedures

VictoriaMetrics Backup and Recovery of Monitoring Data
Function Overview

Use Cases

Prerequisites

Procedures

Operation Result

Learn More

Follow-up Actions

Menu

How To - Alauda Container Platform

Collect Network Data from Custom-Named Network Interfaces
Function Overview

Use Case

Prerequisites

Procedures to Operate

Operation Results

Learn More

Subsequent Actions

How To - Alauda Container Platform

Feature Overview

Use Cases

Prerequisites

Procedures to Operate

Backup Data

Method 1: Backup Storage Directory (Recommended)

Method 2: Snapshot Backup

Restore Data

Operation Results

Learn More

TSDB Data Format Description

Data Backup Considerations

Next Procedures

Prometheus monitoring data is stored in TSDB (Time Series Database) format, supporting

backup and restore functionalities. The monitoring data is stored in a designated path within

Backup and Restore of Prometheus
Monitoring Data

TOC

Feature Overview

Menu ON THIS PAGE

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

the Prometheus container (specified by the configuration storage.tsdb.path , which defaults to

/prometheus).

Retaining historical monitoring data during system migration

Preventing data loss due to unexpected incidents

Migrating monitoring data to a new Prometheus instance

The ACP Monitoring with Prometheus plugin has been installed (the name of the compute

component is prometheus-kube-prometheus-0 , and the type is StatefulSet)

Administrator privileges for the cluster

Ensure there is sufficient storage space at the target storage location

Before starting the backup, please note: When Prometheus stores monitoring data, it first

places the collected data into a cache and then periodically writes it to the storage directory.

The following backup methods use the storage directory as the data source, so they do not

include the data in the cache at the time of backup.

Use Cases

Prerequisites

Procedures to Operate

Backup Data

template:

 spec:

 containers:

 - args:

 - '--storage.tsdb.path=/prometheus' # Directory for storing monitoring data in

the Prometheus container

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

1. Use the kubectl cp command to back up:

2. Backup from the storage backend (based on the type of storage selected during

installation):

LocalVolume: Copy from the /cpaas/monitoring/prometheus directory

PV: Copy from the PV mount directory (it is recommended to set the PV's

persistentVolumeReclaimPolicy to Retain)

StorageClass: Copy from the PV mount directory

1. Enable Admin API:

Add the configuration:

Note: After updating and saving the configuration, the Prometheus Pod (Pod name:

prometheus-kube-prometheus-0-0) will restart. Wait until all Pods are in Running status

before proceeding with subsequent operations.

2. Create a snapshot:

Method 1: Backup Storage Directory (Recommended)

Method 2: Snapshot Backup

Restore Data

kubectl cp -n cpaas-system prometheus-kube-prometheus-0-0:/prometheus -c prometheus

<target storage path>

kubectl edit -n cpaas-system prometheus kube-prometheus-0

spec:

 enableAdminAPI: true

curl -XPOST <Prometheus Pod IP>:9090/api/v1/admin/tsdb/snapshot

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

1. Copy the backup data to the Prometheus container:

2. Move data into the specified directory:

Shortcut: When the storage type is LocalVolume during plugin installation, simply copy

the backup data directly to the /cpaas/monitoring/prometheus/prometheus-db/ directory of the

node where the plugin is installed.

After backup is complete, the complete TSDB format monitoring data can be seen at the

target storage path

After restoration is complete, Prometheus will automatically load the historical monitoring

data

Example of TSDB format data structure:

Operation Results

Learn More

TSDB Data Format Description

kubectl cp ./prometheus-backup cpaas-system/prometheus-kube-prometheus-0-

0:/prometheus/

kubectl exec -it -n cpaas-system prometheus-kube-prometheus-0-0 -c prometheus sh

mv /prometheus/prometheus-backup/* /prometheus/

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

Backup data does not include the cached data at the time of backup

It is recommended to perform data backups regularly

When using PV storage, it is advisable to set the persistentVolumeReclaimPolicy to

Retain

Verify whether the monitoring data has been correctly restored

Regularly schedule data backup plans

If using the snapshot backup method, you may opt to disable the Admin API

Data Backup Considerations

Next Procedures

├── 01FXP317QBANGAX1XQAXCJK9DB

│ ├── chunks

│ │ └── 000001

│ ├── index

│ ├── meta.json

│ └── tombstones

├── chunks_head

│ ├── 000022

│ └── 000023

├── queries.active

└── wal

 ├── 00000020

 ├── 00000021

 ├── 00000022

 ├── 00000023

 └── checkpoint.00000019

 └── 00000000

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

Function Overview

Use Cases

Prerequisites

Procedures

1. Confirm Storage Path

2. Execute Data Backup

3. Execute Data Recovery

Operation Result

Learn More

Follow-up Actions

The backup and recovery feature for VictoriaMetrics monitoring data allows you to perform

regular backups of monitoring data and recover data when necessary, ensuring the safety and

availability of monitoring data.

VictoriaMetrics Backup and Recovery of
Monitoring Data

TOC

Function Overview

Use Cases

Menu ON THIS PAGE

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Regularly backing up monitoring data to prevent data loss

Data migration during system migration

Disaster recovery

Reconstructing test environment data

The ACP Monitoring with VictoriaMetrics plugin has been installed in the cluster

Ensure there is sufficient storage space for backups

Have access to the VictoriaMetrics storage path

The monitoring data of VictoriaMetrics is stored in the specified path of the container, which is

indicated by the -storageDataPath parameter, defaulting to /vm-data .

Configuration example:

Note: The name of the computing component in the ACP Monitoring with VictoriaMetrics

plugin is vmstorage-cluster , and its type is StatefulSet .

Prerequisites

Procedures

1. Confirm Storage Path

2. Execute Data Backup

spec:

 template:

 spec:

 containers:

 - args:

 - '-storageDataPath=/vm-data'

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Use vmbackup tool to perform data backup; please refer to the vmbackup official

documentation for detailed operations.

Use vmrestore tool to restore backup data; please refer to the vmrestore official

documentation for detailed operations.

After completing the backup, you will receive a complete backup file of the monitoring data.

After executing the recovery operation, your monitoring data will be restored to the state it was

in at the time of backup.

VictoriaMetrics official documentation

Best Practices for Data Backup

Troubleshooting Data Recovery

Verify the integrity of the backup data

Set up a regular backup schedule

Periodically test the recovery process

Monitor the execution status of backup tasks

↗

3. Execute Data Recovery

↗

Operation Result

Learn More

↗

↗

↗

Follow-up Actions

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmrestore.html#troubleshooting
https://docs.victoriametrics.com/vmrestore.html#troubleshooting
https://docs.victoriametrics.com/vmrestore.html#troubleshooting

Function Overview

Use Case

Prerequisites

Procedures to Operate

Operation Results

Learn More

Subsequent Actions

The platform supports collecting network data from custom-named network interfaces by

modifying the configuration of the monitoring component, enabling you to view the network

traffic information for these interfaces on the monitoring page.

This is applicable when your nodes use custom-named network interfaces (not following the

eth.|en.|wl.*|ww.* naming conventions) and require monitoring of these interfaces' network

Collect Network Data from Custom-Named
Network Interfaces

TOC

Function Overview

Use Case

Menu ON THIS PAGE

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

traffic data in the platform.

A workload cluster has been created

You have platform administrator permissions

The naming conventions for the custom network interfaces are known

1. Click the CLI tool icon in the top navigation bar of the platform.

2. Click global.

3. In the global cluster, find the moduleinfo resource name corresponding to your workload

cluster:

Example output:

4. Edit the moduleinfo resource of the workload cluster:

5. Add or modify the valuesOverride field:

Prerequisites

Procedures to Operate

kubectl get moduleinfo | grep -E 'prometheus|victoriametrics'

global-6448ef7f7e5e3924c1629fad826372e7 global prometheus prometheus

Running v3.15.0-zz231204040711-9d1fc12474c2 v3.15.0-zz231204040711-9d1fc12474c2

v3.15.0-zz231204040711-9d1fc12474c2

ovn-0954f21f0359720e8c115804376b3e7e ovn prometheus prometheus

Running v3.15.0-zz231204040711-9d1fc12474c2 v3.15.0-zz231204040711-9d1fc12474c2

v3.15.0-zz231204040711-9d1fc12474c2

kubectl edit moduleinfo <moduleinfo resource name of the workload cluster>

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

6. After waiting for 10 minutes, check the network-related charts on the node's monitoring

page to ensure the changes have taken effect.

Once the configuration is effective, you can view the following data of the custom-named

network interfaces on the platform's monitoring page:

Network traffic data

Network throughput

Network packet statistics

For more information on network monitoring, please refer to the Monitoring Architecture

Documentation

Monitor the performance metrics of the custom network interfaces

Set alert rules based on the monitoring data

Operation Results

Learn More

Subsequent Actions

spec:

 valuesOverride:# If this field does not exist, you need to add the valuesOverride

field under spec along with the parameters below

 ait/chart-cpaas-monitor:

 global:

 indicator:

 networkDevice: eth.*|em.*|en.*|wl.*|ww.*|[A-Z].*i|custom_interface # Replace

custom_interface with the custom regular expression to ensure correct matching of the

network interface name

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

Distributed Tracing

Introduction

Introduction

Usage Limitations

Install

Install

Installing the Jaeger Operator

Deploying a Jaeger Instance

Installing the OpenTelemetry Operator

Deploying OpenTelemetry Instances

Enable Feature Switch

Uninstall Tracing

Architecture

Architecture
Core Components

Data Flow

Menu

Distributed Tracing - Alauda Container Platform

Concepts

Concepts
Telemetry

OpenTelemetry

Span

Trace

Instrumentation

OpenTelemetry Collector

Jaeger

Guides

Query Tracing

Feature Overview

Main Features

Feature Advantages

Tracing Query

Query Result Analysis

Query Trace Logs

Feature Overview

Core Features

Prerequisites

Log Query Operations

Distributed Tracing - Alauda Container Platform

How To

Non-Intrusive Integration of Tracing in Java Applications
Feature Overview

Use Cases

Prerequisites

Steps to Operate

Operation Results

Business Log Associated with the TraceID

Background

Adding TraceID to Java Application Logs

Adding TraceID to Python Application Logs

Verification Method

Troubleshooting

Unable to Query the Required Tracing

Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Distributed Tracing - Alauda Container Platform

Incomplete Tracing Data
Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Distributed Tracing - Alauda Container Platform

The Distributed Tracing module is a core component of the ACP platform's observability suite

that provides end-to-end request tracking and analysis capabilities for distributed

microservices architectures.

This module delivers four essential tracing capabilities:

Trace collection for automated gathering of distributed request data through

OpenTelemetry automatic injection or SDK integration

Trace storage for scalable persistence of tracing data using Elasticsearch as the backend

storage

Trace visualization for multi-dimensional analysis through customized UI dashboards and

service dependency mapping

Trace querying for precise search and filtering using TraceID, service names, tags, and

other rich search conditions

By integrating these capabilities with OpenTelemetry standards and open-source components,

it enables organizations to quickly locate service anomalies, analyze performance

bottlenecks, trace complete request lifecycles, and optimize distributed system performance

across their microservices architecture.

Usage Limitations

Introduction

TOC

Menu ON THIS PAGE

Introduction - Alauda Container Platform

When using tracing, the following constraints should be noted:

Balancing Sampling Strategies and Performance

In high-load scenarios, the collection of tracing data may exert certain pressure on

Elasticsearch's performance and storage; it is recommended to configure the sampling

rate reasonably based on business conditions.

Usage Limitations

Introduction - Alauda Container Platform

WARNING

This deployment document is only applicable to scenarios involving the integration of the
container platform with the tracing system.

The Tracing component and the Service Mesh component are mutually exclusive. If you have

already deployed the Service Mesh component, please uninstall it first.

This guide provides cluster administrators with the process of installing the tracing system on

the Alauda Container Platform cluster.

Prerequisites:

You have access to the Alauda Container Platform cluster with an account that has

platform-admin-system permissions.

You have the kubectl CLI installed.

The Elasticsearch component is set up to store tracing data, including the access URL

and Basic Auth information.

Installing the Jaeger Operator

Install the Jaeger Operator using the Web Console

Deploying a Jaeger Instance

Installing the OpenTelemetry Operator

Install the OpenTelemetry Operator using the Web Console

Deploying OpenTelemetry Instances

Install

TOC

Menu ON THIS PAGE

Install - Alauda Container Platform

Enable Feature Switch

Uninstall Tracing

Deleting OpenTelemetry Instance

Uninstalling OpenTelemetry Operator

Deleting Jaeger Instance

Uninstalling Jaeger Operator

You can install the Jaeger Operator from the Alauda Container Platform Marketplace →

OperatorHub section where the available Operators are listed.

Steps

In the Administrator view of the Web Console, select the cluster where you want to

deploy the Jaeger Operator, then navigate to Marketplace → OperatorHub.

Use the search box to search for Alauda build of Jaeger in the catalog. Click on the

Alauda build of Jaeger title.

Read the introductory information about the Operator on the Alauda build of Jaeger page.

Click Install.

On the Install page:

Select Manual for the Upgrade Strategy. For the Manual approval strategy, OLM will

create update requests. As a cluster administrator, you must manually approve the OLM

update requests to upgrade the Operator to the new version.

Select the stable (Default) channel.

Choose Recommended for Installation Location. Install the Operator in the

recommended jaeger-operator namespace, so the Operator can monitor and be

available in all namespaces within the cluster.

Installing the Jaeger Operator

Install the Jaeger Operator using the Web Console

Install - Alauda Container Platform

Click Install.

Verify that the Status displays as Succeeded to confirm the Jaeger Operator was installed

correctly.

Check that all components of the Jaeger Operator were successfully installed. Log into the

cluster via terminal, and run the following command:

Example output

If the PHASE field shows Succeeded , it means the Operator and its components were

installed successfully.

A Jaeger instance and its related resources can be installed with the install-jaeger.sh script,

which takes three parameters:

--es-url : The access URL for Elasticsearch.

--es-user-base64 : The Basic Auth username for Elasticsearch, encoded in base64.

--es-pass-base64 : The Basic Auth password for Elasticsearch, encoded in base64.

Copy the installation script from DETAILS, log into the cluster where you want to install it,

save it as install-jaeger.sh , and execute it after granting execute permissions:

DETAILS

Script execution example:

Deploying a Jaeger Instance

kubectl -n jaeger-operator get csv

NAME DISPLAY VERSION REPLACES PHASE

jaeger-operator.vx.x.0 Jaeger Operator x.x.0 Succeeded

Install - Alauda Container Platform

Script output example:

You can install the OpenTelemetry Operator from the Alauda Container Platform Marketplace
→ OperatorHub section where the available Operators are listed.

Steps

In the Administrator view of the Web Console, select the cluster where you want to

deploy the OpenTelemetry Operator, then navigate to Marketplace → OperatorHub.

Installing the OpenTelemetry Operator

Install the OpenTelemetry Operator using the Web
Console

./install-jaeger.sh --es-url='https://xxx' --es-user-base64='xxx' --es-pass-base64='xxx'

CLUSTER_NAME: <cluster>

ES_URL: https://xxx

ES_USER_BASE64: xxx

ES_PASS_BASE64: xxx

TARGET_NAMESPACE: cpaas-system

JAEGER_INSTANCE_NAME: jaeger-prod

JAEGER_BASEPATH_SUFFIX: /acp/jaeger

JAEGER_ES_INDEX_PREFIX: acp-tracing-<cluster>

PLATFORM_URL: https://xxx

configmap/jaeger-prod-oauth2-proxy created

secret/jaeger-prod-oauth2-proxy created

secret/jaeger-prod-es-basic-auth created

serviceaccount/jaeger-prod-sa created

role.rbac.authorization.k8s.io/jaeger-prod-role created

rolebinding.rbac.authorization.k8s.io/jaeger-prod-rb created

jaeger.jaegertracing.io/jaeger-prod created

podmonitor.monitoring.coreos.com/jaeger-prod-monitor created

ingress.networking.k8s.io/jaeger-prod-query created

Jaeger UI access address: <platform-url>/clusters/<cluster>/acp/jaeger

Jaeger installation completed

Install - Alauda Container Platform

Use the search box to search for Alauda build of OpenTelemetry in the catalog. Click on the

Alauda build of OpenTelemetry title.

Read the introductory information about the Operator on the Alauda build of

OpenTelemetry page. Click Install.

On the Install page:

Select Manual for the Upgrade Strategy. For the Manual approval strategy, OLM will

create update requests. As a cluster administrator, you must manually approve the OLM

update requests to upgrade the Operator to the new version.

Select the alpha (Default) channel.

Choose Recommended for Installation Location. Install the Operator in the

recommended opentelemetry-operator namespace, so the Operator can monitor and be

available in all namespaces within the cluster.

Click Install.

Verify that the Status displays as Succeeded to confirm the OpenTelemetry Operator was

installed correctly.

Check that all components of the OpenTelemetry Operator were successfully installed. Log

into the cluster via terminal, and run the following command:

Example output

If the PHASE field shows Succeeded , it means the Operator and its components were

installed successfully.

Deploying OpenTelemetry Instances

kubectl -n opentelemetry-operator get csv

NAME DISPLAY VERSION REPLACES PHASE

openTelemetry-operator.vx.x.0 OpenTelemetry Operator x.x.0

Succeeded

Install - Alauda Container Platform

OpenTelemetry instances and their related resources can be installed using the install-

otel.sh script.

Copy the installation script from DETAILS, log into the cluster where you want to install it,

save it as install-otel.sh , and execute it after granting execute permissions:

DETAILS

Script execution example:

Script output example:

The tracing system is currently in the Alpha phase and requires you to manually enable the

acp-tracing-ui feature switch in the Feature Switch view.

Then, navigate to the Container Platform view, and go to Observability → Tracing, to view

the tracing feature.

Enable Feature Switch

Uninstall Tracing

./install-otel.sh

CLUSTER_NAME: cluster-xxx

serviceaccount/otel-collector created

clusterrolebinding.rbac.authorization.k8s.io/otel-collector:cpaas-system:cluster-admin

created

opentelemetrycollector.opentelemetry.io/otel created

instrumentation.opentelemetry.io/acp-common-java created

servicemonitor.monitoring.coreos.com/otel-collector-monitoring created

servicemonitor.monitoring.coreos.com/otel-collector created

OpenTelemetry installation completed

Install - Alauda Container Platform

Log into the installed cluster and execute the following commands to delete the

OpenTelemetry instance and its related resources.

You can uninstall the OpenTelemetry Operator using the Administrator view in the Web

Console.

Steps

From Marketplace → OperatorHub → use the search box to search for Alauda build of

OpenTelemetry .

Click on the Alauda build of OpenTelemetry title to enter its details.

On the Alauda build of OpenTelemetry details page, click the Uninstall button in the

upper right corner.

In the Uninstall "opentelemetry-operator"? window, click Uninstall.

Log into the installed cluster and execute the following commands to delete the Jaeger

instance and its related resources.

Deleting OpenTelemetry Instance

Uninstalling OpenTelemetry Operator

Deleting Jaeger Instance

kubectl -n cpaas-system delete servicemonitor otel-collector-monitoring

kubectl -n cpaas-system delete servicemonitor otel-collector

kubectl -n cpaas-system delete instrumentation acp-common-java

kubectl -n cpaas-system delete opentelemetrycollector otel

kubectl delete clusterrolebinding otel-collector:cpaas-system:cluster-admin

kubectl -n cpaas-system delete serviceaccount otel-collector

Install - Alauda Container Platform

You can uninstall the Jaeger Operator using the Administrator view in the Web Console.

Steps

From Marketplace → OperatorHub → use the search box to search for Alauda build of

Jaeger .

Click on the Alauda build of Jaeger title to enter its details.

On the Alauda build of Jaeger details page, click the Uninstall button in the upper right

corner.

In the Uninstall "jaeger-operator"? window, click Uninstall.

Uninstalling Jaeger Operator

kubectl -n cpaas-system delete ingress jaeger-prod-query

kubectl -n cpaas-system delete podmonitor jaeger-prod-monitor

kubectl -n cpaas-system delete jaeger jaeger-prod

kubectl -n cpaas-system delete rolebinding jaeger-prod-rb

kubectl -n cpaas-system delete role jaeger-prod-role

kubectl -n cpaas-system delete serviceaccount jaeger-prod-sa

kubectl -n cpaas-system delete secret jaeger-prod-oauth2-proxy

kubectl -n cpaas-system delete secret jaeger-prod-es-basic-auth

kubectl -n cpaas-system delete configmap jaeger-prod-oauth2-proxy

Install - Alauda Container Platform

This architecture is built on the OpenTelemetry and Jaeger technology stack, achieving the full

lifecycle management of distributed tracing. The system comprises five core modules: data

collection, transmission, storage, querying, and visualization.

Core Components

Architecture

TOC

Menu ON THIS PAGE

Architecture - Alauda Container Platform

Data Flow

1. OpenTelemetry System

opentelemetry-operator

A cluster-level Operator responsible for deploying and managing the otel-collector

component, providing OTel automatic injection capability.

otel-collector

Receives tracing data from applications, filters and batches it, and then forwards it to the

jaeger-collector.

Tracing UI

A self-developed visualization interface that integrates with the jaeger-query API,

supporting multi-dimensional query conditions.

2. Jaeger System

jaeger-operator

Deploys and manages the jaeger-collector and jaeger-query components.

jaeger-collector

Receives tracing data forwarded and processed by the otel-collector, performs format

conversion, and writes it to Elasticsearch.

jaeger-query

Provides a tracing query API, supporting multi-condition retrieval including TraceID and

labels.

3. Storage Layer

Elasticsearch

A distributed storage engine that supports efficient writing and retrieval of massive Span

data.

Core Components

Architecture - Alauda Container Platform

Writing Process

Application -> otel-collector -> jaeger-collector -> Elasticsearch

The application generates Span data via SDK or automatic injection, which is standardized

by the otel-collector and subsequently persisted to Elasticsearch by the jaeger-collector.

Query Process

User -> Tracing UI -> jaeger-query -> Elasticsearch

The user submits query conditions through the UI, and jaeger-query retrieves data from

Elasticsearch; the UI visualizes the results based on the return data.

Data Flow

Architecture - Alauda Container Platform

Telemetry

OpenTelemetry

Span

Trace

Instrumentation

OpenTelemetry Collector

Jaeger

Telemetry refers to the data emitted by systems and their behaviors, including traces, metrics,

and logs.

OpenTelemetry is an observability framework and toolkit designed to create and manage

telemetry data such as traces , metrics , and logs . Importantly, OpenTelemetry is vendor-

agnostic, meaning it can work with various observability backends, including open-source

tools like Jaeger and Prometheus as well as commercial products.

Concepts

TOC

Telemetry

OpenTelemetry

↗

↗ ↗ ↗

↗ ↗

Menu ON THIS PAGE

Concepts - Alauda Container Platform

https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/

Span is the fundamental building block of distributed tracing, representing a specific operation

or work unit. Each span records specific actions within a request, helping us understand the

details of what occurred during the operation's execution.

A span contains a name, time-related data, structured log messages, and other metadata

(attributes) that collectively illustrate the complete picture of the operation.

Trace records the path of a request (whether from an application or end-user) as it

propagates through a multi-service architecture (such as microservices and serverless

applications).

A trace consists of one or more spans. The first span is known as the root span, which

represents the entire lifecycle of a request from start to finish. Child spans beneath the root

span provide more detailed contextual information about the request process (or the various

steps that constitute the request).

Without traces, identifying the root cause of performance issues in distributed systems would

be quite challenging. Traces make it easier to debug and understand distributed systems by

breaking down the flow of requests through them.

To enable observability, a system needs to undergo Instrumentation: that is, the component

code of the system must emit traces , metrics , and logs .

With OpenTelemetry, you can instrument your code in two primary ways:

1. Code-based solutions : Using the official APIs and SDKs for most languages

2. Zero-instrumentation solutions

Span

Trace

Instrumentation

↗ ↗ ↗

↗ ↗

↗

Concepts - Alauda Container Platform

https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/

Code-based solutions provide deeper insights and richer telemetry data from within your

application. You can generate telemetry data in your application using the OpenTelemetry API,

which is an important complement to the telemetry data generated by zero-instrumentation

solutions.

Zero-instrumentation solutions are great for quickly getting started or when you cannot

modify the application from which you need telemetry data. They can provide rich telemetry

data via the libraries or runtime environment you are using. Another way to understand them

is that they deliver information about events occurring at the boundaries (Edges) of the

application.

These two solutions can be used simultaneously.

OpenTelemetry Collector is a vendor-agnostic agent that can receive, process, and export

telemetry data. It supports receiving telemetry data in various formats (such as OTLP, Jaeger,

Prometheus, and many commercial/proprietary tools) and sending that data to one or more

backends. It also supports processing and filtering telemetry data before exporting.

For more information, see Collector .

Jaeger is an open-source distributed tracing system. It is designed to monitor and diagnose

complex distributed systems based on microservices architecture, helping developers

visualize request traces, analyze performance bottlenecks, and troubleshoot anomalies.

Jaeger is compatible with the OpenTracing standard (now part of OpenTelemetry), supports

multiple programming languages and storage backends, and is a key observability tool in the

cloud-native space.

OpenTelemetry Collector

↗

Jaeger

Concepts - Alauda Container Platform

https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/

Guides

Query Tracing

Feature Overview

Main Features

Feature Advantages

Tracing Query

Query Result Analysis

Query Trace Logs
Feature Overview

Core Features

Prerequisites

Log Query Operations

Menu

Guides - Alauda Container Platform

Feature Overview

Main Features

Feature Advantages

Tracing Query

Step 1: Combine Query Conditions

Step 2: Execute Query

Query Result Analysis

Span List

Time-Series Waterfall Chart

Span Details

The distributed tracing query feature provides full-link tracing capabilities for microservices

architecture by collecting metadata information of inter-service calls, helping users quickly

locate cross-service call issues. This feature mainly addresses the following problems:

Request Link Tracing: Restoring the complete request path in complex distributed

systems.

Performance Bottleneck Analysis: Identifying abnormal call nodes in terms of time

consumption within the link.

Query Tracing

TOC

Feature Overview

Menu ON THIS PAGE

Query Tracing - Alauda Container Platform

Fault Root Cause Location: Quickly locating the point of issue occurrence through error

marking.

Applicable scenarios include:

Rapidly locating abnormal services during production environment fault troubleshooting.

Identifying high-latency call links during performance tuning.

Validating inter-service call relationships after a new version release.

Core values:

Enhancing observability of distributed systems.

Reducing Mean Time to Recovery (MTTR).

Optimizing inter-service call performance.

Multi-dimensional Querying: Supports 6 combinations of query conditions such as TraceID,

service name, labels, etc.

Visual Analysis: Intuitively displays call hierarchy and time distribution through time-series

waterfall charts.

Precise Location: Supports error Span filtering and secondary searches with labels.

Quick Problem Identification: Narrowing down the inspection range through multi-

dimensional query conditions accelerates problem location.

Visual Presentation: Using time-series waterfall charts to intuitively display call

relationships reduces complexity and enhances fault analysis efficiency.

Flexibility and Variety: Supports both simple queries and complex combinations, adapting

to various operation and development scenarios.

Main Features

Feature Advantages

Query Tracing - Alauda Container Platform

Tip: Query conditions can be combined for use. You can refine your query by adding

multiple query conditions.

Query

Condition
Description

TraceID
The unique identifier for the complete link, which can be used to

query the specified tracing.

Service
The service that initiates/receives the call request (needs to be

selected or input).

Label
You can filter the query results by entering labels (Tag),

supported Tags include those in the Span details.

Span

Duration

Greater Than

Spans that have a duration greater than or equal to input value

(ms).

Only Search

Error Spans
Error Spans refer to Spans whose Tag value of error is true .

Span Type

Root Span: Searches for root Spans initiated by the configured

service. This search mode is used when the configured service

is the initiator of the entire call request.

Service Entry Span: Searches for the first Span generated

when the configured service is called as a server.

Tracing Query

Step 1: Combine Query Conditions1

Query Tracing - Alauda Container Platform

Query

Condition
Description

Maximum

Query Count

The maximum number of Spans that can be queried, with a

default of 200.

Tip: For performance reasons, the platform can display a

maximum of 1000 Spans at a time. If the number of Spans that

meet the query conditions exceeds the maximum query count,

you can refine the query conditions or narrow the time range for

phased queries.

Once you select the query conditions and enter the respective values, click the Add

to Query Conditions button, and the current conditions will be displayed in the

Query Conditions result area, triggering the query.

You can also expand Common Query Conditions to quickly add recently used

search conditions.

After entering the query conditions and searching, a query results area will be generated on

the page.

The left side of the query results area displays a list of Spans that meet the conditions along

with basic information about the Spans, including: service name, called interface or request

processing method, duration, and start time.

The time-series waterfall chart on the right side of the query results area clearly displays the

call relationships between Spans in a single tracing. The main features of using time-series

Step 2: Execute Query2

Query Result Analysis

Span List

Time-Series Waterfall Chart

Query Tracing - Alauda Container Platform

waterfall charts in tracing analysis are as follows:

1. Top-to-bottom expansion: In the time-series waterfall chart, various call events (Spans)

typically expand downwards from the top of the chart, with each horizontal bar representing

a service call or process. The position generally reflects the logical calling order of

operations.

2. Time axis alignment: The horizontal axis of the time-series waterfall chart represents time.

The length of each bar indicates the duration of that call, allowing for an intuitive

comparison of the time relationships between different calls.

3. Indentation description: Indentation indicates the hierarchical relationship of calls, with

deeper indentation denoting greater call depth within that link.

4. Interactivity and detailed data display: Clicking on the bars in the time-series waterfall chart

can display more detailed information about that call.

By clicking on the row of the Span in the time-series waterfall chart, you can expand and view

detailed information about the Span, including:

Service: The service within the Span.

Span Duration (ms): The duration of the Span.

URL: The URL accessed by the service, corresponding to http.url in Span Tags.

Tag: The label information of the Span composed of key-value pairs, which can be used for

advanced search tag query conditions. By clicking the button next to the tag, you can add

the current Tag condition to the query conditions for more precise query results.

JSON: The original JSON structure of the Span, allowing for further inspection of its

internal information.

Span Details

Query Tracing - Alauda Container Platform

Feature Overview

Core Features

Prerequisites

Log Query Operations

Access Trace Logs

Filter Logs

By Pod Name

By Time Range

By Query Conditions

Contain Trace ID

Advanced Operations

Export Logs

Customize Display Fields

View Log Context

Trace Logs enable users to query and analyze logs associated with a specific distributed trace

using its unique TraceID. This feature helps developers and operators quickly locate issues,

understand request flows, and correlate business logs with trace contexts.

Query Trace Logs

TOC

Feature Overview

Menu ON THIS PAGE

Query Trace Logs - Alauda Container Platform

Key Benefits:

Root Cause Analysis: Identify errors and latency issues across microservices in

distributed systems.

Context Correlation: Link business logs to trace spans for end-to-end visibility.

Efficient Filtering: Filter logs by Pods or TraceID to focus on relevant data.

Applicable Scenarios:

Debugging cross-service transaction failures.

Analyzing performance bottlenecks in complex workflows.

Auditing request processing flows for compliance.

TraceID-Based Query: Retrieve all logs associated with a specific trace using its TraceID.

Pod-Centric Filtering: View logs from specific Pods involved in the trace.

Log Export: Export filtered log data in customizable formats.

Contextual Log Viewing: Examine log records before/after a target entry for deeper

analysis.

TIP

Before querying trace logs by TraceID, you must first instrument your services to include TraceID in

business logs. Follow the Business Log Correlation with TraceID Guide for configuration details.

Default Behavior:

Displays logs from the entire trace duration.

For traces shorter than 1 minute, queries logs within 1 minute after the trace start time.

Core Features

Prerequisites

Query Trace Logs - Alauda Container Platform

1. After querying traces, click on a specific trace to view its details.

2. Click the View Log tab in the trace visualization panel.

In the Pod Name selector, choose target Pod from the participating services list.

In the Time Range selector, choose target time range.

Enter keywords in the Query Conditions text box to filter logs based on specific

content.

Select the Contain Trace ID checkbox.

1. Click Export.

2. Select fields to include using column checkboxes.

3. Choose export format (JSON/CSV).

Log Query Operations

Access Trace Logs1

Filter Logs2

By Pod Name

By Time Range

By Query Conditions

Contain Trace ID

Advanced Operations3

Export Logs

Customize Display Fields

Query Trace Logs - Alauda Container Platform

Click Set. Toggle visibility of log fields in the display panel.

1. Click Insight next to any log entry.

2. Explore 5 preceding and succeeding logs around the target timestamp.

3. Scroll up/down with mouse to load more logs.

View Log Context

Query Trace Logs - Alauda Container Platform

How To

Non-Intrusive Integration of Tracing in Java Applications

Feature Overview

Use Cases

Prerequisites

Steps to Operate

Operation Results

Business Log Associated with the TraceID
Background

Adding TraceID to Java Application Logs

Adding TraceID to Python Application Logs

Verification Method

Menu

How To - Alauda Container Platform

INFO

The automatically injected OpenTelemetry Java Agent supports Java 8+ versions.

Feature Overview

Use Cases

Prerequisites

Steps to Operate

Operation Results

Tracing is a core capability of observability in distributed systems, which can fully record the

call paths and performance data of requests within the system. This article describes how to

achieve non-intrusive integration of tracing in Java applications using the automatic injection

of the OpenTelemetry Java Agent.

Non-Intrusive Integration of Tracing in Java
Applications

↗

TOC

Feature Overview

Use Cases

Menu ON THIS PAGE

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation

Java applications can be integrated for the following scenarios:

Quickly adding tracing capabilities to Java applications

Avoiding modifications to the application source code

Deploying services with Kubernetes

Visualizing service inter-call relationships and analyzing performance bottlenecks

Before using this feature, ensure that:

The target service is deployed on the Alauda Container Platform

The service is using JDK version Java 8 or higher

You have editing permissions for the Deployment in the target namespace

The platform has completed tracing deployment

For a Java application that needs to be integrated into the Alauda Container Platform tracing,

the following adaptations are required:

Configure automatic injection annotations for the Java Deployment.

Set the SERVICE_NAME environment variable.

Set the SERVICE_NAMESPACE environment variable.

Example of Deployment adaptation:

Prerequisites

Steps to Operate

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

1. Choose cpaas-system/acp-common-java Instrumentation as the configuration for injecting the

Java Agent.

2. Configure the SERVICE_NAME environment variable, which can be associated through labels

or fixed values.

3. Configure the SERVICE_NAMESPACE environment variable, with its value as

metadata.namespace .

After adapting the Java application:

If the newly started Java application pod contains the opentelemetry-auto-instrumentation-

java init container, it indicates that the injection was successful.

Operation Results

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-java-deploy

spec:

 template:

 metadata:

 annotations:

 instrumentation.opentelemetry.io/inject-java: cpaas-system/acp-common-java 1

 labels:

 app.kubernetes.io/name: my-java-app

 spec:

 containers:

 - env:

 - name: SERVICE_NAME 2

 valueFrom:

 fieldRef:

 apiVersion: v1

 fieldPath: metadata.labels['app.kubernetes.io/name']

 - name: SERVICE_NAMESPACE 3

 valueFrom:

 fieldRef:

 apiVersion: v1

 fieldPath: metadata.namespace

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

Send test requests to the Java application.

In the Container Platform view, select the project, cluster, and namespace where the

Java application resides.

Navigate to the Observability -> Tracing page to view the tracing data and timeline

waterfall diagram of the Java application.

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

TIP

This article will guide developers on how to integrate methods for getting TraceID and adding
TraceID to application logs in the application code, suitable for backend developers with some

development experience.

Background

Adding TraceID to Java Application Logs

Adding TraceID to Python Application Logs

Verification Method

To correctly associate multiple automatically sent spans (different modules/nodes/services

called during a single request) into a single trace, the service's HTTP request headers will

include TraceID and other information used for associating the trace.

A trace represents the call process of a single request, and TraceID is the unique ID

identifying this request. With the TraceID in the logs, the traceing can be associated with

the application logs.

Business Log Associated with the TraceID

TOC

Background

Menu ON THIS PAGE

Business Log Associated with the TraceID - Alauda Container Platform

Based on the above background, this article will explain how to obtain the TraceID from the

HTTP request headers and add it to application logs, allowing you to accurately query log data

on the platform using TraceID.

TIP

The following examples are based on the Spring Boot framework and use Log4j and Logback

for illustration.

Your application must meet the following prerequisites:

The type and version of the logging library must meet the following requirements:

Logging Library Version Requirement

Log4j 1 1.2+

Log4j 2 2.7+

Logback 1.0+

The application has been injected with a Java Agent.

Method 1: Configure logging.pattern.level

Modify the logging.pattern.level parameter in your application configuration as follows:

Method 2: Configure CONSOLE_LOG_PATTERN

1. Modify the logback configuration file as follows.

TIP

Adding TraceID to Java Application Logs

logging.pattern.level = trace_id=%mdc{trace_id}

Business Log Associated with the TraceID - Alauda Container Platform

The console output is used as an example here, where %X{trace_id} indicates the value of the

key trace_id retrieved from MDC.

2. In the class where logs need to be output, add the @Slf4j annotation and use the log

object to output logs, as shown below:

1. In the application code, add the following code to retrieve the TraceID from the request

headers. The example code is as follows and can be adjusted as needed:

TIP

The getForwardHeaders function retrieves trace information from the request headers, where

the value of x-b3-traceid is the TraceID.

Adding TraceID to Python Application Logs

<property name="CONSOLE_LOG_PATTERN"

 value="${CONSOLE_LOG_PATTERN:-%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint}

[trace_id=%X{trace_id}] %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta}

%clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint}

%m%n${LOG_EXCEPTION_CONVERSION_WORD:-%wEx}}"/>

@RestController

@Slf4j

public class ProviderController {

 @GetMapping("/hello")

 public String hello(HttpServletRequest request) {

 log.info("request /hello");

 return "hello world";

 }

}

Business Log Associated with the TraceID - Alauda Container Platform

2. In the application code, add the following code to include the retrieved TraceID in the logs.

The example code is as follows and can be adjusted as needed:

1. Click on Tracing in the left navigation bar.

2. In the query criteria, select TraceID, enter the TraceID to query, and click Add to query.

3. In the displayed trace data below, click View Log next to the TraceID.

4. On the Log Query page, check Contain Trace ID; the system will only display log data

containing the TraceID.

Verification Method

 def getForwardHeaders(request):

 headers = {}

 incoming_headers = [

 'x-request-id', # All applications should pass x-request-id for access

logs and consistent tracing/log sampling decisions

 'x-b3-traceid', # B3 trace header, compatible with Zipkin,

OpenCensusAgent, and Stackdriver configurations

 'x-b3-spanid',

 'x-b3-parentspanid',

 'x-b3-sampled',

 'x-b3-flags',

]

 for ihdr in incoming_headers:

 val = request.headers.get(ihdr)

 if val is not None:

 headers[ihdr] = val

 return headers

headers = getForwardHeaders(request)

tracing_section = ' [%(x-b3-traceid)s,%(x-b3-spanid)s] ' % headers

logging.info(tracing_section + "Oops, unexpected error happens.")

Business Log Associated with the TraceID - Alauda Container Platform

Troubleshooting

Unable to Query the Required Tracing

Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Incomplete Tracing Data

Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Menu

Troubleshooting - Alauda Container Platform

Problem Description

Root Cause Analysis

1. Tracing Sampling Rate Configured Too Low

2. Elasticsearch Real-Time Limitations

Solution for Root Cause 1

Solution for Root Cause 2

When querying the tracing in a service mesh, you may encounter situations where the target

tracing cannot be retrieved.

When the sampling rate parameter for the tracing is set too low, the system will only collect

tracing data proportionally. During times of insufficient request volume or low-peak periods,

this may lead to the sampled data being below the visibility threshold.

Unable to Query the Required Tracing

TOC

Problem Description

Root Cause Analysis

1. Tracing Sampling Rate Configured Too Low

Menu ON THIS PAGE

Unable to Query the Required Tracing - Alauda Container Platform

The default configuration for Elasticsearch index is "refresh_interval": "10s" , which results

in a delay of 10 seconds before data is refreshed from the memory buffer to a searchable

state. When querying recently generated tracing, the results may be missing because the data

has not yet been persisted.

This index configuration can effectively reduce the data merge pressure on Elasticsearch,

improving indexing speed and the speed of the first query, but it also reduces the real-time

nature of the data to some extent.

Appropriately increase the sampling rate according to requirements.

Use richer sampling methods, such as tail sampling.

Adjust the refresh interval through the --es.asm.index-refresh-interval startup parameter of

jaeger-collector , with a default value of 10s .

If the value of this parameter is "null" , there will be no configuration for the index's

refresh_interval .

Note: Setting it to "null" will affect the performance and query speed of Elasticsearch.

2. Elasticsearch Real-Time Limitations

Solution for Root Cause 1

Solution for Root Cause 2

Unable to Query the Required Tracing - Alauda Container Platform

Problem Description

Root Cause Analysis

1. Data Persistence Delay

2. Time Range Limitation

Solution for Root Cause 1

Solution for Root Cause 2

The tracing query results exhibit the following issues of incomplete data:

Recent queries (within the last 30 minutes) are missing some spans.

Tracing older than 1 hour are experiencing disconnections.

The writing process in Elasticsearch requires a sequence of steps involving memory buffer →

translog → segment files, which can result in visibility delays for the most recently written

Incomplete Tracing Data

TOC

Problem Description

Root Cause Analysis

1. Data Persistence Delay

Menu ON THIS PAGE

Incomplete Tracing Data - Alauda Container Platform

data.

By default, when jaeger-query queries spans corresponding to tracing, the time range

extends one hour before and after the start time of the span.

For instance, if a span starts at 08:12:30 and ends at 08:12:32 , the time range for querying

that tracing would be from 07:12:30 to 09:12:32 .

Therefore, if the tracing spans over 1 hour, querying through this span may not yield a

complete tracing.

Wait a moment and refresh the page to try the query again.

If the tracing span in your environment is lengthy, you can adjust the query time range for a

single tracing using the --es.asm.span-trace-query-time-adjustment-hours startup parameter in

jaeger-query .

The default value of this parameter is 1 hour, and you can increase this value as needed.

2. Time Range Limitation

Solution for Root Cause 1

Solution for Root Cause 2

Incomplete Tracing Data - Alauda Container Platform

Logs

Introduction

Introduction

Install

Install
Installation Planning

Install Alauda Container Platform Log Storage with ElasticSearch via console

Install Alauda Container Platform Log Storage with ElasticSearch via YAML

Install Alauda Container Platform Log Storage with Clickhouse via console

Install Alauda Container Platform Log Storage with Clickhouse via YAML

Install Alauda Container Platform Log Collector Plugin

Install Alauda Container Platform Log Collector Plugin via YAML

Architecture

Menu

Logs - Alauda Container Platform

Log Module Architecture
Overall Architecture Description

Log Collection

Log Consumption and Storage

Log Visualization

Log Component Selection Guide
Architecture Comparison

Function Comparison

Selection Recommendations

Log Component Capacity Planning
ElasticSearch

Clickhouse

Concepts

Concepts
Open Source Components

Core Functionality Concepts

Key Technical Terms

Data Flow Model

Guides

Logs - Alauda Container Platform

Logs
Log Query Analysis

Manage Application Log Retention Time

Configure Partial Application Log Exclusion from Collection

How To

How to Archive Logs to Third-Party Storage
Transfer to External NFS

Transfer to External S3 Storage

How to Interface with External ES Storage Clusters
Resource Preparation

Operating Procedures

Logs - Alauda Container Platform

The Logging module is a core component of the ACP platform's observability suite that

provides comprehensive log management capabilities for efficient and reliable log processing.

This module delivers four essential logging capabilities:

Log collection for automated gathering of logs from applications, containers, and

infrastructure components

Log storage for scalable and durable persistence using ElasticSearch and ClickHouse

backends

Log querying for fast and flexible search across large volumes of log data

By integrating these capabilities with powerful open-source components like Filebeat,

ElasticSearch, and ClickHouse, it enables organizations to efficiently handle massive log

volumes, accelerate troubleshooting, ensure compliance requirements, and gain valuable

operational insights in real time.

Introduction

Menu

Introduction - Alauda Container Platform

The platform's logging system consists of two plugins: Alauda Container Platform Log

Collector and Alauda Container Platform Log Storage. This chapter will introduce you to the

installation of these two plugins.

WARNING

1. The global cluster can query the log data stored on any workload cluster within the platform.

Ensure that the global cluster can access port 11780 of the workload cluster.

2. The Alauda Container Platform Log Storage with Clickhouse plugin needs Clickhouse operator,

before installing the plugin, please ensure that the Clickhouse operator is uploaded in the

cluster.

Installation Planning

Install Alauda Container Platform Log Storage with ElasticSearch via console

Install Alauda Container Platform Log Storage with ElasticSearch via YAML

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

Install Alauda Container Platform Log Storage with Clickhouse via console

Install Alauda Container Platform Log Storage with Clickhouse via YAML

1. Check available versions

2. Create a ModuleInfo

Install

TOC

Menu ON THIS PAGE

Install - Alauda Container Platform

3. Verify installation

Install Alauda Container Platform Log Collector Plugin

Install Alauda Container Platform Log Collector Plugin via YAML

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

Alauda Container Platform Log Storage plugins can be installed in any cluster, and any

cluster's log storage component can be selected for log collection to interface with the storage

data.

So , before installing the log storage plugin , you need to plan the cluster and node where the

log storage component will be installed.

Avoid deploying log storage plugins in the global cluster. Instead, deploy them in workload

clusters to ensure management cluster failures do not disrupt log-based issue resolution.

Prioritize centralizing logs to a single log storage cluster. If log volume exceeds maximum

capacity thresholds, distribute logs across multiple storage clusters.

Deploy at least one log storage instance per network zone to aggregate logs locally,

minimizing cross-data-center public network traffic (which incurs high costs and latency).

Dedicate exclusive nodes for log storage, avoiding co-deployment with other applications

or platform components. Log storage requires high I/O throughput and may be affected by

interference.

Mount dedicated SSD disks for log storage to significantly enhance performance.

Installation Planning

Install - Alauda Container Platform

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of Alauda Container Platform Log

Storage with ElasticSearch > Install.

3. Refer to the following instructions to configure relevant parameters.

Parameter Description

Connect

External

Elasticsearch

Keep closed to install the log storage plugin within the platform.

Component

installation

Settings

LocalVolume: Local storage, log data will be stored in the local

storage path of the selected node. The advantage of this method

is that the log component is directly bound to local storage,

eliminating the need to access storage over the network and

providing better storage performance.

StorageClass: Dynamically create storage resources using

storage classes to store log data. The advantage of this method

is a higher degree of flexibility; when multiple storage classes are

defined for the entire cluster, administrators can select the

corresponding storage class for the log components based on

usage scenarios, reducing the impact of host malfunction on

storage. However, the performance of StorageClass may be

affected by factors such as network bandwidth and latency, and it

relies on the redundancy mechanisms provided by the storage

backend to achieve high availability of storage.

Retention

Period

The maximum time logs, events, and audit data can be retained

on the cluster. Data exceeding the retention period will be

automatically cleaned up.

Tip: You may back up data that needs to be retained for a long

Install Alauda Container Platform Log Storage
with ElasticSearch via console

Install - Alauda Container Platform

Parameter Description

time. If you need assistance, please contact technical support

personnel.

4. Click Install.

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

This indicates that the ModulePlugin logcenter exists in the cluster and version v4.1.0 is

published.

Create a ModuleInfo resource to install the plugin without any configuration parameters:

Install Alauda Container Platform Log Storage
with ElasticSearch via YAML

1. Check available versions

2. Create a ModuleInfo

kubectl get moduleplugin | grep logcenter

logcenter 30h

kubectl get moduleconfig | grep logcenter

logcenter-v4.1.0 30h

Install - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 annotations:

 cpaas.io/display-name: logcenter

 cpaas.io/module-name: '{"en": "Alauda Container Platform Log Storage for

Elasticsearch", "zh": "Alauda Container Platform Log Storage for Elasticsearch"}'

 labels:

 cpaas.io/cluster-name: go

 cpaas.io/module-name: logcenter

 cpaas.io/module-type: plugin

 cpaas.io/product: Platform-Center

 name: <cluster>-log-center

spec:

 config:

 clusterView:

 isPrivate: "true"

 components:

 elasticsearch:

 address: ""

 basicAuthSecretName: ""

 hostpath: /cpaas/data/elasticsearch

 httpPort: 9200

 install: true

 k8sNodes:

 - 192.168.139.75

 masterK8sNodes: []

 masterReplicas: 0

 masterResources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: 200m

 memory: 256Mi

 masterStorageSize: 5

 nodeReplicas: 1

 nodeStorageSize: 200

 resources:

 limits:

 cpu: "4"

 memory: 4Gi

 requests:

" "

Install - Alauda Container Platform

YAML field reference:

Field path Description

metadata.labels.cpaas.io/cluster-name
Target cluster name where

the plugin is installed.

 cpu: "1"

 memory: 1Gi

 tcpPort: 9300

 type: single

 kafka:

 address: ""

 auth: true

 basicAuthSecretName: ""

 exporterPort: 9308

 install: true

 k8sNodes:

 - 192.168.139.75

 port: 9092

 storageSize: 10

 tls: true

 zkElectPort: 3888

 zkExporterPort: 9141

 zkLeaderPort: 2888

 zkPort: 2181

 kibana:

 install: false

 storageClassConfig:

 name: elasticsearch-local-log-sc

 type: LocalVolume

 zookeeper:

 storageSize: 1

 ttl:

 audit: 180

 event: 180

 logKubernetes: 7

 logPlatform: 7

 logSystem: 7

 logWorkload: 7

 version: v4.1.0

Install - Alauda Container Platform

Field path Description

metadata.name

Temporary ModuleInfo

name; the platform will

rename it after creation.

spec.config.clusterView.isPrivate
Visibility setting for cluster

view.

spec.config.components.elasticsearch.address

External Elasticsearch

address; leave empty to

use platform-installed

Elasticsearch.

spec.config.components.elasticsearch.basicAuthSecretName

Secret name for external

Elasticsearch basic auth;

leave empty for platform

Elasticsearch.

spec.config.components.elasticsearch.hostpath Data path for Elasticsearch.

spec.config.components.elasticsearch.httpPort
Elasticsearch HTTP port,

default 9200.

spec.config.components.elasticsearch.install

Whether to install

Elasticsearch via platform;

set to false when using

external Elasticsearch.

spec.config.components.elasticsearch.k8sNodes

Node IP list for

Elasticsearch Data when

using LocalVolume.

spec.config.components.elasticsearch.masterK8sNodes

Node IP list for

Elasticsearch Master (large

scale with LocalVolume

only).

spec.config.components.elasticsearch.masterReplicas Replica count for

Elasticsearch Master (large

Install - Alauda Container Platform

Field path Description

scale only).

spec.config.components.elasticsearch.masterResources

Resource requests/limits

for Elasticsearch Master

(large scale only).

spec.config.components.elasticsearch.masterStorageSize

Storage size for

Elasticsearch Master (large

scale only).

spec.config.components.elasticsearch.nodeReplicas
Replica count for

Elasticsearch Data.

spec.config.components.elasticsearch.nodeStorageSize
Storage size for

Elasticsearch Data (Gi).

spec.config.components.elasticsearch.resources
Resource requests/limits

for Elasticsearch Data.

spec.config.components.elasticsearch.tcpPort

Internal transport port for

Elasticsearch cluster,

default 9300.

spec.config.components.elasticsearch.type
Elasticsearch cluster size:

single/normal/big.

spec.config.components.kafka.address

External Kafka address;

leave empty to use

platform-installed Kafka.

spec.config.components.kafka.auth
Enable Kafka

authentication, default true.

spec.config.components.kafka.basicAuthSecretName

Secret name for external

Kafka auth; leave empty for

platform Kafka.

spec.config.components.kafka.exporterPort
Kafka Exporter port, default

9308.

Install - Alauda Container Platform

Field path Description

spec.config.components.kafka.install

Whether to install Kafka via

platform; set to false when

using external Kafka.

spec.config.components.kafka.k8sNodes
Node IP list for Kafka when

using LocalVolume.

spec.config.components.kafka.port
Kafka exposed port, default

9092.

spec.config.components.kafka.storageSize Kafka storage size (Gi).

spec.config.components.kafka.tls
Enable TLS for Kafka,

default true.

spec.config.components.kafka.zkElectPort
Zookeeper election port,

default 3888.

spec.config.components.kafka.zkExporterPort
Zookeeper Exporter port,

default 9141.

spec.config.components.kafka.zkLeaderPort

Zookeeper leader/follower

communication port, default

2888.

spec.config.components.kafka.zkPort
Zookeeper client port,

default 2181.

spec.config.components.kibana.install

Whether to install Kibana;

Kibana is deprecated, set

to false.

spec.config.components.storageClassConfig.name

For LocalVolume, typically

elasticsearch-local-log-

sc ; for StorageClass, set to

the class name.

spec.config.components.storageClassConfig.type
Storage type:

LocalVolume/StorageClass.

Install - Alauda Container Platform

Field path Description

spec.config.components.zookeeper.storageSize
Zookeeper storage size

(Gi).

spec.config.ttl.audit
Retention days for audit

data.

spec.config.ttl.event
Retention days for event

data.

spec.config.ttl.logKubernetes
Retention days for

Kubernetes logs.

spec.config.ttl.logPlatform
Retention days for platform

logs.

spec.config.ttl.logSystem
Retention days for system

logs.

spec.config.ttl.logWorkload
Retention days for

workload logs.

spec.version

Specifies the plugin version

to install, must match

.spec.version in

ModuleConfig.

Since the ModuleInfo name changes upon creation, locate the resource via label to check the

plugin status and version:

3. Verify installation

kubectl get moduleinfo -l cpaas.io/module-name=logcenter

NAME CLUSTER MODULE DISPLAY_NAME

STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-e671599464a5b1717732c5ba36079795 global logcenter logcenter

Running v4.0.12 v4.0.12 v4.0.12

Install - Alauda Container Platform

Field explanations:

NAME : ModuleInfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

STATUS : Installation status; Running means successfully installed and running

TARGET_VERSION : Intended installation version

CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of Alauda Container Platform Log

Storage with Clickhouse > Install.

3. Refer to the following instructions to configure relevant parameters.

Parameter Description

Component

installation

Settings

LocalVolume: Local storage, log data will be stored in the local

storage path of the selected node. The advantage of this method is

that the log component is directly bound to local storage,

eliminating the need to access storage over the network and

providing better storage performance.

StorageClass: Dynamically create storage resources using

storage classes to store log data. The advantage of this method is

a higher degree of flexibility; when multiple storage classes are

defined for the entire cluster, administrators can select the

corresponding storage class for the log components based on

Install Alauda Container Platform Log Storage
with Clickhouse via console

Install - Alauda Container Platform

Parameter Description

usage scenarios, reducing the impact of host malfunction on

storage. However, the performance of StorageClass may be

affected by factors such as network bandwidth and latency, and it

relies on the redundancy mechanisms provided by the storage

backend to achieve high availability of storage.

Retention

Period

The maximum time logs, events, and audit data can be retained on

the cluster. Data exceeding the retention period will be

automatically cleaned up.

Tip: You may back up data that needs to be retained for a long

time. If you need assistance, please contact technical support

personnel.

4. Click Install.

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

This indicates that the ModulePlugin logclickhouse exists in the cluster and version v4.1.0 is

published.

Install Alauda Container Platform Log Storage
with Clickhouse via YAML

1. Check available versions

kubectl get moduleplugin | grep logclickhouse

logclickhouse 30h

kubectl get moduleconfig | grep logclickhouse

logclickhouse-v4.1.0 30h

Install - Alauda Container Platform

Create a ModuleInfo resource to install the plugin without any configuration parameters:

2. Create a ModuleInfo

Install - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 name: global-logclickhouse

 labels:

 cpaas.io/cluster-name: global

 cpaas.io/module-name: logclickhouse

 cpaas.io/module-type: plugin

spec:

 version: v4.1.0

 config:

 components:

 storageClassConfig:

 type: LocalVolume

 name: ""

 clickhouse:

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: 200m

 memory: 256Mi

 k8sNodes:

 - xxx.xxx.xxx.xx

 hostpath: /cpaas/data/clickhouse

 nodeReplicas: 1

 nodeStorageSize: 200

 type: single

 razor:

 resources:

 limits:

 cpu: "2"

 memory: 1Gi

 requests:

 cpu: 10m

 memory: 256Mi

 vector:

 resources:

 limits:

 cpu: "4"

 memory: 1Gi

 requests:

Install - Alauda Container Platform

YAML field reference (ClickHouse):

Field path Description

metadata.name

ModuleInfo name. Recommended

format: <target-cluster>-

logclickhouse .

metadata.labels.cpaas.io/cluster-name
Target cluster where the plugin is

installed.

metadata.labels.cpaas.io/module-name Must be logclickhouse .

metadata.labels.cpaas.io/module-type Must be plugin .

spec.version Plugin version to install.

spec.config.components.storageClassConfig.type
Storage type for ClickHouse data:

LocalVolume or StorageClass .

spec.config.components.storageClassConfig.name

StorageClass name when type is

StorageClass ; keep empty for

LocalVolume .

spec.config.components.clickhouse.resources
Resource requests/limits for

ClickHouse.

spec.config.components.clickhouse.k8sNodes
Node IP list for ClickHouse when

using LocalVolume .

spec.config.components.clickhouse.hostpath
Local path for ClickHouse data

when using LocalVolume .

 cpu: 10m

 memory: 256Mi

 ttl:

 audit: 180

 event: 180

 logKubernetes: 7

 logPlatform: 7

 logSystem: 7

 logWorkload: 7

Install - Alauda Container Platform

Field path Description

spec.config.components.clickhouse.nodeReplicas
Replica count when using

StorageClass .

spec.config.components.clickhouse.nodeStorageSize
Storage size for ClickHouse data

(Gi).

spec.config.components.clickhouse.type
Cluster size: single , normal , or

big .

spec.config.components.razor.resources
Resource requests/limits for

Razor.

spec.config.components.vector.resources
Resource requests/limits for

Vector.

spec.config.ttl.audit Retention days for audit data.

spec.config.ttl.event Retention days for event data.

spec.config.ttl.logKubernetes
Retention days for Kubernetes

logs.

spec.config.ttl.logPlatform Retention days for platform logs.

spec.config.ttl.logSystem Retention days for system logs.

spec.config.ttl.logWorkload Retention days for workload logs.

spec.version

Specifies the plugin version to

install, must match .spec.version

in ModuleConfig.

Since the ModuleInfo name changes upon creation, locate the resource via label to check the

plugin status and version:

3. Verify installation

Install - Alauda Container Platform

Field explanations:

NAME : ModuleInfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

STATUS : Installation status; Running means successfully installed and running

TARGET_VERSION : Intended installation version

CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of Alauda Container Platform Log

Collector > Install.

3. Select the Storage Cluster (where Alauda Container Platform Log Storage has been

installed) and click Select/Deselect log types to set the scope of log collection in the

cluster.

4. Click Install.

Install Alauda Container Platform Log Collector
Plugin

kubectl get moduleinfo -l cpaas.io/module-name=logclickhouse

NAME CLUSTER MODULE DISPLAY_NAME

STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-e671599464a5b1717732c5ba36079795 global logclickhouse

logclickhouse Running v4.0.12 v4.0.12 v4.0.12

Install - Alauda Container Platform

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

This indicates that the ModulePlugin logagent exists in the cluster and version v4.1.0 is

published.

Create a ModuleInfo resource to install the plugin without any configuration parameters:

Install Alauda Container Platform Log Collector
Plugin via YAML

1. Check available versions

2. Create a ModuleInfo

kubectl get moduleplugin | grep logagent

logagent 30h

kubectl get moduleconfig | grep logagent

logagent-v4.1.0 30h

Install - Alauda Container Platform

YAML field reference (Log Collector):

Field path Description

metadata.annotations.cpaas.io/display-name Plugin display name.

metadata.annotations.cpaas.io/module-name Plugin i18n name JSON string.

metadata.labels.cpaas.io/cluster-name
Target cluster where the plugin is

installed.

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 annotations:

 cpaas.io/display-name: logagent

 cpaas.io/module-name: '{"en": "Alauda Container Platform Log Collector", "zh":

"Alauda Container Platform Log Collector"}'

 labels:

 cpaas.io/cluster-name: go

 cpaas.io/module-name: logagent

 cpaas.io/module-type: plugin

 cpaas.io/product: Platform-Center

 logcenter.plugins.cpaas.io/cluster: go

 name: <cluster>-log-agent

spec:

 config:

 crossClusterDependency:

 logcenter: go

 logclickhouse: null

 dataSource:

 audit: true

 event: true

 kubernetes: true

 platform: false

 system: false

 workload: true

 storage:

 type: Elasticsearch

 version: v4.1.0

Install - Alauda Container Platform

Field path Description

metadata.labels.cpaas.io/module-name Must be logagent .

metadata.labels.cpaas.io/module-type Must be plugin .

metadata.labels.cpaas.io/product
Product identifier, typically

Platform-Center .

metadata.labels.logcenter.plugins.cpaas.io/cluster
Storage cluster name to which

logs are pushed.

metadata.name

Temporary ModuleInfo name; the

platform will rename it after

creation.

spec.config.crossClusterDependency.logcenter
Name of the Elasticsearch-based

log storage cluster.

spec.config.crossClusterDependency.logclickhouse

Set to null when using

Elasticsearch storage; otherwise

set to ClickHouse cluster name.

spec.config.dataSource.audit Collect audit logs.

spec.config.dataSource.event Collect event logs.

spec.config.dataSource.kubernetes Collect Kubernetes logs.

spec.config.dataSource.platform Collect platform logs.

spec.config.dataSource.system Collect system logs.

spec.config.dataSource.workload Collect workload logs.

spec.config.storage.type Elasticsearch or Clickhouse .

spec.version Plugin version to install.

3. Verify installation

Install - Alauda Container Platform

Since the ModuleInfo name changes upon creation, locate the resource via label to check the

plugin status and version:

kubectl get moduleinfo -l cpaas.io/module-name=logagent

NAME CLUSTER MODULE DISPLAY_NAME

STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-e671599464a5b1717732c5ba36079795 global logagent logagent

Running v4.0.12 v4.0.12 v4.0.12

Install - Alauda Container Platform

Architecture

Log Module Architecture

Overall Architecture Description

Log Collection

Log Consumption and Storage

Log Visualization

Log Component Selection Guide

Architecture Comparison

Function Comparison

Selection Recommendations

Log Component Capacity Planning
ElasticSearch

Clickhouse

Menu

Architecture - Alauda Container Platform

Log Module Architecture

TOC

Menu ON THIS PAGE

Log Module Architecture - Alauda Container Platform

Overall Architecture Description

Log Collection

Component Installation Method

Data Collection Process

Log Consumption and Storage

Razor

Lanaya

Vector

Log Visualization

The logging system consists of the following core functional modules:

1. Log Collection

Provided based on the open-source component filebeat

Log collection: Supports the collection of standard output logs, file logs, Kubernetes

events, and audits.

2. Log Storage

Two different log storage solutions are provided based on the open-source components

Clickhouse and ElasticSearch.

Log Storage: Supports long-term storage of log files.

Log Storage Time Management: Supports management of log storage duration at the

project level.

3. Log Visualization

Provides convenient and reliable log querying, log exporting, and log analysis

capabilities.

Overall Architecture Description

Log Module Architecture - Alauda Container Platform

nevermore is installed as a daemonset in the cpaas-system namespace of each cluster. This

component consists of 4 containers:

Name Function

audit Collects audit data

event Collects event data

log Collects log data (including standard output and file logs)

node-problem-detector Collects abnormal information on nodes

After nevermore collects audit/event/log information, it sends the data to the log storage

cluster, undergoing authentication by Razor before being ultimately stored in ElasticSearch or

ClickHouse.

Razor is responsible for authentication and receiving and forwarding log messages.

After Razor receives requests sent by nevermore from various workload clusters, it first

authenticates using the Token in the request. If authentication fails, the request is denied.

If the installed log storage component is ElasticSearch, it writes the corresponding logs into

the Kafka cluster.

If the installed log storage component is Clickhouse, it passes the corresponding logs to

Vector, which are ultimately written into Clickhouse.

Log Collection

Component Installation Method

Data Collection Process

Log Consumption and Storage

Razor

Log Module Architecture - Alauda Container Platform

Lanaya is responsible for consuming and forwarding log data in the ElasticSearch log storage

link.

Lanaya subscribes to topics in Kafka. After receiving the messages from the subscription, it

decompresses the messages.

After decompression, it preprocesses the messages by adding necessary fields,

transforming fields, and splitting data.

Finally, it stores the messages in the corresponding index of ElasticSearch based on the

message's time and type.

Vector is responsible for processing and forwarding log data in the Clickhouse log storage

link, ultimately storing the logs in the corresponding table in Clickhouse.

1. Users can query the audit/event/log query URLs from the product UI interface for display:

Log Query /platform/logging.alauda.io/v1

Event Query /platform/events.alauda.io/v1

Audit Query /platform/audits.alauda.io/v1

2. The requests are processed by the advanced API component Courier, which queries the

log data from the log storage clusters ElasticSearch or Clickhouse and returns it to the

page.

Lanaya

Vector

Log Visualization

Log Module Architecture - Alauda Container Platform

When installing log component, the platform provides two log storage components for your

choice: ElasticSearch and Clickhouse. This article will detail the features and applicable

scenarios of these two components to help you make the most suitable choice.

WARNING

You can only choose one of ElasticSearch or Clickhouse for the cluster log storage component

installation.

Any cluster's log storage component can be selected for log collection to interface with the

storage data.

Now DevOps product does not support archiving Jenkins pipeline execution records using

Clickhouse. If you need to use the Jenkins pipeline features, please choose the ACP Log

Storage with Clickhouse plugin cautiously.

Now ServiceMesh product does not support integration with Clickhouse. If you need to use the

service mesh features, please choose the ACP Log Storage with Clickhouse plugin cautiously.

Now ACP Log Storage with Clickhouse plugin does not support IPv6 single stack or IPv6 dual

stack workload clusters.

Architecture Comparison

ElasticSearch Architecture

Clickhouse Architecture

Function Comparison

Selection Recommendations

Log Component Selection Guide

TOC

Menu ON THIS PAGE

Log Component Selection Guide - Alauda Container Platform

ElasticSearch is an open-source distributed search engine built on Lucene, designed for fast

full-text search and analysis. Its advantages include:

High-performance search: Supports real-time search and can quickly process massive

amounts of data.

Flexible querying capabilities: Offers a powerful query DSL, supporting complex query

requirements.

Scalability: Easily horizontally scalable as needed, suitable for applications of all sizes.

Diverse data support: Able to handle both structured and unstructured data, widely

applicable.

Clickhouse is a high-performance columnar database designed for Online Analytical

Processing (OLAP). Its advantages include:

Fast data processing: Supports rapid querying and analysis through columnar storage and

data compression.

Real-time analysis: Capable of processing real-time data streams, suitable for real-time

data analysis scenarios.

High throughput: Optimized for the performance of large-scale data writing and querying,

making it very suitable for big data scenarios.

Flexible SQL support: Compatible with standard SQL, easy to get started, reducing the

usage threshold.

Architecture Comparison

ElasticSearch Architecture

Clickhouse Architecture

Function Comparison

Log Component Selection Guide - Alauda Container Platform

Clickhouse Elasticsearch Explanation

High

Availability
Supported Supported

Scalability Supported Supported

Query

Experience
Weak Strong

Elasticsearch offers more robust

search capabilities based on the

Lucene language, while

Clickhouse only supports SQL

queries, limiting its search

capabilities.

Resource

Usage
Low High

For the same performance

requirements, Clickhouse requires

fewer resources than

Elasticsearch. For example, to

support 20,000 logs per second,

Elasticsearch needs 3 es-masters

and 7 es-nodes (2c4g+8c16g),

while Clickhouse only requires 3

2c4g replicas.

Performance High Low

Under the same resource

conditions, the log volume

supported by Clickhouse far

exceeds that of Elasticsearch.

Community

Activity
Medium High

The Elasticsearch community is

active with rich documentation,

while Clickhouse is a growing and

improving community.

Selection Recommendations

Log Component Selection Guide - Alauda Container Platform

If you are accustomed to using Elasticsearch and have a high dependency on the Lucene

language, it is recommended that you continue to use the ACP Log Storage with

ElasticSearch plugin.

If you depend on the platform's Jenkins pipeline or service mesh features, it is

recommended that you continue to use the ACP Log Storage with ElasticSearch plugin.

If you have high requirements for the performance and resource consumption of the log

component but only have basic needs for log querying, it is recommended that you choose

to use the ACP Log Storage with Clickhouse plugin.

Log Component Selection Guide - Alauda Container Platform

The log storage component is responsible for storing logs, events, and audit data collected by

the log collection component from one or more clusters in the platform. Therefore, you need to

assess your log scale in advance and plan the resources needed for the log storage

component according to the guidelines in this document.

WARNING

The following data represents standard figures obtained from tests conducted under laboratory

conditions, intended for your reference when planning resources. You must ensure that the

actual resources you plan exceed the testing resources described below, and that the log scale

does not exceed the corresponding log scale.

The disk configuration for the data below is: 6000 iops , 250MB/s read and write speed , SSD

independent mounting . If your actual storage resources are weaker than the testing resources,

please refer to larger scale configuration information and provide more CPU and memory

resources as needed.

ElasticSearch

Small Scale 3 Nodes - Total Logs: 6300/s

Small Scale 5 Nodes - Total Logs: 9900/s

Large Scale 3+5 Nodes - Total Logs: 25000/s

Large Scale 3+7 Nodes - Total Logs: 30000/s

Clickhouse

Single Node - Total Logs: 18000/s

Log Component Capacity Planning

TOC

Menu ON THIS PAGE

Log Component Capacity Planning - Alauda Container Platform

Three Nodes - Total Logs: 20000/s

Six Nodes - Total Logs: 40000/s

Nine Nodes - Total Logs: 69000/s

Component Replicas CPU Limit Memory Limit

ElasticSearch 3 2C 4G

Kafka 3 2C 4G

Zookeeper 3 2C 4G

Lanaya 2 2C 4G

Razor 2 1C 2G

Component Replicas CPU Limit Memory Limit

ElasticSearch 5 2C 4G

Kafka 3 2C 4G

Zookeeper 3 2C 4G

Lanaya 2 2C 4G

Razor 2 1C 2G

ElasticSearch

Small Scale 3 Nodes - Total Logs: 6300/s

Small Scale 5 Nodes - Total Logs: 9900/s

Large Scale 3+5 Nodes - Total Logs: 25000/s

Log Component Capacity Planning - Alauda Container Platform

Component Replicas CPU Limit Memory Limit

ElasticSearch - Master 3 2C 4G

ElasticSearch - Data 5 8C 16G

Kafka 3 2C 4G

Zookeeper 3 2C 4G

Lanaya 2 2C 4G

Razor 2 1C 2G

Component Replicas CPU Limit Memory Limit

ElasticSearch - Master 3 2C 4G

ElasticSearch - Data 7 8C 16G

Kafka 3 2C 4G

Zookeeper 3 2C 4G

Lanaya 2 2C 4G

Razor 2 1C 2G

Component Replicas CPU Limit Memory Limit Remarks

Clickhouse 1 2C 4G 1 replica 1 shard

Large Scale 3+7 Nodes - Total Logs: 30000/s

Clickhouse

Single Node - Total Logs: 18000/s

Log Component Capacity Planning - Alauda Container Platform

Component Replicas CPU Limit Memory Limit Remarks

Razor 1 1C 1G -

Vector 1 2C 4G -

Component Replicas CPU Limit Memory Limit Remarks

Clickhouse 3 2C 4G 3 replicas 1 shard

Razor 2 1C 1G -

Vector 2 2C 4G -

Component Replicas CPU Limit Memory Limit Remarks

Clickhouse 3 4C 8G 3 replicas 2 shards

Razor 2 1C 1G -

Vector 2 4C 8G -

Component Replicas CPU Limit Memory Limit Remarks

Clickhouse 9 4C 8G 3 replicas 3 shards

Razor 2 1C 1G -

Vector 2 4C 8G -

Three Nodes - Total Logs: 20000/s

Six Nodes - Total Logs: 40000/s

Nine Nodes - Total Logs: 69000/s

Log Component Capacity Planning - Alauda Container Platform

Open Source Components

Filebeat

Elasticsearch

ClickHouse

Kafka

Core Functionality Concepts

Log Collection Pipeline

Index

Shards and Replicas

Columnar Storage

Key Technical Terms

Ingest Pipeline

Consumer Group

TTL (Time To Live)

Replication Factor

Data Flow Model

Concepts

TOC

Open Source Components

Filebeat

Menu ON THIS PAGE

Concepts - Alauda Container Platform

Positioning: Lightweight log collector Description: An open-source log collection component

installed on container nodes, responsible for real-time monitoring of log files at specified

paths. It collects log data through input modules, processes it, and forwards the logs to Kafka

or directly delivers them to storage components via output modules. It supports capabilities

such as multiline log aggregation and field filtering for preprocessing.

Positioning: Distributed search and analytics engine

Description: A full-text search engine based on Lucene, storing log data in JSON document

format, and providing near real-time search capabilities. It supports dynamic mapping for

automatic field type recognition and achieves fast keyword searches through inverted

indexing, suitable for log searches and monitoring alerts.

Positioning: Columnar analytical database

Description: High-performance columnar storage database designed for OLAP scenarios,

implementing PB-level log data storage using the MergeTree engine. It supports high-speed

aggregation queries, time partitioning, and data TTL strategies, making it suitable for log

analysis and statistical reporting in batch computation scenarios.

Positioning: Distributed message queue

Description: Serving as the messaging middleware for the log pipeline system, it provides

high-throughput log buffering capabilities. When the Elasticsearch cluster experiences

processing bottlenecks, it receives log data sent by Filebeat via Topics, facilitating traffic peak

reduction and asynchronous consumption, ensuring the stability of the log collection end.

Elasticsearch

ClickHouse

Kafka

Core Functionality Concepts

Log Collection Pipeline

Concepts - Alauda Container Platform

Description: The complete link from log data generation to storage, comprising four stages:

Collection -> Transmission -> Buffering -> Storage . It supports two pipeline modes:

Direct Write Mode: Filebeat → Elasticsearch/ClickHouse

Buffer Mode: Filebeat → Kafka → Elasticsearch

Description: The logical data partitioning unit in Elasticsearch, analogous to a table structure

in databases. It supports time-based rolling index creation (e.g., logstash-2023.10.01) and

automated hot-warm-cold tiered storage via Index Lifecycle Management (ILM).

Description:

Shard: The physical storage unit resulting from Elasticsearch's horizontal splitting of an

index, supporting distributed scalability.

Replica: A copy of each shard, providing data high availability and query load balancing.

Description: The core storage mechanism of ClickHouse, where data is compressed and

stored by column, significantly reducing I/O consumption. It supports the following features:

Vectorized query execution engine

Data partitioning and sharding

Materialized views for pre-aggregation

Index

Shards and Replicas

Columnar Storage

Key Technical Terms

Ingest Pipeline

Concepts - Alauda Container Platform

Description: The data preprocessing pipeline in Elasticsearch, capable of performing ETL

operations such as field renaming, Grok parsing, and conditional logic before data is written.

Description: Kafka's parallel consumption mechanism, where multiple instances within the

same consumer group can consume messages from different partitions in parallel, ensuring

ordered message processing.

Description: Data lifespan strategy, supporting two implementation methods:

Elasticsearch: Automatically deletes expired indices through ILM policies.

ClickHouse: Automatically deletes table partitions via TTL expressions.

Description: The data redundancy configuration at the Kafka Topic level, defining the number

of message replicas across different Brokers, enhancing data reliability.

Direct Write Mode

Buffer Mode

Elasticsearch

ClickHouse

Container Log Files Filebeat Agent Storage Component

Kafka Cluster Elasticsearch Consumer

Index/Search Interface

SQL Query Interface

Consumer Group

TTL (Time To Live)

Replication Factor

Data Flow Model

Concepts - Alauda Container Platform

Guides

Logs

Log Query Analysis

Manage Application Log Retention Time

Configure Partial Application Log Exclusion from Collection

Menu

Guides - Alauda Container Platform

Log Query Analysis

Search Logs

Export Log Data

View Log Context

Manage Application Log Retention Time

Platform Administrator Sets Retention Policies

Project Administrator Sets Retention Policies

Set Retention Policies via CLI

Configure Partial Application Log Exclusion from Collection

Stop Collecting All Application Logs in the Cluster

Stop Collecting Application Logs in a Specific Namespace

Stop Collecting Pod Logs

In the operations center's log query analysis panel, you can view the standard output (stdout)

logs of the logged-in account within its permissions, including system logs, product logs,

Kubernetes logs, and application logs. Through these logs, you can gain insights into the

operation of resources.

System Logs: Logs from the host nodes, such as: dmesg, syslog/messages, secure, etc.

Logs

TOC

Log Query Analysis

Menu ON THIS PAGE

Logs - Alauda Container Platform

Product Logs: Logs from the platform's own components and third-party components

integrated with the platform, such as: Container-Platform, Platform-Center, DevOps,

Service-Mesh, etc.

Kubernetes Logs: Logs from Kubernetes container orchestration-related components, as

well as logs generated by kubelet, kubeproxy, and docker, such as: docker, kube-apiserver,

kube-controller-manager, etcd, etc.

Application Logs: Logs from business applications, including file logs and standard output

logs.

The log query conditions support filtering logs within a specified time range (either selected or

custom), and display the query results through bar charts and standard output.

WARNING

For performance reasons, the platform can display a maximum of 10,000 logs at a time. If the log

volume on the platform is too large over a period of time, please narrow the query's time range and

query logs in stages.

1. In the left navigation bar, click Operations Center > Logs > Log Query Analysis.

2. Select the specified log type, query conditions, input the keywords of the log content you

want to retrieve, and then click Search.

TIP

Different Log Types allow for different selectable query conditions.

You can select or input multiple query condition tags; the query conditions for different resource

types are in an AND relationship. Some query condition tags support multiple selections; please

make sure to press the Enter key after making a choice to submit the options.

Query conditions support fuzzy searches; for example, a query condition of pod = nginx can

retrieve logs for nginx-1 , nginx-2 .

Log content search conditions are only used to retrieve your log keywords and support the use

of AND and OR parameters for associative queries. However, please note not to use AND and

Search Logs

Logs - Alauda Container Platform

OR parameters simultaneously in a single query.

The bar chart shows the total number of logs within the current query time range and the

number of logs at different time points. Click on a bar in the chart to view the logs within the

timeframe between that bar and the next one.

The page can display a maximum of 10,000 log entries. When the number of logs retrieved is

too large, you can use the log export feature to view up to 1 million log entries.

1. Click the Export button in the upper right corner of the bar chart, and configure the

following parameters in the pop-up export log dialog.

Scope: The export range of logs, you can choose Current Page or All Results.

Current Page: Only export the query results on the current page, up to 1,000 entries.

All Results: Export all log data that meets the current query conditions, up to 1

million entries.

Fields: Display fields of the logs. You can select which field information to display in the

exported log file by clicking the checkbox next to the field name.

Note: Different log types have different selectable display fields, please select according

to your actual needs.

Format: The export format of the log file, supporting txt or csv . The platform will

export in gzip compressed format.

2. Click Export, and the browser will directly download the compressed file to your local

machine.

1. Double-click the log content area, and the current dialog will display 5 logs before and after

the current log printing time, helping operation and maintenance personnel better

understand the reasons for the current logs generated by resources.

Export Log Data

View Log Context

Logs - Alauda Container Platform

2. You can set the display fields of the log context or export the log context. When exporting

log context, there's no need to select the Scope; clicking the Export button will directly

download the log context file to your local machine via the browser.

When no project policy is set, the retention time of application logs on the platform is

determined by the Application Log Retention Time of the Log Storage Plugin installed on the

Storage Cluster selected when ACP Log Collector was installed in the cluster where the

application resides.

You can differentiate the retention time for Application Logs on the platform by adding and

managing project log policies.

TIP

Project policies only apply to Application Logs under a specific project. After setting a project

policy, the retention time of all application logs under that project will follow the project policy.

1. In the left navigation bar, click Operations Center > Logs > Policy Management.

2. Click Add Project Policy.

3. Click the dropdown box for Project and select a project.

4. Set the Log Retention Time.

Use the - / + buttons on both sides of the counter to decrease/increase the retention

days, or directly enter a value in the counter. The platform allows setting the retention

time range from 1 to 30 days.

If the input value is a decimal, it will be rounded up to an integer; if the input value is less

than 1, it will round up to 1, and the - button will not be clickable; if the input value

exceeds 30, it will round down to 30, and the + button will not be clickable.

Manage Application Log Retention Time

Platform Administrator Sets Retention Policies

Logs - Alauda Container Platform

5. Click Add.

1. Go to the project detail page for the current project.

2. Click the edit button next to the log policy field to enable the log policy in the popup.

3. Set the Log Retention Time.

Use the - / + buttons on both sides of the counter to decrease/increase the retention

days, or directly enter a value in the counter. The platform allows setting the retention time

range from 1 to 30 days.

If the input value is a decimal, it will be rounded up to an integer; if the input value is less

than 1, it will round up to 1, and the - button will not be clickable; if the input value

exceeds 30, it will be rounded down to 30, and the + button will not be clickable.

1. Log into the global cluster and execute the following command:

2. Modify the yaml as per the example below, save, and submit.

Project Administrator Sets Retention Policies

Set Retention Policies via CLI

kubectl edit project <Project Name>

Logs - Alauda Container Platform

If you only need to view Real-Time Logs of specific applications within the cluster without

wishing to store those logs (the collector will discard the corresponding logs), you can refer to

this section to set the scope for stopping log collection (cluster, namespace, Pod) for fine-

grained control over application log collection.

You can update the Configuration Parameters of the cluster's ACP Log Collector to turn off

the Application Log collection switch, thereby uniformly updating the logging collection scope

Configure Partial Application Log Exclusion from
Collection

Stop Collecting All Application Logs in the Cluster

apiVersion: auth.alauda.io/v1

kind: Project

metadata:

 annotations:

 cpaas.io/creator: mschen1@alauda.io

 cpaas.io/description: ''

 cpaas.io/display-name: ''

 cpaas.io/operator: leizhuc

 cpaas.io/project.esPolicyLastEnabledTimestamp: '2025-02-18T09:53:54Z'

 cpaas.io/updated-at: '2025-02-18T09:53:54Z'

creationTimestamp: '2025-02-13T08:19:11Z'

finalizers:

 - namespace

generation: 1

labels:

 cpaas.io/project: bookinfo

 cpaas.io/project.esIndicesKeepDays: '7' # Retention duration of application logs

under the project

 cpaas.io/project.esPolicyEnabled: 'true' # Enable project policy

 cpaas.io/project.id: '95447321'

 cpaas.io/project.level: '1'

 cpaas.io/project.parent: ''

name: bookinfo

More yaml information that is not involved in modification is omitted.

Logs - Alauda Container Platform

for that cluster. Once the collection switch for a certain type of log is turned off, it will stop

collecting all logs of that type in the current cluster.

You can turn off the log collection switch for that namespace by adding the label

cpaas.io/log.mute=true to the specified namespace, thus stopping the collection of all

standard output logs and file logs for all Pods in that namespace.

Optional configuration methods are as follows:

Command Line Method: After logging into any control node of the cluster, execute the

following command to update the namespace's label.

Interface Operation Method: In the Project Management view, update the namespace's

label.

1. In the project list of the Project Management view, click on the Project Name where

the namespace is located.

2. In the left navigation bar, click Namespaces.

3. Click the Namespace Name whose label is to be updated.

4. On the Details tab, click the operation button to the right of Labels.

5. Add the label (Key: cpaas.io/log.mute , Value: true) or modify the value of an existing

label, then click Update.

You can turn off the log collection switch for the specified Pod by adding the label

cpaas.io/log.mute=true to it, thus stopping the collection of standard output logs and file logs

for that Pod.

Stop Collecting Application Logs in a Specific Namespace

Stop Collecting Pod Logs

kubectl label namespace <Namespace Name> cpaas.io/log.mute=true

Logs - Alauda Container Platform

After logging into any control node of the cluster, execute the following command to update

the Pod's label.

Note: If the Pod belongs to a compute component (Workload), you can update the labels of

the compute component (Deployment, StatefulSet, DaemonSet, Job, CronJob) to uniformly

update the labels of all Pods under the compute component, and the labels will not be lost

even after Pod recreation.

You can update the labels of the compute component in the following way.

1. In the Container Platform product view, click on the top navigation to switch to the

namespace where the Pod is located.

2. In the left navigation bar, click Compute Components > Type of Compute Component

to which the Pod Belongs.

3. Click the operation button to the right of the compute component to be updated > Update.

4. Click YAML in the upper right corner to switch to the YAML editing view.

5. Under the spec.template.labels field, add the cpaas.io/log.mute: 'true' label.

An example is as follows:

6. Click Update.

kubectl label pod <Pod Name> -n <Namespace Name> cpaas.io/log.mute=true

spec:

 template:

 metadata:

 namespace: tuhao-test

 creationTimestamp: null

 labels:

 app: spilo

 cpaas.io/log.mute: 'true'

 cluster-name: acid-minimal-cluster

 role: exporter

 middleware.instance/name: acid-minimal-cluster

 middleware.instance/type: PostgreSQL

Logs - Alauda Container Platform

How To

How to Archive Logs to Third-Party Storage

Transfer to External NFS

Transfer to External S3 Storage

How to Interface with External ES Storage Clusters
Resource Preparation

Operating Procedures

Menu

How To - Alauda Container Platform

Currently, the logs generated by the platform will be stored in the log storage component;

however, the retention period for these logs is relatively short. For enterprises with high

compliance requirements, logs typically require longer retention times to meet audit demands.

Additionally, the economic aspect of storage is also one of the key concerns for enterprises.

Based on the above scenarios, the platform offers a log archiving solution, allowing users to

transfer logs to external NFS or object storage.

Transfer to External NFS

Prerequisites

Create Log Synchronization Resources

Transfer to External S3 Storage

Prerequisites

Create Log Synchronization Resources

How to Archive Logs to Third-Party Storage

TOC

Transfer to External NFS

Prerequisites

Menu ON THIS PAGE

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource Description

NFS
Set up the NFS service in advance and determine the NFS path to be

mounted.

Kafka Obtain the Kafka service address in advance.

Image

Address

You must use the CLI tool in the global cluster to execute the following

commands to get the image addresses:

- Get alpine image address: kubectl get daemonset nevermore -n cpaas-

system -o jsonpath='{.spec.template.spec.initContainers[0].image}'

- Get razor image address: kubectl get deployment razor -n cpaas-system

-o jsonpath='{.spec.template.spec.containers[0].image}'

1. Click on Cluster Management > Clusters in the left navigation bar.

2. Click the action button on the right side of the cluster where the logs will be transferred >

CLI Tool.

3. Modify the YAML based on the following parameter descriptions; after modifying, paste the

code into the open CLI Tool command line and hit enter to execute.

Resource

Type
Field Path Description

ConfigMap data.export.yml.output.compression

Compress log text;

supported options

are none (no

compression), zlib,

gzip.

ConfigMap data.export.yml.output.file_type

The type of exported

log file; supports txt,

csv, json.

ConfigMap data.export.yml.output.max_size Size of a single

archived file; unit is

Create Log Synchronization Resources

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource

Type
Field Path Description

MB. If it exceeds this

value, logs will be

automatically

compressed and

archived based on

the compression

field's configuration.

ConfigMap data.export.yml.scopes

The scope of log

transfer; currently

supported logs

include: system

logs, application

logs, Kubernetes

logs, product logs.

Deployment spec.template.spec.containers[0].command[7]
Kafka service

address.

Deployment spec.template.spec.volumes[3].hostPath.path
NFS path to be

mounted.

Deployment spec.template.spec.initContainers[0].image
Alpine image

address.

Deployment spec.template.spec.containers[0].image
Razor image

address.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

cat << "EOF" |kubectl apply -f -

apiVersion: v1

data:

 export.yml: |

 scopes: # The scope of log transfer; by default, only application logs are

collected

 system: false # System logs

 workload: true # Application logs

 kubernetes: false # Kubernetes logs

 platform: false # Product logs

 output:

 type: local

 path: /cpaas/data/logarchive

 layout: TimePrefixed

 # Size of a single archived file; unit is MB. If it exceeds this value, logs

will be automatically compressed and archived based on the compression field's

configuration.

 max_size: 200

 compression: zlib # Optional: none (no compression) / zlib / gzip

 file_type: txt # Optional: txt csv json

kind: ConfigMap

metadata:

 name: log-exporter-config

 namespace: cpaas-system

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 service_name: log-exporter

 name: log-exporter

 namespace: cpaas-system

spec:

 progressDeadlineSeconds: 600

 replicas: 1

 revisionHistoryLimit: 5

 selector:

 matchLabels:

 service_name: log-exporter

 strategy:

 rollingUpdate:

 maxSurge: 0

How to Archive Logs to Third-Party Storage - Alauda Container Platform

 maxUnavailable: 1

 type: RollingUpdate

 template:

 metadata:

 creationTimestamp: null

 labels:

 app: lanaya

 cpaas.io/product: Platform-Center

 service_name: log-exporter

 version: v1

 namespace: cpaas-system

 spec:

 affinity:

 podAffinity: {}

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: service_name

 operator: In

 values:

 - log-exporter

 topologyKey: kubernetes.io/hostname

 weight: 50

 initContainers:

 - args:

 - -ecx

 - |

 chown -R 697:697 /cpaas/data/logarchive

 command:

 - /bin/sh

 image: registry.example.cn:60080/ops/alpine:3.16 # Alpine image address

 imagePullPolicy: IfNotPresent

 name: chown

 resources:

 limits:

 cpu: 100m

 memory: 200Mi

 requests:

 cpu: 10m

 memory: 50Mi

 securityContext:

 runAsUser: 0

How to Archive Logs to Third-Party Storage - Alauda Container Platform

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 volumeMounts:

 - mountPath: /cpaas/data/logarchive

 name: data

 containers:

 - command:

 - /razor

 - consumer

 - --v=1

 - --kafka-group-log=log-nfs

 - --kafka-auth-enabled=true

 - --kafka-tls-enabled=true

 - --kafka-endpoint=192.168.143.120:9092 # Fill in based on actual

environment

 - --database-type=file

 - --export-config=/etc/log-export/export.yml

 image: registry.example.cn:60080/ait/razor:v3.16.0-beta.3.g3df8e987 # Razor

image

 imagePullPolicy: Always

 livenessProbe:

 failureThreshold: 5

 httpGet:

 path: /metrics

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 20

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 3

 name: log-export

 ports:

 - containerPort: 80

 protocol: TCP

 readinessProbe:

 failureThreshold: 5

 httpGet:

 path: /metrics

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 20

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 3

How to Archive Logs to Third-Party Storage - Alauda Container Platform

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: 440m

 memory: 1280Mi

 securityContext:

 runAsGroup: 697

 runAsUser: 697

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 volumeMounts:

 - mountPath: /etc/secrets/kafka

 name: kafka-basic-auth

 readOnly: true

 - mountPath: /etc/log-export

 name: config

 readOnly: true

 - mountPath: /cpaas/data/logarchive

 name: data

 dnsPolicy: ClusterFirst

 nodeSelector:

 kubernetes.io/os: linux

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext:

 fsGroup: 697

 serviceAccount: lanaya

 serviceAccountName: lanaya

 terminationGracePeriodSeconds: 10

 tolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io/master

 operator: Exists

 - effect: NoSchedule

 key: node-role.kubernetes.io/control-plane

 operator: Exists

 - effect: NoSchedule

 key: node-role.kubernetes.io/cpaas-system

 operator: Exists

 volumes:

 - name: kafka-basic-auth

 secret:

How to Archive Logs to Third-Party Storage - Alauda Container Platform

4. Once the container status changes to Running, you can view the continuously archived

logs in the NFS path; the log file directory structure is as follows:

Resource Description

S3

Storage

Prepare the S3 storage service address in advance, and obtain the

values for access_key_id and secret_access_key ; create the bucket

where the logs will be stored.

Kafka Obtain the Kafka service address in advance.

Image

Address

You must use the CLI tool in the global cluster to execute the following

commands to get the image addresses:

- Get alpine image address: kubectl get daemonset nevermore -n cpaas-

system -o jsonpath='{.spec.template.spec.initContainers[0].image}'

Transfer to External S3 Storage

Prerequisites

 defaultMode: 420

 secretName: kafka-basic-auth

 - name: elasticsearch-basic-auth

 secret:

 defaultMode: 420

 secretName: elasticsearch-basic-auth

 - configMap:

 defaultMode: 420

 name: log-exporter-config

 name: config

 - hostPath:

 path: /cpaas/data/logarchive # NFS path to be mounted

 type: DirectoryOrCreate

 name: data

EOF

/cpaas/data/logarchive/$date/$project/$namespace-$cluster/logfile

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource Description

- Get razor image address: kubectl get deployment razor -n cpaas-system

-o jsonpath='{.spec.template.spec.containers[0].image}'

1. Click on Cluster Management > Clusters in the left navigation bar.

2. Click the action button on the right side of the cluster where the logs will be transferred >

CLI Tool.

3. Modify the YAML based on the following parameter descriptions; after modifying, paste the

code into the open CLI Tool command line and hit enter to execute.

Resource

Type
Field Path Description

Secret data.access_key_id

Base64 encode the

obtained

access_key_id.

Secret data.secret_access_key

Base64 encode the

obtained

secret_access_key.

ConfigMap data.export.yml.output.compression

Compress log text;

supported options

are none (no

compression), zlib,

gzip.

ConfigMap data.export.yml.output.file_type

The type of exported

log file; supports txt,

csv, json.

ConfigMap data.export.yml.output.max_size Size of a single

archived file; unit is

MB. If it exceeds this

Create Log Synchronization Resources

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource

Type
Field Path Description

value, logs will be

automatically

compressed and

archived based on

the compression

field's configuration.

ConfigMap data.export.yml.scopes

The scope of log

transfer; currently

supported logs

include: system

logs, application

logs, Kubernetes

logs, product logs.

ConfigMap data.export.yml.output.s3.bucket_name Bucket name.

ConfigMap data.export.yml.output.s3.endpoint
S3 storage service

address.

ConfigMap data.export.yml.output.s3.region

Region information

for the S3 storage

service.

Deployment spec.template.spec.containers[0].command[7]
Kafka service

address.

Deployment spec.template.spec.volumes[3].hostPath.path

Local path to be

mounted, used for

temporarily storing

log information. Log

files will be

automatically

deleted after

synchronization to

S3 storage.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource

Type
Field Path Description

Deployment spec.template.spec.initContainers[0].image
Alpine image

address.

Deployment spec.template.spec.containers[0].image
Razor image

address.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

cat << "EOF" |kubectl apply -f -

apiVersion: v1

type: Opaque

data:

 # Must include the following two keys

 access_key_id: bWluaW9hZG1pbg== # Base64 encode the obtained access_key_id

 secret_access_key: bWluaW9hZG1pbg== # Base64 encode the obtained secret_access_key

kind: Secret

metadata:

 name: log-export-s3-secret

 namespace: cpaas-system

apiVersion: v1

data:

 export.yml: |

 scopes: # The scope of log transfer; by default, only application logs are

collected

 system: false # System logs

 workload: true # Application logs

 kubernetes: false # Kubernetes logs

 platform: false # Product logs

 output:

 type: s3

 path: /cpaas/data/logarchive

 s3:

 s3forcepathstyle: true

 bucket_name: baucket_name_s3 # Fill in the prepared bucket name

 endpoint: http://192.168.179.86:9000 # Fill in the prepared S3 storage

service address

 region: "dummy" # Region information

 access_secret: log-export-s3-secret

 insecure: true

 layout: TimePrefixed

 # Size of a single archived file; unit is MB. If it exceeds this value, logs

will be automatically compressed and archived based on the compression field's

configuration.

 max_size: 200

 compression: zlib # Optional: none (no compression) /

zlib / gzip

 file_type: txt # Optional: txt, csv, json

How to Archive Logs to Third-Party Storage - Alauda Container Platform

kind: ConfigMap

metadata:

 name: log-exporter-config

 namespace: cpaas-system

apiVersion: apps/v1

kind: Deployment

metadata:

 labels:

 service_name: log-exporter

 name: log-exporter

 namespace: cpaas-system

spec:

 progressDeadlineSeconds: 600

 replicas: 1

 revisionHistoryLimit: 5

 selector:

 matchLabels:

 service_name: log-exporter

 strategy:

 rollingUpdate:

 maxSurge: 0

 maxUnavailable: 1

 type: RollingUpdate

 template:

 metadata:

 creationTimestamp: null

 labels:

 app: lanaya

 cpaas.io/product: Platform-Center

 service_name: log-exporter

 version: v1

 namespace: cpaas-system

 spec:

 affinity:

 podAffinity: {}

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: service_name

 operator: In

How to Archive Logs to Third-Party Storage - Alauda Container Platform

 values:

 - log-exporter

 topologyKey: kubernetes.io/hostname

 weight: 50

 initContainers:

 - args:

 - -ecx

 - |

 chown -R 697:697 /cpaas/data/logarchive

 command:

 - /bin/sh

 image: registry.example.cn:60080/ops/alpine:3.16 # Alpine image address

 imagePullPolicy: IfNotPresent

 name: chown

 resources:

 limits:

 cpu: 100m

 memory: 200Mi

 requests:

 cpu: 10m

 memory: 50Mi

 securityContext:

 runAsUser: 0

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 volumeMounts:

 - mountPath: /cpaas/data/logarchive

 name: data

 containers:

 - command:

 - /razor

 - consumer

 - --v=1

 - --kafka-group-log=log-s3

 - --kafka-auth-enabled=true

 - --kafka-tls-enabled=true

 - --kafka-endpoint=192.168.179.86:9092 # Fill in the Kafka service

address based on actual environment

 - --database-type=file

 - --export-config=/etc/log-export/export.yml

 image: registry.example.cn:60080/ait/razor:v3.16.0-beta.3.g3df8e987 # Razor

image

 imagePullPolicy: Always

 livenessProbe:

How to Archive Logs to Third-Party Storage - Alauda Container Platform

 failureThreshold: 5

 httpGet:

 path: /metrics

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 20

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 3

 name: log-export

 ports:

 - containerPort: 80

 protocol: TCP

 readinessProbe:

 failureThreshold: 5

 httpGet:

 path: /metrics

 port: 8080

 scheme: HTTP

 initialDelaySeconds: 20

 periodSeconds: 10

 successThreshold: 1

 timeoutSeconds: 3

 resources:

 limits:

 cpu: "2"

 memory: 4Gi

 requests:

 cpu: 440m

 memory: 1280Mi

 securityContext:

 runAsGroup: 697

 runAsUser: 697

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 volumeMounts:

 - mountPath: /etc/secrets/kafka

 name: kafka-basic-auth

 readOnly: true

 - mountPath: /etc/log-export

 name: config

 readOnly: true

 - mountPath: /cpaas/data/logarchive

 name: data

How to Archive Logs to Third-Party Storage - Alauda Container Platform

4. Once the container status changes to Running, you can view the continuously archived

logs in the bucket.

 dnsPolicy: ClusterFirst

 nodeSelector:

 kubernetes.io/os: linux

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext:

 fsGroup: 697

 serviceAccount: lanaya

 serviceAccountName: lanaya

 terminationGracePeriodSeconds: 10

 tolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io/master

 operator: Exists

 - effect: NoSchedule

 key: node-role.kubernetes.io/control-plane

 operator: Exists

 - effect: NoSchedule

 key: node-role.kubernetes.io/cpaas-system

 operator: Exists

 volumes:

 - name: kafka-basic-auth

 secret:

 defaultMode: 420

 secretName: kafka-basic-auth

 - name: elasticsearch-basic-auth

 secret:

 defaultMode: 420

 secretName: elasticsearch-basic-auth

 - configMap:

 defaultMode: 420

 name: log-exporter-config

 name: config

 - hostPath:

 path: /cpaas/data/logarchive # Local temporary storage address for logs

 type: DirectoryOrCreate

 name: data

EOF

How to Archive Logs to Third-Party Storage - Alauda Container Platform

You can interface with external Elasticsearch or Kafka clusters by writing YAML configurations.

Depending on your business requirements, you can choose to interface with only the external

Elasticsearch cluster (while installing Kafka in the current cluster), or you can interface with

both the external Elasticsearch and Kafka clusters simultaneously.

TIP

The supported versions for interfacing with external Elasticsearch are as follows:

Elasticsearch 6.x supports versions 6.6 - 6.8;

Elasticsearch 7.x supports versions 7.0 - 7.10.2, with a recommendation to use 7.10.2.

Resource Preparation

Operating Procedures

Before interfacing, you need to prepare the required credential information.

How to Interface with External ES Storage
Clusters

TOC

Resource Preparation

Menu ON THIS PAGE

How to Interface with External ES Storage Clusters - Alauda Container Platform

1. In the left navigation bar, click on Cluster Management > Resource Management, then

switch to the cluster that needs the plugin installation.

2. Click on Create Resource Object, and fill in the code box after modifying the parameters

according to the code comments.

Credentials required for interfacing with external Elasticsearch:

If you need to use an external Kafka cluster, you will also need to create credentials for

interfacing with the external Kafka cluster:

3. Click on Create.

apiVersion: v1

type: Opaque

data:

 password: dEdWQVduSX5kUW1mc21acg== # Must be base64 encoded. Reference command:

echo -n <password_value>| base64

 username: YWRtaW4= # Must be base64 encoded. Reference command:

echo -n <username_value>| base64

kind: Secret

metadata:

 name: elasticsearch-basic-auth # Credential name. Ensure that the value of

elasticsearch.basicAuthSecretName in the log storage YAML matches this parameter.

 namespace: cpaas-system # The namespace where the Elasticsearch

component is located, generally cpaas-system.

apiVersion: v1

type: Opaque

data:

 password: dEdWQVduSX5kUW1mc21acg== # Must be base64 encoded. Reference command:

echo -n <password_value>| base64

 username: YWRtaW4= # Must be base64 encoded. Reference command:

echo -n <username_value>| base64

kind: Secret

metadata:

 name: kafka-basic-auth # Credential name. Ensure that the value of

kafka.basicAuthSecretName in the log storage YAML matches this parameter.

 namespace: cpaas-system # The namespace where the Kafka component is

located, generally cpaas-system.

How to Interface with External ES Storage Clusters - Alauda Container Platform

1. In the left navigation bar, click on App Store > Plugin Management.

2. In the top navigation, select the Cluster Name where you want to install the ACP Log

Storage with Elasticsearch plugin.

3. Click the action button on the right side of ACP Log Storage with Elasticsearch > Install.

4. Enable the Interface with External Elasticsearch switch, configure the YAML file, with the

interfacing example and parameter descriptions as follows:

Interfacing with the external Elasticsearch cluster while installing Kafka in the current

cluster:

Interfacing with both the external Elasticsearch cluster and the external Kafka cluster:

Operating Procedures

elasticsearch:

 install: false

 address: http://fake:9200 # External ES access address, e.g.,

http://192.168.143.252:11780/es_proxy

 basicAuthSecretName: elasticsearch-basic-auth # Credentials required for interfacing

with external Elasticsearch created in the prerequisites.

storageClassConfig:

 type: "LocalVolume" # Default is LocalVolume. Options are "LocalVolume" or

"StorageClass".

kafka:

 auth: true # Whether to enable authentication.

 k8sNodes:

 - log1 # Node name, obtained from kubectl get

nodes.

 - log2

 - log3

 storageSize: 10 # Storage size, in Gi, default is 10 Gi.

How to Interface with External ES Storage Clusters - Alauda Container Platform

elasticsearch:

 install: false

 address: http://fake:9200 # External ES access address, e.g.,

http://192.168.143.252:11780/es_proxy

 basicAuthSecretName: elasticsearch-basic-auth # Credentials required for interfacing

with external Elasticsearch created in the prerequisites.

kafka:

 auth: true # Whether to enable authentication.

 install: false

 basicAuthSecretName: kafka-basic-auth # Credentials required for interfacing with

external Kafka created in the prerequisites.

 address: 192.168.130.169:9092,192.168.130.187:9092,192.168.130.193:9092 # Kafka

access addresses, separated by commas.

How to Interface with External ES Storage Clusters - Alauda Container Platform

Events

Introduction

Usage Limitations

Events

Operation Procedures

Event Overview

Menu

Events - Alauda Container Platform

The platform integrates with Kubernetes events, logging significant status changes and

various operational state changes of Kubernetes resources. It also provides capabilities for

storage, querying, and visualization. When abnormalities occur with resources such as

clusters, nodes, or Pods, users can analyze events to determine specific causes.

Based on the root causes identified from the events, users can create alert policies for

workloads. When the number of critical events reaches the alert threshold, alerts can be

automatically triggered to notify relevant personnel for timely intervention, thereby reducing

operational risks on the platform.

Usage Limitations

This feature relies on the logging system. Please ensure that the ACP Log Collector and ACP

Log Storage plugins are installed within the platform beforehand.

Introduction

TOC

Usage Limitations

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Operation Procedures

Event Overview

1. Click on Operations Center > Events in the left navigation bar.

Tip: Switch the cluster to view events using the dropdown selection box in the top

navigation bar.

The events page displays an overview of significant events that occurred in the last 30

minutes by default (you can choose or customize the time range), as well as records of

resource events.

Significant Event Overview: This card shows the reason for significant events and the

number of resources that experienced such events within the selected time range.

Note: When the same resource experiences this type of event multiple times, the

resource count will not accumulate.

Events

TOC

Operation Procedures

Event Overview

Menu ON THIS PAGE

Events - Alauda Container Platform

For example: If the resource count for node restart events is 20, it indicates that within

the selected time range, 20 resources encountered such events, and the same resource

may have experienced it multiple times.

Resource Event Records: Below the significant event overview area, all event records

that meet the query conditions within the selected time range are displayed. You can filter

for respective types of events by clicking on the significant event card, or you can expand

the view and input query conditions to search. The query conditions are as follows:

Resource Type: The type of Kubernetes resource that experienced the event, e.g., Pod.

Namespace: The namespace of the Kubernetes resource where the event occurred.

Event Reason: The reason for the occurrence of the event.

Event Level: The significance of the event, such as Warning.

Resource Name: The name of the Kubernetes resource that experienced the event.

Multiple names can be selected or entered.

TIP

Click the view icon next to the resource name in the event record to view detailed information

about the event in the pop-up Event Details dialog.

The color of the icon to the left of the event reason indicates the event level. A green icon

indicates that the level of this event is Normal , and this event can be ignored; an orange icon

signifies that the level of this event is Warning , indicating that there is an anomaly with the

resource and this event should be monitored to prevent incidents.

Events - Alauda Container Platform

Inspection

Introduction

Introduction

Usage Limitations

Architecture

Architecture

Inspection

Component Health Status

Guides

Inspection

Execute Inspection

Inspection Configuration

Inspection Report Explanation

Menu

Inspection - Alauda Container Platform

Component Health Status
Procedures to Operate

Inspection - Alauda Container Platform

The Inspection module is a core component of the ACP platform's observability suite that

provides automated inspection and assessment capabilities for comprehensive resource

monitoring and risk management.

This module delivers four essential inspection capabilities:

Resource inspection for automated assessment of clusters, nodes, pods, certificates, and

other platform resources to identify risks and usage patterns

Real-time monitoring for live tracking of inspection task progress and immediate visibility

into resource operational status

Visual reporting for intuitive display of inspection results including resource risks, usage

information, and operational insights

Report generation for downloadable inspection reports in PDF or Excel formats with

comprehensive analysis and recommendations

By integrating these capabilities with role-based access controls and automated assessment

algorithms, it enables organizations to reduce manual inspection costs, proactively identify

resource anomalies, mitigate business risks, and maintain optimal platform performance

through systematic health assessments.

Usage Limitations

Introduction

TOC

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Some inspection items on the platform depend on clusters having monitoring components

installed. Please ensure that each cluster has either the ACP Monitoring with Prometheus

plugin or the ACP Monitoring with VictoriaMetrics plugin installed in advance.

The platform inspection supports sending inspection results via email. Please ensure that

the email notification server configuration has been completed in advance.

With the container platform's inspection functionality, users can manage and maintain the

container environment more efficiently, enhancing system stability and security.

Usage Limitations

Introduction - Alauda Container Platform

Inspection

Component Health Status

Architecture

TOC

Inspection

Menu ON THIS PAGE

Architecture - Alauda Container Platform

The inspection module is jointly provided by the platform component Courier and the

monitoring component, involving the following business processes:

Create inspection task: The platform submits an inspection-type CR to the global cluster.

Execute inspection task: The Courier component monitors the generation of inspection-

type CRs and queries the monitoring components of each cluster for various metric data

related to the inspection.

Write inspection results: After the Courier component completes the evaluation of each

inspection item, it will write the inspection results back into the corresponding inspection

CR.

View inspection results: Users can check the status and results of inspection tasks through

the platform, where data will be obtained from the corresponding inspection CR.

Component Health Status

Architecture - Alauda Container Platform

Component health status is jointly provided by the platform component Courier and the

monitoring component, involving the following business processes:

Predefined component monitoring list: The platform has predefined two types of CRDs in

the global cluster to define the list of components to be monitored and the monitoring

methods:

ModuleHealth: Defines the components that need to be monitored and the monitoring

methods.

ModuleHealthRecord: Defines the monitoring results of the corresponding components

in each cluster.

Regularly monitor component status: Courier will watch ModuleHealth, check the specified

functions, and then write the inspection results to the CR resources of ModuleHealth and

ModuleHealthRecord.

Component status determination: Courier will request data from Kubernetes and the

monitoring components to determine the actual status of the components and any existing

Architecture - Alauda Container Platform

issues.

Kubernetes: Checks whether the component is installed and whether the number of

component replicas is normal.

Prometheus / VictoriaMetrics: Based on the metrics provided by each component,

queries and determines whether the component can provide services normally.

View component health status: Users can check the health status of each component

through the platform, where data will be obtained from the corresponding CR resources of

ModuleHealth and ModuleHealthRecord.

Architecture - Alauda Container Platform

Guides

Inspection

Execute Inspection

Inspection Configuration

Inspection Report Explanation

Component Health Status
Procedures to Operate

Menu

Guides - Alauda Container Platform

Execute Inspection

Inspection Configuration

Inspection Report Explanation

Most Recent Inspection

Resource Risk Inspection

Resource Utilization Inspection

1. Click on Operation Center > Inspection > Basic Inspection in the left navigation bar.

Tip: The inspection page displays the inspection data information from the most recent

inspection. During the inspection process, you can view the resource data of completed

inspections in real-time.

2. On the Basic Inspection page, the following actions are supported:

Execute Inspection: Click the Inspection button in the upper right corner of the page to

perform an inspection on the platform.

Download Inspection Report: Click the Download Report button in the upper right

corner of the page, select the report format (PDF and Excel) in the pop-up dialog, and

Inspection

TOC

Execute Inspection

Menu ON THIS PAGE

Inspection - Alauda Container Platform

click to download, which will download the corresponding format report to your local

machine.

The PDF format inspection report does not include resource risk details page data;

The Excel format inspection report contains all data from the inspection;

Supports simultaneous download of both formats of reports.

Inspection

Configuration
Description

Scheduled

Inspection

Automated task execution timing rules, supporting input of

Crontab expressions.

Tip: Click the input box to expand the platform's preset Trigger

Rule Templates, select the appropriate template, and quickly

set the trigger rules with simple modifications.

Inspection Record

Retention
The number of inspection records to retain.

Email Notification
Select email notification contacts.

Note: Notification contacts must have email configured.

Inspection Report

Name

The name that will be used by the platform's built-in inspection

notification template to notify contacts.

Inspection

Configuration

Items

Modify the warning thresholds or disable inspection items

according to the platform's default inspection items for

certificates, cluster hosts, and pods.

Inspection Configuration

Inspection Report Explanation

Inspection - Alauda Container Platform

In the Most Recent Inspection information area, you can view relevant information from the

most recent inspection:

Inspection Time: The start and end time of the most recent inspection.

Total Number of Inspection Resources: The total number of resources (clusters, nodes,

pods, certificates) inspected in the most recent inspection.

Risks: The number of resources at risk, including those classified as Fault and Warning.

In the Resource Risk Inspection page, you can view an overview of risk information for

global clusters, self-built clusters, accessed clusters, and all nodes, pods, and certificates

under these clusters.

Click the Risk Details button on the card of the corresponding resource type (Cluster, Node,

pod, Certificate) to enter the risk details page for that resource type. On the details page, you

can view the most recent inspection information for the resource, as well as the list of

resources with faults and warnings.

Click on the resource name to jump to the resource details page.

Click the expand button on the right side of the Name field in the list to expand the

judgment conditions and reasons for faults and warnings.

For explanations of the risk status judgment criteria (Fault, Warning) for each resource, refer

to the table below.

Note: There are multiple conditions used to judge the faults and warnings for each resource

type; when the inspection data of the resource matches any one of the judgment conditions, it

is considered a piece of risk data.

Most Recent Inspection

Resource Risk Inspection

Inspection - Alauda Container Platform

Resource

Type

Inspection

Scope

Fault

Judgment

Conditions

Warning Judgment Conditions

Cluster - global

cluster

- Self-built

cluster

- Accessed

cluster

- Cluster status

is Abnormal;

- apiserver

connection is

abnormal

- After the cluster scale (number

of nodes/pods/mrtrics) increases,

the monitoring component

resource configuration has not

been updated.

- After the log data volume and

log collection frequency

increase, the log component

resource configuration has not

been updated.

- Cluster CPU usage exceeds

60%;

- Cluster memory usage exceeds

60%;

- Any pod in the ETCD

component of the cluster is in a

non-Running state;

- Any host in the cluster is in a

non-Ready state;

- The time difference between

any two nodes in the cluster

exceeds 40S;

- The CPU request rate of the

cluster (actual request value /

total) exceeds 60%;

- The memory request rate of the

cluster (actual request value /

total) exceeds 80%;

- Monitoring components are not

installed in the cluster;

- Monitoring components of the

cluster are abnormal;

- Any pod in the kube-

Inspection - Alauda Container Platform

Resource

Type

Inspection

Scope

Fault

Judgment

Conditions

Warning Judgment Conditions

controller-manager component

of the cluster is in a non-Running

state;

- Any pod in the kube-scheduler

component of the cluster is in a

non-Running state;

- Any pod in the kube-apiserver

component of the cluster is in a

non-Running state.

Inspection - Alauda Container Platform

Resource

Type

Inspection

Scope

Fault

Judgment

Conditions

Warning Judgment Conditions

Node

- All control

nodes

- All compute

nodes

- Node status is

Abnormal;

- The node-

exporter

component's

pod on the node

is in a non-

Running state;

- The kubelet

component's

pod on the node

is in a non-

Running state.

- Node's inode free is less than

1000

- Node CPU usage exceeds

60%;

- Node memory usage exceeds

60%;

- Disk space usage of the node

directory exceeds 60%;

- Node system load exceeds

200% and runtime exceeds 15

minutes;

- At least one NodeDeadlock

(node deadlock) event occurred

in the past day;

- At least one NodeOOM (out of

memory) event occurred in the

past day;

- At least one NodeTaskHung

(task hung) event occurred in the

past day;

- At least one

NodeCorruptDockerImage

(corrupted Docker image) event

occurred in the past day.

pod All pods

- pod status is

Error;

- The pod has

been in the

starting state for

more than 5

minutes.

- Pod CPU usage exceeds 80%;

- Pod memory usage exceeds

80%;

- The number of restarts of the

Pod in the past 5 minutes is

greater than or equal to 1.

Inspection - Alauda Container Platform

Resource

Type

Inspection

Scope

Fault

Judgment

Conditions

Warning Judgment Conditions

Certificate

-

Certmanager

certificates

- Kubernetes

certificates

Certificate

status is

Expired.

Certificate's validity period is less

than 29 days.

Click on the Resource Utilization Inspection tab to enter the Resource Utilization
Inspection page.

In the Resource Utilization Inspection page, you can view the total amount, usage, and

usage rate of CPU, memory, and disk of global clusters, accessed clusters, and self-built

clusters, as well as the number of resources such as clusters, nodes, pods, and projects on

the platform.

Resource Usage Statistics: You can view the total amount and total usage rate of CPU,

memory, and disk of global, accessed, and self-built clusters.

Platform Resource Quantity: You can view the number of resources running on the

platform.

Resource Utilization Inspection

Inspection - Alauda Container Platform

The platform health status page presents statistical data on the health status of features that

have been installed on the platform. When your account has management or auditing

permissions related to the platform, you can also view detailed health data for specific

features, including: a list of clusters that do not have the feature installed, the health status of

clusters that have the feature installed, and detection data for components within clusters

associated with the feature. This can help you quickly identify issues and improve the

operational efficiency of the platform.

Procedures to Operate

1. Navigate to the view page of installed products or the platform center (platform

management, project management, operations center).

2. Click the question mark button at the top right corner of the navigation bar > Platform

Health Status.

3. Check the feature card; the feature card displays the health status information of the

feature. If there are abnormalities in the feature components, it will be reflected on the card

as fault .

Component Health Status

TOC

Procedures to Operate

Menu ON THIS PAGE

Component Health Status - Alauda Container Platform

4. Click on the health/fault value on the feature card to expand the detailed health status page

on the right side of the page, where you can view detailed issue information for the faulty

components.

Component Health Status - Alauda Container Platform

	Observability
	Overview
	Monitoring
	Introduction
	Install
	TOC
	Overview
	Installation Preparation
	Install the ACP Monitoring with Prometheus Plugin via console
	Installation Procedures
	Access Method

	Install the ACP Monitoring with Prometheus Plugin via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Install the ACP Monitoring with VictoriaMetrics Plugin via console
	Prerequisites
	Installation Procedures

	Install the ACP Monitoring with VictoriaMetrics Plugin via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Architecture
	Monitoring Module Architecture
	TOC
	Overall Architecture Explanation
	Monitoring System
	Data Collection and Storage
	Data Query and Visualization

	Alerting System
	Alert Rule Management
	Alert Processing Workflow
	Real-time Alert Status

	Notification System
	Notification Configuration Management
	Notification Server Management

	Monitoring Component Selection Guide
	TOC
	Important Notes
	Component List
	Prometheus Related Components
	VictoriaMetrics Related Components

	Architecture Comparison
	Prometheus Architecture
	VictoriaMetrics Architecture

	Feature Comparison
	Installation Scheme Suggestions
	Monitoring Installation Architecture Overview
	Prometheus Installation Method
	VictoriaMetrics Installation Method

	Selection Recommendations
	Scenarios Suitable for Using VictoriaMetrics
	Scenarios Suitable for Using Prometheus

	Monitor Component Capacity Planning
	TOC
	Assumptions and Methodology
	Prometheus
	Small Scale — 10 worker nodes, 500 double-container Pods
	Medium Scale — 50 worker nodes, 2000 double-container Pods
	Large Scale — 500 worker nodes, 10000 double-container Pods

	VictoriaMetrics
	Small Scale — 10 worker nodes, 500 double-container Pods
	Medium Scale — 50 worker nodes, 2000 double-container Pods
	Large Scale — 500 worker nodes, 10000 double-container Pods

	Concepts
	TOC
	Monitoring
	Metrics
	PromQL
	Built-in Indicators
	Exporter
	ServiceMonitor

	Alarms
	Alarm Rules
	Alarm Policies

	Notifications
	Notification Policies
	Notification Templates

	Monitoring Dashboard
	Dashboard
	Panels
	Data Sources
	Variables

	Guides
	Management of Metrics
	TOC
	Viewing Metrics Exposed by Platform Components
	Viewing All Metrics Stored by Prometheus / VictoriaMetrics
	Prerequisites
	Procedures

	Viewing All Built-in Metrics Defined by the Platform
	Prerequisites
	Procedures

	Integrating External Metrics
	Prerequisites
	Procedures

	Management of Alert
	TOC
	Function Overview
	Key Features
	Functional Advantages
	Creating Alert Policies via UI
	Prerequisites
	Procedures
	Selecting Alert Type
	Configuring Alert Rules
	Other Configurations

	Additional Notes

	Creating Resource Alerts via CLI
	Prerequisites
	Procedures

	Creating Event Alerts via CLI
	Prerequisites
	Procedures

	Creating Alert Policies via alert Templates
	Prerequisites
	Procedures
	Creating Alert Template
	Creating Alert Policies Using alert Templates

	Setting Silence for Alerts
	Setting via UI
	Setting via CLI

	Recommendations for Configuring Alert Rules

	Management of Notification
	TOC
	Feature Overview
	Key Features
	Notification Server
	Corporate Communication Tool Server
	Email Server
	Webhook Type Server

	Notification Contact Group
	Notification Template
	Create Notification Template
	Reference Variables
	Special Formatting Markup Language in Emails

	Notification rule
	Prerequisites
	Operation Procedures

	Set Notification Rule for Projects
	Prerequisites
	Operation Procedures

	Management of Monitoring Dashboards
	TOC
	Function Overview
	Main Features
	Advantages
	Use Cases
	Prerequisites
	Relationship Between Monitoring Dashboards and Monitoring Components

	Manage Dashboards
	Create a Dashboard
	Import Dashboard
	Add Variables
	Add Panels
	Add Groups
	Switch Dashboards
	Other Operations

	Manage Panels
	Panel Description
	Panel Configuration Description
	General Parameters
	Special Parameters for Panels

	Create Monitoring Dashboards via CLI
	Common Functions and Variables
	Common Functions
	Common Variables
	Variable Use Case One
	Variable Use Case Two
	Notes When Using Built-in Metrics

	Management of Probe
	TOC
	Function Overview
	Blackbox Monitoring
	Prerequisites
	Procedures for Operation

	Blackbox Alerts
	Prerequisites
	Procedures for Operation

	Customizing BlackboxExporter Monitoring Module
	Procedures for Operation

	Create Blackbox Monitoring Items and Alerts via CLI
	Prerequisites
	Procedures for Operation

	Reference Information

	How To
	Backup and Restore of Prometheus Monitoring Data
	TOC
	Feature Overview
	Use Cases
	Prerequisites
	Procedures to Operate
	Backup Data
	Method 1: Backup Storage Directory (Recommended)
	Method 2: Snapshot Backup

	Restore Data

	Operation Results
	Learn More
	TSDB Data Format Description
	Data Backup Considerations

	Next Procedures

	VictoriaMetrics Backup and Recovery of Monitoring Data
	TOC
	Function Overview
	Use Cases
	Prerequisites
	Procedures
	1. Confirm Storage Path
	2. Execute Data Backup
	3. Execute Data Recovery

	Operation Result
	Learn More
	Follow-up Actions

	Collect Network Data from Custom-Named Network Interfaces
	TOC
	Function Overview
	Use Case
	Prerequisites
	Procedures to Operate
	Operation Results
	Learn More
	Subsequent Actions

	Distributed Tracing
	Introduction
	TOC
	Usage Limitations

	Install
	TOC
	Installing the Jaeger Operator
	Install the Jaeger Operator using the Web Console

	Deploying a Jaeger Instance
	Installing the OpenTelemetry Operator
	Install the OpenTelemetry Operator using the Web Console

	Deploying OpenTelemetry Instances
	Enable Feature Switch
	Uninstall Tracing
	Deleting OpenTelemetry Instance
	Uninstalling OpenTelemetry Operator
	Deleting Jaeger Instance
	Uninstalling Jaeger Operator

	Architecture
	TOC
	Core Components
	Data Flow

	Concepts
	TOC
	Telemetry
	OpenTelemetry
	Span
	Trace
	Instrumentation
	OpenTelemetry Collector
	Jaeger

	Guides
	Query Tracing
	TOC
	Feature Overview
	Main Features
	Feature Advantages
	Tracing Query
	Step 1: Combine Query Conditions
	Step 2: Execute Query

	Query Result Analysis
	Span List
	Time-Series Waterfall Chart
	Span Details

	Query Trace Logs
	TOC
	Feature Overview
	Core Features
	Prerequisites
	Log Query Operations
	Access Trace Logs
	Filter Logs
	By Pod Name
	By Time Range
	By Query Conditions
	Contain Trace ID

	Advanced Operations
	Export Logs
	Customize Display Fields
	View Log Context

	How To
	Non-Intrusive Integration of Tracing in Java Applications
	TOC
	Feature Overview
	Use Cases
	Prerequisites
	Steps to Operate
	Operation Results

	Business Log Associated with the TraceID
	TOC
	Background
	Adding TraceID to Java Application Logs
	Adding TraceID to Python Application Logs
	Verification Method

	Troubleshooting
	Unable to Query the Required Tracing
	TOC
	Problem Description
	Root Cause Analysis
	1. Tracing Sampling Rate Configured Too Low
	2. Elasticsearch Real-Time Limitations

	Solution for Root Cause 1
	Solution for Root Cause 2

	Incomplete Tracing Data
	TOC
	Problem Description
	Root Cause Analysis
	1. Data Persistence Delay
	2. Time Range Limitation

	Solution for Root Cause 1
	Solution for Root Cause 2

	Logs
	Introduction
	Install
	TOC
	Installation Planning
	Install Alauda Container Platform Log Storage with ElasticSearch via console
	Install Alauda Container Platform Log Storage with ElasticSearch via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Install Alauda Container Platform Log Storage with Clickhouse via console
	Install Alauda Container Platform Log Storage with Clickhouse via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Install Alauda Container Platform Log Collector Plugin
	Install Alauda Container Platform Log Collector Plugin via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Architecture
	Log Module Architecture
	TOC
	Overall Architecture Description
	Log Collection
	Component Installation Method
	Data Collection Process

	Log Consumption and Storage
	Razor
	Lanaya
	Vector

	Log Visualization

	Log Component Selection Guide
	TOC
	Architecture Comparison
	ElasticSearch Architecture
	Clickhouse Architecture

	Function Comparison
	Selection Recommendations

	Log Component Capacity Planning
	TOC
	ElasticSearch
	Small Scale 3 Nodes - Total Logs: 6300/s
	Small Scale 5 Nodes - Total Logs: 9900/s
	Large Scale 3+5 Nodes - Total Logs: 25000/s
	Large Scale 3+7 Nodes - Total Logs: 30000/s

	Clickhouse
	Single Node - Total Logs: 18000/s
	Three Nodes - Total Logs: 20000/s
	Six Nodes - Total Logs: 40000/s
	Nine Nodes - Total Logs: 69000/s

	Concepts
	TOC
	Open Source Components
	Filebeat
	Elasticsearch
	ClickHouse
	Kafka

	Core Functionality Concepts
	Log Collection Pipeline
	Index
	Shards and Replicas
	Columnar Storage

	Key Technical Terms
	Ingest Pipeline
	Consumer Group
	TTL (Time To Live)
	Replication Factor

	Data Flow Model

	Guides
	Logs
	TOC
	Log Query Analysis
	Search Logs
	Export Log Data
	View Log Context

	Manage Application Log Retention Time
	Platform Administrator Sets Retention Policies
	Project Administrator Sets Retention Policies
	Set Retention Policies via CLI

	Configure Partial Application Log Exclusion from Collection
	Stop Collecting All Application Logs in the Cluster
	Stop Collecting Application Logs in a Specific Namespace
	Stop Collecting Pod Logs

	How To
	How to Archive Logs to Third-Party Storage
	TOC
	Transfer to External NFS
	Prerequisites
	Create Log Synchronization Resources

	Transfer to External S3 Storage
	Prerequisites
	Create Log Synchronization Resources

	How to Interface with External ES Storage Clusters
	TOC
	Resource Preparation
	Operating Procedures

	Events
	Introduction
	TOC
	Usage Limitations

	Events
	TOC
	Operation Procedures
	Event Overview

	Inspection
	Introduction
	TOC
	Usage Limitations

	Architecture
	TOC
	Inspection
	Component Health Status

	Guides
	Inspection
	TOC
	Execute Inspection
	Inspection Configuration
	Inspection Report Explanation
	Most Recent Inspection
	Resource Risk Inspection
	Resource Utilization Inspection

	Component Health Status
	TOC
	Procedures to Operate

