GitOps - Alauda Container Platform

Menu

GitOps

Introduction

Introduction
GitOps Use Cases
GitOps Advantages

Alauda Container Platform GitOps Advantages

Install

Installing Alauda Build of Argo CD
Prerequisites

Procedure

Installing Alauda Container Platform GitOps
Prerequisites

Installing Alauda Container Platform GitOps cluster plugin

Upgrade

GitOps - Alauda Container Platform

Upgrading Alauda Container Platform GitOps

Prerequisites

Upgrading Alauda Container Platform GitOps cluster plugin

Architecture

Architecture
GitOps and Argo CD
GitOps Architecture

Alauda Container Platform GitOps Architecture

Concepts

GitOps
Introduction
Core Principles
Advantages

Popular GitOps Tools

Argo CD Concept

Alauda Container Platform GitOps Concepts

GitOps - Alauda Container Platform

Guides

Creating GitOps Application

GitOps Observability

How To

Integrating Code Repositories via Argo CD dashboard
Use Cases

Prerequisites

Procedure

Operation Result

Creating an Argo CD Application via Argo CD dashboard
Prerequisites

Procedure

Creating an Argo CD Application via the web console

Use Cases
Prerequisites

Procedure

GitOps - Alauda Container Platform

How to Obtain Argo CD Access Information

Use Cases

How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web
console?

How to Obtain Argo CD Access Information from Argo CD Operator?

Troubleshooting

Troubleshooting

I've deleted/corrupted my repo and can't delete my app?

Why is my application still Out0fSync immediately after a successful Sync?
Why is my application stuck in Progressing state?

How to disable admin user?

Argo CD cannot deploy Helm Chart based applications without internet access, how can | solve
it?

After creating my Helm application with Argo CD | cannot see it with helm Is and other Helm
commands?

I've configured cluster secret but it does not show up in CLI/UI, how do | fix it?

Why Is My App Out Of Sync Even After Syncing?

How often does Argo CD check for changes to my Git or Helm repository?

How Do | Fix invalid cookie, longer than max length 4093?

Why Am | Getting rpc error: code = Unavailable desc = transport is closing When Using The CLI?
Why are resources of type SealedSecret stuck in the Progressing state?

How to rotate Redis keys?

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

GitOps is a modern approach to continuous delivery and operations that leverages Git as the
central "Single Source of Truth" (SSOT) for defining and managing infrastructure, application
configurations, and deployment workflows. By consolidating application code, configuration
files, and Infrastructure as Code (IaC) definitions within a Git repository, GitOps enables
comprehensive version control and automated governance of the entire software delivery
lifecycle. In this paradigm, development and operations teams collaborate seamlessly
throughout the software development, testing, and deployment phases using Git's robust
branching, code review, and merge request mechanisms. When changes to code or
configurations are pushed to the Git repository, automated tools detect these updates and
initiate a cascade of automated processes, including building, testing, and deployment. This
workflow facilitates the continuous delivery and continuous deployment (CI/CD) of software,

ensuring rapid and reliable releases.

TOC

GitOps Use Cases
GitOps Advantages

Alauda Container Platform GitOps Advantages

GitOps Use Cases

¢ Continuous Delivery of Containerized Applications: Within a Kubernetes ecosystem,
GitOps excels at managing the deployment, updates, and rollbacks of containerized

applications. Developers commit application code and Kubernetes configuration files to the

Introduction - Alauda Container Platform

Git repository, and GitOps tools subsequently automate the deployment of these
applications to the Kubernetes cluster, synchronizing them with any configuration file

modifications.

o Multi-Environment Management: GitOps simplifies the management of infrastructure and
application configurations across disparate environments, such as development, testing,
staging, and production. Through strategic branching and environment tagging, it maintains
configuration consistency while accommodating necessary customizations for each
environment. Operations of Microservices Architecture: In microservices architectures,
GitOps aids teams in efficiently orchestrating the deployment and updates of numerous
microservices. Each microservice's code and configurations can be independently stored in
the Git repository, allowing GitOps tools to automate deployments and updates based on

microservice dependencies and update strategies, thereby ensuring system stability.

¢ Infrastructure as Code (IaC) Management: GitOps seamlessly integrates with laC tools
like Terraform and Ansible to manage cloud infrastructure, server configurations, and
network resources. Storing laC configuration files in a Git repository enables version-
controlled and automated infrastructure deployments, enhancing manageability and

repeatability.

e Cross-Team Collaboration and Code Sharing: In large organizations, multiple teams
often need to share code and configurations. GitOps provides a unified platform for teams
to collaborate on development, share code, and manage configurations via the Git

repository, boosting collaboration efficiency and code reuse.

GitOps Advantages

Accelerated Collaboration & Delivery

Rapid Rollback & Recovery

Multi-Environment Governance

Enhanced Security & Compliance

GitOps advantages detailed introduction

Alauda Container Platform GitOps Advantages

Introduction - Alauda Container Platform
o Enterprise-Grade Argo CD Operator.
¢ Argo CD Operator Safety Service.
¢ Visual GitOps Application Multi-Environment Distribution Management.
¢ Visual GitOps Application Operations and Maintenance.
¢ Visual GitOps Cluster Configuration Management.

¢ Closed-Loop GitOps Application Management Integrated with All Platform Products.

Alauda Container Platform GitOps advantages detailed introduction

Install - Alauda Container Platform

Menu

Install

Installing Alauda Build of Argo CD

Prerequisites

Procedure

Installing Alauda Container Platform GitOps
Prerequisites

Installing Alauda Container Platform GitOps cluster plugin

Installing Alauda Build of Argo CD - Alauda Container Platform

Menu ON THIS PAGE >

Installing Alauda Build of Argo CD

TOC

Prerequisites

Procedure
Install Alauda Build of Argo CD Operator
Create Argo CD Instance

Create AppProject Instance

Prerequisites

1. Download the Alauda Build of Argo CD Operator installation package corresponding to

your platform architecture.

2. Upload the installation package using the Upload Packages mechanism.

Procedure

Install to the cluster where you want to use GitOps functionality.

Install Alauda Build of Argo CD Operator

1. Login, go to the Administrator page.

Installing Alauda Build of Argo CD - Alauda Container Platform
2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Build of Argo CD Operator, click Install, and navigate to the Install Argo
CD page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is alpha .

Cluster : All namespaces in the cluster share a single Operator

Installation _ _ o

instance for creation and management, resulting in lower resource
Mode

usage.
Namespace Select Recommended Namespace : Automatically created if none exists.
Upgrade Auto : The OperatorHub will automatically upgrade the Operator to
Strategy the latest version when a new version is available.

4. It is recommended to use the suggested default configuration; simply click Install to

complete the Alauda Build of Argo CD Operator installation.

Create Argo CD Instance

1. Click Marketplace > OperatorHub.

2. Find the Alauda Build of Argo CD Operator, click it to enter the Argo CD detail info page.
3. Click All Instances,

4. Click Create Instance, select Argo CD instance card.

5. Click Create Instance

INFO

In the configuration instance parameter page, use the default configuration unless there are specific
requirements. Note: If the global cluster is not highly available (e.g., it has only one control node),

please switch to YAML view when creating the instance and set the ha.enabled field value to false.

Installing Alauda Build of Argo CD - Alauda Container Platform

6. Click Create.

Create AppProject Instance

INFO

Tip: If you do not need to use the platform-managed Cluster Configuration Management feature,

you do not need to perform the following steps.

1. Find the Alauda Build of Argo CD operator, click it to enter the Alauda Argo CD detail

info page.
2. Click All Instances, Create Instance, select AppProject instance card.

3. Switch to YAML view, and overwrite the existing YAML content on the interface with the

code below.

apiVersion: argoproj.io/vlalphal
kind: AppProject
metadata:
name: cpaas-system
namespace: argocd
spec:
clusterResourcelhitelist:
- group: '*'
kind: '*'
destinations:
- namespace: '*'
server: '*'

sourceRepos:

Tkt

4. Click Create.

After completing the above procedure, you have successfully installed Argo CD. Immediately

Creating an Argo CD Application via Argo CD dashboard to begin your GitOps journey.

Installing Alauda Container Platform GitOps - Alauda Container Platform

Menu ON THIS PAGE >

Installing Alauda Container Platform
GitOps

TOC

Prerequisites

Installing Alauda Container Platform GitOps cluster plugin
Constraints and Limitations
Procedure

Verification

Prerequisites

1. Download the Alauda Container Platform GitOps cluster plugin installation package

corresponding to your platform architecture.
2. Upload the installation package using the Upload Packages mechanism.

3. Install the installation package to the global cluster using the cluster plugins mechanism.

INFO

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the cluster plugin to global cluster.

For more details, please refer to CLI.

http://localhost:4173/container_platform/ui/cli_tools/index.html

Installing Alauda Container Platform GitOps - Alauda Container Platform

Installing Alauda Container Platform GitOps

cluster plugin

Constraints and Limitations

e Only supports installation in the global cluster.

o After the plugin is installed, the ArgoCD instance in the argocd-operator will be restricted

from operations.

Procedure

1. Login, go to the Administrator page.
2. Click Marketplace > Cluster Plugins to enter the Cluster Plugins list page.

3. Find the GitOps cluster plugin, click Install, and navigate to the Install GitOps Plugin
page.

4. It is recommended to use the suggested default configuration; simply click Install to

complete the Alauda Container Platform GitOps cluster plugin installation.

The parameter descriptions are as follows:

Parameter Description

Select whether to access the dashboard provided by Argo CD as
Native Argo needed. This interface includes features like monitoring, repository
CD Ul management, and settings, and can be used to manage and monitor

the created applications.

Single Sign- It is recommended to enable SSO, which allows for quick access to the
On Argo CD native Ul using platform account information, enhancing the
login experience while also improving security and convenience.
Note: The SSO feature requires the Argo CD native Ul feature to be

enabled.

¢ Only supports access via HTTPS; SSO will not work if accessed via
HTTP.

Installing Alauda Container Platform GitOps - Alauda Container Platform

Parameter Description

« After enabling SSO and using the access address to open the Argo
CD login interface, click the LOG IN VIA OIDC button in the interface

for one-click login to the Argo CD native UlI.

Recommended: This address is dynamically generated based on the

Access _
platform address for accessing the Argo CD Dashboad. No manual
Address . . .
input is required.
Account The account used to log in and access the Argo CD native Ul.
After enabling access to the Argo CD native Ul, you can execute the
Password following command in the global cluster's CLI tool to obtain it.
Obtain Argo CD Access Information
The minimum requirements and recommendations for the platform are
as follows:
¢ Minimum: CPU requests must not be less than 100 m, and memory
requests must not be less than 250 Mi, and request values must not
Resource _
exceed limit values.
Quota
« Recommended: CPU requests should not be less than 250 m, and
memory requests should not be less than 500 Mi; CPU limit values
should not be less than 2 cores, and memory limit values should not
be less than 2 Gi.
Verification

1. On the Administrator page, under the Cluster section in the left navigation, the Config

entry will be displayed. You can use the capabilities of Cluster Configuration Management.

2. Access the Container Platform, the left navigation will display GitOps Applications entry,
where you can create a GitOps application to immediately experience Creating an Argo CD

Application via the web console.

Upgrade - Alauda Container Platform

Menu

Upgrade

Upgrading Alauda Container Platform GitOps
Prerequisites

Upgrading Alauda Container Platform GitOps cluster plugin

Upgrading Alauda Container Platform GitOps - Alauda Container Platform

Menu ON THIS PAGE >

Upgrading Alauda Container Platform
GitOps

TOC

Prerequisites

Upgrading Alauda Container Platform GitOps cluster plugin
Constraints and Limitations
Procedure

Verification

Prerequisites

1. Download the Alauda Container Platform GitOps cluster plugin installation package

corresponding to your platform architecture.

2. Upload the Alauda Container Platform GitOps installation package using the Upload

Packages mechanism.

3. Install the Alauda Container Platform GitOps cluster plugin to the global cluster using

the cluster plugins mechanism.

INFO

Upgrading Alauda Container Platform GitOps - Alauda Container Platform

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the cluster plugin to global cluster.

For more details, please refer to CLI.

Upgrading Alauda Container Platform GitOps
cluster plugin

Constraints and Limitations

¢ Only supports upgrading in the global cluster.

Procedure

. Login, go to the Administrator page.

. Click Clusters > Clusters > global > Functional Components to enter the components

list page.

. Click the Upgrade button, and select the new version of Alauda Container Platform

GitOps as the target in the Confirm Component Upgrade page.
. Click the Upgrade again and the Upgrade in the dialog to confirm the upgrading.

. (The following steps are only required if upgrading from ACP 3.16.0). Go back to the

cluster global page, click Actions > CLI Tools to enter the CLI Window.

. In the CLI window, input kubectl delete cm -n argocd argocd-redis-ha-configmap to recreate

the argocd-redis-ha-configmap .

. In the CLI window, input kubectl get cm -n argocd argocd-redis-ha-configmap to ensure the

configmap is created.

Verification

1. On the Administrator page, under the Cluster section in the left navigation, the Config

entry will be displayed. You can use the capabilities of Cluster Configuration Management.

http://localhost:4173/container_platform/ui/cli_tools/index.html

Upgrading Alauda Container Platform GitOps - Alauda Container Platform

2. Access the Container Platform, the left navigation will display GitOps Applications entry,
where you can create a GitOps application to immediately experience Creating an Argo CD

Application via the web console.

Architecture - Alauda Container Platform

Menu ON THIS PAGE >

Architecture

TOC

GitOps and Argo CD
GitOps Architecture

Alauda Container Platform GitOps Architecture

GitOps and Argo CD

GitOps is a modern theory for continuous delivery and operations, while Argo CD is a powerful
tool that implements GitOps by monitoring configuration files in a Git repository and

automatically synchronizing them to the target environment. This approach improves software
delivery speed, reliability, and security by incorporating the entire delivery process into the Git

version control system.

Alauda Container Platform GitOps, built on Argo CD, uses the Git repository as the sole
trusted source to store application, infrastructure configuration, and other files for rapid and

accurate distribution and deployment to one or multiple Kubernetes clusters.

GitOps Architecture

The main differences between GitOps and traditional application management methods are:

Architecture - Alauda Container Platform

¢ Instead of directly manipulating the runtime environment, GitOps controls it by maintaining

an application configuration repository on Git.

¢ Argo CD continuously pulls the repository and corrects discrepancies between the runtime
environment and the application configuration repository, ensuring the environment meets

expectations, preventing configuration drift, and enabling rapid recovery in case of failure.

Cl Pipeline Harbor ﬁ
Deploy

Pull Image ﬁ pev
@ [PulChange \ 9rgo —|

v

Prod-1 Prod-n

App Code Repo Declarative
/]\ Config Repo
Code Change Chalnqe
Developer SRE

Alauda Container Platform GitOps Architecture

Alauda Container Platform GitOps is installed as a cluster plugin on the global cluster and
utilizes Argo CD for application distribution and infrastructure provisioning across multiple
business clusters.

Architecture - Alauda Container Platform

cl Harbor

Pip4

Nine

Pull Image

©

Git Repo

Pull Change

ACP Global

®)

Alauda GitOps

e

g

argo

Argo CD

Deploy
Dev
Deploy
Prod-1

Prod-n

Concepts - Alauda Container Platform

Menu

Concepts

GitOps

GitOps
Introduction
Core Principles
Advantages

Popular GitOps Tools

Argo CD Concept

Introduction
Summary of Differences Between Application and ApplicationSet
Argo CD Sync Statuses

References

Application
Introduction

Use Cases for Application
Application Example

Reference

ApplicationSet
Introduction

Use Cases for ApplicationSet
ApplicationSet Example

References

Tool

Introduction

Supported Tools
Development Workflow
Feature Comparison

References

Helm

Introduction

Core Concepts of Helm
Advantages

Use Cases

Kustomize

Introduction

Core Concepts of Kustomize
Advantages

Use Cases

Concepts - Alauda Container Platform

Concepts - Alauda Container Platform

Directory
Introduction
Advantages

Use Cases

Sync

Sync Overview

Sync Status Overview

Sync operation status Overview
Refresh Overview

References

Health
Introduction
Health Scope

Reference

Alauda Container Platform GitOps Concepts

Introduction
Why Argo CD?

Advantages

Concepts - Alauda Container Platform

Alauda Container Platform GitOps Sync and Health Status

Sync Status Explanation
Health Status Explanation

Recognition Rules

GitOps - Alauda Container Platform

Menu ON THIS PAGE >

GitOps

TOC

Introduction
Core Principles
Advantages

Popular GitOps Tools

Introduction

GitOps is the practice of using a Git repository as the authoritative source for infrastructure
and application configurations. All operational changes are version-controlled, automated, and
auditable through Git. It relies on declarative configurations stored in Git, where any

modifications must be committed to trigger automated deployment processes.

Core Principles

» Declarative Configuration: GitOps fundamentally requires declarative tools, treating Git
as the single source of truth. This enables consistent application deployment across

Kubernetes clusters and platform-agnostic recovery in case of failures.

+ Versioned & Immutable State: Infrastructure and application versions are directly mapped

to Git commits. Rollbacks are executed via git revert , ensuring immutable version

history.

GitOps - Alauda Container Platform

+ Automated Reconciliation: Merged declarative states are automatically applied to
clusters. This eliminates manual intervention, prevents human errors, and supports security

approvals in deployment workflows.

» Self-Healing: Controllers (e.g., Argo CD) continuously reconcile cluster states with Git-

defined states, enabling autonomous system recovery.

Advantages

o Accelerated Collaboration & Delivery: Declarative definitions of infrastructure,
configurations, and target states stored in Git enable automated deployments. Teams
achieve one-click environment provisioning post-validation, streamlining collaboration and

delivery.

+ Rapid Rollback & Recovery: Leveraging Git's version control, anomalies trigger instant

rollbacks. GitOps controllers ensure self-healing through automated reconciliation.

o Multi-Environment Governance: Git as the single source of truth, combined with
configuration overlays, enables precise bulk deployments across hybrid/multi-cloud

environments.

+ Enhanced Security & Compliance: Git's RBAC, audit logs, branch protections, and

encryption secure sensitive configurations, ensuring compliance.

Popular GitOps Tools

e Argo CD: A Kubernetes-native declarative GitOps tool for defining, versioning, and

automating application lifecycles with auditability.

e Flux: A lightweight Kubernetes GitOps operator that continuously syncs Git repositories to

clusters.

» Jenkins X: A CI/CD platform with GitOps integration for automated pipelines and Git-driven

deployments.

Argo CD Concept - Alauda Container Platform

Menu

Argo CD Concept

Introduction
Summary of Differences Between Application and ApplicationSet
Argo CD Sync Statuses

References

Application
Introduction

Use Cases for Application
Application Example

Reference

ApplicationSet
Introduction

Use Cases for ApplicationSet
ApplicationSet Example

References

Tool

Introduction

Supported Tools
Development Workflow
Feature Comparison

References

Helm

Introduction

Core Concepts of Helm
Advantages

Use Cases

Kustomize

Introduction

Core Concepts of Kustomize
Advantages

Use Cases

Directory
Introduction
Advantages

Use Cases

Argo CD Concept - Alauda Container Platform

Sync

Sync Overview

Sync Status Overview

Sync operation status Overview
Refresh Overview

References

Health
Introduction
Health Scope

Reference

Argo CD Concept - Alauda Container Platform

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Argo CD is a very popular open-source GitOps tool. To use Argo CD, you need to understand
the following core concepts:

1. Application: A group of Kubernetes resources as defined by a manifest. This is a Custom

Resource Definition (CRD). Application

2. ApplicationSet: A Kubernetes controller supporting the ApplicationSet CRD, enabling bulk
generation of Applications from a single template. Think of it as an Application factory that

creates instances based on parameters. ApplicationSet

3. Tool: Specifies the configuration management tool for Application sources (e.g., Kustomize,
Helm). Tool

4. Sync: The process of reconciling an application’'s live state with its desired state (e.g.,

applying changes to Kubernetes clusters). Sync

5. Health: Indicates an application's operational status, including readiness and ability to
serve requests. Health

TOC

Summary of Differences Between Application and ApplicationSet
Argo CD Sync Statuses

References

Introduction - Alauda Container Platform

Summary of Differences Between Application and

ApplicationSet

Attribute

Definition

Configuration

Deployment

Use Cases

Core

Concepts

Role in Argo
CD.

Application
Single application
deployment

Static YAML definitions

Single application

Simple single-
environment

deployments

Git Repo, target cluster,

deployment strategies

Fundamental

deployment unit

Argo CD Sync Statuses

Sync
Status

Synced

OutOfSync

Syncing

ApplicationSet

Template for generating multiple

Application instances.

Dynamic parameter-driven template

generation
Multiple similar applications

Complex multi-environment/cluster
deployments requiring parameterized

instances

Generators, templates, parameters,

placeholders

Advanced bulk management layer

Description

Application's live state fully matches desired state.
Live state diverges from desired state; synchronization required.

Active synchronization in progress; live state converging to desired

state.

Introduction - Alauda Container Platform

References

¢ Argo CD Official Documentation ~

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/

Application - Alauda Container Platform

Menu ON THIS PAGE >

Application

TOC

Introduction
Use Cases for Application
Application Example

Reference

Introduction

Application is a group of Kubernetes resources as defined by a manifest. This is a Custom
Resource Definition (CRD).

Use Cases for Application

¢ Single-Component Deployment: Use Application CRD to declaratively manage deployment

of atomic workloads within a single namespace.

« Static Configuration: Ideal for applications with deterministic manifests that don't require

dynamic templating or multi-environment variations.

* Monocluster Deployment: Targeted deployment to individual Kubernetes clusters through

GitOps workflows.

Application - Alauda Container Platform

Application Example

Application - Alauda Container Platform

apiVersion: argoproj.io/vlalphail
kind: Application
metadata:
name: guestbook
namespace: argocd
finalizers:
- resources-finalizer.argocd.argoproj.io
labels:
name: guestbook
Spec:

project: default

source:
repoURL: https://github.com/argoproj/argocd-example-apps.git
targetRevision: HEAD
path: guestbook

chart: chart-name
helm:
passCredentials: false
parameters:
- name: "nginx-ingress.controller.service.annotations.external-
dns\\.alpha\\.kubernetes\\.io/hostname"
value: mydomain.example.com
- name: "ingress.annotations.kubernetes\\.io/tls-acme"
value: "true"

forceString: true

fileParameters:
- name: config

path: files/config.json

releaseName: guestbook

valueFiles:

- values-prod.yaml

ignoreMissingValueFiles: false

values: |
ingress:
enabled: true
path: /

Application - Alauda Container Platform

hosts:
- mydomain.example.com
annotations:
kubernetes.io/ingress.class: nginx
kubernetes.io/tls-acme: "true"
labels: {}
tls:
- secretName: mydomain-tls
hosts:

- mydomain.example.com

valuesObject:
ingress:
enabled: true
path: /
hosts:
- mydomain.example.com
annotations:
kubernetes.io/ingress.class: nginx
kubernetes.io/tls-acme: "true"
labels: {}
tls:
- secretName: mydomain-tls
hosts:

- mydomain.example.com

skipCrds: false
skipSchemaValidation: false
version: v2
kubeVersion: 1.30.0
apiVersions:
- traefik.io/v1alphal/TLSOption
- v1/Service

namespace: custom—namespace

kustomize:
version: v3.5.4
namePrefix: prod-
nameSuffix: -some-suffix
commonlLabels:
foo: bar
commonAnnotations:
beep: boop-${ARGOCD_APP_REVISION}
commonAnnotationsEnvsubst: true

Application - Alauda Container Platform

forceCommonLabels: false
forceCommonAnnotations: false
images:
- gcr.io/heptio-images/ks-guestbook-demo:@.2
- my-app=gcr.io/my-repo/my-app:0.1
namespace: custom-namespace
replicas:
- name: kustomize-guestbook-ui
count: 4
components:
- ../component
patches:
- target:
kind: Deployment
name: guestbook-ui
patch: |-
- op: add
path: /spec/template/spec/nodeSelector/
value:

n n

env: "pro

kubeVersion: 1.30.0

apiVersions:
- traefik.io/v1alphal/TLSOption
- v1/Service

directory:

recurse: true

jsonnet:
extVars:
- name: foo
value: bar
- code: true
name: baz

value: "true"

tlas:

- code: false
name: foo
value: bar

exclude: 'config.yaml'

include: '*.yaml'

plugin:

name: mypluginname

Application - Alauda Container Platform

env:
- name: FOO
value: bar
parameters:
- name: string-param
string: example-string
- name: array-param
array: [item1, item2]
- name: map-param
map:

param-name: param-value

sources:
- repoURL: https://github.com/argoproj/argocd-example-apps.git
targetRevision: HEAD
path: guestbook

ref: my-repo

destination:
server: https://kubernetes.default.svc

namespace: guestbook

info:
- name: 'Example:’

value: 'https://example.com'

syncPolicy:
automated:
prune: true
selfHeal: true
allowEmpty: false
syncOptions:
- Validate=false
- CreateNamespace=true
- PrunePropagationPolicy=foreground
- Prunelast=true

RespectIgnoreDifferences=true

ApplyOut0fSyncOnly=true
managedNamespaceMetadata:
labels:

any: label

you: like
annotations:

the: same

Application - Alauda Container Platform

applies: for

annotations: on-the-namespace

retry:
limit: 5
backoff:
duration: 5s
factor: 2

maxDuration: 3m

ignoreDifferences:
- group: apps
kind: Deployment
jsonPointers:
- /spec/replicas
- kind: ConfigMap
jgPathExpressions:
- '.data["config.yaml"].auth'
- group: "*"
kind: "*"
managedFieldsManagers:
- kube-controller-manager
name: my-deployment
namespace: my-namespace

revisionHistoryLimit: 10

Reference

¢ Argo CD Official Documentation ~

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/

ApplicationSet - Alauda Container Platform

= Menu ON THIS PAGE >

ApplicationSet

TOC

Introduction
Use Cases for ApplicationSet
ApplicationSet Example

References

Introduction

ApplicationSet controller is a Kubernetes controller that adds support for an ApplicationSet
CustomResourceDefinition (CRD). This controller/CRD enables both automation and greater
flexibility managing Argo CD Applications across a large number of clusters and within

monorepos, plus it makes self-service usage possible on multitenant Kubernetes clusters.

Use Cases for ApplicationSet

» Deploying multiple similar applications: When you need to deploy multiple applications with
similar configurations, you can use ApplicationSet to reduce redundant configurations. For
example, you could use ApplicationSet to deploy multiple microservices that utilize the

same template, but have different service names and port numbers.

e Multi - cluster deployments: When you need to deploy the same application across multiple

Kubernetes clusters, you can use ApplicationSet to simplify configuration. For instance, you

ApplicationSet - Alauda Container Platform

could define an application with ApplicationSet and deploy it across multiple clusters, each

using different parameters.

« Dynamically generating applications: When you need to dynamically generate applications
based on certain conditions, ApplicationSet can be utilized. For example, you could
dynamically generate different application instances based on branches or tags in a Git

repository.

ApplicationSet Example

apiVersion: argoproj.io/vialphal
kind: ApplicationSet
metadata:
name: guestbook
spec:
goTemplate: true
goTemplateOptions: ["missingkey=error"]
generators:
- list:
elements:
- cluster: engineering-dev
url: https://1.2.3.4
- cluster: engineering-prod
url: https://2.4.6.8
- cluster: finance-preprod
url: https://9.8.7.6
template:
metadata:
name: '{{.cluster}}-questbook’
spec:
project: my-project
source:
repoURL: https://github.com/infra-team/cluster-deployments.git
targetRevision: HEAD
path: guestbook/{{.cluster}}
destination:
server: '{{.url}}'

namespace: guestbook

ApplicationSet - Alauda Container Platform

References

¢ Argo CD ApplicationSet Documentation ~

https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/

Tool - Alauda Container Platform

Menu ON THIS PAGE >

Tool

TOC

Introduction

Supported Tools
Development Workflow
Feature Comparison

References

Introduction

Tool refers to a utility used to generate or process Kubernetes resource Manifests .

Supported Tools

Argo CD supports several Kubernetes manifest definition approaches:

+ Kustomize Applications Kustomize
¢ Helm Charts Helm
¢ Directory: Manifests containing YAML / JSON / Jsonnet files, including Jsonnet Directory

+ Custom Configuration Management Plugins: Any custom tool configured as a Config

Management Plugin

Tool - Alauda Container Platform

Development Workflow

Argo CD allows direct upload of local manifests , but this is intended for development

purposes only. Overriding requires users with permissions (typically administrators) to

upload local manifests .

upload a local application:

argocd app sync APPNAME --local /path/to/dir/

Feature Comparison

Feature

Configuration
Method

Reusability

Multi-
Environment

Support

Progressive

Delivery

Learning Curve

Argo CD

Integration

Use Cases

Helm

Templating (dynamic

generation)

High (via Charts)

High (via

values.yaml)

High (complex logic
support)

High (template
syntax)

Supported

Complex apps, multi-

environment,

Kustomize

Declarative
(patches and

overlays)

Medium (via

base/overlay)

High (via overlays)

Medium (simple

patch support)

Low (YAML-
based)

Native Support

Multi-environment,

config reuse

It supports all aforementioned Kubernetes deployment tools. To

Directory (Pure
YAML)

Static YAML

files

Low

Low

Low

Low

Supported

Small projects,

rapid

Tool - Alauda Container Platform

Directory (Pure
YAML)

Feature Helm Kustomize

distribution prototyping

References

For more detailed information, please refer to: Tool ~

https://argo-cd.readthedocs.io/en/stable/user-guide/tool/
https://argo-cd.readthedocs.io/en/stable/user-guide/tool/
https://argo-cd.readthedocs.io/en/stable/user-guide/tool/

Helm - Alauda Container Platform

Menu ON THIS PAGE >

Helm

TOC

Introduction
Core Concepts of Helm
Advantages

Use Cases

Introduction

Helm is a package management tool for Kubernetes, enabling users to define, install, and
upgrade complex Kubernetes applications. A Helm Chart is a templated configuration
package containing Kubernetes resource definitions (YAML files).

Core Concepts of Helm

o Chart: A Helm Chart is a templated configuration package containing Kubernetes resource
definitions (YAML files).

* Release: A Helm Release is an instance of a deployed Helm Chart, representing a specific

configuration of Kubernetes resources.

¢ Values: Helm Values are parameterized configurations for a Helm Chart, allowing users to

customize Kubernetes resource definitions.

Helm - Alauda Container Platform

Argo CD's integration with Helm enhances GitOps practices by enabling declarative

continuous delivery through web console, Argo CD dashboard, or CLI. Example:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: sealed-secrets
namespace: argocd
spec:
project: default
source:
chart: sealed-secrets
repoURL: https://bitnami-labs.github.io/sealed-secrets
targetRevision: 1.16.1
helm:
releaseName: sealed-secrets
destination:
server: "https://kubernetes.default.svc"
namespace: kubeseal

OCI Helm Chart Example:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:

name: nginx
spec:

project: default

source:

chart: nginx

repoURL: registry-1.docker.io/bitnamicharts

targetRevision: 15.9.0
destination:
name: "in-cluster"

namespace: nginx

INFO

Helm - Alauda Container Platform

** The Application's lifecycle is managed by Argo CD, not Helm. ** When multiple value sources are
provided, the priority order is: parameters > valuesObject > values > valueFiles > helm

repository values.yaml .

Advantages

o Templating: Helm uses the Go template engine (gotpl) to dynamically generate

Kubernetes resource files.

+ Package Management: Helm packages applications as Charts (including templates,

default values, and dependencies), simplifying distribution and version control.
 Dependency Management: Supports dependencies between Charts.

» Lifecycle Management: Provides commands like install, upgrade, and rollback for full

lifecycle management.

Use Cases

o Complex Application Deployment: Ideal for scenarios requiring dynamic configuration

generation (e.g., environment variables or user input).

« Multi-Environment Deployments: Supports environment-specific configurations via

values.yaml files.

o Application Distribution: Enables packaging Charts for distribution to Helm repositories

or OCI registries.
References

For more detailed information, please refer to: Helm ~

https://argo-cd.readthedocs.io/en/stable/user-guide/helm/
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/

Kustomize - Alauda Container Platform

Menu ON THIS PAGE >

Kustomize

TOC

Introduction
Core Concepts of Kustomize
Advantages

Use Cases

Introduction

Kustomize is a Kubernetes-native configuration management tool that enables users to
customize Kubernetes resource definitions (YAML files) through overlays and composition

without directly modifying original files.

Core Concepts of Kustomize

+ Base: Base configurations containing common Kubernetes resource definitions.

+ Overlay: Customization layers that modify Base configurations.

o kustomization.yaml: A configuration file defining how resources are composed and

modified.

Argo CD's integration with Kustomize enhances GitOps practices by enabling declarative

continuous delivery. Example:

Kustomize - Alauda Container Platform

apiVersion: argoproj.io/vialphal
kind: Application
metadata:
name: kustomize-example
spec:
project: default
source:
path: examples/helloWorld
repoURL: 'https://github.com/kubernetes-sigs/kustomize’
targetRevision: HEAD
destination:
namespace: default

server: 'https://kubernetes.default.svc’

If a kustomization.yaml file exists at the repoURL and path location, Argo CD will render

manifests using Kustomize.
Kustomize supports the following configuration options:

o namePrefix : Prefix appended to Kustomize-generated resource names.
o nameSuffix : Suffix appended to Kustomize-generated resource names.
e images : List of Kustomize image overrides.

e replicas : List of Kustomize replica overrides.

e commonLabels : Map of labels added to all resources.

labelWithoutSelector : Boolean defining whether common labels should apply to resource

selectors and templates.

forceCommonLabels : Boolean allowing override of existing labels.

commonAnnotations : Map of annotations added to all resources.

¢ namespace : Kubernetes resource namespace.

forceCommonAnnotations : Boolean allowing override of existing annotations.

commonAnnotationsEnvsubst : Boolean enabling environment variable substitution in

annotation values.

patches : List of Kustomize patches supporting inline updates.

components : List of Kustomize components.

Kustomize - Alauda Container Platform

To use Kustomize with overlays, point your path to the overlay directory.

Advantages

¢ Declarative Configuration: Uses YAML files (via kustomization.yaml) to define resource

composition and modifications.

o Template-Free: Customizes configurations through patches and overlays without template

engines.

o Kubernetes-Native Integration: Kustomize is built into kubectl, requiring no additional tools.

Use Cases

e Multi-Environment Distribution: Achieve environment-specific configurations (e.g., apps,

clusters) via Base and Overlay.
+ Configuration Reuse: Ideal for reusing base configurations across projects.

* Progressive Delivery: Gradually adjust resource configurations through patches.
References

For more detailed information, please refer to: Kustomize ~

https://argo-cd.readthedocs.io/en/stable/user-guide/kustomize/
https://argo-cd.readthedocs.io/en/stable/user-guide/kustomize/
https://argo-cd.readthedocs.io/en/stable/user-guide/kustomize/

Directory - Alauda Container Platform

Menu ON THIS PAGE >

Directory

TOC

Introduction
Advantages

Use Cases

Introduction

Directory type application loads manifests directly from .yml, .yaml,or .json files.
Directory applications can be created via the platform Ul, Argo CD Dashboard, CLlI, or
declaratively. Example declarative syntax:

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: guestbook
spec:
destination:
namespace: default
server: https://kubernetes.default.svc
project: default
source:
path: guestbook
repoURL: https://github.com/argoproj/argocd-example-apps.git
targetRevision: HEAD

Directory - Alauda Container Platform

No spec.source.directory field is required unless additional configuration options are needed.
Argo CD automatically detects whether the source repository/path contains plain manifest

files.

Advantages

« Simplicity: Directly loads resources from manifest files without additional abstraction.

+ Low Maintenance: No configuration management overhead.

Use Cases

e Managing multiple Kubernetes resources (e.g., Deployments, Services, ConfigMaps).
» Small-scale projects, minimal resources, or rapid GitOps adoption.

e Deploying raw YAML files without dynamic templating or complex configuration

management.

WARNING

Directory type applications only support plain manifest files. If Argo CD detects Kustomize ,

Helm , or Jsonnet files in a Directory path, it will fail to render manifests.

References

For more detailed instructions, refer to: Directory ~

https://argo-cd.readthedocs.io/en/stable/user-guide/directory/
https://argo-cd.readthedocs.io/en/stable/user-guide/directory/
https://argo-cd.readthedocs.io/en/stable/user-guide/directory/

Sync - Alauda Container Platform

Menu ON THIS PAGE >

TOC

Sync Overview

Sync Status Overview

Sync operation status Overview
Refresh Overview

References

Sync Overview

Sync is the core functionality of Argo CD, responsible for comparing the Desired State of an
application with its Live State and taking actions to reconcile discrepancies. In essence, Sync
ensures that the state of applications in your Kubernetes cluster aligns with the state defined
in the Git repository.

You can trigger Sync manually or configure Argo CD to perform it automatically. Auto-Sync
can be triggered by monitoring Git repository changes (e.g., commits, tag pushes) or executed

at scheduled intervals.

Sync Status Overview

Sync Status indicates the synchronization state of an application, reflecting whether its Live

State matches the Desired State. Sync Status includes the following states:

Sync - Alauda Container Platform
e Synced : The application's Live State exactly matches the Desired State.
e (QutOfSync : The application's Live State diverges from the Desired State.

e Syncing : The application is undergoing synchronization, with the Live State converging

toward the Desired State.

Sync operation status Overview

Sync Operation Status represents the execution state of a synchronization operation by Argo
CD, indicating whether the operation completed successfully. Sync operation status includes
the following states:

e Succeeded : The synchronization operation completed successfully.

e Failed : The synchronization operation failed due to reasons such as Kubernetes resource

conflicts, insufficient permissions, etc.

e Running : The synchronization operation is in progress.

Refresh Overview

This operation fetches the latest application configuration from the Git repository and
compares it against the actual state in the Kubernetes cluster. Refresh can be triggered

manually or configured for automatic execution at defined intervals.

References

For more detailed information, please refer to: Sync ~

https://argo-cd.readthedocs.io/en/stable/user-guide/sync-options/
https://argo-cd.readthedocs.io/en/stable/user-guide/sync-options/
https://argo-cd.readthedocs.io/en/stable/user-guide/sync-options/

Health - Alauda Container Platform

Menu ON THIS PAGE >

Health

TOC

Introduction
Health Scope

Reference

Introduction

The health of the application, is it running correctly? Can it serve requests?

Health Scope

Health o
Description
Status
Health The resource is healthy.

] The resource is not healthy yet but still making progress and might be
Progressing
healthy soon.

Degraded The resource is degraded.

Health - Alauda Container Platform

Health

Description
Status
The resource is suspended and waiting for some external event to
Suspended
resume (e.g. suspended CronJob or paused Deployment).
Reference

Argo CD provides built-in health assessment for several standard Kubernetes types, which is
then surfaced to the overall Application health status as a whole. Of course, Argo CD also

supports custom health checks.

For more detailed explanations, please refer to: Health ~

https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/

Alauda Container Platform GitOps Concepts - Alauda Container Platform

Menu

Alauda Container Platform GitOps
Concepts

Introduction
Why Argo CD?

Advantages

Alauda Container Platform GitOps Sync and Health Status

Sync Status Explanation
Health Status Explanation

Recognition Rules

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Alauda Container Platform GitOps is a Kubernetes-native GitOps solution built on Argo CD. It
monitors configuration manifests (applications, infrastructure definitions, etc.) in Git
repositories and automatically synchronizes them to target Kubernetes clusters, implementing
Git-driven continuous delivery. By codifying the entire delivery pipeline in Git's version control
system, it enhances deployment velocity, reliability, and security while enabling precise multi-
cluster application distribution.

The solution natively integrates the Argo CD Operator to automate deployment lifecycle

operations including provisioning, upgrades, and rollbacks.

TOC

Why Argo CD?

Advantages

Why Argo CD?

Argo CD stands as the industry-leading open-source GitOps engine due to its distinctive

advantages:

Technical Advantages Operational Benefits

Declarative GitOps Engine Accelerated Deployment

Introduction - Alauda Container Platform

Technical Advantages

» State reconciliation via CRDs (Application,

ApplicationSet)

e Multi-source support (Helm, Kustomize, raw
YAML)

Kubernetes-Native Architecture

o Deep integration with Kubernetes API server
= Native support for Namespace isolation
and RBAC

Multi-Cluster Management

o Centralized control plane for hybrid/multi-

cloud deployments

o Cluster-specific configuration through

ApplicationSets

Extensible Plugin System

» Certified integrations with Helm, Kustomize,

Istio

e Custom Resource Definitions (CRDs) for

advanced workflows

Active CNCF Ecosystem

e 3,500+ GitHub stars

e 200+ active contributors

Advantages

Operational Benefits

e 70% faster deployment cycles

through Git-driven automation

Enterprise Readiness

e Built-in multi-tenancy and audit

capabilities

Operational Efficiency

e 60% reduction in deployment
errors through declarative

enforcement

Cost Optimization

e 40% lower cloud costs through

precise resource orchestration

Future-Proof

o Continuous innovation through

open-source community

Introduction - Alauda Container Platform

In addition to the inherent advantages of GitOps, Alauda Container Platform GitOps offers

the following enhanced benefits:

o Enterprise-Grade Argo CD Operator

» Delivers the full suite of functionalities from the native Argo CD Operator, covering

application deployment, upgrades, rollbacks, and all core features of Argo CD.
* Argo CD Operator Safety Service

» Offers dedicated technical support for the Argo CD Operator, addressing fault

responses, security vulnerability patches, and overall system stability.
 Visual GitOps Application Multi-Environment Distribution Management

e Leverages the platform's multi-cluster management and differentiated configuration
capabilities to achieve style-consistent, visual GitOps application management and
cluster configuration management, simplifying precise distribution across multi-cloud and

multi-environment setups.
¢ Visual GitOps Application Operations and Maintenance

o Grants direct access to real-time logs and events of Kubernetes Workload resources
under GitOps applications. During GitOps application anomalies, users can swiftly
analyze and resolve issues using Argo CD's anomaly information and real-time

Workload logs without leaving the current interface.
e Visual GitOps Cluster Configuration Management

e Manages cluster configurations through GitOps, achieving unified management and

distribution of cluster configurations in a visual manner.
* Closed-Loop GitOps Application Management Integrated with All Platform Products

 Integrates the platform's DevOps capabilities for continuous building, artifact
management, and microservice gray release to realize fully automated GitOps
application management, forming a complete closed loop of continuous integration and

continuous delivery collaboration.

o Combines with platform products like CrossPlane, MySQL, and Developer Portal to

achieve a comprehensive process spanning infrastructure initialization, business

Introduction - Alauda Container Platform

application initialization (including code, pipeline, GitOps application initialization, etc.),

and application code development and deployment.

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Menu ON THIS PAGE >

Alauda Container Platform GitOps Sync
and Health Status

Alauda Container Platform GitOps abstracts the state of Application resources by leveraging
the status of underlying Kubernetes resources. The state of Application resources directly

governs the state of associated ApplicationSet resources.

TOC

Sync Status Explanation
Health Status Explanation

Recognition Rules

Sync Status Explanation

Both Kubernetes resources and applications have four sync states: Sync Failed, OutOfSync,

Syncing, and Synced.

Sync o
Description
Status
Sync Synchronization failed due to network errors, configuration issues, or

Failed permissions problems. Check logs for root cause.

Sync
Status

OutOfSync

Syncing

Synced

INFO

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Description

Cluster resource state diverges from Git-defined desired state.

Manual/auto sync required.

Active reconciliation in progress between cluster state and Git-defined

State.

Cluster resource state matches Git-defined desired state.

Sync Status Display Priority: Priority order Sync Failed > OutOfSync > Syncing > Synced.

Examples:

 If an Application has two resources with Syncing and Synced statuses, its overall status is

Syncing.

 If an ApplicationSet manages two Applications with Sync Failed and Synced statuses, its

overall status is Sync Failed.

Health Status Explanation

Kubernetes resources and applications have six health states: Unknown, Missing,

Degraded, Paused, Progressing, and Healthy.

Health
Status

Unknown

Missing

Description

Unable to determine health state,
typically due to controller errors or

missing status data.

Resource not found in cluster.

Reference Solution

Inspect resource YAML's

status.conditions for

diagnostic detalils.

Initial creation: Wait for

reconciliation

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Health

Description Reference Solution
Status

Accidental deletion: Trigger

manual sync.

Workload resources (e.g., _ _
_ _ Investigate Pod failures (e.g.,
Deployment) failed to achieve
Degraded o . crashes, resource
healthy state within timeout period

_ constraints).
(default: 10 mins).

Workload resources rollout
Paused intentionally paused (e.g., via Resume rollout if appropriate.

kubectl rollout pause).

Resource created successfully but _ _ N
Monitor until transition to

Processing not fully ready (e.g., Pods
R Healthy/Degraded.
initializing).
Healthy Resource operating normally. -
INFO
Health Status Priority:Priority order Unknown > Missing > Degraded > Paused > Progressing
> Healthy
Examples:

 If an Application has resources with Healthy and Unknown statuses, its overall health is

Unknown.

 If an ApplicationSet manages Applications with Missing and Progressing statuses, its overall

health is Missing.

Recognition Rules

Healthy status recognition rules for Kubernetes resources:

Resource

Type
Deployment
StatefulSet
ReplicaSet
DaemonSet
Ingress
Service
PVC

Pod

Job

HPA

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Status

Rolling update completed with all replicas available.
Update completed with all pods ready.

All Pods healthy.

Desired number of Pods scheduled and healthy.
LoadBalancer IP/hostname populated in status.
LoadBalancer IP/hostname populated (if applicable).
Status is Bound.

All containers ready with no restarts exceeding thresholds.
Job completed successfully (.status.succeeded >= 1).

Successful scaling operation with current replicas matching desired

count.

Guides - Alauda Container Platform

Menu

Guides

Creating GitOps Application

Creating GitOps Application
Prerequisites

Creating Argo CD Application via web console
Creating Argo CD Application via YAML

Creating Argo CD Application via CLI

Creating GitOps ApplicationSet
Overview

Prerequisites

Key Benefits

Creating GitOps Application

Managing GitOps Applications

GitOps Observability

Argo CD Component Monitoring
Overview
Prerequisites

Viewing the Argo CD component dashboard

GitOps Applications Ops
Overview

Prerequisites

Alert

Logs

Events

Guides - Alauda Container Platform

Creating GitOps Application - Alauda Container Platform

Menu

Creating GitOps Application

Creating GitOps Application
Prerequisites

Creating Argo CD Application via web console
Creating Argo CD Application via YAML

Creating Argo CD Application via CLI

Creating GitOps ApplicationSet
Overview

Prerequisites

Key Benefits

Creating GitOps Application

Managing GitOps Applications

Creating GitOps Application - Alauda Container Platform

Menu ON THIS PAGE >

Creating GitOps Application

Overview

Leverage Alauda Container Platform GitOps application management capabilities to
visually create Argo CD ApplicationSet for comprehensive lifecycle management of

containerized applications through GitOps Applications.

TOC

Prerequisites
Creating Argo CD Application via web console
Procedure
View Sync Ignore Configuration Fields in YAML file
Creating Argo CD Application via YAML
Procedure
Creating Argo CD Application via CLI

Prerequisites

Prerequisites

¢ Install Alauda Container Platform GitOps:

Creating GitOps Application - Alauda Container Platform

« If not installed, please contact the Administrator to Installing Alauda Container Platform

GitOps

+ Git Repository Integration (Choose one method):

¢ Integrating Code Repositories via Argo CD dashboard

e The Administrator must provision Code Repositories through DevOps Toolchain >

Integrate

Creating Argo CD Application via web console

Streamline application distribution through visual management interfaces.

Procedure

1. Container Platform, and navigate to GitOps Applications.

2. Click on Create GitOps Application.

3. Configure parameters in Basic Info and Code Repository sections:

Parameter

Type

Source

Integration

Project Name

Description

Application: Argo CD Application object for single namespace
deployment
ApplicationSet: Argo CD ApplicationSet for cross-cluster/cross-

namespace deployments with differential configurations

Platform integrated: Pre-configured GitLab/GitHub/Bitbucket
repositories

ArgoCD integrated: GitLab/GitHub/Bitbucket/Gitee/Gitea
repositories integrated via Argo CD. Please refer to Integrating Code

Repositories via Argo CD dashboard

Toolchain project assigned by the Administrator

Parameter

Version

Identifiers

Source File

Type

Source

Directory

Custom

Values

Creating GitOps Application - Alauda Container Platform
Description

Deployment basis: Branch / Tag / Commit

Note:

e Branch uses latest commit

e Tag / Commit defaults to latest but configurable

Kustomize: Uses kustomization.yaml for overlay configurations; for
more details, please refer to the Kustomize Official Documentation ~
Helm: Uses values.yaml for templating; for more details, please refer
to the Helm Official Documentation ~

Directory: Raw manifests

Repository path containing base manifests. Supports root directory

selection. All resources in this path will be deployed to target clusters

Source File Type is Helm, you can select a custom Helm Values file

4. Configure parameters in Destination sections:

o Application: Differential configs don't modify base files in source directory.

e ApplicationSet:

Multi-cluster deployment with Differentiated Configuration.

Note: Differentiated Configuration don't modify base files in Source Directory.

5. Sync Policy (3-minute reconciliation interval).

Parameter
Manually Sync

Automatic Sync

Sync Ignore

Configuration

Description
Requires user confirmation when drift detected.
Automatic reconciliation without human intervention.

Configure using built-in/custom ignore templates, you can
View Sync Ignore Configuration Fields in YAML File.

Note: Custom templates require admin configuration.

https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/

Creating GitOps Application - Alauda Container Platform

6. Click Create.

INFO

Manual Sync Note: Choose Synchronize Immediately for immediate deployment or

Synchronize Later to trigger manually via details page.

View Sync Ignore Configuration Fields in YAML file

After configuring sync ignore rules, verify via:
1. Navigate to GitOps Application

2. Select target application

3. Click Action > Update

4. Inspect YAML file.

ignoreDifferences:
- group: apps
kind: Deployment

jsonPointers:

- /spec/replicas

Creating Argo CD Application via YAML

Procedure

1. Container Platform, and navigate to GitOps Applications.
2. Click on Create GitOps Application.

3. Switch to the YAML tab.

Creating GitOps Application - Alauda Container Platform

4. In the YAML sections, refer to the following YAML file and configure the relevant

information. Replace namespace and project with your own namespace and project.

apiVersion: argoproj.io/vlalphal
kind: Application
metadata:
name: guestbook
namespace: argocd
spec:
project: default
source:
repoURL: https://github.com/argoproj/argocd-example-apps.git
targetRevision: master
path: helm-guestbook
destination:
server: https://kubernetes.default.svc
namespace: guestbook
syncPolicy:
automated:
prune: true
selfHeal: true
syncOptions:
- CreateNamespace=true

5. Click Create.

Creating Argo CD Application via CLI

Prerequisites

The web-cli plugin is installed and the web-cli switch is enabled.

kubectl apply -f application.yaml

Creating GitOps ApplicationSet - Alauda Container Platform

Menu ON THIS PAGE >

Creating GitOps ApplicationSet

TOC

Overview
Prerequisites
Key Benefits
Creating GitOps Application
Procedure
View Sync Ignore Configuration Fields in YAML File

Managing GitOps Applications

Overview

Leverage Alauda Container Platform GitOps application management capabilities to
visually create Argo CD ApplicationSet for comprehensive lifecycle management of
containerized applications through GitOps Applications.

Prerequisites

¢ Installing Alauda Container Platform GitOps:

 If not installed, please contact the Administrator to Installing Alauda Container Platform
GitOps

Creating GitOps ApplicationSet - Alauda Container Platform

+ Git Repository Integration (Choose one method):

 Integrating Code Repositories via Argo CD dashboard

¢ The Administrator must provision Code Repositories through DevOps Toolchain >

Integrate

Key Benefits

¢ Visual GitOps Application Distribution: Combines multi-cluster management, differential
configurations, and platform-aligned visual operations for simplified multi-cloud/multi-

environment deployments.

Creating GitOps Application

Streamline application distribution through visual management interfaces.

Procedure

1. Container Platform, and navigate to GitOps Applications.
2. Click on Create GitOps Application.

3. Configure parameters in Basic Info and Code Repository sections:

Parameter Description

Application: Argo CD Application object for single namespace

deployment

Type L _
ApplicationSet: Argo CD ApplicationSet for cross-cluster/cross-
namespace deployments with differential configurations

Source Platform integrated: Pre-configured GitLab/GitHub/Bitbucket

repositories
ArgoCD integrated: GitLab/GitHub/Bitbucket/Gitee/Gitea

Parameter

Integration

Project Name

Version

Identifiers

Source File

Type

Source

Directory

Custom

Values

Creating GitOps ApplicationSet - Alauda Container Platform

Description

repositories integrated via Argo CD. Please refer to Integrating Code

Repositories via Argo CD dashboard

Toolchain project assigned by the Administrator

Deployment basis: Branch / Tag / Commit
Note:

e Branch uses latest commit

e Tag/ Commit defaults to latest but configurable

Kustomize: Uses kustomization.yaml for overlay configurations; for
more details, please refer to the Kustomize Official Documentation ~
Helm: Uses values.yaml for templating; for more details, please refer
to the Helm Official Documentation ~

Directory: Raw manifests

Repository path containing base manifests. Supports root directory

selection. All resources in this path will be deployed to target clusters

Source File Type is Helm, you can select a custom Helm Values file

4. Configure parameters in Destination sections:

o Application: Differential configs don't modify base files in source directory.

o ApplicationSet: Multi-cluster deployment with Differentiated Configuration.

Note: Differentiated Configuration don't modify base files in Source Directory.

5. Sync Policy (3-minute reconciliation interval).

Parameter

Manually Sync

Description

Requires user confirmation when drift detected

https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/

Creating GitOps ApplicationSet - Alauda Container Platform

Parameter Description
Automatic Sync Automatic reconciliation without human intervention

Configure using built-in/custom ignore templates, you can

Sync Ignore | T |
View Sync Ignore Configuration Fields in YAML File

Configuration _ _ _ _
Note: Custom templates require admin configuration

6. Click Create.

INFO

Manual Sync Note: Choose Synchronize Immediately for immediate deployment or

Synchronize Later to trigger manually via details page.

View Sync Ighore Configuration Fields in YAML File

After configuring sync ignore rules, verify via:
1. Navigate to GitOps Application.

2. Select target application.

3. Click Action > Update.

4. Inspect YAML file.

ignoreDifferences:

- group: apps
kind: Deployment
jsonPointers:

- /spec/replicas

Managing GitOps Applications

Creating GitOps ApplicationSet - Alauda Container Platform
Action Description
Initiate updates via:

o Editicon (&) on GitOps Application list
Update e Action > Update in detail view.

o CAUTION: This operation will overwrite all created application

instances

When Sync Policy is Manually Sync :

e Trigger sync via Action > Sync in detail view upon detecting

Manually Sync configuration drift

» Propagates latest commits to all managed instances

Delete via:

o Delete icon () on list page

Delete .) o
¢ Action > Delete in detail view

« DESTRUCTIVE: Removes application and ALL child resources

. Enable auto-reconciliation to maintain desired state. All instances
Automatic Sync . . .
automatically sync with repo changes every 3 minutes

For ApplicationSet type apps:

Source » Click Source link to navigate to parent Application details
page.
o Extend:
Application

o 1. Update existing ApplicationSet config
Distribution o . L o
2. In ApplicationSet details: Applications > Add Distribution

GitOps Observability - Alauda Container Platform

Menu

GitOps Observability

Argo CD Component Monitoring
Overview
Prerequisites

Viewing the Argo CD component dashboard

GitOps Applications Ops
Overview

Prerequisites

Alert

Logs

Events

Argo CD Component Monitoring - Alauda Container Platform

Menu ON THIS PAGE >

Argo CD Component Monitoring

TOC

Overview
Prerequisites

Viewing the Argo CD component dashboard

Overview

The monitoring dashboard of the web console offers a visual approach to monitor Argo CD
components. It proactively observes the resources and operational states of Argo CD
components, aiming to ensure their healthiness and availability. Here, the operational states
refer to the running conditions and performance metrics of the components in the Kubernetes
(K8s) environment. By closely tracking these aspects, we can promptly detect and address

any potential issues, maintaining the smooth operation of Argo CD within the K8s cluster.

Prerequisites

¢ Installing Alauda Container Platform GitOps

« Installation of Monitoring Plugins

Viewing the Argo CD component dashboard

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

Argo CD Component Monitoring - Alauda Container Platform

1. Login, and navigate to Administrator, and select the global cluster.

2. Click on Operations Center > Monitoring > Monitoring Dashboard.

3. Click on Switch button and select container-platform to view the ArgoCD dashboard.

4. Click the ArgoCD dashboard to view the Argo CD component monitoring information.

GitOps Applications Ops - Alauda Container Platform

Menu ON THIS PAGE >

GitOps Applications Ops

TOC

Overview
Prerequisites
Alert

Logs

Events

Overview

The web console's GitOps Applications management capabilities enable viewing GitOps
Applications monitoring, logs, and events. You can also create alerting policies for GitOps
Applications. When anomalies occur in GitOps Applications, proactive alert notifications
will be triggered to facilitate rapid issue identification, analysis, and resolution.

Prerequisites

* A GitOps application has been created on the web console. Creating an Argo CD
Application via the web console

¢ Installation of Monitoring Plugins

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

GitOps Applications Ops - Alauda Container Platform

Alert

Create alerting rule in advance to configure rules. When GitOps applications encounter
anomalies, proactive notifications will be triggered to enable quick issue identification,

analysis, and resolution.

1. Container Platform, Click on GitOps Applications.

2. Select the GitOps application name from the list where you want to create an alert rule.
3. Switch to the Alerts tab.

4. Click on Create Rule and fill in the basic information as required.

5. Click on Add Alert Condition, navigate to the Alert Conditions page. The corresponding

metric descriptions are as follows:

INFO

For other parameter configurations and alert settings, refer to Alert Management.

Metric Name Rule Description

Health status of GitOps

application:
GitOps Application Health Status - 0: Unknown, Lost, Degraded,
gitops.applicationset.healthy or Paused

- 1. Syncing

- 2: Healthy

Sync status of GitOps

_ o application:
GitOps Application Sync Status _ _
- 0: Sync Failed or Pending
gitops.applicationset.synced]
- 1: Syncing

- 2: Synced

6. Click Create.

http://localhost:4173/container_platform/observability/monitor/functions/manage_alert.html

GitOps Applications Ops - Alauda Container Platform

Logs

View logs for all workload resources created by GitOps applications. Logs enable rapid

identification of system failure information without relying on Log cluster plugin.

+ On the GitOps application details page, under Kubernetes Resources, click on any

Workload name to view the Logs information for that resource on the right side.

Events

View events for all resources distributed by GitOps Applications. Events enable rapid

identification of system failure event information without relying on Log cluster plugin.
+ On the GitOps application details page, go to the Events tab to view aggregated events for
all resources.

¢ On the GitOps application details page, under Kubernetes Resources, click any resource

name to view events for that resource on the right side.

How To - Alauda Container Platform

Menu

How To

Integrating Code Repositories via Argo CD dashboard
Use Cases

Prerequisites

Procedure

Operation Result

Creating an Argo CD Application via Argo CD dashboard
Prerequisites

Procedure

Creating an Argo CD Application via the web console
Use Cases
Prerequisites

Procedure

How to Obtain Argo CD Access Information
Use Cases

How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web
console?

How to Obtain Argo CD Access Information from Argo CD Operator?

Integrating Code Repositories via Argo CD dashboard - Alauda Container Platform

= Menu ON THIS PAGE >

Integrating Code Repositories via Argo CD
dashboard

Use the native Argo CD dashboard to integrate code repositories and allocate repositories,
enabling developer to manage GitOps applications throughout their entire lifecycle via a visual
interface.

TOC

Use Cases
Prerequisites
Procedure

Operation Result

Use Cases

« Simplify the creation process of GitOps Applications by selecting the associated

repository via the web console when creating them.

* When creating an Application via the native Argo CD dashboard, you can choose to use

the associated repository.

Prerequisites

Integrating Code Repositories via Argo CD dashboard - Alauda Container Platform

¢ Installing Alauda Container Platform GitOps, and the Native Argo CD Ul switch has been

enabled.

¢ Access to the Native Argo CD Ul URL along with username and password.

¢ The Administrators can directly access the URL through the GitOps cluster plugin details

page.

Procedure

Follow these steps to utilize the features:

1. Connect Code Repository

Log in to Argo CD using the access URL.

o Click on Settings in the left navigation bar.

e Click on the REPO card.

o Click CONNECT REPO in the upper left corner of the page.

o Choose the method to connect the repository and fill in the corresponding parameters as

needed.
e Click CONNECT.
2. Associate Project
» Click on Settings in the left navigation bar.
 Click on the Projects card.
¢ Click on the project where you need to create the GitOps application.

Note: Argo CD will automatically sync projects in the cluster, so there is no need to create

them manually.

e Click EDIT in the SOURCE REPOSITORIES section.

Integrating Code Repositories via Argo CD dashboard - Alauda Container Platform

o Click ADD SOURCE, enter the repository URL from the Connect Repository step, and

associate it with the project.

e Click SAVE.

Operation Result

¢ Return to the web console and navigate to Container Platform > GitOps Applications.

On the Create page, you will see the associated repositories.

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

= Menu ON THIS PAGE >

Creating an Argo CD Application via Argo
CD dashboard

TOC

Prerequisites

Procedure

Prerequisites

¢ Install (Choose one method):

¢ Installing Alauda Container Platform GitOps

e Installing Alauda Build of Argo CD

¢ Access credentials (URL, username, password) for the Argo CD dashboard have been

obtained How to Obtain Argo CD Access Information

Procedure

Follow these steps to utilize the features:

1. Enter the Argo CD dashboard access URL in your browser to open the interface.

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

The Administrators can directly access the Argo CD Native Ul through the global cluster

plugin details: locate the GitOps cluster plugin and click the access address.

2. Authenticate with your Argo CD credentials and login.

3. Click the + NEW APP button as shown below:

Applications

+ NEW APP %~ SYNC APPS

Configure the application according to the foallowing steps:

Basic Info Configuration

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

GEMNERAI

Application Name

guestbook

Project

default

SYNC POLICY

Manual

¢ Application Name: Input guestbook
¢ Project: Select default

¢ Sync Policy: Maintain Manual (recommended for initial configuration)

Source Repo Configuration

SOURCE

Repository URL

https://github.com/argoproj/argocd-example-apps.git

Revision

HEAD

Fath

guestbook

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform
¢ Repository URL: Setto https://github.com/argoproj/argocd-example-apps.git
¢ Revision: Use default HEAD

o Path: Specify guestbook (directory containing Kubernetes manifests)

Destination Cluster Configuration

DESTINATIOM

Cluster

https://kubernetes.default.svc

Mamespace

default

o Clusternew: Setto https://kubernetes.default.svc (in-cluster access) or choose a specific

cluster name

 Namespace: Setto default (or specify a target namespace)

4. Create Application After completing configurations, click the Create button at the top-right

corner to initialize the creation of the guestbook application.

Creating an Argo CD Application via the web console - Alauda Container Platform

Menu ON THIS PAGE >

Creating an Argo CD Application via the

web console

This article will introduce the complete process of creating an Argo CD Application through the

web console's GitOps Applications, allowing for GitOps management of the application.

TOC

Use Cases
Prerequisites
Procedure
Code Repository Configuration

Create Argo CD Application by using GitOps Applications

Use Cases

+ Create a SpringBoot Argo CD Application using the web console to experience the

complete process of managing applications through GitOps.

Prerequisites

¢ Installing Alauda Container Platform GitOps

* Projects and namespaces have been allocated

Creating an Argo CD Application via the web console - Alauda Container Platform

Procedure

Follow these steps to utilize the features:

Code Repository Configuration

If you do not see Integrated Code Repository in the Create GitOps Applications details

page, you can integrate the code repository first:

¢ Integrating Code Repositories via Argo CD dashboard

INFO

If you don't have an available code repository, you can use the demo repository for demonstration
purposes. Repository URL: https://github.com/argoproj/argocd-example-apps.git Description:
This repository contains example applications that can be used to demonstrate and test Argo CD

functionalities.

Create Argo CD Application by using GitOps Applications

1. Container Platform, click on GitOps Applications.
2. Click on Create GitOps Application.

3. In the Basic Info and Code Repository sections, configure the relevant information as per

the instructions below.

Parameter Input Content

Type Application

Source Argo CD Integration

Integrated Project Name argocd-example-apps
Branch

Version ldentifier
master

Creating an Argo CD Application via the web console - Alauda Container Platform

Parameter Input Content
Source File Type Helm

Source File Directory helm-guestbook
Custom Values values.yaml

4. In the Distribution, use the platform's recommended Namespace, or select another

namespace.
5. Set the synchronization policy to Manually Sync by default.

6. Click on Create.

How to Obtain Argo CD Access Information - Alauda Container Platform

Menu ON THIS PAGE >

How to Obtain Argo CD Access Information

This article details how to acquire access information for the Argo CD, covering both the
Alauda Container Platform GitOps cluster plugin Argo CD installed on the web console

and the one installed via the Alauda Build of Argo CD Operator.

TOC

Use Cases
How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web console?
Prerequisites
Procedure
How to Obtain Argo CD Access Information from Argo CD Operator?
Prerequisites
Procedure
Obtain Argo CD dashboard URL
Retrieve Argo CD Password

Update Argo CD admin account password

Use Cases

¢ Once you've obtained the Argo CD access information, you can manage all native Argo CD

resources via the Argo CD dashboard.

How to Obtain Argo CD Access Information - Alauda Container Platform

How to Obtain Argo CD Access Information for
the GitOps cluster plugin installed on the web

console?

Prerequisites

 Installing Alauda Container Platform GitOps
¢ (Option) The CLI plugin is installed, and the web-cli switch is enabled

e You possess Administrator permissions

Procedure

INFO

It is advisable to enable the following settings when installing Alauda Container Platform GitOps
cluster plugin:

» Enable the Native Argo CD Ul switch.

« Enable the Single Sign-On switch.

Follow these steps to utilize the features:

1. Login, and navigate to the Administrator page.
2. Click on Marketplace to access the Cluster Plugins list page.

3. Locate the GitOps plugin, click on GitOps, and a pop-up window will display the GitOps

Cluster Plugin detalils.

If it's not enabled: Go back to the Cluster Plugins list page, find the GitOps plugin, click the
Actions button, select Update, and enable the Argo CD Native Ul switch. If it's enabled: Simply
click the Access Address to open the Argo CD Dashboard.

4. Argo CD Native Ul

How to Obtain Argo CD Access Information - Alauda Container Platform

 If not enabled: Navigate to the Cluster Plugins list page, find the GitOps plugin, click
the Update button, and enable the Argo CD Native Ul switch.

 If enabled: Click the Access Address directly to open the Argo CD dashboard.
5. Single Sign-On

« If enabled: Login to the Argo CD dashboard using the platform account.

¢ If not enabled: The account defaults to admin , and you need to retrieve the password by

executing the following command in Kubectl Retrieve Argo CD Password.

How to Obtain Argo CD Access Information from

Argo CD Operator?

Prerequisites

¢ Installing Argo CD
e (Option) The CLI plugin is installed, and the web-cli switch is enabled

¢ You possess Administrator permissions

Procedure

Obtain Argo CD dashboard URL

1. Login, and navigate to the Administrator page.
2. Select Cluster Management to enter the Resource Management page.

3. In Resource Group, search for Service , select the argocd namespace (the namespace
where the argocd instance is created). The default namespace for Argo CD installed on the

web console is argocd.

4. In the right Resource List, find the argocd-gitops-server , click the Actions button, and
select Update to open the YAML details of argocd-gitops-server, details as shown in the

image below.

How to Obtain Argo CD Access Information - Alauda Container Platform

Servicel 2Status argocd-gitops-redis-ha-announce-1 pp kubermetes iofcomponent: redis |« argocd an hour ago
- metallb.io

ServiceMonitor

» monitoring.coreos.com

> Correlated with Cluster (1)

5. Change the type to NodePort and record the nodePort , then click the Update button.
6. In the left sidebar, select Cluster Management to enter the Cluster List page.

7. Select the cluster where argocd operator is installed, enter the Cluster Details Page, and

select Nodes.
8. Obtain the IP address of any control plane node.

9. Access Argo CD dashboard via http://{control plane node IP}:{nodePort} .

Retrieve Argo CD Password

Execute the following command in Kubectl to retrieve the password:

kubectl get secret -n argocd argocd-gitops-cluster -o template --template='{{index .data

"admin.password"}}"' |base64 -d

Update Argo CD admin account password

The default admin account password automatically created by installing Argo CD through
Alauda Container Platform GitOps or Alauda Build of Argo CD operator cannot be
modified via the Argo CD dashboard interface. You can change it by executing the following

command in the CLI tool. Here, newpassword is the new password you wish to set.

How to Obtain Argo CD Access Information - Alauda Container Platform

kubectl patch -n argocd secrets argocd-gitops-cluster -p '{"stringData":

{"admin.password": "<newpassword>"}}"

Troubleshooting - Alauda Container Platform

Menu ON THIS PAGE >

Troubleshooting

TOC

I've deleted/corrupted my repo and can't delete my app?

Why is my application still Out0fSync immediately after a successful Sync?

Why is my application stuck in Progressing state?

How to disable admin user?

Argo CD cannot deploy Helm Chart based applications without internet access, how can | solve it?
After creating my Helm application with Argo CD | cannot see it with helm Is and other Helm comman...
I've configured cluster secret but it does not show up in CLI/UI, how do | fix it?

Why Is My App Out Of Sync Even After Syncing?

How often does Argo CD check for changes to my Git or Helm repository?

How Do | Fix invalid cookie, longer than max length 4093?

Why Am | Getting rpc error: code = Unavailable desc = transport is closing When Using The CLI?
Why are resources of type SealedSecret stuck in the Progressing state?

How to rotate Redis keys?

How do | fix Manifest generation error (cached)?

I've deleted/corrupted my repo and can't delete

my app?

Argo CD can't delete an app if it cannot generate manifests. You need to either:

Troubleshooting - Alauda Container Platform

1. Reinstate/fix your repo.

2. Delete the app using --cascade=false and then manually deleting the resources.

Why is my application still OutOfSync immediately

after a successful Sync?

See Diffing Documentation ~ for reasons resources can be OutOfSync, and ways to configure

Argo CD to ignore fields when differences are expected.

Why is my application stuck in Progressing state?

Argo CD provides health for several standard Kubernetes types. The Ingress , StatefulSet
and SealedSecret types have known issues which might cause health check to return

Progressing state instead of Healthy .

Ingress is considered healthy if status.loadBalancer.ingress list is non-empty, with at least

one value for hostname or IP .Some ingress controllers (contour , traefik) don't update
status.loadBalancer.ingress field which causes Ingress to stuck in Progressing state

forever.

o StatefulSet is considered healthy if value of status.updatedReplicas field matches to
spec.replicas field. Due to Kubernetes bug kubernetes#68573 7 the
status.updatedReplicas is not populated. So unless you run Kubernetes version which
include the fix kubernetes#67570 ~ StatefulSet might stay in Progressing state.

e Your StatefulSet or DaemonSet is using OnDelete instead of RollingUpdate strategy.

e For SealedSecret , see Why are resources of type SealedSecret stuck inthe Progressing

state?

As workaround Argo CD allows providing health check ~ customization which overrides

default behavior.

https://argo-cd.readthedocs.io/en/stable/user-guide/diff-strategies/
https://argo-cd.readthedocs.io/en/stable/user-guide/diff-strategies/
https://argo-cd.readthedocs.io/en/stable/user-guide/diff-strategies/
https://github.com/kubernetes/kubernetes/issues/68573
https://github.com/kubernetes/kubernetes/issues/68573
https://github.com/kubernetes/kubernetes/issues/68573
https://github.com/kubernetes/kubernetes/pull/67570
https://github.com/kubernetes/kubernetes/pull/67570
https://github.com/kubernetes/kubernetes/pull/67570
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/

Troubleshooting - Alauda Container Platform

If you are using Traefik for your Ingress, you can update the Traefik config to publish the

loadBalancer IP using publishedservice 7, which will resolve this issue.

providers:
kubernetesIngress:
publishedService:

enabled: true

How to disable admin user?

Add admin.enabled: "false" inthe argocd-cm ConfigMap.

Argo CD cannot deploy Helm Chart based
applications without internet access, how can |

solve it?

Argo CD might fail to generate Helm chart manifests if the chart has dependencies located in

external repositories. To solve the problem you need to make sure that requirements.yaml

uses only internally available Helm repositories. Even if the chart uses only dependencies

from internal repos Helm might decide to refresh stable repo. As workaround override
stable repo URL in argocd-cm config map:

data:
repositories: |
- type: helm
url: http://<internal-helm-repo-host>:8080

name: stable

After creating my Helm application with Argo CD |

cannot see it with helm Is and other Helm

https://doc.traefik.io/traefik/providers/kubernetes-ingress/#publishedservice
https://doc.traefik.io/traefik/providers/kubernetes-ingress/#publishedservice
https://doc.traefik.io/traefik/providers/kubernetes-ingress/#publishedservice

Troubleshooting - Alauda Container Platform

commands?

When deploying a Helm application Argo CD is using Helm only as a template mechanism. It
runs helm template and then deploys the resulting manifests on the cluster instead of doing
helm install . This means that you cannot use any Helm command to view/verify the

application. It is fully managed by Argo CD. Note that Argo CD supports natively some

capabilities that you might miss in Helm (such as the history and rollback commands).

This decision was made so that Argo CD is neutral to all manifest generators.

I've configured cluster secret but it does not
show up in CLI/UI, how do I fix it?

Check if the cluster secret has the label argocd.argoproj.io/secret-type: cluster . If the secret
has the label but the cluster is still not visible, it may be a permission issue. Try listing the

clusters using the admin user (e.g.: argocd login --username admin &% argocd cluster list).

Check if cluster secret has argocd.argoproj.io/secret-type: cluster label. If secret has the
label but the cluster is still not visible then make sure it might be a permission issue. Try to list

clusters using admin user (e.g. argocd login --username admin &% argocd cluster list).

Why Is My App Out Of Sync Even After Syncing?

In some cases, the tool you use may conflict with Argo CD by adding the
app.kubernetes.io/instance label. E.g. using Kustomize common labels feature.

Argo CD automatically sets the app.kubernetes.io/instance label and uses it to determine
which resources form the app. If the tool does this too, this causes confusion. You can change
this label by setting the application.instanceLabelKey value in the argocd-cm . We recommend

that you use argocd.argoproj.io/instance .

INFO

Troubleshooting - Alauda Container Platform

When you make this change your applications will become out of sync and will need re-syncing.

How often does Argo CD check for changes to my

Git or Helm repository?

The default polling interval is 3 minutes (180 seconds) with a configurable jitter. You can

change the setting by updating the timeout.reconciliation value and the
timeout.reconciliation.jitter inthe argocd-cm config map. If there are any Git changes,

Argo CD will only update applications with the auto-sync setting enabled. If you setitto O
then Argo CD will stop polling Git repositories automatically and you can only use alternative

methods such as webhooks and/or manual syncs for creating applications.

How Do | Fix invalid cookie, longer than max

length 4093?

Argo CD uses a JWT as the auth token. You likely are part of many groups and have gone
over the 4KB limit which is set for cookies. You can get the list of groups by opening

"developer tools -> network™:

1. Click login to the Argo CD dashboard How to Obtain Argo CD Access Information

2. Find the call to <argocd_instance>/auth/callback?code=<random_string>

Decode the token at jwt.io 7. That will provide the list of teams that you can remove yourself

from.

Why Am | Getting rpc error: code = Unavailable

desc = transport is closing When Using The CLI?

Maybe you're behind a proxy that does not support HTTP 2? Try the --grpc-web flag:

https://jwt.io/
https://jwt.io/
https://jwt.io/

Troubleshooting - Alauda Container Platform

argocd ... --grpc-web

Why are resources of type SealedSecret stuck in

the Progressing state?

The controller of the SealedSecret resource may expose the status condition on resource it
provisioned. Since version v2.0.0 Argo CD picks up that status condition to derive a health
status for the SealedSecret .

Versions before v0.15.0 of the SealedSecret controller are affected by an issue regarding
this status conditions updates, which is why this feature is disabled by default in these
versions. Status condition updates may be enabled by starting the SealedSecret controller

with the --update-status command line parameter or by setting the
SEALED_SECRETS_UPDATE_STATUS environment variable.

To disable Argo CD from checking the status condition on SealedSecret resources, add the
following resource customization in your argocd-cm ConfigMap via

resource.customizations.health.<group_kind> key.

resource.customizations.health.bitnami.com_SealedSecret: |
hs = {}
hs.status = "Healthy"
hs.message = "Controller doesn't report resource status"

return hs

How to rotate Redis keys?

e Delete argocd-redis secret in the namespace where Argo CD is installed.
kubectl delete secret argocd-redis -n <argocd namesapce>

¢ If you are running Redis in HA mode, restart Redis in HA.

Troubleshooting - Alauda Container Platform

kubectl rollout restart deployment argocd-redis-ha-haproxy

kubectl rollout restart statefulset argocd-redis-ha-server

¢ If you are running Redis in non-HA mode, restart Redis.
kubectl rollout restart deployment argocd-redis

* Restart other components.

kubectl rollout restart deployment argocd-server argocd-repo-server

kubectl rollout restart statefulset argocd-application-controller

How do | fix Manifest generation error (cached)?

Manifest generation error (cached) means that there was an error when generating manifests

and that the error message has been cached to avoid runaway retries.

Doing a hard refresh (ignoring the cached error) can overcome transient issues. But if there's

an ongoing reason manifest generation is failing, a hard refresh will not help.

Instead, try searching the repo-server logs for the app name in order to identify the error that

is causing manifest generation to fail.

	GitOps
	Introduction
	TOC
	GitOps Use Cases
	GitOps Advantages
	Alauda Container Platform GitOps Advantages

	Install
	Installing Alauda Build of Argo CD
	TOC
	Prerequisites
	Procedure
	Install Alauda Build of Argo CD Operator
	Create Argo CD Instance
	Create AppProject Instance

	Installing Alauda Container Platform GitOps
	TOC
	Prerequisites
	Installing Alauda Container Platform GitOps cluster plugin
	Constraints and Limitations
	Procedure
	Verification

	Upgrade
	Upgrading Alauda Container Platform GitOps
	TOC
	Prerequisites
	Upgrading Alauda Container Platform GitOps cluster plugin
	Constraints and Limitations
	Procedure
	Verification

	Architecture
	TOC
	GitOps and Argo CD
	GitOps Architecture
	Alauda Container Platform GitOps Architecture

	Concepts
	GitOps
	TOC
	Introduction
	Core Principles
	Advantages
	Popular GitOps Tools

	Argo CD Concept
	Introduction
	TOC
	Summary of Differences Between Application and ApplicationSet
	Argo CD Sync Statuses
	References

	Application
	TOC
	Introduction
	Use Cases for Application
	Application Example
	Reference

	ApplicationSet
	TOC
	Introduction
	Use Cases for ApplicationSet
	ApplicationSet Example
	References

	Tool
	TOC
	Introduction
	Supported Tools
	Development Workflow
	Feature Comparison
	References

	Helm
	TOC
	Introduction
	Core Concepts of Helm
	Advantages
	Use Cases

	References
	Kustomize
	TOC
	Introduction
	Core Concepts of Kustomize
	Advantages
	Use Cases

	References
	Directory
	TOC
	Introduction
	Advantages
	Use Cases

	References
	Sync
	TOC
	Sync Overview
	Sync Status Overview
	Sync operation status Overview
	Refresh Overview
	References

	Health
	TOC
	Introduction
	Health Scope
	Reference

	Alauda Container Platform GitOps Concepts
	Introduction
	TOC
	Why Argo CD?
	Advantages

	Alauda Container Platform GitOps Sync and Health Status
	TOC
	Sync Status Explanation
	Health Status Explanation
	Recognition Rules

	Guides
	Creating GitOps Application
	Creating GitOps Application
	Overview
	TOC
	Prerequisites
	Creating Argo CD Application via web console
	Procedure
	View Sync Ignore Configuration Fields in YAML file

	Creating Argo CD Application via YAML
	Procedure

	Creating Argo CD Application via CLI
	Prerequisites

	Creating GitOps ApplicationSet
	TOC
	Overview
	Prerequisites
	Key Benefits
	Creating GitOps Application
	Procedure
	View Sync Ignore Configuration Fields in YAML File

	Managing GitOps Applications

	GitOps Observability
	Argo CD Component Monitoring
	TOC
	Overview
	Prerequisites
	Viewing the Argo CD component dashboard

	GitOps Applications Ops
	TOC
	Overview
	Prerequisites
	Alert
	Logs
	Events

	How To
	Integrating Code Repositories via Argo CD dashboard
	TOC
	Use Cases
	Prerequisites
	Procedure
	Operation Result

	Creating an Argo CD Application via Argo CD dashboard
	TOC
	Prerequisites
	Procedure

	Creating an Argo CD Application via the web console
	TOC
	Use Cases
	Prerequisites
	Procedure
	Code Repository Configuration
	Create Argo CD Application by using GitOps Applications

	How to Obtain Argo CD Access Information
	TOC
	Use Cases
	How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web console?
	Prerequisites
	Procedure

	How to Obtain Argo CD Access Information from Argo CD Operator?
	Prerequisites
	Procedure
	Obtain Argo CD dashboard URL
	Retrieve Argo CD Password

	Update Argo CD admin account password

	Troubleshooting
	TOC
	I've deleted/corrupted my repo and can't delete my app?
	Why is my application still OutOfSync immediately after a successful Sync?
	Why is my application stuck in Progressing state?
	How to disable admin user?
	Argo CD cannot deploy Helm Chart based applications without internet access, how can I solve it?
	After creating my Helm application with Argo CD I cannot see it with helm ls and other Helm commands?
	I've configured cluster secret but it does not show up in CLI/UI, how do I fix it?
	Why Is My App Out Of Sync Even After Syncing?
	How often does Argo CD check for changes to my Git or Helm repository?
	How Do I Fix invalid cookie, longer than max length 4093?
	Why Am I Getting rpc error: code = Unavailable desc = transport is closing When Using The CLI?
	Why are resources of type SealedSecret stuck in the Progressing state?
	How to rotate Redis keys?
	How do I fix Manifest generation error (cached)?

