Observability - Alauda Container Platform

Menu

Observability

Overview

Overview

Monitoring

Introduction

Install

Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin via console
Install the ACP Monitoring with Prometheus Plugin via YAML
Install the ACP Monitoring with VictoriaMetrics Plugin via console

Install the ACP Monitoring with VictoriaMetrics Plugin via YAML

Architecture

Observability - Alauda Container Platform

Concepts
Monitoring
Alarms
Notifications

Monitoring Dashboard

Guides

How To

Distributed Tracing

Introduction

Usage Limitations

Install

Installing the Jaeger Operator
Deploying a Jaeger Instance

Installing the OpenTelemetry Operator
Deploying OpenTelemetry Instances
Enable Feature Switch

Uninstall Tracing

Observability - Alauda Container Platform

Architecture
Core Components

Data Flow

Concepts

Telemetry
OpenTelemetry

Span

Trace

Instrumentation
OpenTelemetry Collector

Jaeger

Guides

How To

Troubleshooting

Logs

Introduction

Observability - Alauda Container Platform

Install

Installation Planning

Install Alauda Container Platform Log Storage with ElasticSearch via console
Install Alauda Container Platform Log Storage with ElasticSearch via YAML
Install Alauda Container Platform Log Storage with Clickhouse via console
Install Alauda Container Platform Log Storage with Clickhouse via YAML
Install Alauda Container Platform Log Collector Plugin

Install Alauda Container Platform Log Collector Plugin via YAML

Architecture

Concepts

Open Source Components
Core Functionality Concepts
Key Technical Terms

Data Flow Model

Guides

How To

Events

Observability - Alauda Container Platform

Introduction

Usage Limitations

Events
Operation Procedures

Event Overview

Inspection

Introduction

Usage Limitations

Architecture
Inspection

Component Health Status

Guides

Overview - Alauda Container Platform

Menu

Overview

The Observability module is a core feature of the ACP platform that provides comprehensive

monitoring and observability capabilities for cloud-native applications.
This module integrates four essential observability pillars:

* Synthetic monitoring (probe) for proactive endpoint testing
» Centralized logging for unified log management and analysis
+ Real-time monitoring for metrics collection and alerting

» Distributed tracing for end-to-end request tracking across microservices

By combining these capabilities into a single platform, it enables organizations to achieve
complete visibility into application performance, rapidly diagnose issues, ensure system

reliability, and optimize user experience across their entire technology stack.

Monitoring - Alauda Container Platform

Menu

Monitoring

Introduction

Introduction

Install

Install

Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin via console
Install the ACP Monitoring with Prometheus Plugin via YAML
Install the ACP Monitoring with VictoriaMetrics Plugin via console

Install the ACP Monitoring with VictoriaMetrics Plugin via YAML

Architecture

Monitoring - Alauda Container Platform

Monitoring Module Architecture
Overall Architecture Explanation
Monitoring System

Alerting System

Notification System

Monitoring Component Selection Guide
Important Notes

Component List

Architecture Comparison

Feature Comparison

Installation Scheme Suggestions

Monitor Component Capacity Planning
Assumptions and Methodology
Prometheus

VictoriaMetrics

Concepts

Concepts
Monitoring
Alarms
Notifications

Monitoring Dashboard

Monitoring - Alauda Container Platform

Guides

Management of Metrics

Viewing Metrics Exposed by Platform Components
Viewing All Metrics Stored by Prometheus / VictoriaMetrics
Viewing All Built-in Metrics Defined by the Platform

Integrating External Metrics

Management of Alert

Function Overview

Key Features

Functional Advantages

Creating Alert Policies via Ul

Creating Resource Alerts via CLI
Creating Event Alerts via CLI

Creating Alert Policies via alert Templates
Setting Silence for Alerts

Recommendations for Configuring Alert Rules

Management of Notification
Feature Overview

Key Features

Notification Server

Notification Contact Group
Notification Template

Notification rule

Set Notification Rule for Projects

Monitoring - Alauda Container Platform

Management of Monitoring Dashboards
Function Overview

Manage Dashboards

Manage Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

Management of Probe

Function Overview

Blackbox Monitoring

Blackbox Alerts

Customizing BlackboxExporter Monitoring Module
Create Blackbox Monitoring Items and Alerts via CLI

Reference Information

How To

Backup and Restore of Prometheus Monitoring Data
Feature Overview

Use Cases

Prerequisites

Procedures to Operate

Operation Results

Learn More

Next Procedures

Monitoring - Alauda Container Platform

VictoriaMetrics Backup and Recovery of Monitoring Data
Function Overview

Use Cases

Prerequisites

Procedures

Operation Result

Learn More

Follow-up Actions

Collect Network Data from Custom-Named Network Interfaces
Function Overview

Use Case

Prerequisites

Procedures to Operate

Operation Results

Learn More

Subsequent Actions

Introduction - Alauda Container Platform

Menu

Introduction

The Monitoring module is a core component of the ACP platform's observability suite that
provides comprehensive monitoring and alerting capabilities for platform administrators and

operations teams.
This module delivers four essential monitoring capabilities:

o Metrics collection for real-time performance data gathering from clusters, nodes,

applications, and containers

o Dashboards for intuitive visualization and analysis of system health and performance

trends
» Alerting for proactive detection of issues through customizable rules and thresholds

* Notifications for timely delivery of alert information to operations personnel

By integrating these capabilities with open-source components like Prometheus and
VictoriaMetrics, it enables organizations to maintain system reliability, prevent downtime,

reduce operational costs, and ensure optimal performance across their entire infrastructure.

Install - Alauda Container Platform

Menu ON THIS PAGE >

Install

TOC

Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin via console
Installation Procedures
Access Method

Install the ACP Monitoring with Prometheus Plugin via YAML
1. Check available versions
2. Create a Modulelnfo
3. Verify installation

Install the ACP Monitoring with VictoriaMetrics Plugin via console
Prerequisites
Installation Procedures

Install the ACP Monitoring with VictoriaMetrics Plugin via YAML
1. Check available versions
2. Create a Modulelnfo

3. Verify installation

Overview

Install - Alauda Container Platform

The monitoring component serves as the infrastructure for monitoring, alerting, inspection,
and health checking functions within the observability module. This document describes how
to install the ACP Monitoring with Prometheus plugin or the ACP Monitoring with

VictoriaMetrics plugin within a cluster.

Installation Preparation

Before install the monitoring components, please ensure the following conditions are met:

e The appropriate monitoring component has been selected by referring to the Monitoring

Component Selection Guide.

e When install in a workload cluster, ensure that the global cluster can access port 11780 of

the workload cluster.

o If you need to use storage classes or persistent volume storage for monitoring data, please

create the corresponding resources in the Storage section in advance.

Install the ACP Monitoring with Prometheus

Plugin via console

Installation Procedures

1. Navigate to App Store Management > Cluster Plugins and select the target cluster.
2. Locate the ACP Monitoring with Prometheus plugin and click Install.

3. Configure the following parameters:

Parameter Description
Scale Supports three configurations: Small Scale, Medium Scale,
Configuration and Large Scale:

- Default values are set based on the recommended load test
values of the platform

- You can choose or customize quotas based on the actual

Parameter

Storage Type

Replica Count

Parameter

Configuration

Install - Alauda Container Platform

Description

cluster scale
- Default values will be updated with platform versions; for

fixed configurations, custom settings are recommended

- LocalVolume: Local storage with data stored on specified
nodes

- StorageClass: Automatically generates persistent volumes
using a storage class

- PV: Utilizes existing persistent volumes

Note: Storage configuration cannot be modified after

Installation

Sets the number of monitoring component pods

Note: Prometheus supports only single-node installation

Data parameters for the monitoring component can be

adjusted as needed

4. Click Install to complete the installation.

Access Method

Once installation is complete, the components can be accessed at the following addresses

(replace <> with actual values):

Component

Thanos

Prometheus

Alertmanager

Access Address

<platform_access_address>/clusters/<cluster>/prometheus

<platform_access_address>/clusters/<cluster>/prometheus-0

<platform_access_address>/clusters/<cluster>/alertmanager

Install the ACP Monitoring with Prometheus
Plugin via YAML

Install - Alauda Container Platform

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig
resources, in the global cluster:

prometheus 30h

prometheus-v4.1.0 30h

This indicates that the ModulePlugin prometheus exists in the cluster and version v4.1.0 is
published.

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

Install - Alauda Container Platform

kind: ModulelInfo
apiVersion: cluster.alauda.io/v1alphal
metadata:
name: global-prometheus
labels:
cpaas.io/cluster-name: global
cpaas.io/module-name: prometheus
cpaas.io/module-type: plugin
spec:
version: v4.1.0
config:
storage:
type: LocalVolume
capacity: 40
nodes:
= XXX XXX XXX XX
path: /cpaas/monitoring

nn

storageClass:

pvSelectorK:
pvSelectorV: ""
replicas: 1
components:
prometheus:
retention: 7
scrapelnterval: 60
scrapeTimeout: 45
resources: null
nodeExporter:
port: 9100
resources: null
alertmanager:
resources: null
kubeStateExporter:
resources: null
prometheusAdapter:
resources: null
thanosQuery:
resources: null

size: Small

Reference for resources settings, example prometheus:

spec:
config:
components:
prometheus:
resources:
limits:
cpu: 2000m
memory: 2000Mi
requests:
cpu: 1000m
memory: 1000Mi

Install - Alauda Container Platform

For more details, please refer to the Monitor Component Capacity Planning

YAML field reference (VictoriaMetrics):

Field path

metadata.labels.cpaas.io/cluster-name

metadata.labels.cpaas.io/module-name

metadata.labels.cpaas.io/module-type

metadata.name

spec.version

spec.config.storage.type

spec.config.storage.capacity

spec.config.storage.nodes

Description

Target cluster name where the

plugin is installed.

Must be victoriametrics .

Must be plugin .

Modulelnfo name (e.g.,

<cluster>-victoriametrics).

Plugin version to install.

Storage type: LocalVolume ,

Storage(Class , or PV .

Storage size for VictoriaMetrics

(Gi). Minimum 30 Gi

recommended.

Node list when

storage.type=LocalVolume . Up to

1 node supported.

spec.

spec.

spec

spec.

spec.

spec.

spec

spec

spec.

spec.

spec

spec.

spec.

Install - Alauda Container Platform

Field path

config.storage.path

config.storage.storageClass

.config.storage.pvSelectorK

config.storage.pvSelectorV

replicas

config.

.config.

.config.

config.

config.

.config.

config.

config.

components.

components.

components.

components.

components.

components.

components.

components.

vmstorage.retention

vmagent.scrapelnterval

vmagent.scrapeTimeout

vmstorage .resources

nodeExporter.port

nodeExporter.resources

alertmanager.resources

kubeStateExporter.resources

Description

LocalVolume path when

storage.type=LocalVolume .

StorageClass name when

storage.type=StorageClass .

PV selector key when

storage.type=PV

PV selector value when

storage.type=PV

Replica count; LV does not

support multiple replicas.

Data retention days for

vmstorage.

Scrape interval seconds; applies
to ServiceMonitors without

interval .

Scrape timeout seconds; must be

less than scrapelnterval .

Resource settings for vmstorage.

Node Exporter port (default
9100).

Resource settings for Node

Exporter.

Resource settings for

Alertmanager.

Resource settings for Kube State

Exporter.

Install - Alauda Container Platform
Field path Description

Resource settings for
spec.config.components.prometheusAdapter.resources Prometheus Adapter (used for

HPA/custom metrics).
spec.config.components.vmagent.resources Resource settings for vmagent.

Monitoring scale: Small ,
spec.config.size
Medium , or Large .

3. Verify installation

Since the Modulelnfo name changes upon creation, locate the resource via label to check the

plugin status and version:

kubectl get moduleinfo -1 cpaas.io/module-name=victoriametrics

NAME CLUSTER MODULE
DISPLAY_NAME STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION
global-e671599464a5b1717732c5ba36079795 global victoriametrics
victoriametrics Running v4.1.0 vd.1.0 v4.1.0

Field explanations:

NAME : Modulelnfo resource name

e CLUSTER : Cluster where the plugin is installed

e MODULE : Plugin name

e DISPLAY_NAME : Display name of the plugin

o STATUS : Installation status; Running means successfully installed and running
e TARGET_VERSION : Intended installation version

o CURRENT_VERSION : Version before installation

e NEW VERSION : Latest available version for installation

Install - Alauda Container Platform

Install the ACP Monitoring with VictoriaMetrics

Plugin via console

Prerequisites

 If only install the VictoriaMetrics agent, ensure that the VictoriaMetrics Center has been

installed in another cluster.

Installation Procedures

1. Navigate to App Store Management > Cluster Plugins and select the target cluster.

2. Locate the ACP Monitoring with VictoriaMetrics plugin and click Install.

3. Configure the following parameters:

Parameter

Scale

Configuration

Install Agent Only

VictoriaMetrics

Center

Storage Type

Description

Supports three configurations: Small Scale, Medium Scale,
and Large Scale:

- Default values are set based on the recommended load
test values of the platform

- You can choose or customize quotas based on the actual
cluster scale

- Default values will be updated with platform versions; for

fixed configurations, custom settings are recommended

- Off: Install the complete VictoriaMetrics component suite
- On: Install only the VMAgent collection component, which

relies on the VictoriaMetrics Center

Select the cluster where the complete VictoriaMetrics

component has been installed

- LocalVolume: Local storage with data stored on specified
nodes

- StorageClass: Automatically generates persistent volumes

Install - Alauda Container Platform

Parameter Description

using a storage class

- PV: Utilizes existing persistent volumes

Sets the number of monitoring component pods:

- LocalVolume storage type does not support multiple
Replica Count replicas

- For other storage types, please refer to on-screen prompts

for configuration

Data parameters for the monitoring component can be
Parameter adjusted
Configuration Note: Data may temporarily exceed the retention period

before being deleted

4. Click Install to complete the installation.

Install the ACP Monitoring with VictoriaMetrics
Plugin via YAML

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

victoriametrics 30h

victoriametrics-v4.1.0 30h

This indicates that the ModulePlugin victoriametrics exists in the cluster and version v4.1.0
is published.

Install - Alauda Container Platform

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

Install - Alauda Container Platform

kind: ModulelInfo
apiVersion: cluster.alauda.io/v1alphal
metadata:
name: business-1-victoriametrics
labels:
cpaas.io/cluster-name: business-1
cpaas.io/module-name: victoriametrics
cpaas.io/module-type: plugin
spec:
version: v4.1.0
config:
storage:
type: LocalVolume
capacity: 40
nodes:
= XXX XXX XXX+ XX
path: /cpaas/monitoring

storageClass:

pvSelectorK:
pvSelectorV: ""
replicas: 1
agentOnly: false
agentReplicas: 1
crossClusterDependency:
victoriametrics: ""
components:
nodeExporter:
port: 9100
resources: null
vmstorage:
retention: 7
resources: null
kubeStateExporter:
resources: null
vmalert:
resources: null
prometheusAdapter:
resources: null
vmagent:
scrapelnterval: 60
scrapeTimeout: 45
resources: null

vminsert:

Install - Alauda Container Platform

resources: null
alertmanager:

resources: null
vmselect:

resources: null

size: Small

Reference for resources settings, example prometheus:

spec:
config:
components:
vmagent:
resources:
limits:
cpu: 2000m
memory: 2000Mi
requests:
cpu: 1000m
memory: 1000Mi

For more details, please refer to the Monitor Component Capacity Planning

YAML field reference (Prometheus):

Field path Description

Target cluster name where the
metadata.labels.cpaas.io/cluster-name

plugin is installed.
metadata.labels.cpaas.io/module-name Must be prometheus .
metadata.labels.cpaas.io/module-type Must be plugin .

Modulelnfo name (e.g.,
metadata.name

<cluster>-prometheus).

spec.version Plugin version to install.

Storage type: LocalVolume ,
spec.config.storage.type
Storage(Class , or PV .

spec.

spec.

spec.

spec

spec.

spec.

spec.

spec

spec.

spec.

spec.

spec.

Install - Alauda Container Platform

Field path

config.storage.capacity

config.storage.nodes

config.storage.path

.config.storage.storage(Class

config.storage.pvSelectorK

config.storage.pvSelectorV

replicas

.config.components.prometheus.retention

config.components.prometheus.scrapelnterval

config.components.prometheus.scrapeTimeout

config.components.prometheus.resources

config.components.nodeExporter.port

Description

Storage size for Prometheus
(Gi). Minimum 30 Gi

recommended.

Node list when
storage.type=LocalVolume . Up to

1 node supported.

LocalVolume path when

storage.type=LocalVolume .

StorageClass name when

storage.type=StorageClass .

PV selector key when

storage.type=PV

PV selector value when

storage.type=PV

Replica count; only applicable to

StorageClass / PV types.

Data retention days.

Scrape interval seconds; applies
to ServiceMonitors without

interval .

Scrape timeout seconds; must be

less than scrapelnterval .

Resource settings for

Prometheus.

Node Exporter port (default
9100).

Install - Alauda Container Platform
Field path Description

Resource settings for Node
spec.config.components.nodeExporter.resources
Exporter.

_ Resource settings for
spec.config.components.alertmanager.resources
Alertmanager.

Resource settings for Kube State
spec.config.components.kubeStateExporter.resources
Exporter.

_ Resource settings for
spec.config.components.prometheusAdapter.resources
Prometheus Adapter.
Resource settings for Thanos

spec.config.components.thanosQuery.resources
Query.

Monitoring scale: Small ,
spec.config.size
Medium , or Large .

3. Verify installation

Since the Modulelnfo name changes upon creation, locate the resource via label to check the

plugin status and version:

kubectl get moduleinfo -1 cpaas.io/module-name=prometheus

NAME CLUSTER MODULE

DISPLAY_NAME STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION
global-e671599464a5b1717732c5ba36079795 global prometheus prometheus
Running v4.1.0 v4.1.0 v4.1.0

Field explanations:

NAME : Modulelnfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

Install - Alauda Container Platform
STATUS : Installation status; Running means successfully installed and running
TARGET_VERSION : Intended installation version
CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

Architecture - Alauda Container Platform

Menu

Architecture

Monitoring Module Architecture
Overall Architecture Explanation
Monitoring System

Alerting System

Notification System

Monitoring Component Selection Guide
Important Notes

Component List

Architecture Comparison

Feature Comparison

Installation Scheme Suggestions

Monitor Component Capacity Planning
Assumptions and Methodology
Prometheus

VictoriaMetrics

Monitoring Module Architecture - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring Module Architecture

Global
Ul
CURD for alert rules ALB «
= Message Server Courier
b (Advanced API)
Email/SMS [€Send Message—|
Erebus Wechat/DingDing
Webhook
Record alert history Query alert history
CURD for alert rules
ElasticSearch |
ClickHouse [
Query monitor data
Cluster
L Load ?
. Rule Prometheus/VM monitoring collection
kube-apiserver \€ iicaion | Operator | andalarmrule | ALB Send Message
configuration
Query

L —>
Operate the prometheusrule rule——| Nervermore l«-Collect log indicators Prometheus

Trigger alarm——>»{AlertManager

o VM
Synchronize silence and
alarm interval configuration
Collect event indicators.
Y
rometheus S—
P ket monitoring indicators Warlock
exporters

TOC

Overall Architecture Explanation

Monitoring Module Architecture - Alauda Container Platform

Monitoring System
Data Collection and Storage
Data Query and Visualization
Alerting System
Alert Rule Management
Alert Processing Workflow
Real-time Alert Status
Notification System
Notification Configuration Management

Notification Server Management

Overall Architecture Explanation

The monitoring system consists of the following core functional modules:
1. Monitoring System

o Data Collection and Storage: Collecting and persisting monitoring metrics from multiple
sources

o Data Query and Visualization: Providing flexible query and visualization capabilities for
monitoring data

2. Alerting System

e Alert Rule Management: Configuring and managing alert policies

o Alert Triggering and Notification: Evaluating alert rules and dispatching notifications

e Real-time Alert Status: Providing a real-time view of the current alert status of the
system

3. Notification System

¢ Notification Configuration: Managing notification templates, contact groups, and policies

» Notification Server: Managing the configuration of various notification channels

Monitoring Module Architecture - Alauda Container Platform

Monitoring System

Data Collection and Storage

1. Prometheus/VictoriaMetrics Operator Responsibilities:

e Load and validate monitoring collection configurations
¢ Load and validate alert rule configurations

e Synchronize configurations to Prometheus/VictoriaMetrics instances
2. Sources of Monitoring Data:

o Nevermore: Generates log-related metrics
o Warlock: Generates event-related metrics

e Prometheus/VictoriaMetrics: Discovers and collects various exporters' metrics via
ServiceMonitor

Data Query and Visualization

1. Monitoring Data Query Process:

The browser initiates a query request (Path: /platform/monitoring.alauda.io/vibetal)

ALB forwards the request to the Courier component

Courier API processes the query:

¢ Built-in Metrics: Obtains PromQL through the indicators interface and queries

e Custom Metrics: Directly forwards PromQL to the monitoring component

The monitoring dashboard retrieves data and displays it
2. Monitoring Dashboard Management Process:

o Users access the global cluster ALB (Path:

/kubernetes/cluster_name/apis/ait.alauda.io/v1alpha2/MonitorDashboard)
o ALB forwards the request to the Erebus component

o Erebus routes the request to the target monitoring cluster

Monitoring Module Architecture - Alauda Container Platform
o The Warlock component is responsible for:

+ Validating the legality of the monitoring dashboard configuration

¢ Managing the MonitorDashboard CR resource

Alerting System

Alert Rule Management

The alert rule configuration process:

1. Users access the global cluster ALB (Path:

/kubernetes/cluster_name/apis/monitoring.coreos.com/v1/prometheusrules)

2. The request passes through ALB -> Erebus -> target cluster kube-apiserver
3. Responsibilities of each component:

o Prometheus/VictoriaMetrics Operator:

» Validating the legality of alert rules

* Managing PrometheusRule CR

* Nevermore: Listening for and processing log alert metrics

o Warlock: Listening for and processing event alert metrics

Alert Processing Workflow

1. Alert Evaluation:

¢ PrometheusRule/VMRule defines alert rules

» Prometheus/VictoriaMetrics evaluates rules periodically

2. Alert Notification:

o Alerts are sent to Alertmanager once triggered
e Alertmanager -> ALB -> Courier API

o Courier APl is responsible for dispatching notifications

Monitoring Module Architecture - Alauda Container Platform

3. Alert Storage:

o Alert history is stored in ElasticSearch/ClickHouse

Real-time Alert Status

1. Status Collection:
e The global cluster Courier generates metrics:

e cpaas_active_alerts: Current active alerts

e cpaas_active_silences: Current silence configurations
¢ Global Prometheus collects every 15 seconds
2. Status Display:

e The front-end queries and displays real-time status via Courier API

Notification System

Notification Configuration Management

The management process for notification templates, notification contact groups, and

notification policies is as follows:

1. Users access the standard API of the global cluster via a browser
e Access path: /apis/ait.alauda.io/v1betal/namespaces/cpaas-system
2. Managing related resources:

» Notification Template: apiVersion: "ait.alauda.io/vlbetal”, kind: "NotificationTemplate"
» Notification Contact Group: apiVersion: "ait.alauda.io/vlbetal", kind: "NotificationGroup"

¢ Notification Policy: apiVersion: "ait.alauda.io/vlbetal”, kind: "Notification"
3. Courier is responsible for:

» Validating the legality of notification templates

Monitoring Module Architecture - Alauda Container Platform
» Validating the legality of notification contact groups

» Validating the legality of notification policies

Notification Server Management

1. Users access the global cluster's ALB via a browser

o Access path: /kubernetes/global/api/v1/namespaces/cpaas-system/secrets
2. Managing and submitting notification server configurations

» Resource name: platform-email-server
3. Courier is responsible for:

» Validating the legality of the notification server configuration

Monitoring Component Selection Guide - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring Component Selection Guide

When installing cluster monitoring, the platform provides two monitoring components for you
to choose from: VictoriaMetrics and Prometheus. This article will detail the characteristics and

applicable scenarios of these two components, helping you make the most suitable choice.

TOC

Important Notes
Component List
Prometheus Related Components
VictoriaMetrics Related Components
Architecture Comparison
Prometheus Architecture
VictoriaMetrics Architecture
Feature Comparison
Installation Scheme Suggestions
Monitoring Installation Architecture Overview
Prometheus Installation Method
VictoriaMetrics Installation Method
Selection Recommendations
Scenarios Suitable for Using VictoriaMetrics

Scenarios Suitable for Using Prometheus

Monitoring Component Selection Guide - Alauda Container Platform

Important Notes

e Only one of VictoriaMetrics or Prometheus can be selected when installing cluster

monitoring components.

» Starting from version 3.18, VictoriaMetrics has been upgraded to Beta status, which meets

production environment usage conditions.

 VictoriaMetrics is suitable for scenarios with high availability requirements and multi-cluster

monitoring.

e Prometheus is suitable for single-cluster monitoring scenarios, especially for smaller

scales.

Component List

Prometheus Related Components

Component . o
Function Description
Name
Prometheus Core server responsible for collecting, storing, and querying
Server monitoring data
Monitoring data collection components that expose monitoring
Exporters . . .
metrics via HTTP interfaces
AlertManager Alert management center, handling alert rules and notifications
Supports push mode for monitoring data, used for data transfer in
PushGateway

special network environments

VictoriaMetrics Related Components

Monitoring Component Selection Guide - Alauda Container Platform

Component) o
Function Description
Name

VMStorage Monitoring data storage engine

Data writing component responsible for data distribution and
VMiInsert

storage
VMSelect Query service component providing data querying capabilities
VMAlert Alert rule evaluation and handling component
VMAgent Monitoring metric collection component

Architecture Comparison

Prometheus Architecture

Prometheus is a mature open-source monitoring system and is the second graduated project

of CNCF after Kubernetes. It has the following characteristics:

Powerful data collection capabilities.

Flexible query language PromQL.

A comprehensive ecosystem.

Supports cluster monitoring at a thousand-node scale.

VictoriaMetrics Architecture

VictoriaMetrics is a next-generation high-performance time series database and monitoring

solution with the following advantages:

Higher data compression ratio.

Lower resource Consumption.

Native support for cluster high availability.

Simpler operation and maintenance management.

Feature Comparison

Feature

High
Availability

Installation

Single Node

Installation

Long-term

Data Storage

Resource

Efficiency

Community

Support

Installation Scheme Suggestions

Monitoring Component Selection Guide - Alauda Container Platform

Prometheus

X

Requires

remote storage

Higher

Very mature

VictoriaMetrics

Natively
supported

Better

Rapidly

developing

Description

VictoriaMetrics supports
true cluster high availability

with better data consistency

Both support single-node

installation mode

VictoriaMetrics is more
suitable for long-term data

storage

VictoriaMetrics has better

resource utilization

Prometheus has a larger

community ecosystem

Monitoring Installation Architecture Overview

Monitoring Component Selection Guide - Alauda Container Platform

Apollo
Query
e ’L R
Cluster1/Cluster2/Cluster3 Cluster4

Query Query
D Do v

VMAgent Nri VMAgent Prometheus
Write Query !
Collect D . m o Collect o Collect
P Collect Send i b
Y v 'L L v 4
Exporter b Exporter lertmanager| : ! Exporter : : Exporter
Cluster1 Cluster2 Cluster3 Cluster4

The above diagram shows the installation architecture and data flow of the monitoring
components supported by the platform. The platform provides the following two installation

methods for selection:

Note: When replacing monitoring components, please ensure that existing components are

completely uninstalled, and monitoring data does not support cross-component migration.

Prometheus Installation Method

This method corresponds to the architecture of cluster4 in the above diagram:

¢ Uses Prometheus components to collect and process monitoring data.
¢ Queries and displays data through the monitoring panel.

¢ Suitable for single-cluster scenarios.

Monitoring Component Selection Guide - Alauda Container Platform

VictoriaMetrics Installation Method

VictoriaMetrics supports the following two installation modes:

1. Single Cluster Installation Mode

o Corresponds to the architecture of cluster2 in the above diagram.
 All VictoriaMetrics components are installed in the same cluster.

¢ Uses VMAgent to collect data and write to VictoriaMetrics.

o VMAlert is responsible for alert rule evaluation.

¢ Queries and displays data through the monitoring panel. Tip: It is recommended to use

this mode when data scale is below 1 million per second.

2. Multi-Cluster Installation Mode

Corresponds to the architecture of clusterl/cluster2/cluster3 in the above diagram.

Installs VMAgent in the workload cluster as a data collection agent.

VMAgent writes data into VictoriaMetrics in the central monitoring cluster.

Supports unified monitoring management across multiple clusters. Tip: Ensure that

VictoriaMetrics services are installed in the monitoring cluster before installing VMAgent.

Selection Recommendations

Scenarios Suitable for Using VictoriaMetrics

High Performance and Scalability Needs: Suitable for monitoring scenarios that handle

high-throughput data and long-term storage.

+ Cost-Effectiveness Considerations: Need to optimize storage and computing resource

costs.

« High Availability Requirements: Requires high availability assurance for monitoring

components.

« Multi-Cluster Management: Requires unified management of monitoring data across

multiple clusters.

Scenarios Suitable for Using Prometheus

Monitoring Component Selection Guide - Alauda Container Platform

Single Cluster with Small Scale: Monitoring scale is small, with no high availability

requirements.
Existing Prometheus Users: Already have a complete Prometheus monitoring system.
Simple Stability Requirements: Pursuing a simple and reliable monitoring solution.

Deep Ecosystem Integration: Closely integrated with the Prometheus ecosystem, with

high migration costs.

Monitor Component Capacity Planning - Alauda Container Platform

= Menu ON THIS PAGE >

Monitor Component Capacity Planning

The monitor component is responsible for storing metrics data collected from one or more
clusters in the platform. Therefore, you need to assess your monitor scale in advance and
plan the resources needed for the monitor component according to the guidelines in this
document.

TOC

Assumptions and Methodology
Prometheus
Small Scale — 10 worker nodes, 500 double-container Pods
Medium Scale — 50 worker nodes, 2000 double-container Pods
Large Scale — 500 worker nodes, 10000 double-container Pods
VictoriaMetrics
Small Scale — 10 worker nodes, 500 double-container Pods
Medium Scale — 50 worker nodes, 2000 double-container Pods

Large Scale — 500 worker nodes, 10000 double-container Pods

Assumptions and Methodology

« Data in this document comes from controlled lab performance reports and is intended as a

sizing baseline for production planning.

+ Retention for disk examples is 7 days; adjust proportionally for other retention targets.

Monitor Component Capacity Planning - Alauda Container Platform

o Storage baseline matches the warning above (SSD, ~6000 IOPS, ~250MB/s read/write,

independent mount).

o Test workloads exercised typical monitoring pages such as "acp ns overview page" and

"platform region detail page".

Prometheus

Below are sizing recommendations by scale for Prometheus and related components (Thanos

Query, Thanos Sidecar, etc.).

Small Scale — 10 worker nodes, 500 double-container
Pods

e Metric ingestion rate: ~2800 samples/second

. . CPU Memory Disk (if
Component Container Replicas o o) Not
Limit Limit applicable)

courier-api courier 2 2C 4Gi - -
kube-
prometheus- thanos- _

1 1C 1Gi - -
thanos- query
query
prometheus- ~10
kube- _ Write

prometheus 1 2C 8Gi 20G

prometheus- ovel
0 day:

Medium Scale — 50 worker nodes, 2000 double-container
Pods

¢ Metric ingestion rate: ~7294 samples/second

Monitor Component Capacity Planning - Alauda Container Platform

]] CPU Memory Disk (if
Component Container Replicas o o) Not:
Limit Limit applicable)

courier-api courier 2 4C 4Gi - -
kube-
prometheus- thanos- .

1 2.5C 8Gi - -
thanos- query
query
prometheus- ~30
kube- . Write

prometheus 1 4C 8Gi 40G

prometheus- ovel
0 day:

Large Scale — 500 worker nodes, 10000 double-container
Pods

e Metric ingestion rate: ~41575 samples/second

)) CPU Memory Disk (if
Component Container Replicas o o i)
Limit Limit applicable)
courier-api courier 2 6C 4Gi - -
kube- In-fi
prometheus- thanos- _ depl
1 2C 6Gi -
thanos- query may
query repli
prometheus- Pea
kube- _ ~15
prometheus 1 8C 20Gi 100G
prometheus- ~69
0 ovel

VictoriaMetrics

Monitor Component Capacity Planning - Alauda Container Platform

Below are sizing recommendations by scale for VictoriaMetrics components.

Small Scale — 10 worker nodes, 500 double-container

Pods

e Metric ingestion rate: ~3274 samples/second

]] CPU
Component Container Replicas o
Limit
courier-api courier 1 2C
vmselect-
proxy 1 1C
cluster
vmselect vmselect 1 500m
vmstorage-
vmstorage 1 500m
cluster

Memory Disk (if
o) Note:
Limit applicable)

4Gi - -

200Mi - -

1Gi - -
~1.5¢C
write

2Gi 3G _
over
days

Medium Scale — 50 worker nodes, 2000 double-container

Pods

e Metric ingestion rate: ~6940 samples/second

. . CPU
Component Container Replicas o
Limit
courier-api courier 2 4C
vmselect-
proxy 1 1C
cluster

vmselect vmselect 1 2C

Memory Disk (if
o) Notes
Limit applicable)
4Gi - -
200Mi - -
2Gi - -

Component

vmstorage-

cluster

Monitor Component Capacity Planning - Alauda Container Platform

)] CPU
Container Replicas o
Limit
vmstorage 1 2C

Disk (if
applicable)

10G

Notes

~2.6C
write
over |

days

Large Scale — 500 worker nodes, 10000 double-container

Pods

* Metric ingestion rate: ~34300 samples/second

Component

courier-api

vmselect-

cluster

vmselect

vmstorage-

cluster

)] CPU
Container Replicas o
Limit
courier 2 6C
proxy 1 2C
vmselect 1 5C
vmstorage 1 2C

Disk (if
applicable)

30G

Note

~16.8
write
over |

days

Menu

Concepts

TOC

Monitoring

Metrics

PromQL

Built-in Indicators

Exporter

ServiceMonitor
Alarms

Alarm Rules

Alarm Policies
Notifications

Notification Policies

Notification Templates
Monitoring Dashboard

Dashboard

Panels

Data Sources

Variables

Monitoring

Concepts - Alauda Container Platform

ON THIS PAGE >

Concepts - Alauda Container Platform

Metrics

Metrics are used to quantitatively describe the operating status of a system, and each metric
consists of four basic elements:

+ Metric Name: Used to identify the monitored object, such as cpu_usage

¢ Metric Value: Specific measurement value, such as 85.5

o Timestamp: Records the time of measurement

e Labels: Used for multidimensional data classification, such as {pod="nginx-1",

namespace="default"}

PromQL

PromQL is the query language for Prometheus, used to query and aggregate metric data from

the monitoring system.

Built-in Indicators

The platform has preset a series of commonly used monitoring metrics based on long-term
operational experience. You can directly use these metrics when configuring alarm rules or

creating monitoring dashboards without additional configuration.

EXxporter

The Exporter is a component for collecting monitoring data, with primary responsibilities

including:

¢ Collecting raw monitoring data from the target system
¢ Transforming data into a standard time-series metric format

¢ Providing metric data for querying via HTTP interface

ServiceMonitor

ServiceMonitor is used to declaratively manage monitoring configurations and primarily

defines:

Concepts - Alauda Container Platform

¢ The selection criteria for monitoring targets
o Configuration of metric collection interfaces

+ Execution parameters for collection tasks (intervals, timeouts, etc.)

Alarms

Alarm Rules

Alarm rules define the specific conditions for triggering alarms:

Alarm Expression: Describes the conditions for triggering an alarm using PromQL

statements

Alarm Threshold: Explicit boundary values for trigger

Duration: Duration for which the conditions must be continuously met

Alarm Level: Distinguishes the severity of alarms (e.g., PO/P1/P2)

Alarm Policies
Alarm policies organize multiple alarm rules together for unified configuration:

¢ Alarm Targets: The target scope of the rules
 Notification Method: The channels for sending alarms

¢ Sending Interval: The time interval for repeated alarm notifications

Notifications

Notification Policies

Notification policies manage the rules for sending alarm messages:

» Recipients: Target users for alarm notifications

» Notification Channels: Supported message sending methods

Concepts - Alauda Container Platform

« Notification Templates: Definition of message content format

Notification Templates

Notification templates customize the display format of alarm messages:

o Title Template: Format of the alarm message title
o Content Template: Organization of alarm details

e Variable Replacement: Supports dynamic data filling

Monitoring Dashboard

Dashboard

A dashboard is a collection of multiple related panels, providing an overall view of the system

status. It supports flexible layout arrangements and can organize panels in rows or columns.

Panels

Panels are visual representations of monitoring data, supporting various display types.

Data Sources

The configuration of monitoring data sources. Currently, only the monitoring components of
the current cluster are supported as data sources, and custom data sources are not supported

for now.

Variables

Variables serve as placeholders for values and can be used in metric queries. Through the
variable selector at the top of the dashboard, you can dynamically adjust query conditions,
allowing chart content to update in real-time.

Guides - Alauda Container Platform

Menu

Guides

Management of Metrics

Viewing Metrics Exposed by Platform Components
Viewing All Metrics Stored by Prometheus / VictoriaMetrics
Viewing All Built-in Metrics Defined by the Platform

Integrating External Metrics

Management of Alert

Function Overview

Key Features

Functional Advantages

Creating Alert Policies via Ul

Creating Resource Alerts via CLI
Creating Event Alerts via CLI

Creating Alert Policies via alert Templates
Setting Silence for Alerts

Recommendations for Configuring Alert Rules

Guides - Alauda Container Platform

Management of Notification
Feature Overview

Key Features

Notification Server

Notification Contact Group
Notification Template

Notification rule

Set Notification Rule for Projects

Management of Monitoring Dashboards
Function Overview

Manage Dashboards

Manage Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

Management of Probe

Function Overview

Blackbox Monitoring

Blackbox Alerts

Customizing BlackboxExporter Monitoring Module
Create Blackbox Monitoring Items and Alerts via CLI

Reference Information

Management of Metrics - Alauda Container Platform

Menu ON THIS PAGE >

Management of Metrics

The platform's monitoring system is based on the metrics collected by Prometheus /

VictoriaMetrics. This document will guide you on how to manage these metrics.

TOC

Viewing Metrics Exposed by Platform Components
Viewing All Metrics Stored by Prometheus / VictoriaMetrics
Prerequisites
Procedures
Viewing All Built-in Metrics Defined by the Platform
Prerequisites
Procedures
Integrating External Metrics
Prerequisites

Procedures

Viewing Metrics Exposed by Platform

Components

The monitoring method for the cluster components within the platform is to extract metrics

exposed via ServiceMonitor . Metrics in the platform are publicly available through the

Management of Metrics - Alauda Container Platform

/metrics endpoint. You can view the exposed metrics of a specific component in the platform
using the following example command:

curl -s http://<Component IP>:<Component metrics port>/metrics | grep 'TYPE\|HELP'

Sample Output:

Viewing All Metrics Stored by Prometheus /

VictoriaMetrics

You can view the list of available metrics in the cluster to help you write the PromQL you need
based on these metrics.

Prerequisites

1. You have obtained your user Token

2. You have obtained the platform address

Procedures

Run the following command to get the list of metrics using the curl command:

Management of Metrics - Alauda Container Platform

curl -k -X 'GET" -H 'Authorization: Bearer <Your token>' 'https://<Your platform

access address>/v2/metrics/<Your cluster name>/prometheus/label/__name__/values'

Sample Output:

"status": "success",
"data": [

"ALERTS",
"ALERTS_FOR_STATE",
"advanced_search_cached _resources_count",
"alb_error",
"alertmanager_alerts",
"alertmanager_alerts_invalid_total",
"alertmanager_alerts_received_total",

"alertmanager_cluster_enabled"]

Viewing All Built-in Metrics Defined by the
Platform

To simplify user usage, the platform has built in a large number of commonly used metrics.
You can directly use these metrics when configuring alerts or monitoring dashboards without

needing to define them yourself. The following will introduce you to how to view these metrics.

Prerequisites

1. You have obtained your user Token

2. You have obtained the platform address

Procedures

Run the following command to get the list of metrics using the curl command:

Management of Metrics - Alauda Container Platform

curl -k -X 'GET" -H 'Authorization: Bearer <Your token>' 'https://<Your platform

access address>/v2/metrics/<Your cluster name>/indicators'

Sample Output:

Management of Metrics - Alauda Container Platform

{
"alertEnabled": true, a
"annotations": {
"cn": "CPU utilization of containers in the compute component",
"descriptionEN": "Cpu utilization for pods in workload",
"descriptionZH": "CPU utilization of containers in the compute component”,
"displayNameEN": "CPU utilization of the pods",
"displayNameZH": "CPU utilization of containers in the compute component"”,
"en": "Cpu utilization for pods in workload",
"features": "SupportDashboard", o
"summaryEN": "CPU usage rate {{.externallabels.comparison}}
{{.externallabels.threshold}} of Pod ({{.labels.pod}})",
"summaryZH": "CPU usage rate {{.externallabels.comparison}}
{{.externallabels.threshold}} of pod ({{.labels.pod}})"
}
"displayName": "CPU utilization of containers in the compute component",
"kind": "workload",
"multipleEnabled": true, (@@
"name": "workload.pod.cpu.utilization",
"query": "avg by (kind,name,namespace,pod) (avg by
(kind, name,namespace, pod, container)
(cpaas_advanced_container_cpu_usage_seconds_total_irate5m{kind="\"
{{.kind}}\", name="\"{{.name}}\", namespace="\"
{{.namespace}}\",container!=\"\",container!=\"POD\"}) / avg by
(kind, name,namespace, pod, container)
(cpaas_advanced_kube_pod_container_resource_limits{kind="\"{{.kind}}\",name="\"
{{.name}}\", namespace="\"{{.namespace}}\", resource=\"cpu\"}))", e
"summary": "CPU usage rate {{.externallabels.comparison}}
{{.externallabels.threshold}} of pod ({{.labels.pod}})",
"type": "metric",
"unit": "%",
"legend": "{{.namespace}}/{{.pod}}",
"variables": [a
"namespace”,
"name",
"kind"

Management of Metrics - Alauda Container Platform
1. Whether this metric supports being used for configuring alerts
2. Whether this metric supports being used in monitoring dashboards

3. Whether this metric supports being used when configuring alerts for multiple

resources
4. The PromQL statement defined for the metric

5. The variables that can be used in the PromQL statement of the metric

Integrating External Metrics

In addition to the built-in metrics of the platform, you can also integrate metrics exposed by
your applications or third-party applications via ServiceMonitor or PodMonitor . This section
uses the Elasticsearch Exporter installed in pod form in the same cluster as an example for

explanation.

Prerequisites

You have installed your application and exposed metrics through specified interfaces. In this
document, we assume your application is installed in the cpaas-system namespace and has

exposed the http://<elasticsearch-exporter-ip>:9200/_prometheus/metrics endpoint.

Procedures

1. Create a Service/Endpoint for the Exporter to expose metrics

Management of Metrics - Alauda Container Platform

apiVersion: v1
kind: Service
metadata:
labels:
chart: elasticsearch
service_name: cpaas-elasticsearch
name: cpaas-elasticsearch
namespace: cpaas-system
spec:
clusterIP: 10.105.125.99
ports:
- name: cpaas-elasticsearch
port: 9200
protocol: TCP
targetPort: 9200
selector:
service_name: cpaas-elasticsearch
sessionAffinity: None
type: ClusterIP

2. Create a ServiceMonitor object to describe the metrics exposed by your application:

Management of Metrics - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
labels:
app: cpaas-monitor
chart: cpaas-monitor
heritage: Helm
prometheus: kube-prometheus 0
release: cpaas-monitor
name: cpaas-elasticsearch-Exporter
namespace: cpaas—systeme
spec:

jobLabel: service_name o
namespaceSelector: e

any: true
selector: e

matchExpressions:

- key: service_name
operator: Exists

endpoints:

- port: cpaas—elasticsearche
path: /_prometheus/metrics o
interval: 6@56
honorlLabels: true
basicAuth: @)

password:

key: ES_PASSWORD

name: acp-config-secret
username:

key: ES_USER

name: acp-config-secret

1. To which Prometheus should the ServiceMonitor be synchronized; the operator will
listen to the corresponding ServiceMonitor resource based on the
serviceMonitorSelector configuration of the Prometheus CR. If the
ServiceMonitor's labels do not match the serviceMonitorSelector configuration of

the Prometheus CR, this ServiceMonitor will not be monitored by the operator.

2. The operator will listen to which namespaces of ServiceMonitor based on the

serviceMonitorNamespaceSelector configuration of the Prometheus CR; if the

Management of Metrics - Alauda Container Platform

ServiceMonitor is not in the serviceMonitorNamespaceSelector of the Prometheus

CR, this ServiceMonitor will not be monitored by the operator.

. Metrics collected by Prometheus will add a job label, with the value being the

service label value corresponding to jobLabel.

. The ServiceMonitor matches the corresponding Service based on the

namespaceSelector configuration.

. The ServiceMonitor matches the Service based on the selector configuration.
. The ServiceMonitor matches the Service's port based on port configuration.

. The access path to the Exporter, default is /metrics.

. The interval at which Prometheus scrapes the Exporter metrics.

. If authentication is required to access the Exporter path, authentication information
needs to be added; it also supports bearer token, tls authentication, and other

methods.

. Check if the ServiceMonitor is being monitored by Prometheus

Access the Ul of the monitoring component to check if the job cpaas-elasticsearch-

exporter exists.

e Prometheus Ul address: https://<Your platform access address>/clusters/<Cluster

name>/prometheus-0/targets

¢ VictoriaMetrics Ul address: https://<Your platform access

address>/clusters/<Cluster name>/vmselect/vmui/?#/metrics

Management of Alert - Alauda Container Platform

Menu

Management of Alert

TOC

Function Overview
Key Features
Functional Advantages
Creating Alert Policies via Ul
Prerequisites
Procedures
Selecting Alert Type
Configuring Alert Rules
Other Configurations
Additional Notes
Creating Resource Alerts via CLI
Prerequisites
Procedures
Creating Event Alerts via CLI
Prerequisites
Procedures
Creating Alert Policies via alert Templates
Prerequisites
Procedures
Creating Alert Template
Creating Alert Policies Using alert Templates

Setting Silence for Alerts

ON THIS PAGE >

Management of Alert - Alauda Container Platform

Setting via Ul
Setting via CLI

Recommendations for Configuring Alert Rules

Function Overview

The alert management function of the platform aims to help users comprehensively monitor
and promptly detect system anomalies. By utilizing pre-installed system alerts and flexible
custom alert capabilities, combined with standardized alert templates and a tiered
management mechanism, it provides a complete alert solution for operation and maintenance
personnel.

Whether it's platform administrators or business personnel, they can conveniently configure
and manage alert policies within their respective permission scopes for effective monitoring of
platform resources.

Key Features

» Built-in System Alert Policies: Rich alert rules are preset based on common fault

diagnosis ideas for global clusters and workload clusters.

o Custom Alert Rules: Supports the creation of alert rules based on various data sources,
including preset monitoring indicators, custom monitoring indicators, black-box monitoring

items, platform log data, and platform event data.

+ Alert Template Management: Supports the creation and management of standardized

alert templates for quick application to similar resources.

+ Alert Notification Integration: Supports the push of alert information to operation and

maintenance personnel through various channels.

+ Alert View Isolation: Distinguishes between platform management alerts and business

alerts, ensuring that personnel in different roles focus on their respective alert information.

+ Real-time Alert Viewing: Provides real-time alerts, offering concentrated displays of the

number of resources currently experiencing alerts and detailed alert information.

Management of Alert - Alauda Container Platform

» Alert History Viewing: Supports the viewing of historical alert records over a period,
facilitating the analysis of recent monitoring alert conditions by operation and maintenance

personnel and administrators.

Functional Advantages

 Comprehensive Monitoring Coverage: Supports monitoring of various resource types
such as clusters, nodes, and computing components, and comes with rich built-in system

alert policies that can be used without additional configuration.

» Efficient Alert Management: Standardized configurations through alert templates enhance
operational efficiency, and the separation of alert views makes it easier for personnel in

different roles to quickly locate relevant alerts.

e Timely Problem Detection: alert notifications are automatically triggered to ensure timely

problem detection, supporting multi-channel alert pushing for proactive problem avoidance.

* Robust Permission Management: Strict access control for alert policies ensures that alert

information is secure and manageable.

Creating Alert Policies via Ul

Prerequisites

» A notification policy is configured (if you need to configure automatic alert notifications).

e Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

e Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Procedures

1. Navigate to Operation and Maintenance Center > alerts > alert Policies.

2. Click Create Alert Policy.

Management of Alert - Alauda Container Platform

3. Configure basic information.

Selecting Alert Type
Resource Alert

» Alert types categorized by resource type (e.g., deployment status under a namespace).

e Resource selection description:

o Defaults to "Any" if no parameter is selected, supporting automatic association with

newly added resources.
* When "Select All" is chosen, it only applies to the current resource.

¢ When multiple namespaces are selected, resource names support regular expressions

(e.g., cert.*).
Event Alert

» Alert types categorized by specific events (e.g., abnormal Pod status).

o By default, selects all resources under the specified resource and supports automatic

association with newly added resources.

Configuring Alert Rules
Click Add Alert Rule and configure the following parameters based on the alert type:

Resource Alert Parameters

Parameter Description

Monitoring metric algorithm in Prometheus format, e.g.,

Expression
rate(node_network_receive_bytes{instance="$server", device!™"10"}[5m])
_ _ Custom monitoring metric unit, can be entered manually or selected from
Metric Unit _
platform preset units
Legend Controls the name corresponding to the curve in the chart, formatted as

Parameter {{.LabelName}} , e.g., {{.hostname}}

Management of Alert - Alauda Container Platform

Parameter Description
Time] _ _
Time window for log/event queries
Range
Log Query fields for log content (e.g., Error), where multiple query fields are
Content linked by OR
Event Query fields for event reasons (Reason, e.g., BackOff, Pulling, Failed,
Reason etc.), where multiple query fields are linked by OR
Condition consisting of comparison operators, alert thresholds, and
T duration (optional). Determines if an alert is triggered based on the
rigger , , ,
Conditi comparison of real-time values/log count/event count against the alert
ondition
threshold, as well as the duration of real-time values within the alert
threshold range.
Divided into four levels: Critical, Serious, Warning, and Info. You can set
alert Level a reasonable alert level according to the impact of the alert rules on

business for the corresponding resources.

Event Alert Parameters

Parameter Description
Time Range Time window for event queries
Event Monitoring Supports monitoring event levels or event reasons, where multiple
Item fields are linked by OR
Trigger Condition Based on event count for comparison judgement
alert Level Same definition as resource alert levels

Other Configurations

1. Select one or more created notification policies.

2. Configure alert sending intervals.

e Global: Use platform default configuration.

Management of Alert - Alauda Container Platform
o Custom: Different sending intervals can be set based on alert levels.

 When "Do Not Repeat" is selected, notifications will only be sent when the alert is

triggered and recovered.

Additional Notes

1. In the "More" options of the alert rule, labels and annotations can be set.

2. Please refer to the Prometheus Alerting Rules Documentation - for configuring labels and

annotations.

3. Note: Do not use the $value variable in labels, as this may cause alert exceptions.

Creating Resource Alerts via CLI

Prerequisites

+ A natification policy is configured (if you need to configure automatic alert notifications).

* Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

* Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Procedures

1. Create a new YAML configuration file named example-alerting-rule.yaml .

2. Add PrometheusRule resources to the YAML file and submit it. The following example

creates a new alert policy called policy:

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global # The name of the cluster where the alert is located
alert.cpaas.io/kind: Cluster # The type of resource,
alert.cpaas.io/name: global # The resource object, supporting single, multiple
(separated by |), or any (.*)
alert.cpaas.io/namespace: cpaas-system # The namespace where the alert object is
located, supporting single, multiple (separated by |), or any (.*)
alert.cpaas.io/notifications: '["test"]'
alert.cpaas.io/repeat-config:
"{"Critical":"never","High":"5m", "Medium":"5m", "Low":"5m"}'
alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'

alert.cpaas.io/subkind:
cpaas.io/description: "'
cpaas.io/display-name: policy # The display name of the alert policy
labels:
alert.cpaas.io/owner: System
alert.cpaas.io/project: cpaas-system
cpaas.io/source: Platform
prometheus: kube-prometheus
rule.cpaas.io/cluster: global
rule.cpaas.io/name: policy
rule.cpaas.io/namespace: cpaas-system
name: policy
namespace: cpaas-system
spec:
groups:

- name: general # alert rule name

rules:
- alert: cluster.pod.status.phase.not.running-tx1ob-e998f0b94854eeleade5ae79279e0¢
annotations:
alert_current_value: '{{ $value }}' # Notification of the current value, keep
default

expr: (count(min by(pod)(kube_pod_container_status_ready{}) !=1) or on()
vector(0))>2
for: 30s # Duration
labels:
alert_cluster: global # The name of the cluster where the alert is located
alert_for: 3@0s # Duration
alert_indicator: cluster.pod.status.phase.not.running # The name of the alert

Management of Alert - Alauda Container Platform

alert_indicator_aggregate_range: '30'

alert_indicator_blackbox_name:

1 1

alert_indicator_comparison: '>

L

alert_indicator_query:

alert_indicator_threshold: '2'

L

alert_indicator_unit:

alert_involved_object_kind: Cluster

alert_involved_object_name: global
alert_involved_object_namespace: "'

alert_name: cluster.pod.status.phase.not.running-tx1ob

alert_namespace: cpaas-system
alert_project: cpaas-system

alert_resource: policy
alert_source: Platform

severity: High

Creating Event Alerts via CLI

Prerequisites

¢ A natification policy is configured (if you need to configure automatic alert notifications).

« Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

e Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Procedures

Management of Alert - Alauda Container Platform

1. Create a new YAML configuration file named example-alerting-rule.yaml .

2. Add PrometheusRule resources to the YAML file and submit it. The following example

creates a new alert policy called policy2:

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global
alert.cpaas.io/events.scope:
"[{"names":["argocd-gitops-redis-ha-

haproxy"],"kind": "Deployment", "operator":"=", "namespaces":["*"]}]"

names: The resource name for the event alert; operator is ineffective if name
is empty.

kind: The type of resource that triggers the event alert.

namespace: The namespace where the resource that triggers the event alert
belongs. An empty array indicates a non-namespaced resource; when ns is ['*'], it
indicates all namespaces.

operator: Selector =, !=, =7, I7

alert.cpaas.io/kind: Event # The type of alert, Event (event alert)

alert.cpaas.io/name: # Used for resource alerts; remains empty for event alerts
alert.cpaas.io/namespace: cpaas-system
alert.cpaas.io/notifications: '["“acp-qwtest"]'
alert.cpaas.io/repeat-config:
"{"Critical”:"never","High":"5m", "Medium":"5m", "Low":"5m"}"
alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'
cpaas.io/description: "'
cpaas.io/display-name: policy2
labels:
alert.cpaas.io/owner: System
alert.cpaas.io/project: cpaas-system
cpaas.io/source: Platform
prometheus: kube-prometheus
rule.cpaas.io/cluster: global
rule.cpaas.io/name: policy?2
rule.cpaas.io/namespace: cpaas-system
name: policy?2
namespace: cpaas-system
spec:
groups:
- name: general
rules:
- alert: cluster.event.count-6sial-34c9a378e3bb6dda8401c2d728994ce2f
6sial-34c9a378e3b6dda8401c2d728994ce2f can be customized to ensure
uniqueness

annotations:

Management of Alert - Alauda Container Platform

alert_current_value: '{{ $value }}'

expr: round(((avg

by(kind, namespace,name, reason)
(increase(cpaas_event_count{namespace="".*",id="policy2-cluster.event.count-6sial"}
[300s])))

+ (avg

by(kind, namespace,name, reason)
(abs(increase(cpaas_event_count{namespace="".*",id="policy2-cluster.event.count-
6sial"}[300s])))))

/ 2)>2

for: 15s

labels:
alert_cluster: global
alert_for: 15s

alert_indicator: cluster.event.count

alert_indicator_aggregate_range: '300'

alert_indicator_blackbox_name:
alert_indicator_comparison: '>'
alert_indicator_event_reason: ScalingReplicaSet
alert_indicator_threshold: '2'

alert_indicator_unit: pieces
alert_involved_object_kind: Event
alert_involved_object_options: Single
alert_name: cluster.event.count-6sial
alert_namespace: cpaas-system

alert_project: cpaas-system

alert_repeat_interval: 5m

alert_resource: policy?2
alert_source: Platform

severity: High

Creating Alert Policies via alert Templates

Management of Alert - Alauda Container Platform

alert templates are a combination of alert rules and notification policies targeted at similar
resources. Through alert templates, it is easy and quick to create alert policies for clusters,

nodes, or computing components on the platform.

Prerequisites

» A notification policy is configured (if you need to configure automatic alert notifications).

* Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

Procedures

Creating Alert Template

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert
Templates.

2. Click Create alert Template.

3. Configure the basic information of the alert template.

4. In the alert Rules section, click Add alert Rule, and follow the parameter descriptions

below to add alert rules:

Parameter Description

Monitoring metric algorithm in Prometheus format, e.g.,

Expression . _ .
rate(node_network_receive_bytes{instance="$server", device!™"10"}[5m])
_ _ Custom monitoring metric unit, can be entered manually or selected from
Metric Unit]
platform preset units
Legend Controls the name corresponding to the curve in the chart, formatted as
Parameter {{.LabelName}} , e.g., {{.hostname}}
Time _ . .
Time window for log/event queries
Range
Log Query fields for log content (e.g., Error), where multiple query fields are

Content linked by OR

Parameter

Event

Reason
Trigger

Condition

alert Level

5. Click Create.

Management of Alert - Alauda Container Platform
Description

Query fields for event reasons (Reason, e.g., BackOff, Pulling, Failed,

etc.), where multiple query fields are linked by OR

Condition consisting of comparison operators, alert thresholds, and

duration (optional).

Divided into four levels: Critical, Serious, Warning, and Info. You can set
a reasonable alert level according to the impact of the alert rules on

business for the corresponding resources.

Creating Alert Policies Using alert Templates

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Policies. Tip: You can switch the target cluster through the top navigation bar.

2. Click the expand button next to the Create alert Policy button > Template Create alert

Policy.

3. Configure some parameters, referring to the descriptions below:

Parameter

Template

Name

Resource

Type

4. Click Create.

Description

The name of the alert template to use. The templates are categorized
by cluster, node, and computing component. Upon selecting a template,
you can view the alert rules, notification policies, and other information

set within the alert template.

Select whether the template is an alert policy template for Cluster,
Node, or Computing Component; the corresponding resource name

will be displayed.

Setting Silence for Alerts

Management of Alert - Alauda Container Platform

Supports silencing alerts for clusters, nodes, and computing components. By setting silence
for specific alert policies, you can control that all rules under the alert policy do not send
notification messages when triggered during the set silence period. Permanent silence and

custom time silence can be set.

For example: When the platform is upgraded or maintained, many resources may show
abnormal statuses, leading to numerous triggered alerts, which cause operation and
maintenance personnel to frequently receive alert notifications before the upgrade or

maintenance is completed. Setting silence for the alert policy can prevent this situation.

Note: When the silence status persists until the silence end time, the silence setting will be
automatically cleared.

Setting via Ul

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Policies.
2. Click the operation button on the right side of the alert policy to be silenced > Set Silence.
3. Toggle alert Silence switch to open it.

Tip: This switch controls whether the silence setting takes effect. To cancel silence, simply

turn off the switch.
4. Configure relevant parameters according to the descriptions below:

Tip: If no silence range or resource name is selected, it defaults to Any, meaning that
subsequent Delete/Add resource actions will correspond to Delete Silence/Add Silence
alert policies; if "Select All" is chosen, it will only apply to the currently selected resource

range, and subsequent Delete/Add resource actions will not be processed.

Parameter Description
Silence . .
The scope of resources where the silence setting takes effect.
Range
Resource

N The name of the resource object targeted by the silence setting.
ame

Management of Alert - Alauda Container Platform

Parameter Description

The time range for alert silence. The alert will enter silence state at

the start of the silence time, and if the alert policy remains in an alert
Silence state or triggers alerts after the silence end time, alert notifications will
Time resume. Permanent: The silence setting will last until the alert policy

is deleted. Custom: Custom settings for the start time and end time of

silence, with the time interval not less than 5 minutes.

5. Click Set.

Tip: From the moment silence is set until the start of silence, the silence status of the alert
policy is considered Silence Waiting. During this period, when rules in the policy trigger
alerts, notifications will be sent normally; after silence starts until it ends, the silence status

of the alert policy is Silencing, and when rules in the policy trigger alerts, notifications will
not be sent.

Setting via CLI

1. Specify the resource name of the alert policy you want to set silence for and execute the
following command:

kubectl edit PrometheusRule <TheNameOfThealertPolicyYoulWantToSet>

2. Modify the resource as shown in the example to add silence annotations and submit.

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global
alert.cpaas.io/kind: Node
alert.cpaas.io/name: 0.0.0.0
alert.cpaas.io/namespace: cpaas-system
alert.cpaas.io/notifications: '[]'
alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'
alert.cpaas.io/rules.version: '23'
alert.cpaas.io/silence.config:
"{"startsAt":"2025-02-08T708:01:37Z", "endsAt":"2025-02-
22708:01:377","creator":"leizhu@alauda.io", "resources":{"nodes":
[{"name":"192.168.36.11","ip":"192.168.36.11"},
{"name":"192.168.36.12","ip":"192.168.36.12"},
{"name":"192.168.36.13","ip":"192.168.36.13"}]}}'

alert.cpaas.io/subkind:
cpaas.io/creator: leizhu@alauda.io
cpaas.io/description: "'
cpaas.io/display-name: policy3
cpaas.io/updated-at: 2025-02-08708:01:42Z

labels:

Recommendations for Configuring Alert Rules

Management of Alert - Alauda Container Platform

More alert rules do not always equate to better outcomes. Redundant or complex alert rules
can lead to alert storms and increase your maintenance burden. It is recommended that you
read the following guidelines before configuring alert rules to ensure that custom rules can

achieve their intended purposes while remaining efficient.

+ Use the Fewest New Rules Possible: Create only those rules that meet your specific
requirements. By using the fewest number of rules, you can create a more manageable

and centralized alert system in the monitoring environment.

e Focus on Symptoms Rather than Causes: Create rules that notify users of symptoms
rather than the root causes of those symptoms. This ensures that when relevant symptoms
occur, users can receive alerts and may investigate the root causes that triggered the
alerts. Using this strategy can significantly reduce the total number of rules you need to

create.

+ Plan and Assess Your Needs Before Making Changes: First, clarify which symptoms are
important and what actions you want users to take when these symptoms occur. Then
evaluate existing rules to decide if you can modify them to achieve your objectives without
creating new rules for each symptom. By modifying existing rules and carefully creating

new ones, you can help simplify the alert system.

e Provide Clear Alert Messages: When you create alert messages, include descriptions of
symptoms, possible causes, and recommended actions. The information included should
be clear, concise, and provide troubleshooting procedures or links to additional relevant

information. Doing so helps users quickly assess situations and respond appropriately.

o Set Severity Levels Reasonably: Assign severity levels to your rules to indicate how
users should respond when symptoms trigger alerts. For instance, classify alerts with a
severity level of Critical, signaling that immediate action is required from relevant
personnel. By establishing severity levels, you can help users decide how to respond upon

receiving alerts and ensure prompt responses to urgent issues.

Management of Notification

Management of Notification - Alauda Container Platform

Menu

TOC

Feature Overview
Key Features
Notification Server
Corporate Communication Tool Server
Email Server
Webhook Type Server
Notification Contact Group
Notification Template
Create Notification Template
Reference Variables
Special Formatting Markup Language in Emails
Notification rule
Prerequisites
Operation Procedures
Set Notification Rule for Projects
Prerequisites

Operation Procedures

Feature Overview

ON THIS PAGE >

Management of Notification - Alauda Container Platform

With notifications, you can integrate the platform’'s monitoring and alerting features to promptly
send pre-warning information to notification recipients, reminding relevant personnel to take

necessary measures to resolve issues or avoid failures.

Key Features

* Notification Server: The notification server provides services for sending notification

messages to notification contact groups on the platform, such as an email server.

* Notification Contact Group: A notification contact group is a set of notification recipients
with similar logical characteristics, which can reduce your maintenance burden by allowing

a categorization of entities that receive notification messages.

» Notification Template: A notification template is a standardized structure composed of
custom content, content variables, and content format parameters. It is used to standardize
the content and format of alert notification messages for notification strategies. For

example, customizing the subject and content of email notifications.

e Notification rule: A notification rule is a collection of rules defining how to send notification
messages to specific contacts. It is essential to use a notification rule for scenarios such as

alerts, inspections, and login authentication that require notifying external services.

Notification Server

The notification server provides services for sending notification messages to recipients on the

platform. The platform currently supports the following notification servers:

o Corporate Communication Tool Server: Supports integration with WeChat Work,

DingTalk, and Feishu built-in applications for sending notifications to individuals.
+ Email Server: Sends notifications via email using an email server.

 Webhook Type Server: Supports integration with corporate WeChat group bots, DingTalk

group bots, Feishu group bots, or sending WebHooks to your designated server.

WARNING

Management of Notification - Alauda Container Platform

Only one corporate communication tool server can be added.

Corporate Communication Tool Server

WeChat Work

1. Configure the notification server parameters as per the example below. Once parameters
are filled in, switch to the global cluster in Cluster Management > Resource

Management and create the resource object.

apiVersion: v1
kind: Secret
type: NotificationServer
metadata:
labels:
cpaas.io/notification.server.type: CorpWeChat
cpaas.io/notification.server.category: Corp
name: platform-corp-wechat-server
namespace: cpaas-system
data:
displayNamezh: {Mbi{s

displayNameEn: WeChat
corpld:

corpSecret:

agentId:

2. After the creation, you need to update the user's WeChat Work ID in the platform's User
Role Management > User Management or in the user's Personal Information to ensure

the user can receive messages normally.
DingTalk

1. Configure the notification server parameters as per the example below. Once parameters

are filled in, switch to the global cluster in Cluster Management > Resource

Management of Notification - Alauda Container Platform

Management and create the resource object.

apiVersion: v1
kind: Secret
type: NotificationServer
metadata:
labels:
cpaas.io/notification.server.type: CorpDingTalk
cpaas.io/notification.server.category: Corp
name: platform-corp-dingtalk-server
namespace: cpaas-system
data:
displayNameZh: £T4T

displayNameEn: DingTalk

appKey:
appSecret:
agentld:

2. After the creation, you need to update the user's DingTalk ID in the platform's User Role
Management > User Management or in the user's Personal Information to ensure the

user can receive messages normally.

Feishu

1. Configure the notification server parameters as per the example below. Once parameters
are filled in, switch to the global cluster in Cluster Management > Resource

Management and create the resource object.

Management of Notification - Alauda Container Platform

apiVersion: v1
kind: Secret
type: NotificationServer
metadata:
labels:
cpaas.io/notification.server.type: CorpFeishu
cpaas.io/notification.server.category: Corp
name: platform-corp-feishu-server
namespace: cpaas-system
data:
displayNameZh: K+

displayNameEn: Feishu

appld:
appSecret:

2. After the creation, you need to update the user's Feishu ID in the platform's User Role
Management > User Management or in the user's Personal Information to ensure the

user can receive messages normally.

Email Server
1. In the left navigation bar, click Platform Settings > Notification Server.
2. Click Configure Now.

3. Refer to the following instructions to configure the relevant parameters.

Parameter Description
Service The address of the notification server supporting the SMTP
Address protocol, e.g., smtp.yeah.net .

b The port number for the notification server. When Use SSL is
ort

checked, the SSL port number must be entered.

Server Use SSL.: Secure Socket Layer (SSL) is a standard security

Configuration technology. The SSL switch is used to control whether to

Management of Notification - Alauda Container Platform

Parameter Description

establish an encrypted link between the server and client.

Skip Insecure Verification: The insecureSkipVerify switch is
used to control whether to verify the client certificate and server
hostname. If enabled, certificates and the consistency between
the hostname in the certificate and the server hostname will not

be verified.

The sender's email account in the notification server, used for

Sender Email _ o _
sending notification emails.
Enable If authentication is required, please configure the username and
Authentication authorization code for the email server.
4. Click OK.

Webhook Type Server

Supports integration with corporate WeChat group bots, DingTalk group bots, Feishu group
bots, or sending HTTP requests to your designated Webhook server.

Corporate WeChat Group Bot
1. In the left navigation bar, click Cluster Management > Cluster.
2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-wechat-server -p '{"data":
{"enable":"dH]1ZQo="1}}"

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ImFsc2UK , which is the base64 encoded value of false.
DingTalk Group Bot

1. In the left navigation bar, click Cluster Management > Cluster.

Management of Notification - Alauda Container Platform

2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-dingtalk-server -p '{"data":
{"enable":"dH]1ZQo="1}1}"

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHI1ZQo= with

ZmFsc2UK , which is the base64 encoded value of false.
Feishu Group Bot
1. In the left navigation bar, click Cluster Management > Cluster.
2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-feishu-server -p '{"data":
{"enable":"dH]1ZQo="}}"

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHI1ZQo= with

ImFsc2UK , which is the base64 encoded value of false.

Webhook Server

1. In the left navigation bar, click Cluster Management > Cluster.

2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-webhook-server -p '{"data":
{"enable":"dH]1ZQo="1}}"

Tip: dHJ1ZQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ImFsc2UK , which is the base64 encoded value of false.

Management of Notification - Alauda Container Platform

Notification Contact Group

A notification contact group is a set of notification recipients with similar logical characteristics.
For example, you can set an operations and maintenance team as a notification contact group

for easy selection and management when configuring notification strategies.

INFO

1. The platform supports various notification servers, and the corresponding configuration options

for notification types will be displayed based on the notification server configuration.

2. If you need to use a Webhook type server as a notification recipient, you must configure the

relevant URL in the notification contact group.

1. In the left navigation bar, click Operations Center > Notifications.
2. Switch to the Notification Contact Group tab.

3. Click Create Notification Contact Group and configure the relevant parameters as per

the instructions below.

Parameter Description

Add an email to the entire notification contact group.
Email The platform will send notifications to this email and

all contacts' emails in the group.

Webhook URL/WeChat Please fill in the corresponding notification method
Group Bot/DingTalk URL based on the configured notification server. Once
Group Bot/Feishu Group configured, contacts in this group will be notified using
Bot this method.

Click Add Contact to add existing platform users to

the contact group. Ensure the accuracy of the
Contact Configuration selected contacts' contact information (phone, email,

interface callback) to avoid missing message

notifications.

Management of Notification - Alauda Container Platform

4. Click Add.

Notification Template

A notification template is a standardized structure composed of custom content, content
variables, and content format parameters. It is used to standardize the content and format of

alert notification messages for notification strategies.

Platform administrators or operations personnel can set notification templates to customize
the content and format of notification messages based on different alert notification methods,

helping users quickly get critical alert information and improve operational efficiency.

INFO

The platform supports various notification servers, and the corresponding notification type
templates will be displayed according to the notification server configuration. If no notification server

is configured, the corresponding notification templates will not be displayed by default.

Create Notification Template

1. In the left navigation bar, click Operations Center > Notifications.
2. Switch to the Notification Template tab.
3. Click Create Notification Template.

4. In the Basic Information section, configure the following parameters.

Parameter Description

Select the type of message according to the purpose of the

notification.
Message Alert Message: Sends alert messages triggered by alert rules, in
Type conjunction with the platform's alerting functionality;

Component Exception Message: Sends notification information

triggered by exceptions in certain components.

Management of Notification - Alauda Container Platform

5. In the Template Configuration section, reference different template types to configure

variables and content formatting parameters.

INFO

1. The content of the template can only consist of variables, variable display names, and special
formatting markup language supported by the platform. Variables and other elements can be

freely combined as long as they comply with the syntax rules.

2. Only variables supported by the platform can be used in the template. You can modify variable
display names and content formats, but you cannot modify the variable itself. Refer to Reference

Variables, and Special Formatting Markup Language in Emails.

3. The platform provides default notification template content for various notification types based
on actual operational scenarios, which can meet most notification message setting needs. If

there are no special requirements, you may directly use the default template content.

6. Click Create.

Reference Variables

Variables are the keys of labels or annotations in notification messages (NotificationMessage),
formatted as {{.labelKey}} . To facilitate users in quickly obtaining key information, custom
display names can be assigned to variables; for example: Alert Level: {{

.externallabels.severity }} .

When a notification rule sends notification messages to users based on a notification
template, the variables in the template will reference the corresponding label values in the
notification message (actual monitoring data). Ultimately, monitoring data will be sent to users

in a standardized content format.

The platform provides the following basic variables by default:

Display . -
Variable Description
Name

Alert Status {{ .externallabels.status }} For example: Alerting.

Display

Name

Alert Level

Alert

Cluster

Alert Object

rule Name

Alert

Description

Trigger

Value

Alert Time

Recovery

Time

Metric Name

{{

H

{{

{

{{

{{

Management of Notification - Alauda Container Platform

Variable

.externallabels.severity }}

.labels.alert_cluster }}

.externallabels.object }}

.labels.alert_resource }}

.externallabels.summary }}

.externallabels.currentValue }}

{{ dateFormatWithZone .startsAt

"2006-01-02 15:04:05"

"Asia/Chongging" }}

{{ dateFormatWithZone .endsAt "2006-
01-02 15:04:05" "Asia/Chongqing" }}

H

.labels.alert_indicator }}

Description

For example: Critical.

For example: Cluster 1

where the alert occurred.

The type and name of the
resource where the alert
occurred, e.g., node
192.168.16.53.

The name of the alert rule,

e.g., cpaas-node-rules.

Description of the alert rule.

The monitored value that

triggered the alert.

The start time of the alert.

The end time of the alert.

Name of the monitoring

metric.

Special Formatting Markup Language in Emails

In email notifications, common HTML format tags and their instructions are referenced in the

table below:

Management of Notification - Alauda Container Platform

Content o
Tag Description
Element
Supports input of
Text - Chinese/English text
content.
Set Font
Font Color Set font format.
Bold Font
<h1>Level 1 Title</h1> , supports up to h6 _
Title Set title level.
(header 6).
Insert regular paragraph
Paragraph <p>Paragraph</p>
text.
Insert short quoted
Quote <g>Quote</qg>
content.
Hyperlink Hyperlink Insert a hyperlink.

Notification rule

A notification rule is a collection of rules defining how to send notification messages to specific
contacts. It is essential to use notification strategies for scenarios requiring notification to

external services, such as alerts, inspections, and login authentication.

INFO

The platform supports various notification servers, and the notification modes corresponding to
notification types will be displayed based on the notification server configuration. If no notification

server is configured, the corresponding notification modes will not be displayed by default.

Prerequisites

Management of Notification - Alauda Container Platform

To use the Corporate Communication Tool Server to notify contacts, users must first modify

their contact information in Personal Information by entering their WeChat Work ID .

Operation Procedures

1. In the left navigation bar, click Operations Center > Notifications.

2. Click Create Notification rule and configure the relevant parameters as per the following

instructions.

Parameter Description

o A notification contact group is a logical set of notification
Notification o . . ' _ N
recipients, which the platform will notify using the specified
Contact Group o
notification method.

Choose to add one or more notification recipients, and the

Notification _ o _ o
o platform will send notifications according to the recipients'
Recipients .
Personal Information contact methods.
Supports multiple methods including WeChat Work, DingTalk,
Feishu, Corporate WeChat Group Bot, DingTalk Group Bot,
Notification Feishu Group Bot, WebHook URL, and supports multiple
Method selections.
Note: Some parameters will be displayed after configuring the
notification server.
Notification o _ o _
Select the notification template to display notification information.
Template

3. Click Create.

Set Notification Rule for Projects

The platform's notification strategies, notification templates, and notification contact groups
are tenant-isolated. As a project administrator, you will not be able to view or use notification

strategies, notification templates, or notification contact groups configured by other projects or

Management of Notification - Alauda Container Platform

platform administrators. Therefore, you need to refer to this document to configure suitable
notification strategies for your project.

Prerequisites

1. You have contacted the platform administrator to complete the notification server setup.

2. If you need to notify through corporate communication tools, you also need to ensure that
the contacts to be notified have correctly configured their communication tool IDs in
Personal Information.

Operation Procedures

1. In the Project Management view, click Project Name.
2. In the left navigation bar, click Notifications.
3. Switch to the Notification Contact Group tab, refer to Notification Contact Group to create

a notification contact group.

TIP

If you do not need to manage notification contacts through a notification contact group or do not
need to notify a webhook type notification server, you can skip this step.

4. Switch to the Notification Template tab, refer to Notification Template to create a

notification template.

5. Switch to the Notification rule tab, refer to Notification rule to create a notification rule.

Management of Monitoring Dashboards - Alauda Container Platform

Menu ON THIS PAGE >

Management of Monitoring Dashboards

TOC

Function Overview

Main Features

Advantages

Use Cases

Prerequisites

Relationship Between Monitoring Dashboards and Monitoring Components
Manage Dashboards

Create a Dashboard

Import Dashboard

Add Variables

Add Panels

Add Groups

Switch Dashboards

Other Operations
Manage Panels

Panel Description

Panel Configuration Description

General Parameters
Special Parameters for Panels

Create Monitoring Dashboards via CLI
Common Functions and Variables

Common Functions

Management of Monitoring Dashboards - Alauda Container Platform

Common Variables
Variable Use Case One
Variable Use Case Two

Notes When Using Built-in Metrics

Function Overview

The platform provides powerful dashboard management functionality designed to replace
traditional Grafana tools, offering users a more comprehensive and flexible monitoring
experience. This feature aggregates various monitoring data from within the platform,

presenting a unified monitoring view that significantly enhances your configuration efficiency.

Main Features

e Supports configuring custom monitoring dashboards for both business views and platform

views.

* Enables viewing publicly shared dashboards configured in platform views from business

views, with data isolated based on the namespace to which the business belongs.

¢ Supports managing panels within the dashboard, allowing users to add, delete, modify

panels, zoom in/out panels, and move panels through drag-and-drop.
¢ Allows setting custom variables within the dashboard for filtering query data.

e Supports configuring groups within the dashboard for managing the panels. Groups can be

displayed repeatedly based on custom variables.

e Supported panel types include: trend, step line chart, bar chart, horizontal bar chart,

bar gauge chart, gauge chart, table, statchart, XY chart, pie chart, text.

e One-click import feature for Grafana dashboards.

Advantages

e Supports user-customized monitoring scenarios without being constrained by predefined

templates, truly achieving a personalized monitoring experience.

Management of Monitoring Dashboards - Alauda Container Platform

Provides a rich array of visualization options, including line charts, bar charts, pie charts,

and flexible layout and styling options.

Integrates seamlessly with the platform’s role permissions, allowing business views to

define their own monitoring dashboards while ensuring data isolation.

Deep integration with various functionalities of the container platform, enabling instant
access to monitoring data for containers, networks, storage, etc., providing users with

comprehensive performance observation and fault diagnosis.

Fully compatible with Grafana dashboard JSON, allowing easy migration from Grafana for

continued use.

Use Cases

IT Operations Management: As part of the IT operations team, you can use the
monitoring dashboards to unify the display and management of various performance
metrics of the container platform, such as CPU, memory, network traffic, etc. By
customizing monitoring reports and alert rules, you can promptly detect and pinpoint

system issues, enhancing operational efficiency.

Application Performance Analysis: For application developers and testers, monitoring
dashboards offer various rich visualization options to intuitively display application running
states and resource consumption. You can customize dedicated monitoring views tailored
to different application scenarios to deeply analyze application performance bottlenecks

and provide a basis for optimization.

Multi-Cluster Management: For users managing multiple container clusters, monitoring
dashboards can aggregate monitoring data from disparate clusters, allowing you to grasp

the overall operational state of the system at a glance.

Fault Diagnosis: When a system issue occurs, monitoring dashboards provide you with
comprehensive performance data and analytical tools to quickly pinpoint the root cause of
the problem. You can swiftly view fluctuations in relevant monitoring metrics based on alert

information for in-depth fault analysis.

Prerequisites

Currently, monitoring dashboards only support viewing monitoring data collected by
monitoring components installed in the platform. Therefore, you should prepare as follows
before configuring a monitoring dashboard:

Management of Monitoring Dashboards - Alauda Container Platform

Ensure that the cluster for which you want to configure the monitoring dashboard has
monitoring components installed, specifically the ACP Monitor with Prometheus or ACP

Monitor with VictoriaMetrics plugin.

Ensure that the data you wish to display on the dashboard has been collected by the

monitoring components.

Relationship Between Monitoring Dashboards and

Monitoring Components

Monitoring dashboard resources are stored in the Kubernetes cluster. You can switch views

between different clusters using the Cluster tab at the top.

Monitoring dashboards depend on the monitoring components in the cluster for querying
data sources. Therefore, before using monitoring dashboards, ensure that the current
cluster has successfully installed monitoring components and that they are operating

normally.

The monitoring dashboard will default to requesting monitoring data from the corresponding
cluster. If you install the VictoriaMetrics plugin in proxy mode in the cluster, we will request
the storage cluster for you to query the corresponding data for this cluster without the need

for special configuration.

Manage Dashboards

A dashboard is a collection composed of one or more panels, organized and arranged in one

or more rows to provide a clear view of relevant information. These panels can query raw data

from data sources and transform it into a series of visual effects supported by the platform.

Create a Dashboard

1. Click Create Dashboard, reference the following instructions to configure relevant

parameters.

Management of Monitoring Dashboards - Alauda Container Platform
Parameter Description

The folder where the dashboard resides; you can input or select an

Folder o

existing folder.
- Label for the monitoring dashboard; you can quickly find existing

abe

dashboards by filtering through the top labels during the switch.

If enabled, this will set the current dashboard as the main dashboard
Set as Main upon successful creation; when re-entering the monitoring
Dashboard dashboard feature, the main dashboard data will be displayed by

default.

Add variables when creating the dashboard to reference as metric
Variables parameters in the added panels, which can also be used as filters on

the dashboard homepage.

2. After adding, click Create to finish creating the dashboard. Next, you need to add

variables, add panels, and add groups to complete the overall layout design.

Import Dashboard

The platform supports direct import of Grafana JSON to convert it into a monitoring dashboard
for display.

o Currently, only Grafana JSON of version V8+ is supported; lower versions will be prohibited
from being imported.

« If any panels within the imported dashboard are not within the platform's supported scope,
they may be displayed as unsupported panel types, but you can modify the panel's

settings to achieve normal display.

 After importing the dashboard, you can perform any management actions as usual, which

will not differ from panels created in the platform.

Add Variables

1. In the variable form area, click Add.

Management of Monitoring Dashboards - Alauda Container Platform

Query

Variables of type Query allow you to filter data based on the feature dimensions of time

series. The query expression can be specified to dynamically calculate and generate query

results.
Parameter Description
9 When defining query settings, besides using PromQL to query time
uery . . .
Setti series, the platform also provides some common variables and
ettings . _ _
functions. Reference Common Functions and Variables.
By using regular expressions, you can filter out the desired values
Regular from the content returned by the variable queries. This makes each
Expression option name in the variable more expected. You can preview if the
filtered values meet expectations in Variable Value Preview.
- Multiple Selection: When selected from the top filters on the
dashboard homepage, allows the selection of multiple options
] simultaneously. You need to reference this variable in the query
Selection _ _ _
] expression of the panels to view the data corresponding to the
Settings]
variable value.
- All: If checked, an option containing All will be enabled in the filter
options to select all variable data.
Constant

Constant Variables are static variables with fixed values that remain unchanged throughout
the dashboard, commonly used for storing environment identifiers, fixed thresholds, or
configuration parameters that need to be referenced across multiple panels without displaying

as filter options.

Parameter Description

Constant Value The value of the constant variable.

Custom

Management of Monitoring Dashboards - Alauda Container Platform

Custom Variables allow users to define a predefined list of static options that appear as
dropdown filters on the dashboard, commonly used for manual selection of specific services,
teams, or categories without requiring dynamic data queries.

Parameter Description

Enter option values separated by commas, using the format

Custom display_name : value for each option (e.g., Production : prod, Staging :
Settings stage, Development : dev), or simply list values directly if display name
equals value.
Textbox

Textbox Variables are variables that allow users to enter text directly, commonly used for

specifying specific values or parameters that do not require dynamic data queries.

Parameter Description

Textbox Value The default value of the textbox variable.

2. Click OK to add one or more variables.

Add Panels

Add multiple panels to the currently created monitoring dashboard to display data information
for different resources.

Tip: You can customize the size of a panel by clicking the lower right corner; click anywhere
on the panel to rearrange the order of the panels.

1. Click Add Panel, reference the following instructions to configure relevant parameters.

« Panel Preview: The area will dynamically display the data information corresponding to the
added metrics.

¢ Add Metric: Configure the panel title and monitoring metrics in this area.

¢ Adding Method: Supports using built-in metrics or using natively customized metrics. Both

methods will take the union and be effective simultaneously.

Management of Monitoring Dashboards - Alauda Container Platform

o Built-in Metrics: Select commonly used metrics and legend parameters built into the

platform to display the data information under the current panel.

* Note: All metrics added to the panel must have a unified unit; it is not possible to add

metrics with multiple units to one panel.

» Native: Customize the metric unit, metric expression, and legend parameters. The
metric expression follows PromQL syntax; for details, please refer to PromQL Official

Documentation .

Legend Parameters: Control the names corresponding to the curves in the panels. Text or

templates can be used:

¢ Rule: The input value must be in the format {{.xxxx}} ; for example, {{.hostname}} will
replace it with the value corresponding to the hostname label returned by the

expression.

o Tip: If you input an incorrectly formatted legend parameter, the names corresponding to

the curves in the panel will be displayed in their original format.

Instant Switch: When the Instant switch is turned on, it will query instant values through
Prometheus's Query interface and sort them, as in statistical charts and gauge charts. If off,
it will use the query_range method to calculate, querying a series of data over a specific

time period.

Panel Settings: Supports selecting different panel types for visualizing metric data. Please

refer to Manage Panels.
. Click Save to complete adding the panels.
. You can add one or more panels within the dashboard.

. After adding the panels, you can use the following operations to ensure the display and

size of the panels meet your expectations.

Click the lower right corner of the panel to customize its size.

Click anywhere on the panel to rearrange the order of the panels.

Click the Edit button to modify the panel settings.

Click the Delete button to delete the panel.

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

Management of Monitoring Dashboards - Alauda Container Platform

o Click the Copy button to copy the panel.

5. After adjusting, click the Save button on the dashboard page to save your modifications.

Add Groups

Groups are logical dividers within the dashboard that can group panels together.

1. Click the Add Panel drop-down menu > Add Group, and reference the following
instructions to configure relevant parameters.
¢ Group: The name of the group.

o Repeat: Supports disabling repeats or selecting variables for the current panels.

o Disable Repeat: Do not select a variable, and use the default created group.

o Parameter Variables: Select the variables created in the current panels, and the
monitoring dashboard will generate a row of identical sub-groups for each corresponding
value of the variable. Sub-groups do not support modifications, deletions, or moving of

the panels.

2. After adding the group, you can perform the following operations on the group to manage

the panel display within the dashboard.
¢ Groups can be collapsed or expanded to hide part of the content in the dashboard.
Panels within collapsed groups will not send queries.

¢ Move the panel into the group to allow that panel to be managed by that group. The

group will manage all panels between it and the next group.
e When a group is folded, you can also move all panels managed by that group together.

o The folding and unfolding of groups also constitutes an adjustment to the dashboard. If
you want to maintain this state when reopening this dashboard next time, please click

the Save button.

Switch Dashboards

Set the created custom monitoring dashboard as the main dashboard. When re-entering the

monitoring dashboard feature, the main dashboard data will be displayed by default.

Management of Monitoring Dashboards - Alauda Container Platform

1. In the left navigation bar, click Operations Center > Monitoring > Monitoring

Dashboards.
2. By default, the main monitoring dashboard is entered. Click Switch Dashboard.

3. You can find dashboards by filtering through labels or searching by name, and switch main

dashboards via the Main Dashboard switch.

Other Operations

You can click the operation button on the right side of the dashboard page to perform actions

on the dashboard as needed.

Operation Description

Opens the actual CR resource code of the dashboard stored in the
YMAL Kubernetes cluster. You can modify all content in the dashboard by

editing parameters in the YAML.

Export You can export the metrics and corresponding query expressions

Expression used in the current dashboard in CSV format.

Copies the current dashboard; you can edit the panels as needed

Copy :
and save it as a new dashboard.
] Modifies the basic information of the current dashboard, such as
Settings _ _ _
changing labels and adding more variables.
Delete Deletes the current monitoring dashboard.

Manage Panels

The platform provides various visualization methods to support different use cases. This

chapter will mainly introduce these panel types, configuration options, and usage methods.

Panel Description

Panel
No.
Name
Trend
1
Chart
. Step Line
Chart
3 Bar Chart
4 Horizontal
Bar Chart
Gauge
5 g
Chart
6 Gauge Bar
Chart

Management of Monitoring Dashboards - Alauda Container Platform

Description

Displays the trend of
data over time via one
or more line

segments.

Builds on the line
chart by connecting
data points with
horizontal and vertical
segments to form a

step-like structure.

Uses vertical
rectangular bars to
represent the
magnitude of data,
where the height of
the bars represents

value.

Similar to the bar
chart but uses
horizontal rectangular
bars to represent

data.

Uses half or ring
shapes to represent
the current value of an
indicator and its

proportion of the total.

Uses vertical
rectangular bars to

display the current

Suggested Use Cases

Shows trends over time, such as
changes in CPU utilization, memory

usage, etc.

Suitable for displaying the timestamps
of discrete events, such as the

number of alerts.

Bar charts are intuitive for comparing
value differences, beneficial for
discovering patterns and anomalies,
suitable for scenarios focusing on
value changes, such as the number

of pods, number of nodes, etc.

When there are many data
dimensions, horizontal bar charts can
better utilize spatial layout and

improve readability.

Intuitively reflects the current status of
key monitoring indicators, such as
system CPU utilization and memory
usage. It is recommended to use alert
thresholds with color changes to

indicate abnormal conditions.

Intuitively reflects the current status of
key indicators, such as target

completion progress and system load.

No.

10

11

Panel

Name

Pie Chart

Table

Stat Chart

Scatter
Plot

Text Card

Management of Monitoring Dashboards - Alauda Container Platform

Description

value of indicators

and their proportion.

Uses sectors to
display the
proportional
relationship of parts to

the whole.

Organizes data in a
row-column format,
making it easy to view
and compare specific

values.

Displays the current
value of a single key
indicator, typically
requiring textual

explanation.

Uses Cartesian
coordinates to plot a
series of data points,
reflecting the
correlation between

two variables.

Displays key textual
information in a card
format, usually

containing a title and

a brief description.

Suggested Use Cases

When multiple categories of the same
indicator exist, the gauge bar chart is
more recommended, such as

available disk space or utilization.

Suitable for demonstrating the
composition of overall data across
different dimensions, such as the
proportions of 4XX, 3XX, and 2XX

response codes over a period.

Suitable for displaying structured
multi-dimensional data, such as
detailed information of nodes,

detailed information of pods, etc.

Suitable for showing real-time values
of important monitoring indicators,
such as numbers of pods, number of

nodes, current alert count, etc.

Suitable for analyzing relationships
between two indicators, discovering
patterns such as linear correlation
and clustering through the distribution
of data points, helping unearth

relationships between metrics.

Suitable for presenting textual
information, such as panel
descriptions and troubleshooting

explanations.

Management of Monitoring Dashboards - Alauda Container Platform

Panel Configuration Description

General Parameters

Parameter

Basic

Information

Standard
Settings

Tooltips

Threshold

Parameters

Value

Value

Mapping

Description

Select the appropriate panel type based on the selected metric data
and add titles and descriptions; you can add one or more links, which
can be quickly accessed by selecting the corresponding link name

next to the title.

Units used for native metric data. Additionally, gauge charts and
gauge bars also support configuring the Total Value field, which will

display as the percentage of Current Value/Total Value in the chart.

Tooltips are the display switch for real-time data when hovering over

the panels and support selected sorting.

Configure the threshold switch for the panels; when enabled, the
threshold will be shown in selected colors in the panels, allowing for

threshold sizing.

Set the calculation method for values, such as the most recent value
or minimal value. This configuration option is only applicable to stat

charts and gauge charts.

Redefine specified values, ranges,regex or special such as defining
100 as full load. This configuration option is only applicable to stat

charts, tables, and gauge charts.

Special Parameters for Panels

Panel o
Parameter Description
Type
Trend Graph Style You can choose between a line chart or an area chart as
Chart the display style; line charts focus more on reflecting the

trend changes of indicators, while area charts draw more

Panel

Type

Gauge
Chart

Stat
Chart

Pie
Chart

Pie
Chart

Table

Management of Monitoring Dashboards - Alauda Container Platform

Parameter

Gauge
Chart
Settings

Stat Chart
Settings

Pie Chart
Settings

Graph Style

Table
Settings

Description

attention to changes in total and partial proportions.

Choose based on your actual needs.

Show Direction: When you need to view multiple metrics
in a single chart, you can set whether these metrics are
arranged horizontally or vertically.

Unit Redefinition: You can set independent units for each
metric; if not set, the platform will display units from the
Standard Settings.

Show Direction: When you need to view multiple metrics
in a single chart, you can set whether these metrics are
arranged horizontally or vertically.

Graph Mode: You can add a graph to the stat chart to

display the trend of the metric over time.

Maximum Number of Slices: You can set this parameter
to reduce the number of slices in the pie chart to lessen
the interference of categories with comparatively low
proportions but high quantities. Excess slices will be
merged and displayed as Others.

Label Display Fields: You can set the fields displayed in

the pie chart labels.

You can choose either pie or donut as the display style.

Hide Columns: You can reduce the number of columns in
the table with this parameter to focus on some primary
column information.

Column Alignment: You can modify the alignment of data

within the column using this parameter.

Management of Monitoring Dashboards - Alauda Container Platform

Panel o
Parameter Description
Type
Display Name and Unit: You can modify the column
names and units used through this parameter.
Text Style: You can choose to edit the content you wish to
Graph Style . . o . .
Card display in the text card in either a rich-text editing box or

HTML.

Create Monitoring Dashboards via CLI

1. Create a new YAML configuration file named example-dashboard.yaml .

2. Add the MonitorDashboard resource to the YAML file and submit it. The following example

creates a monitoring dashboard named demo-v2-dashboard1.:

Management of Monitoring Dashboards - Alauda Container Platform

kind: MonitorDashboard
apiVersion: ait.alauda.io/v1alpha2
metadata:
annotations:
cpaas.io/dashboard.version: '3’
cpaas.io/description: '{"zh":"jRX{ZE","en":""}" # Description field
cpaas.io/operator: admin
labels:
cpaas.io/dashboard.folder: demo-v2-folder1 # Folder
cpaas.io/dashboard.is.home.dashboard: 'False' # Is it the main dashboard?
name: demo-v2-dashboardl # Name
namespace: cpaas-system # Namespace (all management view creations will occur in
this ns)
spec:
body: # All information fields
titleZh: EFHB/REZHR # Built-in field for Chinese display name (this field is
created under the Chinese language)
title: english_display_name # Built-in field for English display name (this field
is created under the English language) Built-in dashboards can set bilingual
translations.
templating: # Custom variables
list:
- hide: @ # 0 means not hidden; 1 means only the label is hidden; 2 means both
label and value are hidden
label: £# # Built-in variable display name (label is set to the
appropriate name based on the language, e.g., cluster in English)
name: cluster # Built-in variable name (unique)
options: # Define dropdown options; if a query retrieves data, it will use
requested data; otherwise, it will use options. A default value can be set (generally
only used for setting default values)
- selected: false # Whether to default select
text: global
value: global
type: custom # Custom variable type; currently, only built-in (custom) and
query are supported (Importing Grafana will support constant custom interval (after

import, it will be changed to a custom variable and will not support auto))

- allValue: "' # Select all, passing options with the format xxx|xxx|xxx; can
set allValue for conversion (Grafana retrieves all data for the current variable as
XXX | xxx | xxx, adjustments will ensure consistency)

current: null # Current value of the variable; if not set, defaults to the
first in the list
definition: query_result(kube_namespace_labels) # Query expression for data

Management of Monitoring Dashboards - Alauda Container Platform

retrieval
hide: @ # 0 means not hidden; 1 means only the label is hidden; 2 means both
label and value are hidden
includeAll: true # Whether to select all
label: ns # Built-in variable display name
multi: true # Whether multiple selections are allowed
name: ns # Variable name (unique)
options: []
query: "'
regex: /.*namespace=\"(.*?)\".*/ # Regex expression for extracting variable
values
sort: 2 # Sorting: 1 - ascending alphabetical order; 2 - descending
alphabetical order (only these two support temporarily); 3 - ascending numerical
order; 4 - descending numerical order
type: query # Custom variable type
time: # Dashboard time
from: now-30m # Start time
to: now # End time
repeat: '' # Row repeat configuration; chooses custom variable
collapsed: 'false' # Row collapsed or expanded configuration
description: '123' # Description (tooltip after title)
targets: # Data sources
- indicator: cluster.node.ready # Metric
expr: sum (cpaas_pod_number{cluster=\"\"}>0) # PromQL expression
instant: false # Query mode true retrieves data at a specific time
legendFormat: '' # Legend
range: true # Default querying range when retrieving data
refld: #8451 # Unique identifier for display name of data source
gridPos: # Information on the dashboard's positional layout
h: 8 # Height
w: 12 # Width (width corresponds to 24 grid units)
x: @ # Horizontal position
y: @ # Vertical position
panels: # Panel data
title: E|FRArditab # Panel name
type: table # Panel type; currently supports timeseries, barchart, stat, gauge,
table, bargauge, row, text, pie (step chart, scatter plot, bar chart, configurable
through drawStyle attribute)
id: a2239830-492f-4d27-98f3-cb7ecb77c¢56f # Unique identifier
links: # Links
- targetBlank: true # Open in a new tab
title: "1' # Name
url: '"1" # URL address

transformations: # Data transformations

Management of Monitoring Dashboards - Alauda Container Platform

- id: ‘'organize' # Type organize; used for sorting, rearranging order, showing
fields, whether to display
options:
excludeByName: # Hidden fields
cluster_cpu_utilization: true
indexByName: # Sort
cluster_cpu_utilization: 9,
Time: 1
renameByName: # Rename
Time: "'
cluster_cpu_utilization: '222'
- id: 'merge' # Merging data
options:
fieldConfig: # For defining panel properties and appearance
defaults: # Default configuration
custom: # Custom graphic attributes
align: 'left' # Table alignment: left, center, right
cellOptions: # Table threshold configuration
type: color-text # Only supports text for threshold color settings
spanNulls: false # true connects null values; false does not connect;
number == @ connects null values according to 0
drawStyle: line # Panel types: line, bars for bar charts, points for point
charts
fillOpacity: 20 # Exists when drawStyle is area (currently does not
support configuration, area defaults to 20)
thresholdsStyle: # Configures how to display thresholds (currently only
supports line)
mode: line # Threshold display format (area not supported currently)
lineInterpolation: 'stepBefore' # Step chart configuration; defaults to
only supporting stepBefore (stepAfter will be supported later)
decimals: 3 # Decimal points
min: @ # Minimum value (currently not supported for page configuration, only
supports imports that have been adapted)
max: 1 # Maximum value (page configuration only applies to stat gauge
barGauge pie)
unit: '%"' # Unit
mappings: # Value mapping configuration (currently only supports value and
range types; special types supported on data)
- options: # Value mapping rules
'1': # Corresponding value
index: 0
text: 'Running' # Displayed as Running when value is 1
type: value # Value mapping type

- options: # Range mapping rules

Management of Monitoring Dashboards - Alauda Container Platform

from: 2 # Range start value
to: 3 # Range end value
result: # Mapping result
index: 1
text: 'Error' # Values from 2 to 3 will display as Error
type: range # Mapping type for range
- type: special # Mapping type for special scenarios
options:
match: null # nan null null+nan empty true false

result:
text: xxx
index: 2

thresholds: # Threshold configuration
mode: absolute # Threshold configuration mode, absolute value mode
(currently only supports absolute and percentage mode; percentage mode is not
supported yet)
steps: # Threshold steps
- color: '#a7772f' # Threshold color
value: '2' # Threshold value
- color: '#@O7AF5' # Default value with no value is the Base
overrides: # Override configuration
- matcher:
id: byName # Match based on field name
options: node # Corresponding name
properties: # Override configuration; id currently only supports
displayName unit
- id: displayName # Display name override
value: '1"' # Overridden display name
- id: unit # Unit override
value: GB/s # Unit value
- id: noValue # No value display
value: No value display
options:
orientation: horizontal # Control the layout direction of panels; applies to
gauge and barGauge (stat will be supported later)
legend: # Legend configuration
calcs: # Calculating methods (only displays when the legend position is on
the right)
- latest # Currently only supports most recent value
placement: right # Legend position (right or bottom; defaults to bottom)
placementRightTop: '' # Configuration for the upper right
showLegend: true # Whether to display the legend
tooltip: # Tooltips
mode: multi # Mode dual selection (only multi-mode supported) All data

sort: asc

reduceOptions:

calcs:

- latest

limit: 3

textMode: 'value'

colorMode:

Management of Monitoring Dashboards - Alauda Container Platform

displaylLabels: ['name', 'value', 'percent']

pieType: 'pie
mode: 'html'

content: '<div>xxx</div>

footer:

enablePagination: true

Common Functions and Variables

Common Functions

When defining query settings, besides using PromQL to set queries, the platform provides

some common functions as follows for your reference in customizing query settings.

Function

label_names()

label_values(label)

label_values(metric,
label)

metrics(metric)

Purpose
Returns all labels in Prometheus, e.g., label_names().

Returns all selectable values for the label name in all

monitored metrics in Prometheus, e.g., label_values(job).

Returns all selectable values for the label name in the

specified metric in Prometheus, e.g., label_values(up, job).

Returns all metric names that satisfy the defined regex

pattern in the metric field, e.g., metrics(cpaas_active).

Management of Monitoring Dashboards - Alauda Container Platform
Function Purpose

Returns the query result for the specified Prometheus query,
query_result(query)
e.g., query_result(up).

Common Variables

While defining query settings, you can combine common functions into variables to quickly

define custom variables. Here are some common variable definitions available for your

reference:
Variable]
Query Function
Name

cluster label_values(cpaas_cluster_info,cluster)

node label _values(node_loadl1, instance)

namespace query_result(kube_namespace_labels)
label_values(kube_deployment_spec_replicas{namespace="$namespace"},

deployment
deployment)
label_values(kube_daemonset_status_number_ready{namespace="$namespace"},

daemonset
daemonset)
label_values(kube_statefulset_replicas{namespace="$namespace"},

statefulset
statefulset)

pod label_values(kube_pod_info{namespace=""$namespace"}, pod)

vimcluster label_values(up, vmcluster)
label_values(kube_daemonset_status_number_ready{namespace="$namespace"},

daemonset

daemonset)

Variable Use Case One

Management of Monitoring Dashboards - Alauda Container Platform

Using the query_result(query) function to query the value: node_load5 , and extract the IP.

1. In Query Settings, fill in query_result(node_load5) .

2. In the Variable Value Preview area, the preview example is node_load5{container="node-

exporter",endpoint="metrics", host_ip="192.168.178.182",instance="192.168.178.182:9100"} .
3. In Regular Expression, fill in /.*instance="(.*?):.*/ to filter the value.

4. In the Variable Value Preview area, the preview example is 192.168.176.163 .

Variable Use Case Two

1. Add the first variable: namespace, using the query_result(query) function to query the

value: kube_namespace_labels , and extract the namespace.
¢ Query Settings: query_result(kube_namespace_labels) .

e Variable Value Preview: kube_namespace_labels{container="exporter-kube-state",
endpoint="kube-state-metrics", instance="12.3.188.121:8080", job="kube-state",
label_cpaas_io_project="cpaas-system", namespace="cert-manager", pod="kube-prometheus-
exporter-kube-state-55bbbbc67f-1pgtx", project="cpaas-system", service="kube-prometheus-

exporter-kube-state"} .
e Regular Expression: /.+namespace=\"(.*?)\".*/ .

¢ In the Variable Value Preview area, the preview example includes multiple

namespaces such as argocd , cpaas-system , and more.
2. Add the second variable: deployment, and reference the variable created earlier:
¢ Query Settings: kube_deployment_spec_replicas{namespace=""$namespace"} .
e Regular Expression: /.+deployment="(.*?)",.*/ .

3. Add a panel to the current dashboard and reference the previously added variables, for

example:

e Metric Name: pod Memory Usage under Compute Components.

Management of Monitoring Dashboards - Alauda Container Platform

o Key-Value Pair: kind : Deployment , name : $deployment , namespace : $namespace .

4. Once you have added the panels and saved them, you can view the corresponding panel

information on the dashboard homepage.

Notes When Using Built-in Metrics

WARNING

The following metrics use custom variables namespace , name , and kind , which do not support

multiple selections or selecting all.

e namespace only supports selecting a specific namespace;

» name only supports three types of computing components: deployment , daemonset ,

statefulset ;

e kind only supports specifying one of the types: Deployment , DaemonSet , StatefulSet .

e workload.cpu.utilization

e workload.memory.utilization

o workload.network.receive.bytes.rate
e workload.network.transmit.bytes.rate
e workload.gpu.utilization

e workload.gpu.memory.utilization

e workload.vgpu.utilization

e workload.vgpu.memory.utilization

Management of Probe - Alauda Container Platform

Menu ON THIS PAGE >

Management of Probe

TOC

Function Overview
Blackbox Monitoring
Prerequisites
Procedures for Operation
Blackbox Alerts
Prerequisites
Procedures for Operation
Customizing BlackboxExporter Monitoring Module
Procedures for Operation
Create Blackbox Monitoring Items and Alerts via CLI
Prerequisites
Procedures for Operation

Reference Information

Function Overview
The probe feature of the platform is realized based on Blackbox Exporter, allowing users to
probe the network via ICMP, TCP, or HTTP to quickly identify faults occurring on the platform.

Unlike white-box monitoring systems, which rely on various monitoring metrics already

available on the platform, blackbox monitoring focuses on the outcomes. When white-box

Management of Probe - Alauda Container Platform

monitoring cannot cover all factors affecting service availability, blackbox monitoring can
swiftly detect faults and issue alerts based on those faults. For example, if an APl endpoint is

abnormal, blackbox monitoring can promptly expose such issues to users.

WARNING

The probe function does not support using ICMP to detect IPv6 addresses on nodes with kernel

versions 3.10 and below. To use this scenario, please upgrade the kernel version on the node to
3.11 or higher.

Blackbox Monitoring

To create a blackbox monitoring item, you can choose the ICMP, TCP, or HTTP probing

method to periodically probe the specified target address.

Prerequisites

The monitoring components must be installed in the cluster, and the monitoring components
must be functioning properly.

Procedures for Operation

1. In the left navigation bar, click Operations Center > Monitoring > Blackbox Monitoring.

Tip: Blackbox monitoring is a cluster-level feature. Click on the top navigation bar to switch

between clusters.
2. Click Create Blackbox Monitoring Item.

3. Refer to the following instructions to configure the relevant parameters.

Parameter Description
Probing ICMP: Probes by pinging the domain name or IP address entered in
Method the Target Address to check the server's availability.

TCP: Probes the business port of the host by listening on the

Management of Probe - Alauda Container Platform

Parameter Description

<domain:port> or <IP:port> specified in the Target Address.
HTTP: Probes the URL entered in Target Address to check website
connectivity.
Tip: The HTTP probing method only supports GET requests by
default; for POST requests, please refer to Customizing the

BlackboxExporter Monitoring Module.

Probing _ _ _
The interval time for probing.
Interval
The target address for probing, with a maximum of 128 characters.
T The input format for the target address varies by probing method:
arget
g ICMP: A domain name or IP address, e.g., 10.165.94.31 .
Address

TCP: <domain:port> or <IP:port>,e.g., 172.19.155.133:8765 .
HTTP: A URL that starts with http or https, e.g., http://alauda.cn/ .

4. Click Create.

Once created successfully, you can view the latest probing results in real time on the list
page, and based on the blackbox monitoring items, you can create alert policies. When a
fault is detected, an alert will be automatically triggered to notify the relevant personnel for

resolution.

WARNING

After successfully creating the blackbox monitoring items, the system requires about 5 minutes to
synchronize the configuration. During this synchronization period, probing will not occur and
probing results cannot be viewed.

Blackbox Alerts

Prerequisites

Management of Probe - Alauda Container Platform

¢ The monitoring components must be installed in the cluster, and the monitoring

components must be functioning properly.

e The blackbox monitoring item must have been successfully created, and the system must
have finished synchronizing the configuration so that probing results are visible on the

blackbox monitoring page.

Procedures for Operation

1. In the left navigation bar, click Operations Center > Alerts > Alert Policies.

Tip: Alert policies are a cluster-level feature. Click on the top navigation bar to switch
between clusters. Please ensure you switch to the cluster where the blackbox monitoring

item has just been configured.
2. Click Create Alert Policy.

3. Refer to the following instructions to configure the relevant parameters; for more parameter

information, please refer to Create Alert Policies.
o Alert Type: Please select Resource Alert.
+ Resource Type: Please select Cluster.
¢ Click Add Alert Rule.
o Alert Type: Please select Blackbox Alert.
+ Blackbox Monitoring Item: Please select the desired blackbox monitoring item.

o Metric Name: Please select the metric you wish to monitor and alert on. The current

supported metrics by the platform are Connectivity and HTTP Status Code.

e Connectivity: This metric can be selected for all blackbox monitoring items, where
the trigger condition “!= 1" indicates that the target address of the blackbox

monitoring item is unreachable.

o HTTP Status Code: This metric can be selected when the probing method of the

chosen blackbox monitoring item is HTTP. You can input a three-digit positive integer

Management of Probe - Alauda Container Platform

as the value for the trigger condition, for example, if the condition is set to “> 299", it

means alerts are fired when the response codes are 3XX, 4XX, or 5XX.
¢ Notification Policy: Please select your pre-configured policy.

e Click Add.

4. Click Create. After the alert policy submission, you can see this alert policy in the alert

policy list.

Customizing BlackboxExporter Monitoring
Module

You can also enhance the functionalities of blackbox monitoring by adding customized
monitoring modules to the BlackboxExporter configuration file. For example, by adding the
http_post_2xx module to the configuration file, when the probing method of blackbox

monitoring is set to HTTP , it would then be able to probe the status of POST request methods.

The configuration file for blackbox monitoring is located within the namespace where the
Prometheus component of the cluster is installed, with the default name being cpaas-monitor-
prometheus-blackbox-exporter , which can be modified as needed based on the actual name.

TIP

This configuration file is a ConfigMap resource related to the namespace, which can be quickly
viewed and updated through the platform's management feature, Cluster Management >

Resource Management.

Procedures for Operation

1. Update the configuration file of blackbox monitoring by adding customizable monitoring

modules to key modules .

Taking the addition of the http_post_2xx module as an example:

Management of Probe - Alauda Container Platform

blackbox.yaml: |

modules:

http_post_2xx: # HTTP POST probing module
prober: http

timeout: 5s
http:
method: POST # Request method for probing
headers:
Content-Type: application/json
body: '{}' # Body content sent with the probe

For complete YAML examples of the blackbox monitoring configuration file, please refer to

Reference Information.
2. Activate the configuration by choosing one of the following methods.

o Restart the Blackbox Exporter Component cpaas-monitor-prometheus-blackbox-
exporter by deleting its Pod.

o Execute the following command to call the reload API and refresh the configuration file:

curl -X POST -v <Pod IP>:9115/-/reload

Create Blackbox Monitoring Items and Alerts via
CLI

Prerequisites

« Notification policies must be configured (if you require alert automatic notifications).

¢ The target cluster must have monitoring components installed.

Procedures for Operation

1. Create a new YAML configuration file named example-probe.yaml .

Management of Probe - Alauda Container Platform

2. Add the PrometheusRule resource to the YAML file and submit it. The following example

creates a new alert policy named prometheus-liveness :

apiVersion: monitoring.coreos.com/v]1
kind: Probe
metadata:
annotations:
cpaas.io/creator: jhshi@alauda.io
cpaas.io/updated-at: '2021-05-25T08:08:45Z'
cpaas.io/display-name: 'Prometheus prober'’
creationTimestamp: '2021-05-10T02:04:337'
labels:
prometheus: kube-prometheus
name: prometheus-liveness
namespace: cpaas-system
spec:
jobName: prometheus-liveness
prober:
url: cpaas-monitor-prometheus-blackbox-exporter:9115

module: http_2xx
targets:
staticConfig:
static:
- http://www.prometheus.io
labels:
module: http_2xx
prober: http
interval: 30s

scrapeTimeout: 10s

3. Create a new YAML configuration file named example-alerting-rule.yaml .

4. Add the PrometheusRule resource to the YAML file and submit it. The following example

creates a new alert policy named policy :

Management of Probe - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global # Name of the cluster where the alert resides
alert.cpaas.io/kind: Cluster # Resource type
alert.cpaas.io/name: global # Name of the cluster where the blackbox monitoring
item resides
alert.cpaas.io/namespace: cpaas-system # Namespace used for the prometheus's
namespace, keep defaults
alert.cpaas.io/notifications: '["test"]'
alert.cpaas.io/repeat-config:
"{"Critical”:"never","High":"5m", "Medium":"5m", "Low":"5m"}"
alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'

alert.cpaas.io/subkind:
cpaas.io/description: "'
cpaas.io/display-name: policy # Display name of the alert policy
labels:
alert.cpaas.io/owner: System
alert.cpaas.io/project: cpaas-system
cpaas.io/source: Platform
prometheus: kube-prometheus
rule.cpaas.io/cluster: global
rule.cpaas.io/name: policy
rule.cpaas.io/namespace: cpaas-system
name: policy
namespace: cpaas-system
spec:
groups:

- name: general # Name of the alert rules

rules:
- alert: cluster.blackbox.probe.success-y97ah-9833444d918cab96c43e9abbefc172cf
annotations:
alert_current_value: '{{ $value }}' # Current value for notification, keep
default
expr:

max by (job, instance) (probe_success{job=""test",
instance=""https://demo.at-servicecenter.com/"})!=1
Connectivity alert scenario, be sure to modify the blackbox monitoring
item name and target address
for: 30s # Duration
labels:

Management of Probe - Alauda Container Platform

alert_cluster: global # Name of the cluster where the alert resides
alert_for: 30@s # Duration
alert_indicator: cluster.blackbox.probe.success # Keep unchanged
alert_indicator_aggregate_range: '0' # Keep unchanged
alert_indicator_blackbox_instance: https://demo.at-servicecenter.com/ #
Blackbox monitoring target address
alert_indicator_blackbox_name: test # Blackbox monitoring item name
alert_indicator_comparison: '!=" # Keep configuration unchanged for
connectivity alerts
alert_indicator_query: '' # Used for log alerts, no need to configure this
parameter
alert_indicator_threshold: '1' # Threshold for the alert rule, 1 indicates
connectivity, keep unchanged
alert_indicator_unit: '' # Unit of the alert rule's metrics
alert_involved_object_kind: Cluster # Keep unchanged for blackbox alerts
alert_involved_object_name: global # Cluster where the blackbox monitoring
item resides
alert_involved_object_namespace: '' # Namespace of the object to which the
alert rule belongs
alert_name: cluster.blackbox.probe.success-y97ah # Name of the alert rule
alert_namespace: cpaas-system # Namespace where the alert rule resides
alert_project: cpaas-system # Name of the project of the object to which
the alert rule belongs
alert_resource: policy # Name of the alert policy where the alert rule
resides
alert_source: Platform # Type of data for the alert rule: Platform-
platform data, Business- business data
severity: High # Alert rule level: Critical- disaster, High- serious,
Medium- warning, Low- tip
- alert: cluster.blackbox.http.status.code-235el-
99b0095b6b6669415043e14ae84143bc
annotations:
alert_current_value: '{{ $value }}'
alert_notifications: '["message"]’
expr:
max by(job, instance) (probe_http_status_code{job=""test",
instance=""https://demo.at-servicecenter.com/"})>200
HTTP status code alert scenario, be sure to modify the blackbox
monitoring item name and target address
for: 30s
labels:
alert_cluster: global
alert_for: 30s
alert_indicator: cluster.blackbox.http.status.code

Management of Probe - Alauda Container Platform

alert_indicator_aggregate_range: '0'
alert_indicator_blackbox_instance: https://demo.at-servicecenter.com/
alert_indicator_blackbox _name: test

alert_indicator_comparison: '>
T

alert_indicator_query:
alert_indicator_threshold: '299'

alert_indicator_unit:
alert_involved_object_kind: Cluster
alert_involved_object_name: global
alert_involved_object_namespace: "'
alert_involved_object_options: Single

alert_name: cluster.blackbox.http.status.code-235el
alert_namespace: cpaas-system

alert_project: cpaas-system

alert_resource: policy33

alert_source: Platform

severity: High

Reference Information

A complete example of the YAML configuration file for blackbox monitoring is as follows:

Management of Probe - Alauda Container Platform

apiVersion: v1
data:
blackbox.yaml: |

modules:
http_2xx_example: # Example of HTTP probing
prober: http
timeout: 5s # Timeout for probing
http:
valid_http_versions: ["HTTP/1.1", "HTTP/2.0"] # The Version

in the returned information, generally defaults
valid status codes: [] # Defaults to 2xx # Range of
valid response codes; if the returned code is within this range, it is considered a
successful probe
method: GET # Request method
headers: # Request headers
Host: vhost.example.com
Accept-Language: en-US
Origin: example.com
no_follow_redirects: false # Indicates whether to allow redirection
fail if_ssl: false
fail _if_not_ssl: false
fail_if_body_matches_regexp:
- "Could not connect to database"
fail_if_body_not_matches_regexp:
- "Download the latest version here"
fail _if_header_matches: # Verifies that no cookies are set
- header: Set-Cookie
allow_missing: true
regexp: '.*'
fail _if_header_not_matches:
- header: Access-Control-Allow-Origin
regexp: '(*|example\.com)'
tls_config: # TLS configuration for https requests
insecure_skip_verify: false

1

preferred_ip_protocol: "ip4" # defaults to "ip6" # Preferred IP
protocol version

ip_protocol_fallback: false # No fallback to "ip6"

http_post_2xx: # Example of HTTP probing with Body
prober: http
timeout: 5s
http:
method: POST # Request method for probing

headers:

Management of Probe - Alauda Container Platform

Content-Type: application/json
body: '{"username":"admin","password":"123456"}" # Body
carried during probing
http_basic_auth_example: # Example of probing with username and password

prober: http

timeout: 5s
http:
method: POST
headers:

Host: "login.example.com'
basic_auth: # Username and password to be added during probing
username: "username"
password: "mysecret"
http_custom_ca_example:
prober: http
http:
method: GET
tls_config: # Specify the root certificate to use during
probing
ca_file: "/certs/my_cert.crt"
http_gzip:
prober: http
http:
method: GET
compression: gzip # Compression method used during probing
http_gzip_with_accept_encoding:
prober: http
http:
method: GET
compression: gzip
headers:
Accept-Encoding: gzip
tls_connect: # Example of TCP probing
prober: tcp
timeout: 5s
tcp:
tls: true # Indicates whether to use TLS
tcp_connect_example:
prober: tcp
timeout: 5s
imap_starttls: # Example of configuring probing for IMAP mail
servers
prober: tcp
timeout: 5s

Management of Probe - Alauda Container Platform

tcp:
query_response:
- expect: "OK.*STARTTLS"
". STARTTLS"
expect: "OK"

send:

starttls: true

send: ". capability”
expect: "CAPABILITY IMAP4rev1"
smtp_starttls: # Example of configuring probing for SMTP mail

servers
prober: tcp
timeout: 5s
tcp:
query_response:
expect: "7220 ([N 1+) ESMTP (.+)$"
send: "EHLO prober\r"
- expect: "A250-STARTTLS"
- send: "STARTTLS\r"
- expect: "A220"
- starttls: true
- send: "EHLO prober\r"
- expect: "A250-AUTH"
send: "QUIT\r"

irc_banner_example:

prober: tcp
timeout: 5s
tcp:

query_response:
send: "NICK prober"

send: "USER prober prober prober :prober"
expect: "PING : ([]+)"

send: "PONG ${1}"

- expect: "A:[A]+ 001"

icmp_example: # Example configuration for ICMP probing

prober: icmp
timeout: 5s
icmp:
preferred_ip_protocol: "ip4"
source_ip_address: "127.0.0.1"
dns_udp_example: # Example of DNS queries using UDP
prober: dns
timeout: 5s
dns:

query_name: "www.prometheus.io" # Domain name to resolve

Management of Probe - Alauda Container Platform

query_type: "A" # Type corresponding to the domain name
valid rcodes:
- NOERROR
validate_answer _rrs:
fail_if_matches_regexp:
- ".*127.0.0.1"
fail_if_all_match_regexp:
- ".*127.0.0.1"
fail_if_not_matches_regexp:
- "www.prometheus.io.\t300\tIN\tA\t127.0.0.1"
fail_if_none_matches_regexp:
- "127.0.0.1"
validate_authority_rrs:
fail_if_matches_regexp:
- ".*127.0.0.1"
validate_additional_rrs:

fail_if_matches_regexp:

- ".*127.0.0.1"
dns_soa:
prober: dns
dns:

query_name: “prometheus.io"

query_type: "SOA"

dns_tcp_example: # Example of DNS queries using TCP
prober: dns
dns:

transport_protocol: "tcp" # defaults to "udp"
preferred_ip_protocol: "ip4" # defaults to "ip6"
query_name: "www.prometheus.io"
kind: ConfigMap
metadata:
annotations:
skip-sync: 'true'
labels:
app.kubernetes.io/instance: cpaas-monitor
app.kubernetes.io/managed-by: Tiller
app.kubernetes.io/name: prometheus-blackbox-exporter
helm.sh/chart: prometheus-blackbox-exporter-1.6.0
name: cpaas-monitor-prometheus-blackbox-exporter
namespace: cpaas-system

Management of Probe - Alauda Container Platform

How To - Alauda Container Platform

Menu

How To

Backup and Restore of Prometheus Monitoring Data
Feature Overview

Use Cases

Prerequisites

Procedures to Operate

Operation Results

Learn More

Next Procedures

VictoriaMetrics Backup and Recovery of Monitoring Data
Function Overview

Use Cases

Prerequisites

Procedures

Operation Result

Learn More

Follow-up Actions

How To - Alauda Container Platform

Collect Network Data from Custom-Named Network Interfaces
Function Overview

Use Case

Prerequisites

Procedures to Operate

Operation Results

Learn More

Subsequent Actions

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

= Menu ON THIS PAGE >

Backup and Restore of Prometheus
Monitoring Data

TOC

Feature Overview
Use Cases
Prerequisites
Procedures to Operate
Backup Data
Method 1: Backup Storage Directory (Recommended)
Method 2: Snapshot Backup
Restore Data
Operation Results
Learn More
TSDB Data Format Description
Data Backup Considerations

Next Procedures

Feature Overview

Prometheus monitoring data is stored in TSDB (Time Series Database) format, supporting

backup and restore functionalities. The monitoring data is stored in a designated path within

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

the Prometheus container (specified by the configuration storage.tsdb.path , which defaults to

/prometheus).

template:
spec:
containers:
- args:
- '--storage.tsdb.path=/prometheus’

Use Cases

+ Retaining historical monitoring data during system migration
e Preventing data loss due to unexpected incidents

+ Migrating monitoring data to a new Prometheus instance

Prerequisites

¢ The ACP Monitoring with Prometheus plugin has been installed (the name of the compute

component is prometheus-kube-prometheus-0 , and the type is StatefulSet)

o Administrator privileges for the cluster

o Ensure there is sufficient storage space at the target storage location

Procedures to Operate

Backup Data

Before starting the backup, please note: When Prometheus stores monitoring data, it first
places the collected data into a cache and then periodically writes it to the storage directory.
The following backup methods use the storage directory as the data source, so they do not

include the data in the cache at the time of backup.

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

Method 1: Backup Storage Directory (Recommended)

1. Use the kubectl cp command to back up:

kubectl cp -n cpaas-system prometheus-kube-prometheus-0-0:/prometheus -c prometheus

<target storage path>

2. Backup from the storage backend (based on the type of storage selected during

installation):

¢ LocalVolume: Copy from the /cpaas/monitoring/prometheus directory

e PV: Copy from the PV mount directory (it is recommended to set the PV's

persistentVolumeReclaimPolicy to Retain)

+ StorageClass: Copy from the PV mount directory

Method 2: Snapshot Backup

1. Enable Admin API:

kubectl edit -n cpaas-system prometheus kube-prometheus-0

Add the configuration:

spec:
enableAdminAPI: true

Note: After updating and saving the configuration, the Prometheus Pod (Pod name:
prometheus-kube-prometheus-0-0) will restart. Wait until all Pods are in Running status

before proceeding with subsequent operations.

2. Create a snapshot:

curl -XPOST <Prometheus Pod IP>:9090/api/v1/admin/tsdb/snapshot

Restore Data

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

1. Copy the backup data to the Prometheus container:

kubectl cp ./prometheus-backup cpaas-system/prometheus-kube-prometheus-0-

0:/prometheus/

2. Move data into the specified directory:

kubectl exec -it -n cpaas-system prometheus-kube-prometheus-0-0 -c prometheus sh

mv /prometheus/prometheus-backup/* /prometheus/

Shortcut: When the storage type is LocalVolume during plugin installation, simply copy
the backup data directly to the /cpaas/monitoring/prometheus/prometheus-db/ directory of the

node where the plugin is installed.

Operation Results

o After backup is complete, the complete TSDB format monitoring data can be seen at the

target storage path

o After restoration is complete, Prometheus will automatically load the historical monitoring

data

Learn More

TSDB Data Format Description

Example of TSDB format data structure:

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

—— 0@1FXP317QBANGAX1XQAXCJIK9IDB

F——— chunks
| L—— 000001

|
|
| —— 1index
| —— meta. json
|

L—— tombstones
F——— chunks_head

| —— 000022
| L—— 000023

—— queries.active
L—— wal

—— 00000020
—— 00000021
—— 00000022

—— 00000023
L—— checkpoint.00000019

L—— 00000000

Data Backup Considerations

* Backup data does not include the cached data at the time of backup
e Itis recommended to perform data backups regularly

* When using PV storage, it is advisable to set the persistentVolumeReclaimPolicy to

Retain

Next Procedures

» Verify whether the monitoring data has been correctly restored
e Regularly schedule data backup plans

 If using the snapshot backup method, you may opt to disable the Admin API

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Menu ON THIS PAGE >

VictoriaMetrics Backup and Recovery of

Monitoring Data

TOC

Function Overview

Use Cases

Prerequisites

Procedures
1. Confirm Storage Path
2. Execute Data Backup
3. Execute Data Recovery

Operation Result

Learn More

Follow-up Actions

Function Overview

The backup and recovery feature for VictoriaMetrics monitoring data allows you to perform
regular backups of monitoring data and recover data when necessary, ensuring the safety and

availability of monitoring data.

Use Cases

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Regularly backing up monitoring data to prevent data loss

Data migration during system migration

Disaster recovery

Reconstructing test environment data

Prerequisites

¢ The ACP Monitoring with VictoriaMetrics plugin has been installed in the cluster
¢ Ensure there is sufficient storage space for backups

e Have access to the VictoriaMetrics storage path

Procedures

1. Confirm Storage Path

The monitoring data of VictoriaMetrics is stored in the specified path of the container, which is

indicated by the -storageDataPath parameter, defaulting to /vm-data .

Configuration example:

spec:
template:
spec:
containers:
- args:
- '-storageDataPath=/vm-data’

Note: The name of the computing component in the ACP Monitoring with VictoriaMetrics

plugin is vmstorage-cluster , and its type is StatefulSet .

2. Execute Data Backup

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Use vmbackup tool to perform data backup; please refer to the vmbackup official
documentation ~ for detailed operations.

3. Execute Data Recovery

Use vmrestore tool to restore backup data; please refer to the vmrestore official
documentation - for detailed operations.

Operation Result

After completing the backup, you will receive a complete backup file of the monitoring data.
After executing the recovery operation, your monitoring data will be restored to the state it was

in at the time of backup.

Learn More

¢ VictoriaMetrics official documentation ~
¢ Best Practices for Data Backup ~

e Troubleshooting Data Recovery ~

Follow-up Actions

Verify the integrity of the backup data

Set up a regular backup schedule

Periodically test the recovery process

Monitor the execution status of backup tasks

https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmrestore.html#troubleshooting
https://docs.victoriametrics.com/vmrestore.html#troubleshooting
https://docs.victoriametrics.com/vmrestore.html#troubleshooting

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

Menu ON THIS PAGE >

Collect Network Data from Custom-Named

Network Interfaces

TOC

Function Overview
Use Case
Prerequisites
Procedures to Operate
Operation Results
Learn More

Subsequent Actions

Function Overview

The platform supports collecting network data from custom-named network interfaces by
modifying the configuration of the monitoring component, enabling you to view the network
traffic information for these interfaces on the monitoring page.

Use Case

This is applicable when your nodes use custom-named network interfaces (not following the

eth. |en.|wl.*|ww.* naming conventions) and require monitoring of these interfaces' network

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

traffic data in the platform.

Prerequisites

+ Aworkload cluster has been created
¢ You have platform administrator permissions

e The naming conventions for the custom network interfaces are known

Procedures to Operate

1. Click the CLI tool icon in the top navigation bar of the platform.

2. Click global.

3. Inthe global cluster, find the moduleinfo resource name corresponding to your workload

cluster:
kubectl get moduleinfo | grep -E 'prometheus|victoriametrics'
Example output:

global-6448ef7f7e5e3924c1629fad826372e7 global prometheus prometheus
Running v3.15.0-zz231204040711-9d1fc12474c2 v3.15.0-22231204040711-9d1fc12474c2
v3.15.0-22231204040711-9d1fc12474c2

ovn-0954121f0359720e8c115804376b3e7e ovn prometheus prometheus
Running v3.15.0-22231204040711-9d1fc12474c2 v3.15.0-22231204040711-9d1fc12474c2
v3.15.0-22231204040711-9d1fc12474c2

4. Edit the moduleinfo resource of the workload cluster:
kubectl edit moduleinfo <moduleinfo resource name of the workload cluster>

5. Add or modify the valuesOverride field:

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

spec:
valuesOverride:# If this field does not exist, you need to add the valuesOverride
field under spec along with the parameters below
ait/chart-cpaas-monitor:
global:
indicator:

networkDevice: eth.*|em.*|en.*|wl.*|ww.*|[A-Z].*i|custom_interface

6. After waiting for 10 minutes, check the network-related charts on the node's monitoring

page to ensure the changes have taken effect.

Operation Results

Once the configuration is effective, you can view the following data of the custom-named

network interfaces on the platform's monitoring page:

¢ Network traffic data
¢ Network throughput

* Network packet statistics

Learn More

¢ For more information on network monitoring, please refer to the Monitoring Architecture

Documentation

Subsequent Actions

« Monitor the performance metrics of the custom network interfaces

o Set alert rules based on the monitoring data

Distributed Tracing - Alauda Container Platform

Menu

Distributed Tracing

Introduction

Introduction

Usage Limitations

Install

Install

Installing the Jaeger Operator
Deploying a Jaeger Instance

Installing the OpenTelemetry Operator
Deploying OpenTelemetry Instances
Enable Feature Switch

Uninstall Tracing

Architecture

Architecture
Core Components

Data Flow

Distributed Tracing - Alauda Container Platform

Concepts

Concepts

Telemetry
OpenTelemetry

Span

Trace

Instrumentation
OpenTelemetry Collector

Jaeger

Guides

Query Tracing
Feature Overview
Main Features
Feature Advantages
Tracing Query

Query Result Analysis

Query Trace Logs
Feature Overview

Core Features
Prerequisites

Log Query Operations

Distributed Tracing - Alauda Container Platform

How To

Non-Intrusive Integration of Tracing in Java Applications
Feature Overview

Use Cases

Prerequisites

Steps to Operate

Operation Results

Business Log Associated with the TracelD
Background

Adding TracelD to Java Application Logs

Adding TracelD to Python Application Logs

Verification Method

Troubleshooting

Unable to Query the Required Tracing
Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Incomplete Tracing Data
Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Distributed Tracing - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

The Distributed Tracing module is a core component of the ACP platform's observability suite
that provides end-to-end request tracking and analysis capabilities for distributed

microservices architectures.
This module delivers four essential tracing capabilities:

o Trace collection for automated gathering of distributed request data through

OpenTelemetry automatic injection or SDK integration

o Trace storage for scalable persistence of tracing data using Elasticsearch as the backend

storage

e Trace visualization for multi-dimensional analysis through customized Ul dashboards and

service dependency mapping

e Trace querying for precise search and filtering using TracelD, service names, tags, and

other rich search conditions

By integrating these capabilities with OpenTelemetry standards and open-source components,
it enables organizations to quickly locate service anomalies, analyze performance
bottlenecks, trace complete request lifecycles, and optimize distributed system performance

across their microservices architecture.

TOC

Usage Limitations

Introduction - Alauda Container Platform

Usage Limitations

When using tracing, the following constraints should be noted:

» Balancing Sampling Strategies and Performance

 In high-load scenarios, the collection of tracing data may exert certain pressure on
Elasticsearch's performance and storage; it is recommended to configure the sampling

rate reasonably based on business conditions.

Install - Alauda Container Platform

= Menu ON THIS PAGE >

Install

WARNING

This deployment document is only applicable to scenarios involving the integration of the
container platform with the tracing system.

The Tracing component and the Service Mesh component are mutually exclusive. If you have
already deployed the Service Mesh component, please uninstall it first.

This guide provides cluster administrators with the process of installing the tracing system on
the Alauda Container Platform cluster.

Prerequisites:

¢ You have access to the Alauda Container Platform cluster with an account that has

platform-admin-system permissions.
¢ You have the kubectl CLI installed.

e The Elasticsearch component is set up to store tracing data, including the access URL

and Basic Auth information.

TOC

Installing the Jaeger Operator

Install the Jaeger Operator using the Web Console
Deploying a Jaeger Instance
Installing the OpenTelemetry Operator

Install the OpenTelemetry Operator using the Web Console

Deploying OpenTelemetry Instances

Install - Alauda Container Platform

Enable Feature Switch

Uninstall Tracing
Deleting OpenTelemetry Instance
Uninstalling OpenTelemetry Operator
Deleting Jaeger Instance

Uninstalling Jaeger Operator

Installing the Jaeger Operator

Install the Jaeger Operator using the Web Console

You can install the Jaeger Operator from the Alauda Container Platform Marketplace -

OperatorHub section where the available Operators are listed.

Steps

In the Administrator view of the Web Console, select the cluster where you want to

deploy the Jaeger Operator, then navigate to Marketplace — OperatorHub.

¢ Use the search box to search for Alauda build of Jaeger in the catalog. Click on the

Alauda build of Jaeger title.

¢ Read the introductory information about the Operator on the Alauda build of Jaeger page.
Click Install.

¢ On the Install page:

e Select Manual for the Upgrade Strategy. For the Manual approval strategy, OLM will
create update requests. As a cluster administrator, you must manually approve the OLM

update requests to upgrade the Operator to the new version.
o Select the stable (Default) channel.

e Choose Recommended for Installation Location. Install the Operator in the
recommended jaeger-operator namespace, so the Operator can monitor and be

available in all namespaces within the cluster.

Install - Alauda Container Platform

¢ Click Install.

+ Verify that the Status displays as Succeeded to confirm the Jaeger Operator was installed

correctly.

¢ Check that all components of the Jaeger Operator were successfully installed. Log into the

cluster via terminal, and run the following command:

kubectl -n jaeger-operator get csv

Example output

NAME DISPLAY VERSION REPLACES PHASE

jaeger-operator.vx.x.0 Jaeger Operator x.x.0 Succeeded

If the PHASE field shows Succeeded , it means the Operator and its components were

installed successfully.

Deploying a Jaeger Instance

A Jaeger instance and its related resources can be installed with the install-jaeger.sh script,

which takes three parameters:

e --es-url : The access URL for Elasticsearch.
e --es-user-baseb4 : The Basic Auth username for Elasticsearch, encoded in base64.

e --es-pass-baseb4 : The Basic Auth password for Elasticsearch, encoded in base64.

Copy the installation script from DETAILS, log into the cluster where you want to install it,

save it as install-jaeger.sh , and execute it after granting execute permissions:
DETAILS

Script execution example:

Install - Alauda Container Platform

./install-jaeger.sh --es-url="https://xxx"' --es-user-baseb4="xxx"' --es-pass-base64="xxx"

Script output example:

CLUSTER_NAME: <cluster>

ES_URL: https://xxx

ES_USER_BASE64: xxx

ES_PASS_BASE64: xxx

TARGET_NAMESPACE: cpaas-system

JAEGER_INSTANCE_NAME: jaeger-prod

JAEGER_BASEPATH_SUFFIX: /acp/jaeger

JAEGER_ES_INDEX_PREFIX: acp-tracing-<cluster>

PLATFORM_URL: https://xxx

configmap/jaeger-prod-oauth2-proxy created
secret/jaeger-prod-oauth2-proxy created
secret/jaeger-prod-es-basic-auth created
serviceaccount/jaeger-prod-sa created
role.rbac.authorization.k8s.io/jaeger-prod-role created
rolebinding.rbac.authorization.k8s.io/jaeger-prod-rb created
jaeger.jaegertracing.io/jaeger-prod created
podmonitor.monitoring.coreos.com/jaeger-prod-monitor created
ingress.networking.k8s.io/jaeger-prod-query created

Jaeger UI access address: <platform-url>/clusters/<cluster>/acp/jaeger

Jaeger installation completed

Installing the OpenTelemetry Operator

Install the OpenTelemetry Operator using the Web
Console

You can install the OpenTelemetry Operator from the Alauda Container Platform Marketplace

- OperatorHub section where the available Operators are listed.
Steps

¢ In the Administrator view of the Web Console, select the cluster where you want to

deploy the OpenTelemetry Operator, then navigate to Marketplace - OperatorHub.

Install - Alauda Container Platform

¢ Use the search box to search for Alauda build of OpenTelemetry in the catalog. Click on the

Alauda build of OpenTelemetry title.

« Read the introductory information about the Operator on the Alauda build of

OpenTelemetry page. Click Install.
¢ On the Install page:

o Select Manual for the Upgrade Strategy. For the Manual approval strategy, OLM will
create update requests. As a cluster administrator, you must manually approve the OLM

update requests to upgrade the Operator to the new version.
o Select the alpha (Default) channel.

o Choose Recommended for Installation Location. Install the Operator in the
recommended opentelemetry-operator namespace, so the Operator can monitor and be

available in all namespaces within the cluster.
o Click Install.

» Verify that the Status displays as Succeeded to confirm the OpenTelemetry Operator was

installed correctly.

¢ Check that all components of the OpenTelemetry Operator were successfully installed. Log

into the cluster via terminal, and run the following command:
kubectl -n opentelemetry-operator get csv
Example output

NAME DISPLAY VERSION REPLACES PHASE
openTelemetry-operator.vx.x.@ OpenTelemetry Operator x.x.0
Succeeded

If the PHASE field shows Succeeded , it means the Operator and its components were

installed successfully.

Deploying OpenTelemetry Instances

Install - Alauda Container Platform

OpenTelemetry instances and their related resources can be installed using the install-

otel.sh script.

Copy the installation script from DETAILS, log into the cluster where you want to install it,

save itas install-otel.sh , and execute it after granting execute permissions:
DETAILS

Script execution example:

./install-otel.sh

Script output example:

CLUSTER_NAME: cluster-xxx

serviceaccount/otel-collector created
clusterrolebinding.rbac.authorization.k8s.io/otel-collector:cpaas-system:cluster-admin
created

opentelemetrycollector.opentelemetry.io/otel created
instrumentation.opentelemetry.io/acp-common-java created
servicemonitor.monitoring.coreos.com/otel-collector-monitoring created
servicemonitor.monitoring.coreos.com/otel-collector created

OpenTelemetry installation completed

Enable Feature Switch

The tracing system is currently in the Alpha phase and requires you to manually enable the

acp-tracing-ui feature switch in the Feature Switch view.

Then, navigate to the Container Platform view, and go to Observability — Tracing, to view

the tracing feature.

Uninstall Tracing

Install - Alauda Container Platform

Deleting OpenTelemetry Instance

Log into the installed cluster and execute the following commands to delete the
OpenTelemetry instance and its related resources.

kubectl -n cpaas-system delete servicemonitor otel-collector-monitoring
kubectl -n cpaas-system delete servicemonitor otel-collector

kubectl -n cpaas-system delete instrumentation acp-common-java

kubectl -n cpaas-system delete opentelemetrycollector otel

kubectl delete clusterrolebinding otel-collector:cpaas-system:cluster-admin

kubectl -n cpaas-system delete serviceaccount otel-collector

Uninstalling OpenTelemetry Operator

You can uninstall the OpenTelemetry Operator using the Administrator view in the Web

Console.

Steps

+ From Marketplace - OperatorHub - use the search box to search for Alauda build of
OpenTelemetry .

¢ Click on the Alauda build of OpenTelemetry title to enter its details.

¢ On the Alauda build of OpenTelemetry details page, click the Uninstall button in the

upper right corner.

¢ In the Uninstall "opentelemetry-operator"? window, click Uninstall.

Deleting Jaeger Instance

Log into the installed cluster and execute the following commands to delete the Jaeger

instance and its related resources.

kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl
kubectl

cpaas-system
cpaas-system
cpaas-system
cpaas-system
cpaas-system
cpaas-system
cpaas-system
cpaas-system

Cpaas-system

delete
delete
delete
delete
delete
delete
delete
delete
delete

Install - Alauda Container Platform

ingress jaeger-prod-query
podmonitor jaeger-prod-monitor
jaeger jaeger-prod

rolebinding jaeger-prod-rb

role jaeger-prod-role
serviceaccount jaeger-prod-sa
secret jaeger-prod-oauth2-proxy
secret jaeger-prod-es-basic-auth

configmap jaeger-prod-oauth2-proxy

Uninstalling Jaeger Operator

You can uninstall the Jaeger Operator using the Administrator view in the Web Console.

Steps

e From Marketplace — OperatorHub - use the search box to search for Alauda build of

Jaeger .

¢ Click on the Alauda build of Jaeger title to enter its details.

¢ On the Alauda build of Jaeger details page, click the Uninstall button in the upper right

corner.

¢ In the Uninstall "jaeger-operator"? window, click Uninstall.

Menu

Architecture

Architecture - Alauda Container Platform

ON THIS PAGE >

This architecture is built on the OpenTelemetry and Jaeger technology stack, achieving the full

lifecycle management of distributed tracing. The system comprises five core modules: data

collection, transmission, storage, querying, and visualization.

Business Cluster

query trace

User

OTel App
auto-instrumentation
4 _‘\
< opentelemetry-operator races
X/ L0 o/
install Vs —\
embedded otel-collectar ;
-,
A,
T 77 0 traces
-'_jaeger—nperatnr p
Va7 7N
K jaeger-collector
instau'gll
[Tracing U1 \«
v
jaeger-query > /
/' traces

TOC

Core Components

ot

!

Architecture - Alauda Container Platform

Data Flow

Core Components

1. OpenTelemetry System

e opentelemetry-operator
A cluster-level Operator responsible for deploying and managing the otel-collector

component, providing OTel automatic injection capability.

» otel-collector
Receives tracing data from applications, filters and batches it, and then forwards it to the

jaeger-collector.

e Tracing Ul
A self-developed visualization interface that integrates with the jaeger-query API,

supporting multi-dimensional query conditions.
2. Jaeger System

* jaeger-operator

Deploys and manages the jaeger-collector and jaeger-query components.

» jaeger-collector
Receives tracing data forwarded and processed by the otel-collector, performs format

conversion, and writes it to Elasticsearch.
e jaeger-query
Provides a tracing query API, supporting multi-condition retrieval including TracelD and

labels.
3. Storage Layer

» Elasticsearch
A distributed storage engine that supports efficient writing and retrieval of massive Span

data.

Architecture - Alauda Container Platform

Data Flow

e Writing Process

Application -> otel-collector -> jaeger-collector -> Elasticsearch

The application generates Span data via SDK or automatic injection, which is standardized

by the otel-collector and subsequently persisted to Elasticsearch by the jaeger-collector.

¢ Query Process

User -> Tracing UI -> jaeger-query -> Elasticsearch

The user submits query conditions through the Ul, and jaeger-query retrieves data from

Elasticsearch; the Ul visualizes the results based on the return data.

Concepts - Alauda Container Platform

Menu ON THIS PAGE >

Concepts

TOC

Telemetry
OpenTelemetry

Span

Trace

Instrumentation
OpenTelemetry Collector

Jaeger

Telemetry

Telemetry refers to the data emitted by systems and their behaviors, including traces, metrics,
and logs.

OpenTelemetry

OpenTelemetry is an observability © framework and toolkit designed to create and manage
telemetry data such as traces -, metrics ~, and logs . Importantly, OpenTelemetry is vendor-
agnostic, meaning it can work with various observability backends, including open-source

tools like Jaeger ~ and Prometheus ~ as well as commercial products.

https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/

Concepts - Alauda Container Platform

Span

Span is the fundamental building block of distributed tracing, representing a specific operation
or work unit. Each span records specific actions within a request, helping us understand the

details of what occurred during the operation's execution.

A span contains a name, time-related data, structured log messages, and other metadata
(attributes) that collectively illustrate the complete picture of the operation.

Trace

Trace records the path of a request (whether from an application or end-user) as it
propagates through a multi-service architecture (such as microservices and serverless

applications).

A trace consists of one or more spans. The first span is known as the root span, which
represents the entire lifecycle of a request from start to finish. Child spans beneath the root
span provide more detailed contextual information about the request process (or the various

steps that constitute the request).

Without traces, identifying the root cause of performance issues in distributed systems would
be quite challenging. Traces make it easier to debug and understand distributed systems by
breaking down the flow of requests through them.

Instrumentation

To enable observability, a system needs to undergo Instrumentation: that is, the component
code of the system must emit traces -, metrics -, and logs .

With OpenTelemetry, you can instrument your code in two primary ways:

1. Code-based solutions 7 : Using the official APIs and SDKs for most languages ~

2. Zero-instrumentation solutions ~

https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/

Concepts - Alauda Container Platform

Code-based solutions provide deeper insights and richer telemetry data from within your
application. You can generate telemetry data in your application using the OpenTelemetry API,
which is an important complement to the telemetry data generated by zero-instrumentation

solutions.

Zero-instrumentation solutions are great for quickly getting started or when you cannot
modify the application from which you need telemetry data. They can provide rich telemetry
data via the libraries or runtime environment you are using. Another way to understand them
is that they deliver information about events occurring at the boundaries (Edges) of the

application.

These two solutions can be used simultaneously.

OpenTelemetry Collector

OpenTelemetry Collector is a vendor-agnostic agent that can receive, process, and export
telemetry data. It supports receiving telemetry data in various formats (such as OTLP, Jaeger,
Prometheus, and many commercial/proprietary tools) and sending that data to one or more

backends. It also supports processing and filtering telemetry data before exporting.

For more information, see Collector .

Jaeger

Jaeger is an open-source distributed tracing system. It is designed to monitor and diagnose
complex distributed systems based on microservices architecture, helping developers
visualize request traces, analyze performance bottlenecks, and troubleshoot anomalies.
Jaeger is compatible with the OpenTracing standard (now part of OpenTelemetry), supports
multiple programming languages and storage backends, and is a key observability tool in the

cloud-native space.

https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/

Menu

Guides

Query Tracing
Feature Overview
Main Features
Feature Advantages
Tracing Query

Query Result Analysis

Query Trace Logs
Feature Overview

Core Features
Prerequisites

Log Query Operations

Guides - Alauda Container Platform

Query Tracing - Alauda Container Platform

Menu ON THIS PAGE >

Query Tracing

TOC

Feature Overview
Main Features
Feature Advantages
Tracing Query
Step 1. Combine Query Conditions
Step 2: Execute Query
Query Result Analysis
Span List
Time-Series Waterfall Chart

Span Details

Feature Overview

The distributed tracing query feature provides full-link tracing capabilities for microservices
architecture by collecting metadata information of inter-service calls, helping users quickly
locate cross-service call issues. This feature mainly addresses the following problems:

+ Request Link Tracing: Restoring the complete request path in complex distributed
systems.

« Performance Bottleneck Analysis: Identifying abnormal call nodes in terms of time

consumption within the link.

Query Tracing - Alauda Container Platform

+ Fault Root Cause Location: Quickly locating the point of issue occurrence through error

marking.
Applicable scenarios include:

+ Rapidly locating abnormal services during production environment fault troubleshooting.
« |dentifying high-latency call links during performance tuning.

» Validating inter-service call relationships after a new version release.
Core values:

* Enhancing observability of distributed systems.
e Reducing Mean Time to Recovery (MTTR).

« Optimizing inter-service call performance.

Main Features

e Multi-dimensional Querying: Supports 6 combinations of query conditions such as TracelD,

service name, labels, etc.

 Visual Analysis: Intuitively displays call hierarchy and time distribution through time-series

waterfall charts.

e Precise Location: Supports error Span filtering and secondary searches with labels.

Feature Advantages

¢ Quick Problem Identification: Narrowing down the inspection range through multi-

dimensional query conditions accelerates problem location.

¢ Visual Presentation: Using time-series waterfall charts to intuitively display call

relationships reduces complexity and enhances fault analysis efficiency.

* Flexibility and Variety: Supports both simple queries and complex combinations, adapting

to various operation and development scenarios.

Tracing Query

Query Tracing - Alauda Container Platform

1) Step 1: Combine Query Conditions

Tip: Query conditions can be combined for use. You can refine your query by adding

multiple query conditions.

Query
Condition

TracelD

Service

Label

Span
Duration

Greater Than

Only Search

Error Spans

Span Type

Description

The unique identifier for the complete link, which can be used to

guery the specified tracing.

The service that initiates/receives the call request (needs to be

selected or input).

You can filter the query results by entering labels (Tag),

supported Tags include those in the Span details.

Spans that have a duration greater than or equal to input value

(ms).

Error Spans refer to Spans whose Tag value of error is true .

Root Span: Searches for root Spans initiated by the configured
service. This search mode is used when the configured service
is the initiator of the entire call request.

Service Entry Span: Searches for the first Span generated

when the configured service is called as a server.

Query Tracing - Alauda Container Platform

Query .
o Description
Condition
The maximum number of Spans that can be queried, with a
default of 200.
] Tip: For performance reasons, the platform can display a
Maximum

maximum of 1000 Spans at a time. If the number of Spans that
Query Count N .

meet the query conditions exceeds the maximum query count,

you can refine the query conditions or narrow the time range for

phased queries.

2) Step 2: Execute Query

e Once you select the query conditions and enter the respective values, click the Add
to Query Conditions button, and the current conditions will be displayed in the

Query Conditions result area, triggering the query.

¢ You can also expand Common Query Conditions to quickly add recently used

search conditions.

Query Result Analysis

After entering the query conditions and searching, a query results area will be generated on

the page.

Span List

The left side of the query results area displays a list of Spans that meet the conditions along
with basic information about the Spans, including: service name, called interface or request

processing method, duration, and start time.

Time-Series Waterfall Chart

The time-series waterfall chart on the right side of the query results area clearly displays the
call relationships between Spans in a single tracing. The main features of using time-series

Query Tracing - Alauda Container Platform

waterfall charts in tracing analysis are as follows:

1. Top-to-bottom expansion: In the time-series waterfall chart, various call events (Spans)
typically expand downwards from the top of the chart, with each horizontal bar representing
a service call or process. The position generally reflects the logical calling order of

operations.

2. Time axis alignment: The horizontal axis of the time-series waterfall chart represents time.
The length of each bar indicates the duration of that call, allowing for an intuitive

comparison of the time relationships between different calls.

3. Indentation description: Indentation indicates the hierarchical relationship of calls, with

deeper indentation denoting greater call depth within that link.

4. Interactivity and detailed data display: Clicking on the bars in the time-series waterfall chart

can display more detailed information about that call.

Span Details

By clicking on the row of the Span in the time-series waterfall chart, you can expand and view

detailed information about the Span, including:

¢ Service: The service within the Span.
e Span Duration (ms): The duration of the Span.
o URL: The URL accessed by the service, corresponding to http.url in Span Tags.

e Tag: The label information of the Span composed of key-value pairs, which can be used for
advanced search tag query conditions. By clicking the button next to the tag, you can add

the current Tag condition to the query conditions for more precise query results.

¢ JSON: The original JSON structure of the Span, allowing for further inspection of its

internal information.

Query Trace Logs - Alauda Container Platform

Menu

Query Trace Logs

TOC

Feature Overview
Core Features
Prerequisites
Log Query Operations
Access Trace Logs
Filter Logs
By Pod Name
By Time Range
By Query Conditions
Contain Trace ID
Advanced Operations
Export Logs
Customize Display Fields

View Log Context

Feature Overview

ON THIS PAGE >

Trace Logs enable users to query and analyze logs associated with a specific distributed trace

using its unique TracelD. This feature helps developers and operators quickly locate issues,

understand request flows, and correlate business logs with trace contexts.

Query Trace Logs - Alauda Container Platform

Key Benefits:

+ Root Cause Analysis: Identify errors and latency issues across microservices in

distributed systems.
+ Context Correlation: Link business logs to trace spans for end-to-end visibility.

« Efficient Filtering: Filter logs by Pods or TracelD to focus on relevant data.
Applicable Scenarios:

* Debugging cross-service transaction failures.
e Analyzing performance bottlenecks in complex workflows.

o Auditing request processing flows for compliance.

Core Features

o TracelD-Based Query: Retrieve all logs associated with a specific trace using its TracelD.
* Pod-Centric Filtering: View logs from specific Pods involved in the trace.
e Log Export: Export filtered log data in customizable formats.

+ Contextual Log Viewing: Examine log records before/after a target entry for deeper

analysis.

Prerequisites

TIP

Before querying trace logs by TracelD, you must first instrument your services to include TracelD in

business logs. Follow the Business Log Correlation with TracelD Guide for configuration details.

Default Behavior:

» Displays logs from the entire trace duration.

o For traces shorter than 1 minute, queries logs within 1 minute after the trace start time.

Query Trace Logs - Alauda Container Platform

Log Query Operations

1) Access Trace Logs

1. After querying traces, click on a specific trace to view its details.

2. Click the View Log tab in the trace visualization panel.

2 Filter Logs

By Pod Name

In the Pod Name selector, choose target Pod from the participating services list.

By Time Range

In the Time Range selector, choose target time range.

By Query Conditions

Enter keywords in the Query Conditions text box to filter logs based on specific
content.

Contain Trace ID

Select the Contain Trace ID checkbox.

3/ Advanced Operations

Export Logs

1. Click Export.
2. Select fields to include using column checkboxes.

3. Choose export format (JSON/CSV).

Customize Display Fields

Query Trace Logs - Alauda Container Platform

Click Set. Toggle visibility of log fields in the display panel.

View Log Context

1. Click Insight next to any log entry.

2. Explore 5 preceding and succeeding logs around the target timestamp.

3. Scroll up/down with mouse to load more logs.

How To - Alauda Container Platform

Menu

How To

Non-Intrusive Integration of Tracing in Java Applications
Feature Overview

Use Cases

Prerequisites

Steps to Operate

Operation Results

Business Log Associated with the TracelD
Background

Adding TracelD to Java Application Logs

Adding TracelD to Python Application Logs

Verification Method

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

Menu ON THIS PAGE >

Non-Intrusive Integration of Tracing in Java

Applications

INFO

The automatically injected OpenTelemetry Java Agent ~ supports Java 8+ versions.

TOC

Feature Overview
Use Cases
Prerequisites
Steps to Operate

Operation Results

Feature Overview

Tracing is a core capability of observability in distributed systems, which can fully record the
call paths and performance data of requests within the system. This article describes how to
achieve non-intrusive integration of tracing in Java applications using the automatic injection

of the OpenTelemetry Java Agent.

Use Cases

https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

Java applications can be integrated for the following scenarios:

Quickly adding tracing capabilities to Java applications

Avoiding modifications to the application source code

Deploying services with Kubernetes

Visualizing service inter-call relationships and analyzing performance bottlenecks

Prerequisites

Before using this feature, ensure that:

The target service is deployed on the Alauda Container Platform

The service is using JDK version Java 8 or higher

You have editing permissions for the Deployment in the target namespace

The platform has completed tracing deployment

Steps to Operate

For a Java application that needs to be integrated into the Alauda Container Platform tracing,

the following adaptations are required:

« Configure automatic injection annotations for the Java Deployment.
o Setthe SERVICE_NAME environment variable.

e Setthe SERVICE NAMESPACE environment variable.

Example of Deployment adaptation:

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:
name: my-java-deploy
Spec:
template:
metadata:
annotations:
instrumentation.opentelemetry.io/inject-java: cpaas-system/acp-common-java 0
labels:
app.kubernetes.io/name: my-java-app
spec:
containers:
- env:
- name: SERVICE_NAME @
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.labels['app.kubernetes.io/name']
- name: SERVICE_NAMESPACE @)
valueFrom:
fieldRef:
apiVersion: v1
fieldPath: metadata.namespace

1. Choose cpaas-system/acp-common-java Instrumentation as the configuration for injecting the

Java Agent.

2. Configure the SERVICE_NAME environment variable, which can be associated through labels

or fixed values.

3. Configure the SERVICE_NAMESPACE environment variable, with its value as

metadata.namespace .

Operation Results

After adapting the Java application:

« If the newly started Java application pod contains the opentelemetry-auto-instrumentation-

java init container, it indicates that the injection was successful.

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

¢ Send test requests to the Java application.

¢ In the Container Platform view, select the project, cluster, and nhamespace where the

Java application resides.

+ Navigate to the Observability -> Tracing page to view the tracing data and timeline

waterfall diagram of the Java application.

Business Log Associated with the TracelD - Alauda Container Platform

Menu ON THIS PAGE >

TIP

This article will guide developers on how to integrate methods for getting TracelD and adding
TracelD to application logs in the application code, suitable for backend developers with some

development experience.

Business Log Associated with the TracelD

TOC

Background
Adding TracelD to Java Application Logs
Adding TracelD to Python Application Logs

Verification Method

Background

» To correctly associate multiple automatically sent spans (different modules/nodes/services
called during a single request) into a single trace, the service's HTTP request headers will

include TracelD and other information used for associating the trace.

o Atrace represents the call process of a single request, and TracelD is the unique ID
identifying this request. With the TracelD in the logs, the traceing can be associated with

the application logs.

Business Log Associated with the TracelD - Alauda Container Platform

Based on the above background, this article will explain how to obtain the TracelD from the
HTTP request headers and add it to application logs, allowing you to accurately query log data
on the platform using TracelD.

Adding TracelD to Java Application Logs

TIP

» The following examples are based on the Spring Boot framework and use Log4j and Logback

for illustration.

» Your application must meet the following prerequisites:

« The type and version of the logging library must meet the following requirements:

Logging Library Version Requirement

Log4j 1 1.2+
Log4j 2 2.7+
Logback 1.0+

« The application has been injected with a Java Agent.

Method 1: Configure logging.pattern.level

Modify the logging.pattern.level parameter in your application configuration as follows:

logging.pattern.level = trace_id=%mdc{trace_id}

Method 2: Configure CONSOLE_LOG_PATTERN

1. Modify the logback configuration file as follows.

TIP

Business Log Associated with the TracelD - Alauda Container Platform

The console output is used as an example here, where %X{trace_id} indicates the value of the

key trace_id retrieved from MDC.

<property name="CONSOLE_LOG_PATTERN"
value="${CONSOLE_LOG_PATTERN:-%c1r(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint}
[trace_id=%X{trace_id}] %clr(${LOG_LEVEL_PATTERN:-%5p}) %clr(${PID:- }){magenta}
%clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.40logger{39}){cyan} %clr(:){faint}
%m%n${L0G_EXCEPTION_CONVERSION_WORD: -%wEx}}"/>

2. In the class where logs need to be output, add the @S1f4j annotation and use the log

object to output logs, as shown below:

@RestController
@S1f4j

public class ProviderController {

@GetMapping("/hello")

public String hello(HttpServletRequest request) {
log.info("request /hello");
return "hello world";

Adding TracelD to Python Application Logs

1. In the application code, add the following code to retrieve the TracelD from the request

headers. The example code is as follows and can be adjusted as needed:

TIP

The getForwardHeaders function retrieves trace information from the request headers, where

the value of x-b3-traceid is the TracelD.

Business Log Associated with the TracelD - Alauda Container Platform

def getForwardHeaders():
headers = {}
incoming_headers = [

'x-request-id",
'x-b3-traceid’',
'x-b3-spanid"',
'x-b3-parentspanid’,
'x-b3-sampled’,
'x-b3-flags',

for ihdr in incoming_headers:
val = request.headers.get(ihdr)
if val is not None:

headers[ihdr] = val

return headers

2. In the application code, add the following code to include the retrieved TracelD in the logs.

The example code is as follows and can be adjusted as needed:

headers = getForwardHeaders(request)
tracing_section = ' [%(x-b3-traceid)s,%(x-b3-spanid)s] ' % headers

logging.info(tracing_section + "Qops, unexpected error happens.")

Verification Method

1. Click on Tracing in the left navigation bar.
2. In the query criteria, select TracelD, enter the TracelD to query, and click Add to query.
3. In the displayed trace data below, click View Log next to the TracelD.

4. On the Log Query page, check Contain Trace ID; the system will only display log data

containing the TracelD.

Troubleshooting - Alauda Container Platform

Menu

Troubleshooting

Unable to Query the Required Tracing
Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Incomplete Tracing Data
Problem Description

Root Cause Analysis

Solution for Root Cause 1

Solution for Root Cause 2

Unable to Query the Required Tracing - Alauda Container Platform

Menu ON THIS PAGE >

Unable to Query the Required Tracing

TOC

Problem Description
Root Cause Analysis
1. Tracing Sampling Rate Configured Too Low
2. Elasticsearch Real-Time Limitations
Solution for Root Cause 1

Solution for Root Cause 2

Problem Description

When guerying the tracing in a service mesh, you may encounter situations where the target

tracing cannot be retrieved.

Root Cause Analysis

1. Tracing Sampling Rate Configured Too Low

When the sampling rate parameter for the tracing is set too low, the system will only collect
tracing data proportionally. During times of insufficient request volume or low-peak periods,
this may lead to the sampled data being below the visibility threshold.

Unable to Query the Required Tracing - Alauda Container Platform

2. Elasticsearch Real-Time Limitations

The default configuration for Elasticsearch index is "refresh_interval”: "10s" , which results
in a delay of 10 seconds before data is refreshed from the memory buffer to a searchable
state. When querying recently generated tracing, the results may be missing because the data

has not yet been persisted.

This index configuration can effectively reduce the data merge pressure on Elasticsearch,
improving indexing speed and the speed of the first query, but it also reduces the real-time

nature of the data to some extent.

Solution for Root Cause 1

o Appropriately increase the sampling rate according to requirements.

¢ Use richer sampling methods, such as tail sampling.

Solution for Root Cause 2

Adjust the refresh interval through the --es.asm.index-refresh-interval startup parameter of

jaeger-collector , with a default value of 10s .

If the value of this parameter is "null" , there will be no configuration for the index'’s

refresh_interval .

Note: Setting itto "null" will affect the performance and query speed of Elasticsearch.

Incomplete Tracing Data - Alauda Container Platform

Menu ON THIS PAGE >

Incomplete Tracing Data

TOC

Problem Description
Root Cause Analysis
1. Data Persistence Delay
2. Time Range Limitation
Solution for Root Cause 1

Solution for Root Cause 2

Problem Description

The tracing query results exhibit the following issues of incomplete data:

* Recent queries (within the last 30 minutes) are missing some spans.

« Tracing older than 1 hour are experiencing disconnections.

Root Cause Analysis

1. Data Persistence Delay

The writing process in Elasticsearch requires a sequence of steps involving memory buffer -
translog —» segment files, which can result in visibility delays for the most recently written

Incomplete Tracing Data - Alauda Container Platform

data.

2. Time Range Limitation

By default, when jaeger-query queries spans corresponding to tracing, the time range

extends one hour before and after the start time of the span.

For instance, if a span starts at 08:12:30 and ends at 08:12:32 , the time range for querying

that tracing would be from 07:12:30 to 09:12:32 .

Therefore, if the tracing spans over 1 hour, querying through this span may not yield a
complete tracing.

Solution for Root Cause 1

Wait a moment and refresh the page to try the query again.

Solution for Root Cause 2

If the tracing span in your environment is lengthy, you can adjust the query time range for a
single tracing using the --es.asm.span-trace-query-time-adjustment-hours startup parameter in

jaeger-query .

The default value of this parameter is 1 hour, and you can increase this value as needed.

Logs - Alauda Container Platform

Menu

Logs

Introduction

Introduction

Install

Install

Installation Planning

Install Alauda Container Platform Log Storage with ElasticSearch via console
Install Alauda Container Platform Log Storage with ElasticSearch via YAML
Install Alauda Container Platform Log Storage with Clickhouse via console
Install Alauda Container Platform Log Storage with Clickhouse via YAML
Install Alauda Container Platform Log Collector Plugin

Install Alauda Container Platform Log Collector Plugin via YAML

Architecture

Logs - Alauda Container Platform

Log Module Architecture
Overall Architecture Description
Log Collection

Log Consumption and Storage

Log Visualization

Log Component Selection Guide
Architecture Comparison
Function Comparison

Selection Recommendations

Log Component Capacity Planning
ElasticSearch

Clickhouse

Concepts

Concepts

Open Source Components
Core Functionality Concepts
Key Technical Terms

Data Flow Model

Guides

Logs - Alauda Container Platform

Logs
Log Query Analysis
Manage Application Log Retention Time

Configure Partial Application Log Exclusion from Collection

How To

How to Archive Logs to Third-Party Storage
Transfer to External NFS

Transfer to External S3 Storage

How to Interface with External ES Storage Clusters

Resource Preparation

Operating Procedures

Introduction - Alauda Container Platform

Menu

Introduction

The Logging module is a core component of the ACP platform's observability suite that

provides comprehensive log management capabilities for efficient and reliable log processing.
This module delivers four essential logging capabilities:

* Log collection for automated gathering of logs from applications, containers, and

infrastructure components

* Log storage for scalable and durable persistence using ElasticSearch and ClickHouse

backends

* Log querying for fast and flexible search across large volumes of log data

By integrating these capabilities with powerful open-source components like Filebeat,
ElasticSearch, and ClickHouse, it enables organizations to efficiently handle massive log
volumes, accelerate troubleshooting, ensure compliance requirements, and gain valuable

operational insights in real time.

Install - Alauda Container Platform

Menu ON THIS PAGE >

Install

The platform's logging system consists of two plugins: Alauda Container Platform Log
Collector and Alauda Container Platform Log Storage. This chapter will introduce you to the

installation of these two plugins.

WARNING

1. The global cluster can query the log data stored on any workload cluster within the platform.

Ensure that the global cluster can access port 11780 of the workload cluster.

2. The Alauda Container Platform Log Storage with Clickhouse plugin needs Clickhouse operator,
before installing the plugin, please ensure that the Clickhouse operator is uploaded in the

cluster.

TOC

Installation Planning
Install Alauda Container Platform Log Storage with ElasticSearch via console
Install Alauda Container Platform Log Storage with ElasticSearch via YAML
1. Check available versions
2. Create a Modulelnfo
3. Verify installation
Install Alauda Container Platform Log Storage with Clickhouse via console
Install Alauda Container Platform Log Storage with Clickhouse via YAML
1. Check available versions

2. Create a Modulelnfo

Install - Alauda Container Platform

3. Verify installation

Install Alauda Container Platform Log Collector Plugin

Install Alauda Container Platform Log Collector Plugin via YAML
1. Check available versions
2. Create a Modulelnfo

3. Verify installation

Installation Planning

Alauda Container Platform Log Storage plugins can be installed in any cluster, and any
cluster's log storage component can be selected for log collection to interface with the storage
data.

So, before installing the log storage plugin , you need to plan the cluster and node where the
log storage component will be installed.

Avoid deploying log storage plugins in the global cluster. Instead, deploy them in workload

clusters to ensure management cluster failures do not disrupt log-based issue resolution.

« Prioritize centralizing logs to a single log storage cluster. If log volume exceeds maximum

capacity thresholds, distribute logs across multiple storage clusters.

* Deploy at least one log storage instance per network zone to aggregate logs locally,

minimizing cross-data-center public network traffic (which incurs high costs and latency).

+ Dedicate exclusive nodes for log storage, avoiding co-deployment with other applications
or platform components. Log storage requires high 1/0 throughput and may be affected by

interference.

+ Mount dedicated SSD disks for log storage to significantly enhance performance.

Install - Alauda Container Platform

Install Alauda Container Platform Log Storage

with ElasticSearch via console

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of Alauda Container Platform Log

Storage with ElasticSearch > Install.

3. Refer to the following instructions to configure relevant parameters.

Parameter

Connect
External

Elasticsearch

Component
installation

Settings

Retention

Period

Description

Keep closed to install the log storage plugin within the platform.

LocalVolume: Local storage, log data will be stored in the local
storage path of the selected node. The advantage of this method
is that the log component is directly bound to local storage,
eliminating the need to access storage over the network and
providing better storage performance.

StorageClass: Dynamically create storage resources using
storage classes to store log data. The advantage of this method
is a higher degree of flexibility; when multiple storage classes are
defined for the entire cluster, administrators can select the
corresponding storage class for the log components based on
usage scenarios, reducing the impact of host malfunction on
storage. However, the performance of StorageClass may be
affected by factors such as network bandwidth and latency, and it
relies on the redundancy mechanisms provided by the storage

backend to achieve high availability of storage.

The maximum time logs, events, and audit data can be retained
on the cluster. Data exceeding the retention period will be
automatically cleaned up.

Tip: You may back up data that needs to be retained for a long

Install - Alauda Container Platform

Parameter Description

time. If you need assistance, please contact technical support

personnel.

4. Click Install.

Install Alauda Container Platform Log Storage
with ElasticSearch via YAML

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

logcenter 30h

logcenter-v4.1.0 30h

This indicates that the ModulePlugin logcenter exists in the cluster and version v4.1.0 is

published.

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

Install - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModulelInfo
metadata:
annotations:
cpaas.io/display-name: logcenter
cpaas.io/module-name: '{"en": "Alauda Container Platform Log Storage for
Elasticsearch", "zh": "Alauda Container Platform Log Storage for Elasticsearch"}'
labels:
cpaas.io/cluster-name: go
cpaas.io/module-name: logcenter
cpaas.io/module-type: plugin
cpaas.io/product: Platform-Center

name: <cluster>-log-center

spec:
config:
clusterView:
isPrivate: "true"
components:
elasticsearch:
address: ""
basicAuthSecretName: ""

hostpath: /cpaas/data/elasticsearch
httpPort: 9200
install: true
k8sNodes:
- 192.168.139.75
masterkK8sNodes: []
masterReplicas: 0
masterResources:
limits:
cpu: "2"
memory: 4Gi
requests:
cpu: 200m
memory: 256Mi
masterStorageSize: 5
nodeReplicas: 1
nodeStorageSize: 200
resources:
limits:
cpu: "4"
memory: 4Gi
requests:

cpu: "1"
memory: 1Gi
tcpPort: 9300
type: single
kafka:
address:

nmn

auth: true
basicAuthSecretName: ""
exporterPort: 9308

install: true

k8sNodes:

- 192.168.139.75
port: 9092
storageSize: 10
tls: true

zkElectPort: 3888
zkExporterPort: 9141
zkLeaderPort: 2888
zkPort: 2181

kibana:
install: false

storageClassConfig:

Install - Alauda Container Platform

name: elasticsearch-local-log-sc

type: LocalVolume
zookeeper:
storageSize: 1
ttl:
audit: 180
event: 180
logKubernetes: 7
logPlatform: 7
logSystem: 7
logWorkload: 7

version: v4.1.0

YAML field reference:

Field path

metadata.labels.cpaas.io/cluster-name

Description

Target cluster name where

the plugin is installed.

metadata.name

spec.

spec.

spec.

spec

spec.

spec.

spec.

spec.

spec.

config.

config.

config.

.config.

config.

config.

config.

config.

config.

Install - Alauda Container Platform

Field path

clusterView.isPrivate

components.

components.

components.

components.

components.

components.

components.

components.

elasticsearch.

elasticsearch.

elasticsearch.

elasticsearch.

elasticsearch.

elasticsearch.

elasticsearch.

elasticsearch.

address

basicAuthSecretName

hostpath

httpPort

install

k8sNodes

masterk8sNodes

masterReplicas

Description

Temporary Modulelnfo
name; the platform will

rename it after creation.

Visibility setting for cluster

view.

External Elasticsearch
address; leave empty to
use platform-installed

Elasticsearch.

Secret name for external
Elasticsearch basic auth;
leave empty for platform

Elasticsearch.

Data path for Elasticsearch.

Elasticsearch HTTP port,
default 9200.

Whether to install
Elasticsearch via platform;
set to false when using

external Elasticsearch.

Node IP list for
Elasticsearch Data when

using LocalVolume.

Node IP list for
Elasticsearch Master (large

scale with LocalVolume

only).

Replica count for

Elasticsearch Master (large

Install - Alauda Container Platform

Field path Description

scale only).

Resource requests/limits

spec.config.components.elasticsearch.masterResources for Elasticsearch Master

(large scale only).

Storage size for

spec.config.components.elasticsearch.masterStorageSize Elasticsearch Master (large
scale only).

. , : Replica count for
spec.config.components.elasticsearch.nodeReplicas

Elasticsearch Data.

_ . _ Storage size for
spec.config.components.elasticsearch.nodeStorageSize

Elasticsearch Data (Gi).

_ _ Resource requests/limits
spec.config.components.elasticsearch.resources

for Elasticsearch Data.

Internal transport port for

spec.config.components.elasticsearch.tcpPort Elasticsearch cluster,
default 9300.

_ _ Elasticsearch cluster size:
spec.config.components.elasticsearch.type

single/normal/big.

External Kafka address;

spec.config.components.kafka.address leave empty to use
platform-installed Kafka.

_ Enable Kafka
spec.config.components.kafka.auth

authentication, default true.

Secret name for external

spec.config.components.kafka.basicAuthSecretName Kafka auth; leave empty for

platform Kafka.

Kafka Exporter port, default
9308.

spec.config.components.kafka.exporterPort

spec.

spec

spec.

spec

spec.

spec.

spec.

spec.

spec

spec.

spec.

spec.

config.

.config.

config.

.config.

config.

config.

config.

config.

.config.

config.

config.

config.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

components.

Install - Alauda Container Platform

Field path

kafka.install

kafka.k8sNodes

kafka.port

kafka.storageSize

kafka.tls

kafka.zkElectPort

kafka.zkExporterPort

kafka.zklLeaderPort

kafka.zkPort

kibana.install

storageClassConfig.name

storageClassConfig.type

Description

Whether to install Kafka via
platform; set to false when

using external Kafka.

Node IP list for Kafka when

using LocalVolume.

Kafka exposed port, default
9092.

Kafka storage size (Gi).

Enable TLS for Kafka,

default true.

Zookeeper election port,
default 3888.

Zookeeper Exporter port,
default 9141.

Zookeeper leader/follower
communication port, default
2888.

Zookeeper client port,
default 2181.

Whether to install Kibana,
Kibana is deprecated, set

to false.

For LocalVolume, typically
elasticsearch-local-log-
sc ; for StorageClass, set to

the class name.

Storage type:

LocalVolume/StorageClass.

Install - Alauda Container Platform
Field path Description

Zookeeper storage size

spec.config.components.zookeeper.storageSize (i)
1).

Retention days for audit
spec.config.ttl.audit
data.

Retention days for event
spec.config.ttl.event
data.

Retention days for
spec.config.ttl.logKubernetes
Kubernetes logs.

Retention days for platform
spec.config.ttl.logPlatform
logs.

Retention days for system
spec.config.ttl.logSystem
logs.

Retention days for
spec.config.ttl.logWorkload
workload logs.

Specifies the plugin version
_ to install, must match
spec.version _ _
.Spec.version In

ModuleConfig.

3. Verify installation

Since the Modulelnfo name changes upon creation, locate the resource via label to check the

plugin status and version:

kubectl get moduleinfo -1 cpaas.io/module-name=logcenter

NAME CLUSTER MODULE DISPLAY_NAME
STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION
global-e671599464a5b1717732c5ba36079795 global logcenter logcenter

Running v4.0.12 v4.0.12 v4.0.12

Install - Alauda Container Platform

Field explanations:

e NAME : Modulelnfo resource name

e CLUSTER : Cluster where the plugin is installed

e MODULE : Plugin name

o DISPLAY_NAME : Display name of the plugin

e STATUS : Installation status; Running means successfully installed and running
e TARGET_VERSION : Intended installation version

o CURRENT_VERSION : Version before installation

e NEW _VERSION : Latest available version for installation

Install Alauda Container Platform Log Storage

with Clickhouse via console

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of Alauda Container Platform Log

Storage with Clickhouse > Install.

3. Refer to the following instructions to configure relevant parameters.

Parameter Description
Component LocalVolume: Local storage, log data will be stored in the local
installation storage path of the selected node. The advantage of this method is
Settings that the log component is directly bound to local storage,

eliminating the need to access storage over the network and
providing better storage performance.

StorageClass: Dynamically create storage resources using
storage classes to store log data. The advantage of this method is
a higher degree of flexibility; when multiple storage classes are
defined for the entire cluster, administrators can select the

corresponding storage class for the log components based on

Install - Alauda Container Platform

Parameter Description

usage scenarios, reducing the impact of host malfunction on
storage. However, the performance of StorageClass may be
affected by factors such as network bandwidth and latency, and it
relies on the redundancy mechanisms provided by the storage

backend to achieve high availability of storage.

The maximum time logs, events, and audit data can be retained on
the cluster. Data exceeding the retention period will be

Retention automatically cleaned up.

Period Tip: You may back up data that needs to be retained for a long
time. If you need assistance, please contact technical support

personnel.

4. Click Install.

Install Alauda Container Platform Log Storage
with Clickhouse via YAML

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources, in the global cluster:

logclickhouse 30h

logclickhouse-v4.1.0 30h

This indicates that the ModulePlugin logclickhouse exists in the cluster and version v4.1.0 is

published.

Install - Alauda Container Platform

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

Install - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModulelInfo
metadata:
name: global-logclickhouse
labels:
cpaas.io/cluster-name: global
cpaas.io/module-name: logclickhouse
cpaas.io/module-type: plugin
spec:
version: v4.1.0
config:
components:
storageClassConfig:
type: LocalVolume
name: ""
clickhouse:
resources:
limits:
cpu: "2"
memory: 4Gi
requests:
cpu: 200m
memory: 256Mi
k8sNodes:
= XXX XXX\ XXX« XX
hostpath: /cpaas/data/clickhouse
nodeReplicas: 1
nodeStorageSize: 200
type: single
razor:
resources:
limits:
cpu: "2"
memory: 1Gi
requests:
cpu: 10m
memory: 256Mi
vector:
resources:
limits:
cpu: "4"
memory: 1Gi

requests:

Install - Alauda Container Platform

cpu: 10m
memory: 256Mi

ttl:

audit: 180
event: 180
logKubernetes: 7
logPlatform: 7
logSystem: 7
logWorkload: 7

YAML field reference (ClickHouse):

Field path

metadata.name

metadata.labels.cpaas.io/cluster-name

metadata.labels.cpaas.io/module-name

metadata.labels.cpaas.io/module-type

spec

spec.

spec

spec

spec.

spec.

.version

.config.components.storageClassConfig.name

.config.components.clickhouse.resources

config.components.storageClassConfig.type

config.components.clickhouse.k8sNodes

config.components.clickhouse.hostpath

Description

Modulelnfo name. Recommended
format: <target-cluster>-

logclickhouse .

Target cluster where the plugin is

installed.

Must be logclickhouse .

Must be plugin .

Plugin version to install.

Storage type for ClickHouse data:

LocalVolume or StorageClass .

StorageClass name when type is
StorageClass ; keep empty for

LocalVolume .

Resource requests/limits for

ClickHouse.

Node IP list for ClickHouse when

using LocalVolume

Local path for ClickHouse data

when using LocalVolume .

Install - Alauda Container Platform

Field path Description

Replica count when using
spec.config.components.clickhouse.nodeReplicas
Storage(Class .

Storage size for ClickHouse data

spec.config.components.clickhouse.nodeStorageSize ()
1).

Cluster size: single , normal , or
spec.config.components.clickhouse.type
big .

_ Resource requests/limits for
spec. conflg .components.razor.resources
Razor.

_ Resource requests/limits for
spec.config.components.vector.resources

Vector.
spec.config.ttl.audit Retention days for audit data.
spec.config.ttl.event Retention days for event data.

Retention days for Kubernetes
spec.config.ttl.logKubernetes

logs.
spec.config.ttl.logPlatform Retention days for platform logs.
spec.config.ttl.logSystem Retention days for system logs.
spec.config.ttl.logWorkload Retention days for workload logs.

Specifies the plugin version to
spec.version install, must match .spec.version

in ModuleConfig.

3. Verify installation

Since the Modulelnfo name changes upon creation, locate the resource via label to check the

plugin status and version:

Install - Alauda Container Platform

kubectl get moduleinfo -1 cpaas.io/module-name=1logclickhouse

NAME CLUSTER MODULE DISPLAY_NAME
STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION
global-e671599464a5b1717732c5ba36079795 global logclickhouse
logclickhouse Running v4.0.12 v4.0.12 v4.0.12

Field explanations:

e NAME : Modulelnfo resource name

e CLUSTER : Cluster where the plugin is installed

e MODULE : Plugin name

o DISPLAY_NAME : Display name of the plugin

e STATUS : Installation status; Running means successfully installed and running
e TARGET_VERSION : Intended installation version

o CURRENT_VERSION : Version before installation

o NEW VERSION : Latest available version for installation

Install Alauda Container Platform Log Collector

Plugin

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of Alauda Container Platform Log

Collector > Install.

3. Select the Storage Cluster (where Alauda Container Platform Log Storage has been
installed) and click Select/Deselect log types to set the scope of log collection in the

cluster.

4. Click Install.

Install - Alauda Container Platform

Install Alauda Container Platform Log Collector
Plugin via YAML

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig
resources, in the global cluster:

logagent 30h

logagent-v4.1.0 30h

This indicates that the ModulePlugin logagent exists in the cluster and version v4.1.0 is

published.

2. Create a Modulelnfo

Create a Modulelnfo resource to install the plugin without any configuration parameters:

Install - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModulelInfo
metadata:

annotations:

cpaas.io/display-name: logagent

cpaas.io/module-name: '{"en": "Alauda Container Platform Log Collector", "zh":

"Alauda Container Platform Log Collector"}'
labels:
cpaas.io/cluster-name: go
cpaas.io/module-name: logagent
cpaas.io/module-type: plugin
cpaas.io/product: Platform-Center
logcenter.plugins.cpaas.io/cluster: go
name: <cluster>-log-agent
Spec:
config:
crossClusterDependency:
logcenter: go
logclickhouse: null
dataSource:
audit: true
event: true
kubernetes: true
platform: false
system: false
workload: true
storage:
type: Elasticsearch
version: v4.1.0

YAML field reference (Log Collector):

Field path
metadata.annotations.cpaas.io/display-name

metadata.annotations.cpaas.io/module-name

metadata.labels.cpaas.io/cluster-name

Description
Plugin display name.
Plugin i18n name JSON string.

Target cluster where the plugin is

installed.

Install - Alauda Container Platform

Field path

metadata.labels.cpaas.io/module-name

metadata.labels.cpaas.io/module-type

metadata.labels.cpaas.io/product

metadata.labels.logcenter.plugins.cpaas.io/cluster

metadata.name

spec

spec.

spec.

spec

spec.

spec.

spec

spec.

spec

spec.

.config

.config

.config.

config.

config.

config

config

config

.config.

version

crossClusterDependency.logcenter

crossClusterDependency. logclickhouse

dataSource.

.dataSource.

.dataSource.

.dataSource.

.dataSource.

.dataSource

audit

event

kubernetes

platform

system

.workload

storage.type

3. Verify installation

Description

Must be 1logagent .

Must be plugin .

Product identifier, typically

Platform-Center

Storage cluster name to which

logs are pushed.

Temporary Modulelnfo name; the
platform will rename it after

creation.

Name of the Elasticsearch-based

log storage cluster.

Setto null when using
Elasticsearch storage; otherwise

set to ClickHouse cluster name.

Collect audit logs.

Collect event logs.

Collect Kubernetes logs.

Collect platform logs.

Collect system logs.

Collect workload logs.

Elasticsearch or Clickhouse .

Plugin version to install.

Install - Alauda Container Platform

Since the Modulelnfo name changes upon creation, locate the resource via label to check the

plugin status and version:

kubectl get moduleinfo -1 cpaas.io/module-name=1logagent

NAME CLUSTER MODULE DISPLAY_NAME
STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION
global-e671599464a5b1717732c5ba36079795 global logagent logagent

Running v4.0.12 v4.0.12 v4.0.12

Architecture - Alauda Container Platform

Menu

Architecture

Log Module Architecture
Overall Architecture Description
Log Collection

Log Consumption and Storage

Log Visualization

Log Component Selection Guide
Architecture Comparison
Function Comparison

Selection Recommendations

Log Component Capacity Planning
ElasticSearch

Clickhouse

Log Module Architecture - Alauda Container Platform

Menu ON THIS PAGE >

Log Module Architecture

Query Data

o e

Record event to file
log file

Co

Send auditevent/io CQuery audit/event/] e
2 g message v 9 M9 e luster with

Auth and forward auditeventlog message

o] [

TOC

Log Module Architecture - Alauda Container Platform

Overall Architecture Description
Log Collection
Component Installation Method
Data Collection Process
Log Consumption and Storage
Razor
Lanaya
Vector

Log Visualization

Overall Architecture Description

The logging system consists of the following core functional modules:

1. Log Collection

» Provided based on the open-source component filebeat
¢ Log collection: Supports the collection of standard output logs, file logs, Kubernetes

events, and audits.

2. Log Storage

o Two different log storage solutions are provided based on the open-source components
Clickhouse and ElasticSearch.

e Log Storage: Supports long-term storage of log files.
¢ Log Storage Time Management: Supports management of log storage duration at the

project level.

3. Log Visualization

» Provides convenient and reliable log querying, log exporting, and log analysis
capabilities.

Log Module Architecture - Alauda Container Platform

Log Collection

Component Installation Method

nevermore is installed as a daemonset in the cpaas-system namespace of each cluster. This

component consists of 4 containers:

Name Function
audit Collects audit data
event Collects event data
log Collects log data (including standard output and file logs)

node-problem-detector Collects abnormal information on nodes

Data Collection Process

After nevermore collects audit/event/log information, it sends the data to the log storage
cluster, undergoing authentication by Razor before being ultimately stored in ElasticSearch or
ClickHouse.

Log Consumption and Storage

Razor

Razor is responsible for authentication and receiving and forwarding log messages.

o After Razor receives requests sent by nevermore from various workload clusters, it first

authenticates using the Token in the request. If authentication fails, the request is denied.

« If the installed log storage component is ElasticSearch, it writes the corresponding logs into

the Kafka cluster.

e If the installed log storage component is Clickhouse, it passes the corresponding logs to

Vector, which are ultimately written into Clickhouse.

Log Module Architecture - Alauda Container Platform

Lanaya

Lanaya is responsible for consuming and forwarding log data in the ElasticSearch log storage
link.

+ Lanaya subscribes to topics in Kafka. After receiving the messages from the subscription, it

decompresses the messages.

o After decompression, it preprocesses the messages by adding necessary fields,

transforming fields, and splitting data.

« Finally, it stores the messages in the corresponding index of ElasticSearch based on the

message's time and type.

Vector

Vector is responsible for processing and forwarding log data in the Clickhouse log storage

link, ultimately storing the logs in the corresponding table in Clickhouse.

Log Visualization

1. Users can query the audit/event/log query URLs from the product Ul interface for display:

e Log Query /platform/logging.alauda.io/vl

¢ Event Query /platform/events.alauda.io/vl

e Audit Query /platform/audits.alauda.io/v1l

2. The requests are processed by the advanced APl component Courier, which queries the

log data from the log storage clusters ElasticSearch or Clickhouse and returns it to the

page.

Log Component Selection Guide - Alauda Container Platform

Menu ON THIS PAGE >

Log Component Selection Guide

When installing log component, the platform provides two log storage components for your
choice: ElasticSearch and Clickhouse. This article will detail the features and applicable

scenarios of these two components to help you make the most suitable choice.

WARNING

You can only choose one of ElasticSearch or Clickhouse for the cluster log storage component

installation.

» Any cluster's log storage component can be selected for log collection to interface with the

storage data.

» Now DevOps product does not support archiving Jenkins pipeline execution records using
Clickhouse. If you need to use the Jenkins pipeline features, please choose the ACP Log

Storage with Clickhouse plugin cautiously.

» Now ServiceMesh product does not support integration with Clickhouse. If you need to use the

service mesh features, please choose the ACP Log Storage with Clickhouse plugin cautiously.

» Now ACP Log Storage with Clickhouse plugin does not support IPv6 single stack or IPv6 dual

stack workload clusters.

TOC

Architecture Comparison
ElasticSearch Architecture
Clickhouse Architecture

Function Comparison

Selection Recommendations

Log Component Selection Guide - Alauda Container Platform

Architecture Comparison

ElasticSearch Architecture

ElasticSearch is an open-source distributed search engine built on Lucene, designed for fast

full-text search and analysis. Its advantages include:

+ High-performance search: Supports real-time search and can quickly process massive

amounts of data.

+ Flexible querying capabilities: Offers a powerful query DSL, supporting complex query

requirements.
o Scalability: Easily horizontally scalable as needed, suitable for applications of all sizes.

o Diverse data support: Able to handle both structured and unstructured data, widely

applicable.

Clickhouse Architecture

Clickhouse is a high-performance columnar database designed for Online Analytical

Processing (OLAP). Its advantages include:

o Fast data processing: Supports rapid querying and analysis through columnar storage and

data compression.

+ Real-time analysis: Capable of processing real-time data streams, suitable for real-time

data analysis scenarios.

» High throughput: Optimized for the performance of large-scale data writing and querying,

making it very suitable for big data scenarios.

o Flexible SQL support: Compatible with standard SQL, easy to get started, reducing the

usage threshold.

Function Comparison

Log Component Selection Guide - Alauda Container Platform

Clickhouse Elasticsearch Explanation

High

L Supported Supported

Availability

Scalability Supported Supported
Elasticsearch offers more robust
search capabilities based on the

Query Lucene language, while

] Weak Strong _

Experience Clickhouse only supports SQL
gueries, limiting its search
capabilities.

For the same performance
requirements, Clickhouse requires
fewer resources than
Elasticsearch. For example, to

Resource _

Low High support 20,000 logs per second,

Usage]

Elasticsearch needs 3 es-masters
and 7 es-nodes (2c4g+8c16Q),
while Clickhouse only requires 3
2c4qg replicas.
Under the same resource

_ conditions, the log volume

Performance High Low .
supported by Clickhouse far
exceeds that of Elasticsearch.
The Elasticsearch community is

Community _ _ active with rich documentation,

o Medium High _ _ . .

Activity while Clickhouse is a growing and

improving community.

Selection Recommendations

Log Component Selection Guide - Alauda Container Platform

» If you are accustomed to using Elasticsearch and have a high dependency on the Lucene
language, it is recommended that you continue to use the ACP Log Storage with

ElasticSearch plugin.

 If you depend on the platform's Jenkins pipeline or service mesh features, it is

recommended that you continue to use the ACP Log Storage with ElasticSearch plugin.

¢ If you have high requirements for the performance and resource consumption of the log
component but only have basic needs for log querying, it is recommended that you choose

to use the ACP Log Storage with Clickhouse plugin.

Log Component Capacity Planning - Alauda Container Platform

Menu ON THIS PAGE >

Log Component Capacity Planning

The log storage component is responsible for storing logs, events, and audit data collected by
the log collection component from one or more clusters in the platform. Therefore, you need to
assess your log scale in advance and plan the resources needed for the log storage

component according to the guidelines in this document.

WARNING

« The following data represents standard figures obtained from tests conducted under laboratory
conditions, intended for your reference when planning resources. You must ensure that the
actual resources you plan exceed the testing resources described below, and that the log scale

does not exceed the corresponding log scale.

» The disk configuration for the data below is: 6000 iops , 250MB/s read and write speed , SSD
independent mounting . If your actual storage resources are weaker than the testing resources,

please refer to larger scale configuration information and provide more CPU and memory

resources as needed.

TOC

ElasticSearch
Small Scale 3 Nodes - Total Logs: 6300/s
Small Scale 5 Nodes - Total Logs: 9900/s
Large Scale 3+5 Nodes - Total Logs: 25000/s
Large Scale 3+7 Nodes - Total Logs: 30000/s
Clickhouse

Single Node - Total Logs: 18000/s

Log Component Capacity Planning - Alauda Container Platform

Three Nodes - Total Logs: 20000/s
Six Nodes - Total Logs: 40000/s

Nine Nodes - Total Logs: 69000/s

ElasticSearch

Small Scale 3 Nodes - Total Logs: 6300/s

Component Replicas CPU Limit Memory Limit

ElasticSearch 3 2C 4G
Kafka 3 2C 4G
Zookeeper 3 2C 4G
Lanaya 2 2C 4G
Razor 2 1C 2G

Small Scale 5 Nodes - Total Logs: 9900/s

Component Replicas CPU Limit Memory Limit

ElasticSearch 5 2C 4G
Kafka & 2C 4G
Zookeeper 3 2C 4G
Lanaya 2 2C 4G
Razor 2 1C 2G

Large Scale 3+5 Nodes - Total Logs: 25000/s

Log Component Capacity Planning - Alauda Container Platform

Component Replicas CPU Limit Memory Limit

ElasticSearch - Master 3 2C 4G
ElasticSearch - Data 5 8C 16G
Kafka 3 2C 4G
Zookeeper 3 2C 4G
Lanaya 2 2C 4G
Razor 2 i 2G

Large Scale 3+7 Nodes - Total Logs: 30000/s

Component Replicas CPU Limit Memory Limit
ElasticSearch - Master 3 2C 4G
ElasticSearch - Data 7 8C 16G
Kafka 3 2C 4G
Zookeeper 3 26 4G
Lanaya 2 2C 4G
Razor 2 1C 2G

Clickhouse

Single Node - Total Logs: 18000/s

Component Replicas CPU Limit Memory Limit Remarks

Clickhouse 1 2C 4G 1 replica 1 shard

Component

Razor

Vector

Replicas

Log Component Capacity Planning - Alauda Container Platform

CPU Limit

1C

2C

Memory Limit
1G

4G

Three Nodes - Total Logs: 20000/s

Component

Clickhouse

Razor

Vector

Replicas

3

CPU Limit

2C

1C

2C

Memory Limit
4G
1G

4G

Six Nodes - Total Logs: 40000/s

Component

Clickhouse

Razor

Vector

Replicas

3

CPU Limit

4C

1C

4C

Memory Limit
8G
1G

8G

Nine Nodes - Total Logs: 69000/s

Component

Clickhouse

Razor

Vector

Replicas

9

CPU Limit

4C

1C

4C

Memory Limit
8G
1G

8G

Remarks

Remarks

3 replicas 1 shard

Remarks

3 replicas 2 shards

Remarks

3 replicas 3 shards

Menu

Concepts

TOC

Open Source Components
Filebeat
Elasticsearch
ClickHouse
Kafka

Core Functionality Concepts
Log Collection Pipeline
Index
Shards and Replicas
Columnar Storage

Key Technical Terms
Ingest Pipeline
Consumer Group
TTL (Time To Live)
Replication Factor

Data Flow Model

Concepts - Alauda Container Platform

Open Source Components

Filebeat

ON THIS PAGE >

Concepts - Alauda Container Platform

Positioning: Lightweight log collector Description: An open-source log collection component
installed on container nodes, responsible for real-time monitoring of log files at specified
paths. It collects log data through input modules, processes it, and forwards the logs to Kafka
or directly delivers them to storage components via output modules. It supports capabilities

such as multiline log aggregation and field filtering for preprocessing.

Elasticsearch

Positioning: Distributed search and analytics engine

Description: A full-text search engine based on Lucene, storing log data in JSON document
format, and providing near real-time search capabilities. It supports dynamic mapping for
automatic field type recognition and achieves fast keyword searches through inverted

indexing, suitable for log searches and monitoring alerts.

ClickHouse

Positioning: Columnar analytical database

Description: High-performance columnar storage database designed for OLAP scenarios,
implementing PB-level log data storage using the MergeTree engine. It supports high-speed
aggregation queries, time partitioning, and data TTL strategies, making it suitable for log

analysis and statistical reporting in batch computation scenarios.

Kafka

Positioning: Distributed message queue

Description: Serving as the messaging middleware for the log pipeline system, it provides
high-throughput log buffering capabilities. When the Elasticsearch cluster experiences
processing bottlenecks, it receives log data sent by Filebeat via Topics, facilitating traffic peak

reduction and asynchronous consumption, ensuring the stability of the log collection end.

Core Functionality Concepts

Log Collection Pipeline

Concepts - Alauda Container Platform

Description: The complete link from log data generation to storage, comprising four stages:

Collection -> Transmission -> Buffering -> Storage . It supports two pipeline modes:

o Direct Write Mode: Filebeat — Elasticsearch/ClickHouse

o Buffer Mode: Filebeat — Kafka — Elasticsearch

Index

Description: The logical data partitioning unit in Elasticsearch, analogous to a table structure
in databases. It supports time-based rolling index creation (e.g., logstash-2023.10.01) and

automated hot-warm-cold tiered storage via Index Lifecycle Management (ILM).

Shards and Replicas

Description:

e Shard: The physical storage unit resulting from Elasticsearch's horizontal splitting of an

index, supporting distributed scalability.

e Replica: A copy of each shard, providing data high availability and query load balancing.

Columnar Storage

Description: The core storage mechanism of ClickHouse, where data is compressed and

stored by column, significantly reducing I/O consumption. It supports the following features:

¢ \ectorized query execution engine
o Data partitioning and sharding

+ Materialized views for pre-aggregation

Key Technical Terms

Ingest Pipeline

Concepts - Alauda Container Platform

Description: The data preprocessing pipeline in Elasticsearch, capable of performing ETL

operations such as field renaming, Grok parsing, and conditional logic before data is written.

Consumer Group

Description: Kafka's parallel consumption mechanism, where multiple instances within the
same consumer group can consume messages from different partitions in parallel, ensuring

ordered message processing.

TTL (Time To Live)

Description: Data lifespan strategy, supporting two implementation methods:

» Elasticsearch: Automatically deletes expired indices through ILM policies.

o ClickHouse: Automatically deletes table partitions via TTL expressions.

Replication Factor

Description: The data redundancy configuration at the Kafka Topic level, defining the number

of message replicas across different Brokers, enhancing data reliability.

Data Flow Model

Elasticsearcl Index/Search Interface
Direct Write Modi

Storage Component

Container Log Files H Filebeat Agent
Buffer Mode—-{ Kafka Cluster h Consumer
ClickHouse SQL Query Interface

Guides - Alauda Container Platform

Menu

Guides

Logs
Log Query Analysis
Manage Application Log Retention Time

Configure Partial Application Log Exclusion from Collection

Logs - Alauda Container Platform

Menu ON THIS PAGE >

Logs

TOC

Log Query Analysis
Search Logs
Export Log Data
View Log Context
Manage Application Log Retention Time
Platform Administrator Sets Retention Policies
Project Administrator Sets Retention Policies
Set Retention Policies via CLI
Configure Partial Application Log Exclusion from Collection
Stop Collecting All Application Logs in the Cluster
Stop Collecting Application Logs in a Specific Namespace

Stop Collecting Pod Logs

Log Query Analysis

In the operations center's log query analysis panel, you can view the standard output (stdout)
logs of the logged-in account within its permissions, including system logs, product logs,
Kubernetes logs, and application logs. Through these logs, you can gain insights into the
operation of resources.

o System Logs: Logs from the host nodes, such as: dmesg, syslog/messages, secure, etc.

Logs - Alauda Container Platform

¢ Product Logs: Logs from the platform's own components and third-party components
integrated with the platform, such as: Container-Platform, Platform-Center, DevOps,

Service-Mesh, etc.

o Kubernetes Logs: Logs from Kubernetes container orchestration-related components, as
well as logs generated by kubelet, kubeproxy, and docker, such as: docker, kube-apiserver,

kube-controller-manager, etcd, etc.

+ Application Logs: Logs from business applications, including file logs and standard output

logs.

The log query conditions support filtering logs within a specified time range (either selected or

custom), and display the query results through bar charts and standard output.

WARNING

For performance reasons, the platform can display a maximum of 10,000 logs at a time. If the log
volume on the platform is too large over a period of time, please narrow the query's time range and

query logs in stages.

Search Logs

1. In the left navigation bar, click Operations Center > Logs > Log Query Analysis.

2. Select the specified log type, query conditions, input the keywords of the log content you

want to retrieve, and then click Search.

TIP

 Different Log Types allow for different selectable query conditions.

e You can select or input multiple query condition tags; the query conditions for different resource
types are in an AND relationship. Some query condition tags support multiple selections; please

make sure to press the Enter key after making a choice to submit the options.

» Query conditions support fuzzy searches; for example, a query condition of pod = nginx can

retrieve logs for nginx-1, nginx-2 .

» Log content search conditions are only used to retrieve your log keywords and support the use

of AND and OR parameters for associative queries. However, please note not to use AND and

Logs - Alauda Container Platform

OR parameters simultaneously in a single query.

« The bar chart shows the total number of logs within the current query time range and the
number of logs at different time points. Click on a bar in the chart to view the logs within the

timeframe between that bar and the next one.

Export Log Data

The page can display a maximum of 10,000 log entries. When the number of logs retrieved is

too large, you can use the log export feature to view up to 1 million log entries.

1. Click the Export button in the upper right corner of the bar chart, and configure the

following parameters in the pop-up export log dialog.

e Scope: The export range of logs, you can choose Current Page or All Results.

o Current Page: Only export the query results on the current page, up to 1,000 entries.

o All Results: Export all log data that meets the current query conditions, up to 1

million entries.

o Fields: Display fields of the logs. You can select which field information to display in the

exported log file by clicking the checkbox next to the field name.

Note: Different log types have different selectable display fields, please select according

to your actual needs.

o Format: The export format of the log file, supporting txt or csv . The platform will

exportin gzip compressed format.

2. Click Export, and the browser will directly download the compressed file to your local

machine.

View Log Context

1. Double-click the log content area, and the current dialog will display 5 logs before and after
the current log printing time, helping operation and maintenance personnel better

understand the reasons for the current logs generated by resources.

Logs - Alauda Container Platform

2. You can set the display fields of the log context or export the log context. When exporting
log context, there's no need to select the Scope; clicking the Export button will directly

download the log context file to your local machine via the browser.

Manage Application Log Retention Time

When no project policy is set, the retention time of application logs on the platform is
determined by the Application Log Retention Time of the Log Storage Plugin installed on the
Storage Cluster selected when ACP Log Collector was installed in the cluster where the

application resides.

You can differentiate the retention time for Application Logs on the platform by adding and

managing project log policies.

TIP

Project policies only apply to Application Logs under a specific project. After setting a project

policy, the retention time of all application logs under that project will follow the project policy.

Platform Administrator Sets Retention Policies

1. In the left navigation bar, click Operations Center > Logs > Policy Management.
2. Click Add Project Policy.

3. Click the dropdown box for Project and select a project.

4. Set the Log Retention Time.

e Usethe -/ + buttons on both sides of the counter to decrease/increase the retention
days, or directly enter a value in the counter. The platform allows setting the retention

time range from 1 to 30 days.

e If the input value is a decimal, it will be rounded up to an integer; if the input value is less
than 1, it will round up to 1, and the - button will not be clickable; if the input value

exceeds 30, it will round down to 30, and the + button will not be clickable.

Logs - Alauda Container Platform

5. Click Add.

Project Administrator Sets Retention Policies

1. Go to the project detail page for the current project.
2. Click the edit button next to the log policy field to enable the log policy in the popup.
3. Set the Log Retention Time.

e Usethe -/ + buttons on both sides of the counter to decrease/increase the retention
days, or directly enter a value in the counter. The platform allows setting the retention time

range from 1 to 30 days.

e If the input value is a decimal, it will be rounded up to an integer; if the input value is less
than 1, it will round up to 1, and the - button will not be clickable; if the input value

exceeds 30, it will be rounded down to 30, and the + button will not be clickable.

Set Retention Policies via CLI

1. Log into the global cluster and execute the following command:
kubectl edit project <Project Name>

2. Modify the yaml as per the example below, save, and submit.

Logs - Alauda Container Platform

apiVersion: auth.alauda.io/v1
kind: Project
metadata:
annotations:
cpaas.io/creator: mschenl@alauda.io

cpaas.io/description:
cpaas.io/display-name: "'
cpaas.io/operator: leizhuc
cpaas.io/project.esPolicylastEnabledTimestamp: '2025-02-18T09:53:547"
cpaas.io/updated-at: '2025-02-18T09:53:547'
creationTimestamp: '2025-02-13708:19:11Z'
finalizers:
- namespace
generation: 1
labels:
cpaas.io/project: bookinfo

cpaas.io/project.esIndicesKeepDays: '7'

cpaas.io/project.esPolicyEnabled: 'true'
cpaas.io/project.id: '95447321"

cpaas.io/project.level: '1'

cpaas.io/project.parent:

name: bookinfo

Configure Partial Application Log Exclusion from

Collection

If you only need to view Real-Time Logs of specific applications within the cluster without
wishing to store those logs (the collector will discard the corresponding logs), you can refer to
this section to set the scope for stopping log collection (cluster, namespace, Pod) for fine-

grained control over application log collection.

Stop Collecting All Application Logs in the Cluster

You can update the Configuration Parameters of the cluster's ACP Log Collector to turn off

the Application Log collection switch, thereby uniformly updating the logging collection scope

Logs - Alauda Container Platform

for that cluster. Once the collection switch for a certain type of log is turned off, it will stop
collecting all logs of that type in the current cluster.

Stop Collecting Application Logs in a Specific Namespace

You can turn off the log collection switch for that namespace by adding the label
cpaas.io/log.mute=true to the specified namespace, thus stopping the collection of all

standard output logs and file logs for all Pods in that namespace.
Optional configuration methods are as follows:

« Command Line Method: After logging into any control node of the cluster, execute the

following command to update the namespace's label.

kubectl label namespace <Namespace Name> cpaas.io/log.mute=true

+ Interface Operation Method: In the Project Management view, update the namespace's

label.

1. In the project list of the Project Management view, click on the Project Name where

the namespace is located.
2. In the left navigation bar, click Namespaces.
3. Click the Namespace Name whose label is to be updated.
4. On the Details tab, click the operation button to the right of Labels.
5. Add the label (Key: cpaas.io/log.mute , Value: true) or modify the value of an existing

label, then click Update.

Stop Collecting Pod Logs

You can turn off the log collection switch for the specified Pod by adding the label
cpaas.io/log.mute=true to it, thus stopping the collection of standard output logs and file logs
for that Pod.

Logs - Alauda Container Platform

After logging into any control node of the cluster, execute the following command to update
the Pod's label.

kubectl label pod <Pod Name> -n <Namespace Name> cpaas.io/log.mute=true

Note: If the Pod belongs to a compute component (Workload), you can update the labels of
the compute component (Deployment, StatefulSet, DaemonSet, Job, CronJob) to uniformly
update the labels of all Pods under the compute component, and the labels will not be lost
even after Pod recreation.

You can update the labels of the compute component in the following way.

1. In the Container Platform product view, click on the top navigation to switch to the

namespace where the Pod is located.

2. In the left navigation bar, click Compute Components > Type of Compute Component

to which the Pod Belongs.
3. Click the operation button to the right of the compute component to be updated > Update.
4. Click YAML in the upper right corner to switch to the YAML editing view.
5. Under the spec.template.labels field, add the cpaas.io/log.mute: 'true' label.

An example is as follows:

spec:
template:
metadata:
namespace: tuhao-test
creationTimestamp: null
labels:
app: spilo
cpaas.io/log.mute: 'true'
cluster-name: acid-minimal-cluster
role: exporter
middleware.instance/name: acid-minimal-cluster

middleware.instance/type: PostgreSQL

6. Click Update.

How To - Alauda Container Platform

Menu

How To

How to Archive Logs to Third-Party Storage
Transfer to External NFS

Transfer to External S3 Storage

How to Interface with External ES Storage Clusters
Resource Preparation

Operating Procedures

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Menu ON THIS PAGE >

How to Archive Logs to Third-Party Storage

Currently, the logs generated by the platform will be stored in the log storage component;
however, the retention period for these logs is relatively short. For enterprises with high
compliance requirements, logs typically require longer retention times to meet audit demands.

Additionally, the economic aspect of storage is also one of the key concerns for enterprises.

Based on the above scenarios, the platform offers a log archiving solution, allowing users to

transfer logs to external NFS or object storage.

TOC

Transfer to External NFS
Prerequisites
Create Log Synchronization Resources
Transfer to External S3 Storage
Prerequisites

Create Log Synchronization Resources

Transfer to External NFS

Prerequisites

How to Archive Logs to Third-Party Storage - Alauda Container Platform
Resource Description

Set up the NFS service in advance and determine the NFS path to be

NFS
mounted.
Kafka Obtain the Kafka service address in advance.
You must use the CLI tool in the global cluster to execute the following
commands to get the image addresses:
Image - Get alpine image address: kubectl get daemonset nevermore -n cpaas-
Address system -0 jsonpath="{.spec.template.spec.initContainers[0].image}"

- Get razor image address: kubectl get deployment razor -n cpaas-system

-0 jsonpath="{.spec.template.spec.containers[@].image}"

Create Log Synchronization Resources

1. Click on Cluster Management > Clusters in the left navigation bar.

2. Click the action button on the right side of the cluster where the logs will be transferred >
CLI Tool.

3. Modify the YAML based on the following parameter descriptions; after modifying, paste the

code into the open CLI Tool command line and hit enter to execute.

Resource . ..
Field Path Description
Type
Compress log text;
supported options
ConfigMap data.export.yml.output.compression are none (no
compression), zlib,
gzip.
The type of exported
ConfigMap data.export.yml.output.file_type log file; supports txt,
Csv, json.
ConfigMap data.export.yml.output.max_size Size of a single

archived file; unit is

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource

Field Path Description
Type

MB. If it exceeds this
value, logs will be
automatically
compressed and
archived based on
the compression

field's configuration.

The scope of log
transfer; currently
supported logs
ConfigMap data.export.yml.scopes include: system
logs, application
logs, Kubernetes
logs, product logs.

Kafka service
Deployment spec.template.spec.containers[@].command[7]

address.

NFS path to be
Deployment spec.template.spec.volumes[3].hostPath.path

mounted.

— .) Alpine image
Deployment spec.template.spec.initContainers[0].image
address.

. . Razor image
Deployment spec.template.spec.containers[@].image

address.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

cat << "EOF" |kubectl apply -f -
apiVersion: v1
data:
export.yml: |
scopes: # The scope of log transfer; by default, only application logs are
collected
system: false # System logs
workload: true # Application logs
kubernetes: false # Kubernetes logs
platform: false # Product logs
output:
type: local
path: /cpaas/data/logarchive
layout: TimePrefixed
Size of a single archived file; unit is MB. If it exceeds this value, logs
will be automatically compressed and archived based on the compression field's
configuration.
max_size: 200
compression: zlib # Optional: none (no compression) / zlib / gzip
file_type: txt # Optional: txt csv json
kind: ConfigMap
metadata:
name: log-exporter-config
namespace: cpaas-system

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
service_name: log-exporter
name: log-exporter
namespace: cpaas-system
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 5
selector:
matchLabels:
service_name: log-exporter
strategy:
rollingUpdate:

maxSurge: 0

How to Archive Logs to Third-Party Storage - Alauda Container Platform

maxUnavailable: 1
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
app: lanaya
cpaas.io/product: Platform-Center
service_name: log-exporter
version: vi
namespace: cpaas-system
spec:
affinity:
podAffinity: {}
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
matchExpressions:

- key: service_name
operator: In
values:

- log-exporter
topologyKey: kubernetes.io/hostname
weight: 50
initContainers:
- args:
- -ecx
- |
chown -R 697:697 /cpaas/data/logarchive
command:
- /bin/sh
image: registry.example.cn:60080/ops/alpine:3.16
imagePullPolicy: IfNotPresent
name: chown
resources:
limits:
cpu: 100m
memory: 200Mi
requests:
cpu: 10m
memory: 50Mi
securityContext:

runAsUser: 0

How to Archive Logs to Third-Party Storage - Alauda Container Platform

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /cpaas/data/logarchive
name: data
containers:
- command:
- /razor
- consumer
- --v=1
- --kafka-group-log=log-nfs
- --kafka-auth-enabled=true
- --kafka-tls-enabled=true
- --kafka-endpoint=192.168.143.120:9092

- --database-type=file
- --export-config=/etc/log-export/export.yml
image: registry.example.cn:60080/ait/razor:v3.16.0-beta.3.93df8e987

imagePullPolicy: Always
livenessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 8080
scheme: HTTP
initialDelaySeconds: 20
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 3
name: log-export
ports:
- containerPort: 80
protocol: TCP
readinessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 8080
scheme: HTTP
initialDelaySeconds: 20
periodSeconds: 10
successThreshold: 1

timeoutSeconds: 3

How to Archive Logs to Third-Party Storage - Alauda Container Platform

resources:
limits:
cpu: "2"
memory: 4Gi
requests:
cpu: 440m
memory: 1280Mi
securityContext:
runAsGroup: 697
runAsUser: 697
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /etc/secrets/kafka
name: kafka-basic-auth
readOnly: true
- mountPath: /etc/log-export
name: config
readOnly: true
- mountPath: /cpaas/data/logarchive
name: data
dnsPolicy: ClusterFirst
nodeSelector:
kubernetes.io/os: linux
restartPolicy: Always
schedulerName: default-scheduler
securityContext:
fsGroup: 697
serviceAccount: lanaya
serviceAccountName: lanaya
terminationGracePeriodSeconds: 10
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/control-plane
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/cpaas-system
operator: Exists
volumes:
- name: kafka-basic-auth

secret:

How to Archive Logs to Third-Party Storage - Alauda Container Platform

defaultMode: 420
secretName: kafka-basic-auth
- name: elasticsearch-basic-auth
secret:
defaultMode: 420
secretName: elasticsearch-basic-auth
- configMap:
defaultMode: 420
name: log-exporter-config
name: config
- hostPath:
path: /cpaas/data/logarchive
type: DirectoryOrCreate
name: data
EOF

4. Once the container status changes to Running, you can view the continuously archived

logs in the NFS path; the log file directory structure is as follows:

/cpaas/data/logarchive/$date/$project/$namespace-$cluster/logfile

Transfer to External S3 Storage

Prerequisites

Resource Description

Prepare the S3 storage service address in advance, and obtain the

S3

values for access_key_id and secret_access_key ; create the bucket
Storage _

where the logs will be stored.
Kafka Obtain the Kafka service address in advance.
Image You must use the CLI tool in the global cluster to execute the following
Address commands to get the image addresses:

- Get alpine image address: kubectl get daemonset nevermore -n cpaas-

system -0 jsonpath="{.spec.template.spec.initContainers[0].image}"

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource Description

- Get razor image address: kubectl get deployment razor -n cpaas-system

-0 jsonpath="{.spec.template.spec.containers[@].image}"

Create Log Synchronization Resources

1. Click on Cluster Management > Clusters in the left navigation bar.

2. Click the action button on the right side of the cluster where the logs will be transferred >
CLI Tool.

3. Modify the YAML based on the following parameter descriptions; after modifying, paste the

code into the open CLI Tool command line and hit enter to execute.

Resource . ..
Field Path Description
Type
Base64 encode the
Secret data.access_key_id obtained
access_key id.
Base64 encode the
Secret data.secret_access_key obtained
secret_access_key.
Compress log text;
supported options
ConfigMap data.export.yml.output.compression are none (no
compression), zlib,
gzip.
The type of exported
ConfigMap data.export.yml.output.file_type log file; supports txt,
Csv, json.
ConfigMap data.export.yml.output.max_size Size of a single

archived file; unit is
MB. If it exceeds this

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource

Field Path Description
Type

value, logs will be
automatically
compressed and
archived based on
the compression

field's configuration.

The scope of log
transfer; currently
supported logs
ConfigMap data.export.yml.scopes include: system
logs, application
logs, Kubernetes

logs, product logs.
ConfigMap data.export.yml.output.s3.bucket_name Bucket name.

. S3 storage service
ConfigMap data.export.yml.output.s3.endpoint
address.

Region information
ConfigMap data.export.yml.output.s3.region for the S3 storage

service.

Kafka service
Deployment spec.template.spec.containers[@].command[7]
address.

Local path to be
mounted, used for
temporarily storing
log information. Log
Deployment spec.template.spec.volumes[3].hostPath.path files will be
automatically
deleted after
synchronization to

S3 storage.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource] L
Field Path Description
Type

Alpine image
Deployment spec.template.spec.initContainers[@].image

address.

Razor image
Deployment spec.template.spec.containers[@].image

address.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

cat << "EOF" |kubectl apply -f -
apiVersion: v1
type: Opaque
data:
Must include the following two keys
access_key_id: bWluaW9hZG1pbg== # Base64 encode the obtained access_key_id
secret_access_key: bWluaW9hZG1pbg== # Base64 encode the obtained secret_access_key
kind: Secret
metadata:
name: log-export-s3-secret

namespace: cpaas-system

apiVersion: v1
data:
export.yml: |
scopes: # The scope of log transfer; by default, only application logs are
collected
system: false # System logs
workload: true # Application logs
kubernetes: false # Kubernetes logs
platform: false # Product logs
output:
type: s3
path: /cpaas/data/logarchive

s3:

s3forcepathstyle: true

bucket name: baucket name s3 # Fill in the prepared bucket name

endpoint: http://192.168.179.86:9000 # Fill in the prepared S3 storage
service address

region: "dummy" # Region information

access_secret: log-export-s3-secret

insecure: true

layout: TimePrefixed

Size of a single archived file; unit is MB. If it exceeds this value, logs
will be automatically compressed and archived based on the compression field's
configuration.

max_size: 200

compression: zlib # Optional: none (no compression) /
z1lib / gzip

file_type: txt # Optional: txt, csv, json

How to Archive Logs to Third-Party Storage - Alauda Container Platform

kind: ConfigMap
metadata:
name: log-exporter-config

namespace: cpaas-system

apiVersion: apps/v1
kind: Deployment
metadata:
labels:
service_name: log-exporter
name: log-exporter
namespace: cpaas-system
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 5
selector:
matchLabels:
service_name: log-exporter
strategy:
rollingUpdate:
maxSurge: 0
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
app: lanaya
cpaas.io/product: Platform-Center
service_name: log-exporter
version: vi
namespace: cpaas-system
spec:
affinity:
podAffinity: {}
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
matchExpressions:
- key: service_name

operator: In

How to Archive Logs to Third-Party Storage - Alauda Container Platform

values:
- log-exporter
topologyKey: kubernetes.io/hostname
weight: 50
initContainers:
- args:
- -ecx
- |
chown -R 697:697 /cpaas/data/logarchive
command:
- /bin/sh
image: registry.example.cn:60080/ops/alpine:3.16
imagePullPolicy: IfNotPresent
name: chown
resources:
limits:
cpu: 100m
memory: 200Mi
requests:
cpu: 10m
memory: 50Mi
securityContext:
runAsUser: 0
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /cpaas/data/logarchive
name: data
containers:
- command:
- /razor
- consumer
- --v=1
- --kafka-group-log=1log-s3
- --kafka-auth-enabled=true
- --kafka-tls-enabled=true
- --kafka-endpoint=192.168.179.86:9092

- --database-type=file
- --export-config=/etc/log-export/export.yml
image: registry.example.cn:60080/ait/razor:v3.16.0-beta.3.93df8e987

imagePullPolicy: Always

livenessProbe:

How to Archive Logs to Third-Party Storage - Alauda Container Platform

failureThreshold: 5

httpGet:
path: /metrics
port: 8080
scheme: HTTP

initialDelaySeconds: 20

periodSeconds: 10

successThreshold: 1

timeoutSeconds: 3

name: log-export
ports:

- containerPort: 80
protocol: TCP

readinessProbe:

failureThreshold: 5

httpGet:
path: /metrics
port: 8080
scheme: HTTP

initialDelaySeconds: 20

periodSeconds: 10

successThreshold: 1

timeoutSeconds: 3

resources:

limits:
cpu: "2"
memory: 4Gi

requests:
cpu: 440m
memory: 1280Mi

securityContext:

runAsGroup: 697

runAsUser: 697

terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:

- mountPath: /etc/secrets/kafka
name: kafka-basic-auth
readOnly: true

- mountPath: /etc/log-export
name: config
readOnly: true

- mountPath: /cpaas/data/logarchive

name: data

How to Archive Logs to Third-Party Storage - Alauda Container Platform

dnsPolicy: ClusterFirst
nodeSelector:
kubernetes.io/os: linux
restartPolicy: Always
schedulerName: default-scheduler
securityContext:
fsGroup: 697
serviceAccount: lanaya
serviceAccountName: lanaya
terminationGracePeriodSeconds: 10
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/control-plane
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/cpaas-system
operator: Exists
volumes:
- name: kafka-basic-auth
secret:
defaultMode: 420
secretName: kafka-basic-auth
- name: elasticsearch-basic-auth
secret:
defaultMode: 420
secretName: elasticsearch-basic-auth
- configMap:
defaultMode: 420
name: log-exporter-config
name: config
- hostPath:
path: /cpaas/data/logarchive
type: DirectoryOrCreate
name: data
EOF

4. Once the container status changes to Running, you can view the continuously archived

logs in the bucket.

How to Interface with External ES Storage Clusters - Alauda Container Platform

Menu ON THIS PAGE >

How to Interface with External ES Storage

Clusters

You can interface with external Elasticsearch or Kafka clusters by writing YAML configurations.
Depending on your business requirements, you can choose to interface with only the external
Elasticsearch cluster (while installing Kafka in the current cluster), or you can interface with
both the external Elasticsearch and Kafka clusters simultaneously.

TIP

The supported versions for interfacing with external Elasticsearch are as follows:

» Elasticsearch 6.x supports versions 6.6 - 6.8;

» Elasticsearch 7.x supports versions 7.0 - 7.10.2, with a recommendation to use 7.10.2.

TOC

Resource Preparation

Operating Procedures

Resource Preparation

Before interfacing, you need to prepare the required credential information.

How to Interface with External ES Storage Clusters - Alauda Container Platform

1. In the left navigation bar, click on Cluster Management > Resource Management, then

switch to the cluster that needs the plugin installation.

2. Click on Create Resource Object, and fill in the code box after modifying the parameters

according to the code comments.

« Credentials required for interfacing with external Elasticsearch:

apiVersion: v1
type: Opaque
data:
password: dEdWQVduSX5kUWImc21acg==

username: YWRtaW4=
kind: Secret
metadata:

name: elasticsearch-basic-auth

namespace: cpaas-system

» If you need to use an external Kafka cluster, you will also need to create credentials for

interfacing with the external Kafka cluster:

apiVersion: v1
type: Opaque
data:
password: dEdWQVduSX5kUWImc21acg==

username: YWRtaW4=
kind: Secret
metadata:

name: kafka-basic-auth

namespace: cpaas-system

3. Click on Create.

How to Interface with External ES Storage Clusters - Alauda Container Platform

Operating Procedures

1. In the left navigation bar, click on App Store > Plugin Management.

2. In the top navigation, select the Cluster Name where you want to install the ACP Log

Storage with Elasticsearch plugin.
3. Click the action button on the right side of ACP Log Storage with Elasticsearch > Install.

4. Enable the Interface with External Elasticsearch switch, configure the YAML file, with the

interfacing example and parameter descriptions as follows:

« Interfacing with the external Elasticsearch cluster while installing Kafka in the current

cluster:

elasticsearch:
install: false
address: http://fake:9200

basicAuthSecretName: elasticsearch-basic-auth

storageClassConfig:

type: "LocalVolume"

kafka:
auth: true
k8sNodes:
- log1

- log2

- log3
storageSize: 10

¢ Interfacing with both the external Elasticsearch cluster and the external Kafka cluster:

How to Interface with External ES Storage Clusters - Alauda Container Platform

elasticsearch:

install: false

address: http://fake:9200 # External ES access address, e.g.,
http://192.168.143.252:11780/es_proxy

basicAuthSecretName: elasticsearch-basic-auth # Credentials required for interfacing
with external Elasticsearch created in the prerequisites.
kafka:

auth: true # Whether to enable authentication.

install: false

basicAuthSecretName: kafka-basic-auth # Credentials required for interfacing with
external Kafka created in the prerequisites.

address: 192.168.130.169:9092,192.168.130.187:9092,192.168.130.193:9092 # Kafka

access addresses, separated by commas.

Menu

Events

Introduction

Usage Limitations

Events
Operation Procedures

Event Overview

Events - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

The platform integrates with Kubernetes events, logging significant status changes and
various operational state changes of Kubernetes resources. It also provides capabilities for
storage, querying, and visualization. When abnormalities occur with resources such as

clusters, nodes, or Pods, users can analyze events to determine specific causes.

Based on the root causes identified from the events, users can create alert policies for
workloads. When the number of critical events reaches the alert threshold, alerts can be
automatically triggered to notify relevant personnel for timely intervention, thereby reducing
operational risks on the platform.

TOC

Usage Limitations

Usage Limitations

This feature relies on the logging system. Please ensure that the ACP Log Collector and ACP

Log Storage plugins are installed within the platform beforehand.

Events - Alauda Container Platform

Menu ON THIS PAGE >

Events

TOC

Operation Procedures

Event Overview

Operation Procedures

1. Click on Operations Center > Events in the left navigation bar.

Tip: Switch the cluster to view events using the dropdown selection box in the top

navigation bar.

Event Overview

The events page displays an overview of significant events that occurred in the last 30
minutes by default (you can choose or customize the time range), as well as records of

resource events.

« Significant Event Overview: This card shows the reason for significant events and the

number of resources that experienced such events within the selected time range.

* Note: When the same resource experiences this type of event multiple times, the

resource count will not accumulate.

Events - Alauda Container Platform

o For example: If the resource count for node restart events is 20, it indicates that within
the selected time range, 20 resources encountered such events, and the same resource

may have experienced it multiple times.

+ Resource Event Records: Below the significant event overview area, all event records
that meet the query conditions within the selected time range are displayed. You can filter
for respective types of events by clicking on the significant event card, or you can expand

the view and input query conditions to search. The query conditions are as follows:

* Resource Type: The type of Kubernetes resource that experienced the event, e.g., Pod.
 Namespace: The namespace of the Kubernetes resource where the event occurred.

+ Event Reason: The reason for the occurrence of the event.

o Event Level: The significance of the event, such as Warning.

+ Resource Name: The name of the Kubernetes resource that experienced the event.

Multiple names can be selected or entered.

TIP

o Click the view icon next to the resource name in the event record to view detailed information

about the event in the pop-up Event Details dialog.

» The color of the icon to the left of the event reason indicates the event level. A green icon
indicates that the level of this event is Normal , and this event can be ignored; an orange icon
signifies that the level of this eventis Warning , indicating that there is an anomaly with the

resource and this event should be monitored to prevent incidents.

Inspection - Alauda Container Platform

Menu

Inspection

Introduction

Introduction

Usage Limitations

Architecture

Architecture
Inspection

Component Health Status

Guides

Inspection
Execute Inspection
Inspection Configuration

Inspection Report Explanation

Inspection - Alauda Container Platform

Component Health Status

Procedures to Operate

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

The Inspection module is a core component of the ACP platform'’s observability suite that
provides automated inspection and assessment capabilities for comprehensive resource

monitoring and risk management.
This module delivers four essential inspection capabilities:

e Resource inspection for automated assessment of clusters, nodes, pods, certificates, and

other platform resources to identify risks and usage patterns

» Real-time monitoring for live tracking of inspection task progress and immediate visibility

into resource operational status

 Visual reporting for intuitive display of inspection results including resource risks, usage

information, and operational insights

» Report generation for downloadable inspection reports in PDF or Excel formats with

comprehensive analysis and recommendations

By integrating these capabilities with role-based access controls and automated assessment
algorithms, it enables organizations to reduce manual inspection costs, proactively identify
resource anomalies, mitigate business risks, and maintain optimal platform performance

through systematic health assessments.

TOC

Usage Limitations

Introduction - Alauda Container Platform

Usage Limitations

e Some inspection items on the platform depend on clusters having monitoring components
installed. Please ensure that each cluster has either the ACP Monitoring with Prometheus

plugin or the ACP Monitoring with VictoriaMetrics plugin installed in advance.

¢ The platform inspection supports sending inspection results via email. Please ensure that

the email notification server configuration has been completed in advance.

With the container platform's inspection functionality, users can manage and maintain the

container environment more efficiently, enhancing system stability and security.

Menu

Architecture

TOC

Inspection

Component Health Status

Inspection

Architecture - Alauda Container Platform

ON THIS PAGE >

Architecture - Alauda Container Platform

———Create CR————» _ _
mgPec.'hm CR
U
—Read ih-’-spec.-l'icn result—sl
] Write
Whatch hepec.-ﬁm result
O | |
daplay

Couier

Guer"?r Metrics
1

|

The inspection module is jointly provided by the platform component Courier and the

monitoring component, involving the following business processes:

Prometheus VictoriaMetrics

o Create inspection task: The platform submits an inspection-type CR to the global cluster.

o Execute inspection task: The Courier component monitors the generation of inspection-

type CRs and queries the monitoring components of each cluster for various metric data

related to the inspection.

* Write inspection results: After the Courier component completes the evaluation of each

inspection item, it will write the inspection results back into the corresponding inspection

CR.

¢ View inspection results: Users can check the status and results of inspection tasks through

the platform, where data will be obtained from the corresponding inspection CR.

Component Health Status

Architecture - Alauda Container Platform

Ul
et Resu et Eesult:
MaoduleHealth
ModuleHealth Heriea
Eecord
F‘GFI'L*I'G F‘arildic
Updates Updates

L T [

GMETY etires

Gue

[c.omponer'lh status

Eubernetes AP Prometheus I l VictoriaMetrics

Component health status is jointly provided by the platform component Courier and the

monitoring component, involving the following business processes:

o Predefined component monitoring list: The platform has predefined two types of CRDs in
the global cluster to define the list of components to be monitored and the monitoring

methods:

e ModuleHealth: Defines the components that need to be monitored and the monitoring

methods.

* ModuleHealthRecord: Defines the monitoring results of the corresponding components

in each cluster.

¢ Regularly monitor component status: Courier will watch ModuleHealth, check the specified
functions, and then write the inspection results to the CR resources of ModuleHealth and
ModuleHealthRecord.

 Component status determination: Courier will request data from Kubernetes and the

monitoring components to determine the actual status of the components and any existing

Architecture - Alauda Container Platform

issues.

o Kubernetes: Checks whether the component is installed and whether the number of

component replicas is normal.

¢ Prometheus / VictoriaMetrics: Based on the metrics provided by each component,

queries and determines whether the component can provide services normally.

¢ View component health status: Users can check the health status of each component
through the platform, where data will be obtained from the corresponding CR resources of

ModuleHealth and ModuleHealthRecord.

Menu

Guides

Inspection
Execute Inspection
Inspection Configuration

Inspection Report Explanation

Component Health Status

Procedures to Operate

Guides - Alauda Container Platform

Inspection - Alauda Container Platform

Menu ON THIS PAGE >

Inspection

TOC

Execute Inspection

Inspection Configuration

Inspection Report Explanation
Most Recent Inspection
Resource Risk Inspection

Resource Utilization Inspection

Execute Inspection

1. Click on Operation Center > Inspection > Basic Inspection in the left navigation bar.

Tip: The inspection page displays the inspection data information from the most recent
inspection. During the inspection process, you can view the resource data of completed

inspections in real-time.
2. On the Basic Inspection page, the following actions are supported:

o Execute Inspection: Click the Inspection button in the upper right corner of the page to

perform an inspection on the platform.

« Download Inspection Report: Click the Download Report button in the upper right

corner of the page, select the report format (PDF and Excel) in the pop-up dialog, and

Inspection - Alauda Container Platform

click to download, which will download the corresponding format report to your local

machine.
e The PDF format inspection report does not include resource risk details page data;
e The Excel format inspection report contains all data from the inspection;

e Supports simultaneous download of both formats of reports.

Inspection Configuration

Inspection o
i . Description
Configuration

Automated task execution timing rules, supporting input of

Crontab expressions.
Scheduled

) Tip: Click the input box to expand the platform'’s preset Trigger
Inspection

Rule Templates, select the appropriate template, and quickly

set the trigger rules with simple modifications.

Inspection Record _ _ _
. The number of inspection records to retain.
Retention

] o Select email notification contacts.
Email Notification o _ _
Note: Notification contacts must have email configured.

Inspection Report The name that will be used by the platform's built-in inspection
Name notification template to notify contacts.

Inspection Modify the warning thresholds or disable inspection items
Configuration according to the platform's default inspection items for

Items certificates, cluster hosts, and pods.

Inspection Report Explanation

Inspection - Alauda Container Platform

Most Recent Inspection

In the Most Recent Inspection information area, you can view relevant information from the

most recent inspection:
» Inspection Time: The start and end time of the most recent inspection.

o Total Number of Inspection Resources: The total number of resources (clusters, nodes,

pods, certificates) inspected in the most recent inspection.

¢ Risks: The number of resources at risk, including those classified as Fault and Warning.

Resource Risk Inspection

In the Resource Risk Inspection page, you can view an overview of risk information for
global clusters, self-built clusters, accessed clusters, and all nodes, pods, and certificates

under these clusters.

Click the Risk Details button on the card of the corresponding resource type (Cluster, Node,
pod, Certificate) to enter the risk details page for that resource type. On the details page, you
can view the most recent inspection information for the resource, as well as the list of

resources with faults and warnings.
¢ Click on the resource name to jump to the resource details page.

¢ Click the expand button on the right side of the Name field in the list to expand the

judgment conditions and reasons for faults and warnings.

For explanations of the risk status judgment criteria (Fault, Warning) for each resource, refer

to the table below.

Note: There are multiple conditions used to judge the faults and warnings for each resource
type; when the inspection data of the resource matches any one of the judgment conditions, it

is considered a piece of risk data.

Inspection - Alauda Container Platform

) Fault
Resource Inspection) o
Judgment Warning Judgment Conditions
Type Scope .
Conditions
Cluster - global - Cluster status - After the cluster scale (number
cluster is Abnormal; of nodes/pods/mrtrics) increases,
- Self-built - apiserver the monitoring component
cluster connection is resource configuration has not
- Accessed abnormal been updated.
cluster - After the log data volume and

log collection frequency
increase, the log component
resource configuration has not
been updated.

- Cluster CPU usage exceeds
60%;

- Cluster memory usage exceeds
60%;

- Any pod in the ETCD
component of the clusterisin a
non-Running state;

- Any host in the clusterisin a
non-Ready state;

- The time difference between
any two nodes in the cluster
exceeds 40S;

- The CPU request rate of the
cluster (actual request value /
total) exceeds 60%;

- The memory request rate of the
cluster (actual request value /
total) exceeds 80%;

- Monitoring components are not
installed in the cluster;

- Monitoring components of the
cluster are abnormal;

- Any pod in the kube-

Resource

Type

Inspection - Alauda Container Platform

] Fault
Inspection . -
s Judgment Warning Judgment Conditions
cope o
Conditions

controller-manager component
of the cluster is in a non-Running
state;

- Any pod in the kube-scheduler
component of the clusterisin a
non-Running state;

- Any pod in the kube-apiserver
component of the clusterisin a

non-Running state.

Resource

Type

Node

pod

Inspection

Scope

- All control
nodes
- All compute

nodes

All pods

Inspection - Alauda Container Platform

Fault
Judgment

Conditions

- Node status is
Abnormal;

- The node-
exporter
component's
pod on the node
is in a non-
Running state;

- The kubelet
component's
pod on the node
is in a non-

Running state.

- pod status is
Error;

- The pod has
been in the
starting state for
more than 5

minutes.

Warning Judgment Conditions

- Node's inode free is less than
1000

- Node CPU usage exceeds
60%;

- Node memory usage exceeds
60%;

- Disk space usage of the node
directory exceeds 60%;

- Node system load exceeds
200% and runtime exceeds 15
minutes;

- At least one NodeDeadlock
(node deadlock) event occurred
in the past day;

- At least one NodeOOM (out of
memory) event occurred in the
past day;

- At least one NodeTaskHung
(task hung) event occurred in the
past day;

- At least one
NodeCorruptDockerimage
(corrupted Docker image) event

occurred in the past day.

- Pod CPU usage exceeds 80%;
- Pod memory usage exceeds
80%;

- The number of restarts of the
Pod in the past 5 minutes is

greater than or equal to 1.

Inspection - Alauda Container Platform

] Fault
Resource Inspection) o
Judgment Warning Judgment Conditions
Type Scope N
Conditions
Certmanager Certificate N o o
- N _ Certificate's validity period is less
Certificate certificates status is
] than 29 days.
- Kubernetes Expired.
certificates

Resource Utilization Inspection

Click on the Resource Utilization Inspection tab to enter the Resource Utilization

Inspection page.

In the Resource Utilization Inspection page, you can view the total amount, usage, and
usage rate of CPU, memory, and disk of global clusters, accessed clusters, and self-built
clusters, as well as the number of resources such as clusters, nodes, pods, and projects on

the platform.

o Resource Usage Statistics: You can view the total amount and total usage rate of CPU,

memory, and disk of global, accessed, and self-built clusters.

o Platform Resource Quantity: You can view the number of resources running on the

platform.

Component Health Status - Alauda Container Platform

Menu ON THIS PAGE >

Component Health Status

The platform health status page presents statistical data on the health status of features that
have been installed on the platform. When your account has management or auditing
permissions related to the platform, you can also view detailed health data for specific
features, including: a list of clusters that do not have the feature installed, the health status of
clusters that have the feature installed, and detection data for components within clusters
associated with the feature. This can help you quickly identify issues and improve the

operational efficiency of the platform.

TOC

Procedures to Operate

Procedures to Operate

1. Navigate to the view page of installed products or the platform center (platform

management, project management, operations center).

2. Click the question mark button at the top right corner of the navigation bar > Platform
Health Status.

3. Check the feature card; the feature card displays the health status information of the
feature. If there are abnormalities in the feature components, it will be reflected on the card

as fault .

Component Health Status - Alauda Container Platform

4. Click on the health/fault value on the feature card to expand the detailed health status page
on the right side of the page, where you can view detailed issue information for the faulty

components.

	Observability
	Overview
	Monitoring
	Introduction
	Install
	TOC
	Overview
	Installation Preparation
	Install the ACP Monitoring with Prometheus Plugin via console
	Installation Procedures
	Access Method

	Install the ACP Monitoring with Prometheus Plugin via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Install the ACP Monitoring with VictoriaMetrics Plugin via console
	Prerequisites
	Installation Procedures

	Install the ACP Monitoring with VictoriaMetrics Plugin via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Architecture
	Monitoring Module Architecture
	TOC
	Overall Architecture Explanation
	Monitoring System
	Data Collection and Storage
	Data Query and Visualization

	Alerting System
	Alert Rule Management
	Alert Processing Workflow
	Real-time Alert Status

	Notification System
	Notification Configuration Management
	Notification Server Management

	Monitoring Component Selection Guide
	TOC
	Important Notes
	Component List
	Prometheus Related Components
	VictoriaMetrics Related Components

	Architecture Comparison
	Prometheus Architecture
	VictoriaMetrics Architecture

	Feature Comparison
	Installation Scheme Suggestions
	Monitoring Installation Architecture Overview
	Prometheus Installation Method
	VictoriaMetrics Installation Method

	Selection Recommendations
	Scenarios Suitable for Using VictoriaMetrics
	Scenarios Suitable for Using Prometheus

	Monitor Component Capacity Planning
	TOC
	Assumptions and Methodology
	Prometheus
	Small Scale — 10 worker nodes, 500 double-container Pods
	Medium Scale — 50 worker nodes, 2000 double-container Pods
	Large Scale — 500 worker nodes, 10000 double-container Pods

	VictoriaMetrics
	Small Scale — 10 worker nodes, 500 double-container Pods
	Medium Scale — 50 worker nodes, 2000 double-container Pods
	Large Scale — 500 worker nodes, 10000 double-container Pods

	Concepts
	TOC
	Monitoring
	Metrics
	PromQL
	Built-in Indicators
	Exporter
	ServiceMonitor

	Alarms
	Alarm Rules
	Alarm Policies

	Notifications
	Notification Policies
	Notification Templates

	Monitoring Dashboard
	Dashboard
	Panels
	Data Sources
	Variables

	Guides
	Management of Metrics
	TOC
	Viewing Metrics Exposed by Platform Components
	Viewing All Metrics Stored by Prometheus / VictoriaMetrics
	Prerequisites
	Procedures

	Viewing All Built-in Metrics Defined by the Platform
	Prerequisites
	Procedures

	Integrating External Metrics
	Prerequisites
	Procedures

	Management of Alert
	TOC
	Function Overview
	Key Features
	Functional Advantages
	Creating Alert Policies via UI
	Prerequisites
	Procedures
	Selecting Alert Type
	Configuring Alert Rules
	Other Configurations

	Additional Notes

	Creating Resource Alerts via CLI
	Prerequisites
	Procedures

	Creating Event Alerts via CLI
	Prerequisites
	Procedures

	Creating Alert Policies via alert Templates
	Prerequisites
	Procedures
	Creating Alert Template
	Creating Alert Policies Using alert Templates

	Setting Silence for Alerts
	Setting via UI
	Setting via CLI

	Recommendations for Configuring Alert Rules

	Management of Notification
	TOC
	Feature Overview
	Key Features
	Notification Server
	Corporate Communication Tool Server
	Email Server
	Webhook Type Server

	Notification Contact Group
	Notification Template
	Create Notification Template
	Reference Variables
	Special Formatting Markup Language in Emails

	Notification rule
	Prerequisites
	Operation Procedures

	Set Notification Rule for Projects
	Prerequisites
	Operation Procedures

	Management of Monitoring Dashboards
	TOC
	Function Overview
	Main Features
	Advantages
	Use Cases
	Prerequisites
	Relationship Between Monitoring Dashboards and Monitoring Components

	Manage Dashboards
	Create a Dashboard
	Import Dashboard
	Add Variables
	Add Panels
	Add Groups
	Switch Dashboards
	Other Operations

	Manage Panels
	Panel Description
	Panel Configuration Description
	General Parameters
	Special Parameters for Panels

	Create Monitoring Dashboards via CLI
	Common Functions and Variables
	Common Functions
	Common Variables
	Variable Use Case One
	Variable Use Case Two
	Notes When Using Built-in Metrics

	Management of Probe
	TOC
	Function Overview
	Blackbox Monitoring
	Prerequisites
	Procedures for Operation

	Blackbox Alerts
	Prerequisites
	Procedures for Operation

	Customizing BlackboxExporter Monitoring Module
	Procedures for Operation

	Create Blackbox Monitoring Items and Alerts via CLI
	Prerequisites
	Procedures for Operation

	Reference Information

	How To
	Backup and Restore of Prometheus Monitoring Data
	TOC
	Feature Overview
	Use Cases
	Prerequisites
	Procedures to Operate
	Backup Data
	Method 1: Backup Storage Directory (Recommended)
	Method 2: Snapshot Backup

	Restore Data

	Operation Results
	Learn More
	TSDB Data Format Description
	Data Backup Considerations

	Next Procedures

	VictoriaMetrics Backup and Recovery of Monitoring Data
	TOC
	Function Overview
	Use Cases
	Prerequisites
	Procedures
	1. Confirm Storage Path
	2. Execute Data Backup
	3. Execute Data Recovery

	Operation Result
	Learn More
	Follow-up Actions

	Collect Network Data from Custom-Named Network Interfaces
	TOC
	Function Overview
	Use Case
	Prerequisites
	Procedures to Operate
	Operation Results
	Learn More
	Subsequent Actions

	Distributed Tracing
	Introduction
	TOC
	Usage Limitations

	Install
	TOC
	Installing the Jaeger Operator
	Install the Jaeger Operator using the Web Console

	Deploying a Jaeger Instance
	Installing the OpenTelemetry Operator
	Install the OpenTelemetry Operator using the Web Console

	Deploying OpenTelemetry Instances
	Enable Feature Switch
	Uninstall Tracing
	Deleting OpenTelemetry Instance
	Uninstalling OpenTelemetry Operator
	Deleting Jaeger Instance
	Uninstalling Jaeger Operator

	Architecture
	TOC
	Core Components
	Data Flow

	Concepts
	TOC
	Telemetry
	OpenTelemetry
	Span
	Trace
	Instrumentation
	OpenTelemetry Collector
	Jaeger

	Guides
	Query Tracing
	TOC
	Feature Overview
	Main Features
	Feature Advantages
	Tracing Query
	Step 1: Combine Query Conditions
	Step 2: Execute Query

	Query Result Analysis
	Span List
	Time-Series Waterfall Chart
	Span Details

	Query Trace Logs
	TOC
	Feature Overview
	Core Features
	Prerequisites
	Log Query Operations
	Access Trace Logs
	Filter Logs
	By Pod Name
	By Time Range
	By Query Conditions
	Contain Trace ID

	Advanced Operations
	Export Logs
	Customize Display Fields
	View Log Context

	How To
	Non-Intrusive Integration of Tracing in Java Applications
	TOC
	Feature Overview
	Use Cases
	Prerequisites
	Steps to Operate
	Operation Results

	Business Log Associated with the TraceID
	TOC
	Background
	Adding TraceID to Java Application Logs
	Adding TraceID to Python Application Logs
	Verification Method

	Troubleshooting
	Unable to Query the Required Tracing
	TOC
	Problem Description
	Root Cause Analysis
	1. Tracing Sampling Rate Configured Too Low
	2. Elasticsearch Real-Time Limitations

	Solution for Root Cause 1
	Solution for Root Cause 2

	Incomplete Tracing Data
	TOC
	Problem Description
	Root Cause Analysis
	1. Data Persistence Delay
	2. Time Range Limitation

	Solution for Root Cause 1
	Solution for Root Cause 2

	Logs
	Introduction
	Install
	TOC
	Installation Planning
	Install Alauda Container Platform Log Storage with ElasticSearch via console
	Install Alauda Container Platform Log Storage with ElasticSearch via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Install Alauda Container Platform Log Storage with Clickhouse via console
	Install Alauda Container Platform Log Storage with Clickhouse via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Install Alauda Container Platform Log Collector Plugin
	Install Alauda Container Platform Log Collector Plugin via YAML
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Architecture
	Log Module Architecture
	TOC
	Overall Architecture Description
	Log Collection
	Component Installation Method
	Data Collection Process

	Log Consumption and Storage
	Razor
	Lanaya
	Vector

	Log Visualization

	Log Component Selection Guide
	TOC
	Architecture Comparison
	ElasticSearch Architecture
	Clickhouse Architecture

	Function Comparison
	Selection Recommendations

	Log Component Capacity Planning
	TOC
	ElasticSearch
	Small Scale 3 Nodes - Total Logs: 6300/s
	Small Scale 5 Nodes - Total Logs: 9900/s
	Large Scale 3+5 Nodes - Total Logs: 25000/s
	Large Scale 3+7 Nodes - Total Logs: 30000/s

	Clickhouse
	Single Node - Total Logs: 18000/s
	Three Nodes - Total Logs: 20000/s
	Six Nodes - Total Logs: 40000/s
	Nine Nodes - Total Logs: 69000/s

	Concepts
	TOC
	Open Source Components
	Filebeat
	Elasticsearch
	ClickHouse
	Kafka

	Core Functionality Concepts
	Log Collection Pipeline
	Index
	Shards and Replicas
	Columnar Storage

	Key Technical Terms
	Ingest Pipeline
	Consumer Group
	TTL (Time To Live)
	Replication Factor

	Data Flow Model

	Guides
	Logs
	TOC
	Log Query Analysis
	Search Logs
	Export Log Data
	View Log Context

	Manage Application Log Retention Time
	Platform Administrator Sets Retention Policies
	Project Administrator Sets Retention Policies
	Set Retention Policies via CLI

	Configure Partial Application Log Exclusion from Collection
	Stop Collecting All Application Logs in the Cluster
	Stop Collecting Application Logs in a Specific Namespace
	Stop Collecting Pod Logs

	How To
	How to Archive Logs to Third-Party Storage
	TOC
	Transfer to External NFS
	Prerequisites
	Create Log Synchronization Resources

	Transfer to External S3 Storage
	Prerequisites
	Create Log Synchronization Resources

	How to Interface with External ES Storage Clusters
	TOC
	Resource Preparation
	Operating Procedures

	Events
	Introduction
	TOC
	Usage Limitations

	Events
	TOC
	Operation Procedures
	Event Overview

	Inspection
	Introduction
	TOC
	Usage Limitations

	Architecture
	TOC
	Inspection
	Component Health Status

	Guides
	Inspection
	TOC
	Execute Inspection
	Inspection Configuration
	Inspection Report Explanation
	Most Recent Inspection
	Resource Risk Inspection
	Resource Utilization Inspection

	Component Health Status
	TOC
	Procedures to Operate

