
GitOps

Introduction

Introduction

GitOps Use Cases

GitOps Advantages

Alauda Container Platform GitOps Advantages

Install

Installing Alauda Build of Argo CD
Prerequisites

Procedure

Installing Alauda Container Platform GitOps

Prerequisites

Installing Alauda Container Platform GitOps cluster plugin

Upgrade

Menu

GitOps - Alauda Container Platform

Upgrading Alauda Container Platform GitOps
Prerequisites

Upgrading Alauda Container Platform GitOps cluster plugin

Architecture

Architecture

GitOps and Argo CD

GitOps Architecture

Alauda Container Platform GitOps Architecture

Concepts

GitOps
Introduction

Core Principles

Advantages

Popular GitOps Tools

Argo CD Concept

Alauda Container Platform GitOps Concepts

GitOps - Alauda Container Platform

Guides

Creating GitOps Application

GitOps Observability

How To

Integrating Code Repositories via Argo CD dashboard
Use Cases

Prerequisites

Procedure

Operation Result

Creating an Argo CD Application via Argo CD dashboard
Prerequisites

Procedure

Creating an Argo CD Application via the web console
Use Cases

Prerequisites

Procedure

GitOps - Alauda Container Platform

How to Obtain Argo CD Access Information
Use Cases

How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web
console?

How to Obtain Argo CD Access Information from Argo CD Operator?

Troubleshooting

Troubleshooting
I've deleted/corrupted my repo and can't delete my app?

Why is my application still OutOfSync immediately after a successful Sync?

Why is my application stuck in Progressing state?

How to disable admin user?

Argo CD cannot deploy Helm Chart based applications without internet access, how can I solve
it?

After creating my Helm application with Argo CD I cannot see it with helm ls and other Helm
commands?

I've configured cluster secret but it does not show up in CLI/UI, how do I fix it?

Why Is My App Out Of Sync Even After Syncing?

How often does Argo CD check for changes to my Git or Helm repository?

How Do I Fix invalid cookie, longer than max length 4093?

Why Am I Getting rpc error: code = Unavailable desc = transport is closing When Using The CLI?

Why are resources of type SealedSecret stuck in the Progressing state?

How to rotate Redis keys?

GitOps - Alauda Container Platform

GitOps is a modern approach to continuous delivery and operations that leverages Git as the

central "Single Source of Truth" (SSOT) for defining and managing infrastructure, application

configurations, and deployment workflows. By consolidating application code, configuration

files, and Infrastructure as Code (IaC) definitions within a Git repository, GitOps enables

comprehensive version control and automated governance of the entire software delivery

lifecycle. In this paradigm, development and operations teams collaborate seamlessly

throughout the software development, testing, and deployment phases using Git's robust

branching, code review, and merge request mechanisms. When changes to code or

configurations are pushed to the Git repository, automated tools detect these updates and

initiate a cascade of automated processes, including building, testing, and deployment. This

workflow facilitates the continuous delivery and continuous deployment (CI/CD) of software,

ensuring rapid and reliable releases.

GitOps Use Cases

GitOps Advantages

Alauda Container Platform GitOps Advantages

Continuous Delivery of Containerized Applications: Within a Kubernetes ecosystem,

GitOps excels at managing the deployment, updates, and rollbacks of containerized

applications. Developers commit application code and Kubernetes configuration files to the

Introduction

TOC

GitOps Use Cases

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Git repository, and GitOps tools subsequently automate the deployment of these

applications to the Kubernetes cluster, synchronizing them with any configuration file

modifications.

Multi-Environment Management: GitOps simplifies the management of infrastructure and

application configurations across disparate environments, such as development, testing,

staging, and production. Through strategic branching and environment tagging, it maintains

configuration consistency while accommodating necessary customizations for each

environment. Operations of Microservices Architecture: In microservices architectures,

GitOps aids teams in efficiently orchestrating the deployment and updates of numerous

microservices. Each microservice's code and configurations can be independently stored in

the Git repository, allowing GitOps tools to automate deployments and updates based on

microservice dependencies and update strategies, thereby ensuring system stability.

Infrastructure as Code (IaC) Management: GitOps seamlessly integrates with IaC tools

like Terraform and Ansible to manage cloud infrastructure, server configurations, and

network resources. Storing IaC configuration files in a Git repository enables version-

controlled and automated infrastructure deployments, enhancing manageability and

repeatability.

Cross-Team Collaboration and Code Sharing: In large organizations, multiple teams

often need to share code and configurations. GitOps provides a unified platform for teams

to collaborate on development, share code, and manage configurations via the Git

repository, boosting collaboration efficiency and code reuse.

Accelerated Collaboration & Delivery

Rapid Rollback & Recovery

Multi-Environment Governance

Enhanced Security & Compliance

GitOps advantages detailed introduction

GitOps Advantages

Alauda Container Platform GitOps Advantages

Introduction - Alauda Container Platform

Enterprise-Grade Argo CD Operator.

Argo CD Operator Safety Service.

Visual GitOps Application Multi-Environment Distribution Management.

Visual GitOps Application Operations and Maintenance.

Visual GitOps Cluster Configuration Management.

Closed-Loop GitOps Application Management Integrated with All Platform Products.

Alauda Container Platform GitOps advantages detailed introduction

Introduction - Alauda Container Platform

Install

Installing Alauda Build of Argo CD

Prerequisites

Procedure

Installing Alauda Container Platform GitOps
Prerequisites

Installing Alauda Container Platform GitOps cluster plugin

Menu

Install - Alauda Container Platform

Prerequisites

Procedure

Install Alauda Build of Argo CD Operator

Create Argo CD Instance

Create AppProject Instance

1. Download the Alauda Build of Argo CD Operator installation package corresponding to

your platform architecture.

2. Upload the installation package using the Upload Packages mechanism.

Install to the cluster where you want to use GitOps functionality.

1. Login, go to the Administrator page.

Installing Alauda Build of Argo CD

TOC

Prerequisites

Procedure

Install Alauda Build of Argo CD Operator

Menu ON THIS PAGE

Installing Alauda Build of Argo CD - Alauda Container Platform

2. Click Marketplace > OperatorHub to enter the OperatorHub page.

3. Find the Alauda Build of Argo CD Operator, click Install, and navigate to the Install Argo

CD page.

Configuration Parameters:

Parameter Recommended Configuration

Channel The default channel is alpha .

Installation

Mode

Cluster : All namespaces in the cluster share a single Operator

instance for creation and management, resulting in lower resource

usage.

Namespace Select Recommended Namespace : Automatically created if none exists.

Upgrade

Strategy

Auto : The OperatorHub will automatically upgrade the Operator to

the latest version when a new version is available.

4. It is recommended to use the suggested default configuration; simply click Install to

complete the Alauda Build of Argo CD Operator installation.

1. Click Marketplace > OperatorHub.

2. Find the Alauda Build of Argo CD Operator, click it to enter the Argo CD detail info page.

3. Click All Instances,

4. Click Create Instance, select Argo CD instance card.

5. Click Create Instance

INFO

In the configuration instance parameter page, use the default configuration unless there are specific

requirements. Note: If the global cluster is not highly available (e.g., it has only one control node),

please switch to YAML view when creating the instance and set the ha.enabled field value to false.

Create Argo CD Instance

Installing Alauda Build of Argo CD - Alauda Container Platform

6. Click Create.

INFO

Tip: If you do not need to use the platform-managed Cluster Configuration Management feature,

you do not need to perform the following steps.

1. Find the Alauda Build of Argo CD operator, click it to enter the Alauda Argo CD detail

info page.

2. Click All Instances, Create Instance, select AppProject instance card.

3. Switch to YAML view, and overwrite the existing YAML content on the interface with the

code below.

4. Click Create.

After completing the above procedure, you have successfully installed Argo CD. Immediately

Creating an Argo CD Application via Argo CD dashboard to begin your GitOps journey.

Create AppProject Instance

apiVersion: argoproj.io/v1alpha1

kind: AppProject

metadata:

 name: cpaas-system

 namespace: argocd

spec:

 clusterResourceWhitelist:

 - group: '*'

 kind: '*'

 destinations:

 - namespace: '*'

 server: '*'

 sourceRepos:

 - '*'

Installing Alauda Build of Argo CD - Alauda Container Platform

Prerequisites

Installing Alauda Container Platform GitOps cluster plugin

Constraints and Limitations

Procedure

Verification

1. Download the Alauda Container Platform GitOps cluster plugin installation package

corresponding to your platform architecture.

2. Upload the installation package using the Upload Packages mechanism.

3. Install the installation package to the global cluster using the cluster plugins mechanism.

INFO

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the cluster plugin to global cluster.

For more details, please refer to CLI.

Installing Alauda Container Platform
GitOps

TOC

Prerequisites

Menu ON THIS PAGE

Installing Alauda Container Platform GitOps - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

Only supports installation in the global cluster.

After the plugin is installed, the ArgoCD instance in the argocd-operator will be restricted

from operations.

1. Login, go to the Administrator page.

2. Click Marketplace > Cluster Plugins to enter the Cluster Plugins list page.

3. Find the GitOps cluster plugin, click Install, and navigate to the Install GitOps Plugin

page.

4. It is recommended to use the suggested default configuration; simply click Install to

complete the Alauda Container Platform GitOps cluster plugin installation.

The parameter descriptions are as follows:

Parameter Description

Native Argo

CD UI

Select whether to access the dashboard provided by Argo CD as

needed. This interface includes features like monitoring, repository

management, and settings, and can be used to manage and monitor

the created applications.

Single Sign-

On

It is recommended to enable SSO, which allows for quick access to the

Argo CD native UI using platform account information, enhancing the

login experience while also improving security and convenience.

Note: The SSO feature requires the Argo CD native UI feature to be

enabled.

Only supports access via HTTPS; SSO will not work if accessed via

HTTP.

Installing Alauda Container Platform GitOps
cluster plugin

Constraints and Limitations

Procedure

Installing Alauda Container Platform GitOps - Alauda Container Platform

Parameter Description

After enabling SSO and using the access address to open the Argo

CD login interface, click the LOG IN VIA OIDC button in the interface

for one-click login to the Argo CD native UI.

Access

Address

Recommended: This address is dynamically generated based on the

platform address for accessing the Argo CD Dashboad. No manual

input is required.

Account The account used to log in and access the Argo CD native UI.

Password

After enabling access to the Argo CD native UI, you can execute the

following command in the global cluster's CLI tool to obtain it.

Obtain Argo CD Access Information

Resource

Quota

The minimum requirements and recommendations for the platform are

as follows:

Minimum: CPU requests must not be less than 100 m, and memory

requests must not be less than 250 Mi, and request values must not

exceed limit values.

Recommended: CPU requests should not be less than 250 m, and

memory requests should not be less than 500 Mi; CPU limit values

should not be less than 2 cores, and memory limit values should not

be less than 2 Gi.

1. On the Administrator page, under the Cluster section in the left navigation, the Config

entry will be displayed. You can use the capabilities of Cluster Configuration Management.

2. Access the Container Platform, the left navigation will display GitOps Applications entry,

where you can create a GitOps application to immediately experience Creating an Argo CD

Application via the web console.

Verification

Installing Alauda Container Platform GitOps - Alauda Container Platform

Upgrade

Upgrading Alauda Container Platform GitOps

Prerequisites

Upgrading Alauda Container Platform GitOps cluster plugin

Menu

Upgrade - Alauda Container Platform

Prerequisites

Upgrading Alauda Container Platform GitOps cluster plugin

Constraints and Limitations

Procedure

Verification

1. Download the Alauda Container Platform GitOps cluster plugin installation package

corresponding to your platform architecture.

2. Upload the Alauda Container Platform GitOps installation package using the Upload

Packages mechanism.

3. Install the Alauda Container Platform GitOps cluster plugin to the global cluster using

the cluster plugins mechanism.

INFO

Upgrading Alauda Container Platform
GitOps

TOC

Prerequisites

Menu ON THIS PAGE

Upgrading Alauda Container Platform GitOps - Alauda Container Platform

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the cluster plugin to global cluster.

For more details, please refer to CLI.

Only supports upgrading in the global cluster.

1. Login, go to the Administrator page.

2. Click Clusters > Clusters > global > Functional Components to enter the components

list page.

3. Click the Upgrade button, and select the new version of Alauda Container Platform

GitOps as the target in the Confirm Component Upgrade page.

4. Click the Upgrade again and the Upgrade in the dialog to confirm the upgrading.

5. (The following steps are only required if upgrading from ACP 3.16.0). Go back to the

cluster global page, click Actions > CLI Tools to enter the CLI Window.

6. In the CLI window, input kubectl delete cm -n argocd argocd-redis-ha-configmap to recreate

the argocd-redis-ha-configmap .

7. In the CLI window, input kubectl get cm -n argocd argocd-redis-ha-configmap to ensure the

configmap is created.

1. On the Administrator page, under the Cluster section in the left navigation, the Config

entry will be displayed. You can use the capabilities of Cluster Configuration Management.

Upgrading Alauda Container Platform GitOps
cluster plugin

Constraints and Limitations

Procedure

Verification

Upgrading Alauda Container Platform GitOps - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

2. Access the Container Platform, the left navigation will display GitOps Applications entry,

where you can create a GitOps application to immediately experience Creating an Argo CD

Application via the web console.

Upgrading Alauda Container Platform GitOps - Alauda Container Platform

GitOps and Argo CD

GitOps Architecture

Alauda Container Platform GitOps Architecture

GitOps is a modern theory for continuous delivery and operations, while Argo CD is a powerful

tool that implements GitOps by monitoring configuration files in a Git repository and

automatically synchronizing them to the target environment. This approach improves software

delivery speed, reliability, and security by incorporating the entire delivery process into the Git

version control system.

Alauda Container Platform GitOps, built on Argo CD, uses the Git repository as the sole

trusted source to store application, infrastructure configuration, and other files for rapid and

accurate distribution and deployment to one or multiple Kubernetes clusters.

The main differences between GitOps and traditional application management methods are:

Architecture

TOC

GitOps and Argo CD

GitOps Architecture

Menu ON THIS PAGE

Architecture - Alauda Container Platform

Instead of directly manipulating the runtime environment, GitOps controls it by maintaining

an application configuration repository on Git.

Argo CD continuously pulls the repository and corrects discrepancies between the runtime

environment and the application configuration repository, ensuring the environment meets

expectations, preventing configuration drift, and enabling rapid recovery in case of failure.

Alauda Container Platform GitOps is installed as a cluster plugin on the global cluster and

utilizes Argo CD for application distribution and infrastructure provisioning across multiple

business clusters.

Alauda Container Platform GitOps Architecture

Architecture - Alauda Container Platform

Architecture - Alauda Container Platform

Concepts

GitOps

GitOps

Introduction

Core Principles

Advantages

Popular GitOps Tools

Argo CD Concept

Introduction

Summary of Differences Between Application and ApplicationSet

Argo CD Sync Statuses

References

Application
Introduction

Use Cases for Application

Application Example

Reference

Menu

Concepts - Alauda Container Platform

ApplicationSet
Introduction

Use Cases for ApplicationSet

ApplicationSet Example

References

Tool
Introduction

Supported Tools

Development Workflow

Feature Comparison

References

Helm

Introduction

Core Concepts of Helm

Advantages

Use Cases

Kustomize

Introduction

Core Concepts of Kustomize

Advantages

Use Cases

Concepts - Alauda Container Platform

Directory
Introduction

Advantages

Use Cases

Sync
Sync Overview

Sync Status Overview

Sync operation status Overview

Refresh Overview

References

Health
Introduction

Health Scope

Reference

Alauda Container Platform GitOps Concepts

Introduction

Why Argo CD?

Advantages

Concepts - Alauda Container Platform

Alauda Container Platform GitOps Sync and Health Status
Sync Status Explanation

Health Status Explanation

Recognition Rules

Concepts - Alauda Container Platform

Introduction

Core Principles

Advantages

Popular GitOps Tools

GitOps is the practice of using a Git repository as the authoritative source for infrastructure

and application configurations. All operational changes are version-controlled, automated, and

auditable through Git. It relies on declarative configurations stored in Git, where any

modifications must be committed to trigger automated deployment processes.

Declarative Configuration: GitOps fundamentally requires declarative tools, treating Git

as the single source of truth. This enables consistent application deployment across

Kubernetes clusters and platform-agnostic recovery in case of failures.

Versioned & Immutable State: Infrastructure and application versions are directly mapped

to Git commits. Rollbacks are executed via git revert , ensuring immutable version

history.

GitOps

TOC

Introduction

Core Principles

Menu ON THIS PAGE

GitOps - Alauda Container Platform

Automated Reconciliation: Merged declarative states are automatically applied to

clusters. This eliminates manual intervention, prevents human errors, and supports security

approvals in deployment workflows.

Self-Healing: Controllers (e.g., Argo CD) continuously reconcile cluster states with Git-

defined states, enabling autonomous system recovery.

Accelerated Collaboration & Delivery: Declarative definitions of infrastructure,

configurations, and target states stored in Git enable automated deployments. Teams

achieve one-click environment provisioning post-validation, streamlining collaboration and

delivery.

Rapid Rollback & Recovery: Leveraging Git's version control, anomalies trigger instant

rollbacks. GitOps controllers ensure self-healing through automated reconciliation.

Multi-Environment Governance: Git as the single source of truth, combined with

configuration overlays, enables precise bulk deployments across hybrid/multi-cloud

environments.

Enhanced Security & Compliance: Git's RBAC, audit logs, branch protections, and

encryption secure sensitive configurations, ensuring compliance.

Argo CD: A Kubernetes-native declarative GitOps tool for defining, versioning, and

automating application lifecycles with auditability.

Flux: A lightweight Kubernetes GitOps operator that continuously syncs Git repositories to

clusters.

Jenkins X: A CI/CD platform with GitOps integration for automated pipelines and Git-driven

deployments.

Advantages

Popular GitOps Tools

GitOps - Alauda Container Platform

Argo CD Concept

Introduction

Summary of Differences Between Application and ApplicationSet

Argo CD Sync Statuses

References

Application
Introduction

Use Cases for Application

Application Example

Reference

ApplicationSet
Introduction

Use Cases for ApplicationSet

ApplicationSet Example

References

Menu

Argo CD Concept - Alauda Container Platform

Tool
Introduction

Supported Tools

Development Workflow

Feature Comparison

References

Helm

Introduction

Core Concepts of Helm

Advantages

Use Cases

Kustomize

Introduction

Core Concepts of Kustomize

Advantages

Use Cases

Directory

Introduction

Advantages

Use Cases

Argo CD Concept - Alauda Container Platform

Sync
Sync Overview

Sync Status Overview

Sync operation status Overview

Refresh Overview

References

Health

Introduction

Health Scope

Reference

Argo CD Concept - Alauda Container Platform

Argo CD is a very popular open-source GitOps tool. To use Argo CD, you need to understand

the following core concepts:

1. Application: A group of Kubernetes resources as defined by a manifest. This is a Custom

Resource Definition (CRD). Application

2. ApplicationSet: A Kubernetes controller supporting the ApplicationSet CRD, enabling bulk

generation of Applications from a single template. Think of it as an Application factory that

creates instances based on parameters. ApplicationSet

3. Tool: Specifies the configuration management tool for Application sources (e.g., Kustomize,

Helm). Tool

4. Sync: The process of reconciling an application's live state with its desired state (e.g.,

applying changes to Kubernetes clusters). Sync

5. Health: Indicates an application's operational status, including readiness and ability to

serve requests. Health

Summary of Differences Between Application and ApplicationSet

Argo CD Sync Statuses

References

Introduction

TOC

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Attribute Application ApplicationSet

Definition
Single application

deployment

Template for generating multiple

Application instances.

Configuration Static YAML definitions
Dynamic parameter-driven template

generation

Deployment Single application Multiple similar applications

Use Cases

Simple single-

environment

deployments

Complex multi-environment/cluster

deployments requiring parameterized

instances

Core

Concepts

Git Repo, target cluster,

deployment strategies

Generators, templates, parameters,

placeholders

Role in Argo

CD.

Fundamental

deployment unit
Advanced bulk management layer

Sync

Status
Description

Synced Application's live state fully matches desired state.

OutOfSync Live state diverges from desired state; synchronization required.

Syncing
Active synchronization in progress; live state converging to desired

state.

Summary of Differences Between Application and
ApplicationSet

Argo CD Sync Statuses

Introduction - Alauda Container Platform

Argo CD Official Documentation

References

↗

Introduction - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/

Introduction

Use Cases for Application

Application Example

Reference

Application is a group of Kubernetes resources as defined by a manifest. This is a Custom

Resource Definition (CRD).

Single-Component Deployment: Use Application CRD to declaratively manage deployment

of atomic workloads within a single namespace.

Static Configuration: Ideal for applications with deterministic manifests that don't require

dynamic templating or multi-environment variations.

Monocluster Deployment: Targeted deployment to individual Kubernetes clusters through

GitOps workflows.

Application

TOC

Introduction

Use Cases for Application

Menu ON THIS PAGE

Application - Alauda Container Platform

Application Example

Application - Alauda Container Platform

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: guestbook

 namespace: argocd

 finalizers:

 - resources-finalizer.argocd.argoproj.io

 labels:

 name: guestbook

spec:

 project: default

 source:

 repoURL: https://github.com/argoproj/argocd-example-apps.git

 targetRevision: HEAD

 path: guestbook

 chart: chart-name

 helm:

 passCredentials: false

 parameters:

 - name: "nginx-ingress.controller.service.annotations.external-

dns\\.alpha\\.kubernetes\\.io/hostname"

 value: mydomain.example.com

 - name: "ingress.annotations.kubernetes\\.io/tls-acme"

 value: "true"

 forceString: true

 fileParameters:

 - name: config

 path: files/config.json

 releaseName: guestbook

 valueFiles:

 - values-prod.yaml

 ignoreMissingValueFiles: false

 values: |

 ingress:

 enabled: true

 path: /

Application - Alauda Container Platform

 hosts:

 - mydomain.example.com

 annotations:

 kubernetes.io/ingress.class: nginx

 kubernetes.io/tls-acme: "true"

 labels: {}

 tls:

 - secretName: mydomain-tls

 hosts:

 - mydomain.example.com

 valuesObject:

 ingress:

 enabled: true

 path: /

 hosts:

 - mydomain.example.com

 annotations:

 kubernetes.io/ingress.class: nginx

 kubernetes.io/tls-acme: "true"

 labels: {}

 tls:

 - secretName: mydomain-tls

 hosts:

 - mydomain.example.com

 skipCrds: false

 skipSchemaValidation: false

 version: v2

 kubeVersion: 1.30.0

 apiVersions:

 - traefik.io/v1alpha1/TLSOption

 - v1/Service

 namespace: custom-namespace

 kustomize:

 version: v3.5.4

 namePrefix: prod-

 nameSuffix: -some-suffix

 commonLabels:

 foo: bar

 commonAnnotations:

 beep: boop-${ARGOCD_APP_REVISION}

 commonAnnotationsEnvsubst: true

Application - Alauda Container Platform

 forceCommonLabels: false

 forceCommonAnnotations: false

 images:

 - gcr.io/heptio-images/ks-guestbook-demo:0.2

 - my-app=gcr.io/my-repo/my-app:0.1

 namespace: custom-namespace

 replicas:

 - name: kustomize-guestbook-ui

 count: 4

 components:

 - ../component

 patches:

 - target:

 kind: Deployment

 name: guestbook-ui

 patch: |-

 - op: add

 path: /spec/template/spec/nodeSelector/

 value:

 env: "pro"

 kubeVersion: 1.30.0

 apiVersions:

 - traefik.io/v1alpha1/TLSOption

 - v1/Service

 directory:

 recurse: true

 jsonnet:

 extVars:

 - name: foo

 value: bar

 - code: true

 name: baz

 value: "true"

 tlas:

 - code: false

 name: foo

 value: bar

 exclude: 'config.yaml'

 include: '*.yaml'

 plugin:

 name: mypluginname

Application - Alauda Container Platform

 env:

 - name: FOO

 value: bar

 parameters:

 - name: string-param

 string: example-string

 - name: array-param

 array: [item1, item2]

 - name: map-param

 map:

 param-name: param-value

 sources:

 - repoURL: https://github.com/argoproj/argocd-example-apps.git

 targetRevision: HEAD

 path: guestbook

 ref: my-repo

 destination:

 server: https://kubernetes.default.svc

 namespace: guestbook

 info:

 - name: 'Example:'

 value: 'https://example.com'

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 allowEmpty: false

 syncOptions:

 - Validate=false

 - CreateNamespace=true

 - PrunePropagationPolicy=foreground

 - PruneLast=true

 - RespectIgnoreDifferences=true

 - ApplyOutOfSyncOnly=true

 managedNamespaceMetadata:

 labels:

 any: label

 you: like

 annotations:

 the: same

Application - Alauda Container Platform

Argo CD Official Documentation

Reference

↗

 applies: for

 annotations: on-the-namespace

 retry:

 limit: 5

 backoff:

 duration: 5s

 factor: 2

 maxDuration: 3m

 ignoreDifferences:

 - group: apps

 kind: Deployment

 jsonPointers:

 - /spec/replicas

 - kind: ConfigMap

 jqPathExpressions:

 - '.data["config.yaml"].auth'

 - group: "*"

 kind: "*"

 managedFieldsManagers:

 - kube-controller-manager

 name: my-deployment

 namespace: my-namespace

 revisionHistoryLimit: 10

Application - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/
https://argo-cd.readthedocs.io/en/stable/

Introduction

Use Cases for ApplicationSet

ApplicationSet Example

References

ApplicationSet controller is a Kubernetes controller that adds support for an ApplicationSet

CustomResourceDefinition (CRD). This controller/CRD enables both automation and greater

flexibility managing Argo CD Applications across a large number of clusters and within

monorepos, plus it makes self-service usage possible on multitenant Kubernetes clusters.

Deploying multiple similar applications: When you need to deploy multiple applications with

similar configurations, you can use ApplicationSet to reduce redundant configurations. For

example, you could use ApplicationSet to deploy multiple microservices that utilize the

same template, but have different service names and port numbers.

Multi - cluster deployments: When you need to deploy the same application across multiple

Kubernetes clusters, you can use ApplicationSet to simplify configuration. For instance, you

ApplicationSet

TOC

Introduction

Use Cases for ApplicationSet

Menu ON THIS PAGE

ApplicationSet - Alauda Container Platform

could define an application with ApplicationSet and deploy it across multiple clusters, each

using different parameters.

Dynamically generating applications: When you need to dynamically generate applications

based on certain conditions, ApplicationSet can be utilized. For example, you could

dynamically generate different application instances based on branches or tags in a Git

repository.

ApplicationSet Example

apiVersion: argoproj.io/v1alpha1

kind: ApplicationSet

metadata:

 name: guestbook

spec:

 goTemplate: true

 goTemplateOptions: ["missingkey=error"]

 generators:

 - list:

 elements:

 - cluster: engineering-dev

 url: https://1.2.3.4

 - cluster: engineering-prod

 url: https://2.4.6.8

 - cluster: finance-preprod

 url: https://9.8.7.6

 template:

 metadata:

 name: '{{.cluster}}-guestbook'

 spec:

 project: my-project

 source:

 repoURL: https://github.com/infra-team/cluster-deployments.git

 targetRevision: HEAD

 path: guestbook/{{.cluster}}

 destination:

 server: '{{.url}}'

 namespace: guestbook

ApplicationSet - Alauda Container Platform

Argo CD ApplicationSet Documentation

References

↗

ApplicationSet - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/
https://argo-cd.readthedocs.io/en/stable/operator-manual/applicationset/

Introduction

Supported Tools

Development Workflow

Feature Comparison

References

Tool refers to a utility used to generate or process Kubernetes resource Manifests .

Argo CD supports several Kubernetes manifest definition approaches:

Kustomize Applications Kustomize

Helm Charts Helm

Directory: Manifests containing YAML / JSON / Jsonnet files, including Jsonnet Directory

Custom Configuration Management Plugins: Any custom tool configured as a Config

Management Plugin

Tool

TOC

Introduction

Supported Tools

Menu ON THIS PAGE

Tool - Alauda Container Platform

Argo CD allows direct upload of local manifests , but this is intended for development
purposes only. Overriding requires users with permissions (typically administrators) to

upload local manifests . It supports all aforementioned Kubernetes deployment tools. To

upload a local application:

Feature Helm Kustomize
Directory (Pure

YAML)

Configuration

Method

Templating (dynamic

generation)

Declarative

(patches and

overlays)

Static YAML

files

Reusability High (via Charts)
Medium (via

base/overlay)
Low

Multi-

Environment

Support

High (via

values.yaml)
High (via overlays) Low

Progressive

Delivery

High (complex logic

support)

Medium (simple

patch support)
Low

Learning Curve
High (template

syntax)

Low (YAML-

based)
Low

Argo CD

Integration
Supported Native Support Supported

Use Cases Complex apps, multi-

environment,

Multi-environment,

config reuse

Small projects,

rapid

Development Workflow

Feature Comparison

argocd app sync APPNAME --local /path/to/dir/

Tool - Alauda Container Platform

Feature Helm Kustomize
Directory (Pure

YAML)

distribution prototyping

For more detailed information, please refer to: Tool

References

↗

Tool - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/user-guide/tool/
https://argo-cd.readthedocs.io/en/stable/user-guide/tool/
https://argo-cd.readthedocs.io/en/stable/user-guide/tool/

Introduction

Core Concepts of Helm

Advantages

Use Cases

Helm is a package management tool for Kubernetes, enabling users to define, install, and

upgrade complex Kubernetes applications. A Helm Chart is a templated configuration

package containing Kubernetes resource definitions (YAML files).

Chart: A Helm Chart is a templated configuration package containing Kubernetes resource

definitions (YAML files).

Release: A Helm Release is an instance of a deployed Helm Chart, representing a specific

configuration of Kubernetes resources.

Values: Helm Values are parameterized configurations for a Helm Chart, allowing users to

customize Kubernetes resource definitions.

Helm

TOC

Introduction

Core Concepts of Helm

Menu ON THIS PAGE

Helm - Alauda Container Platform

Argo CD's integration with Helm enhances GitOps practices by enabling declarative

continuous delivery through web console, Argo CD dashboard, or CLI. Example:

OCI Helm Chart Example:

INFO

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: sealed-secrets

 namespace: argocd

spec:

 project: default

 source:

 chart: sealed-secrets

 repoURL: https://bitnami-labs.github.io/sealed-secrets

 targetRevision: 1.16.1

 helm:

 releaseName: sealed-secrets

 destination:

 server: "https://kubernetes.default.svc"

 namespace: kubeseal

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: nginx

spec:

 project: default

 source:

 chart: nginx

 repoURL: registry-1.docker.io/bitnamicharts # note: the oci:// syntax is not

included.

 targetRevision: 15.9.0

 destination:

 name: "in-cluster"

 namespace: nginx

Helm - Alauda Container Platform

** The Application's lifecycle is managed by Argo CD, not Helm. ** When multiple value sources are

provided, the priority order is: parameters > valuesObject > values > valueFiles > helm

repository values.yaml .

Templating: Helm uses the Go template engine (gotpl) to dynamically generate

Kubernetes resource files.

Package Management: Helm packages applications as Charts (including templates,

default values, and dependencies), simplifying distribution and version control.

Dependency Management: Supports dependencies between Charts.

Lifecycle Management: Provides commands like install, upgrade, and rollback for full

lifecycle management.

Complex Application Deployment: Ideal for scenarios requiring dynamic configuration

generation (e.g., environment variables or user input).

Multi-Environment Deployments: Supports environment-specific configurations via

values.yaml files.

Application Distribution: Enables packaging Charts for distribution to Helm repositories

or OCI registries.

For more detailed information, please refer to: Helm

Advantages

Use Cases

References

↗

Helm - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/user-guide/helm/
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/

Introduction

Core Concepts of Kustomize

Advantages

Use Cases

Kustomize is a Kubernetes-native configuration management tool that enables users to

customize Kubernetes resource definitions (YAML files) through overlays and composition

without directly modifying original files.

Base: Base configurations containing common Kubernetes resource definitions.

Overlay: Customization layers that modify Base configurations.

kustomization.yaml: A configuration file defining how resources are composed and

modified.

Argo CD's integration with Kustomize enhances GitOps practices by enabling declarative

continuous delivery. Example:

Kustomize

TOC

Introduction

Core Concepts of Kustomize

Menu ON THIS PAGE

Kustomize - Alauda Container Platform

If a kustomization.yaml file exists at the repoURL and path location, Argo CD will render

manifests using Kustomize.

Kustomize supports the following configuration options:

namePrefix : Prefix appended to Kustomize-generated resource names.

nameSuffix : Suffix appended to Kustomize-generated resource names.

images : List of Kustomize image overrides.

replicas : List of Kustomize replica overrides.

commonLabels : Map of labels added to all resources.

labelWithoutSelector : Boolean defining whether common labels should apply to resource

selectors and templates.

forceCommonLabels : Boolean allowing override of existing labels.

commonAnnotations : Map of annotations added to all resources.

namespace : Kubernetes resource namespace.

forceCommonAnnotations : Boolean allowing override of existing annotations.

commonAnnotationsEnvsubst : Boolean enabling environment variable substitution in

annotation values.

patches : List of Kustomize patches supporting inline updates.

components : List of Kustomize components.

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: kustomize-example

spec:

 project: default

 source:

 path: examples/helloWorld

 repoURL: 'https://github.com/kubernetes-sigs/kustomize'

 targetRevision: HEAD

 destination:

 namespace: default

 server: 'https://kubernetes.default.svc'

Kustomize - Alauda Container Platform

To use Kustomize with overlays, point your path to the overlay directory.

Declarative Configuration: Uses YAML files (via kustomization.yaml) to define resource

composition and modifications.

Template-Free: Customizes configurations through patches and overlays without template

engines.

Kubernetes-Native Integration: Kustomize is built into kubectl, requiring no additional tools.

Multi-Environment Distribution: Achieve environment-specific configurations (e.g., apps,

clusters) via Base and Overlay.

Configuration Reuse: Ideal for reusing base configurations across projects.

Progressive Delivery: Gradually adjust resource configurations through patches.

For more detailed information, please refer to: Kustomize

Advantages

Use Cases

References

↗

Kustomize - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/user-guide/kustomize/
https://argo-cd.readthedocs.io/en/stable/user-guide/kustomize/
https://argo-cd.readthedocs.io/en/stable/user-guide/kustomize/

Introduction

Advantages

Use Cases

Directory type application loads manifests directly from .yml , .yaml , or .json files.

Directory applications can be created via the platform UI, Argo CD Dashboard, CLI, or

declaratively. Example declarative syntax:

Directory

TOC

Introduction

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: guestbook

spec:

 destination:

 namespace: default

 server: https://kubernetes.default.svc

 project: default

 source:

 path: guestbook

 repoURL: https://github.com/argoproj/argocd-example-apps.git

 targetRevision: HEAD

Menu ON THIS PAGE

Directory - Alauda Container Platform

No spec.source.directory field is required unless additional configuration options are needed.

Argo CD automatically detects whether the source repository/path contains plain manifest

files.

Simplicity: Directly loads resources from manifest files without additional abstraction.

Low Maintenance: No configuration management overhead.

Managing multiple Kubernetes resources (e.g., Deployments, Services, ConfigMaps).

Small-scale projects, minimal resources, or rapid GitOps adoption.

Deploying raw YAML files without dynamic templating or complex configuration

management.

WARNING

Directory type applications only support plain manifest files. If Argo CD detects Kustomize ,

Helm , or Jsonnet files in a Directory path, it will fail to render manifests.

For more detailed instructions, refer to: Directory

Advantages

Use Cases

References

↗

Directory - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/user-guide/directory/
https://argo-cd.readthedocs.io/en/stable/user-guide/directory/
https://argo-cd.readthedocs.io/en/stable/user-guide/directory/

Sync Overview

Sync Status Overview

Sync operation status Overview

Refresh Overview

References

Sync is the core functionality of Argo CD, responsible for comparing the Desired State of an

application with its Live State and taking actions to reconcile discrepancies. In essence, Sync

ensures that the state of applications in your Kubernetes cluster aligns with the state defined

in the Git repository.

You can trigger Sync manually or configure Argo CD to perform it automatically. Auto-Sync

can be triggered by monitoring Git repository changes (e.g., commits, tag pushes) or executed

at scheduled intervals.

Sync Status indicates the synchronization state of an application, reflecting whether its Live

State matches the Desired State. Sync Status includes the following states:

Sync

TOC

Sync Overview

Sync Status Overview

Menu ON THIS PAGE

Sync - Alauda Container Platform

Synced : The application's Live State exactly matches the Desired State.

OutOfSync : The application's Live State diverges from the Desired State.

Syncing : The application is undergoing synchronization, with the Live State converging

toward the Desired State.

Sync Operation Status represents the execution state of a synchronization operation by Argo

CD, indicating whether the operation completed successfully. Sync operation status includes

the following states:

Succeeded : The synchronization operation completed successfully.

Failed : The synchronization operation failed due to reasons such as Kubernetes resource

conflicts, insufficient permissions, etc.

Running : The synchronization operation is in progress.

This operation fetches the latest application configuration from the Git repository and

compares it against the actual state in the Kubernetes cluster. Refresh can be triggered

manually or configured for automatic execution at defined intervals.

For more detailed information, please refer to: Sync

Sync operation status Overview

Refresh Overview

References

↗

Sync - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/user-guide/sync-options/
https://argo-cd.readthedocs.io/en/stable/user-guide/sync-options/
https://argo-cd.readthedocs.io/en/stable/user-guide/sync-options/

Introduction

Health Scope

Reference

The health of the application, is it running correctly? Can it serve requests?

Health

Status
Description

Health The resource is healthy.

Progressing
The resource is not healthy yet but still making progress and might be

healthy soon.

Degraded The resource is degraded.

Health

TOC

Introduction

Health Scope

Menu ON THIS PAGE

Health - Alauda Container Platform

Health

Status
Description

Suspended
The resource is suspended and waiting for some external event to

resume (e.g. suspended CronJob or paused Deployment).

Argo CD provides built-in health assessment for several standard Kubernetes types, which is

then surfaced to the overall Application health status as a whole. Of course, Argo CD also

supports custom health checks.

For more detailed explanations, please refer to: Health

Reference

↗

Health - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/

Alauda Container Platform GitOps
Concepts

Introduction
Why Argo CD?

Advantages

Alauda Container Platform GitOps Sync and Health Status
Sync Status Explanation

Health Status Explanation

Recognition Rules

Menu

Alauda Container Platform GitOps Concepts - Alauda Container Platform

Alauda Container Platform GitOps is a Kubernetes-native GitOps solution built on Argo CD. It

monitors configuration manifests (applications, infrastructure definitions, etc.) in Git

repositories and automatically synchronizes them to target Kubernetes clusters, implementing

Git-driven continuous delivery. By codifying the entire delivery pipeline in Git's version control

system, it enhances deployment velocity, reliability, and security while enabling precise multi-

cluster application distribution.

The solution natively integrates the Argo CD Operator to automate deployment lifecycle

operations including provisioning, upgrades, and rollbacks.

Why Argo CD?

Advantages

Argo CD stands as the industry-leading open-source GitOps engine due to its distinctive

advantages:

Technical Advantages Operational Benefits

Declarative GitOps Engine Accelerated Deployment

Introduction

TOC

Why Argo CD?

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Technical Advantages Operational Benefits

State reconciliation via CRDs (Application,

ApplicationSet)

Multi-source support (Helm, Kustomize, raw

YAML)

70% faster deployment cycles

through Git-driven automation

Kubernetes-Native Architecture

Deep integration with Kubernetes API server

≈ Native support for Namespace isolation

and RBAC

Enterprise Readiness

Built-in multi-tenancy and audit

capabilities

Multi-Cluster Management

Centralized control plane for hybrid/multi-

cloud deployments

Cluster-specific configuration through

ApplicationSets

Operational Efficiency

60% reduction in deployment

errors through declarative

enforcement

Extensible Plugin System

Certified integrations with Helm, Kustomize,

Istio

Custom Resource Definitions (CRDs) for

advanced workflows

Cost Optimization

40% lower cloud costs through

precise resource orchestration

Active CNCF Ecosystem

3,500+ GitHub stars

200+ active contributors

Future-Proof

Continuous innovation through

open-source community

Advantages

Introduction - Alauda Container Platform

In addition to the inherent advantages of GitOps, Alauda Container Platform GitOps offers

the following enhanced benefits:

Enterprise-Grade Argo CD Operator

Delivers the full suite of functionalities from the native Argo CD Operator, covering

application deployment, upgrades, rollbacks, and all core features of Argo CD.

Argo CD Operator Safety Service

Offers dedicated technical support for the Argo CD Operator, addressing fault

responses, security vulnerability patches, and overall system stability.

Visual GitOps Application Multi-Environment Distribution Management

Leverages the platform's multi-cluster management and differentiated configuration

capabilities to achieve style-consistent, visual GitOps application management and

cluster configuration management, simplifying precise distribution across multi-cloud and

multi-environment setups.

Visual GitOps Application Operations and Maintenance

Grants direct access to real-time logs and events of Kubernetes Workload resources

under GitOps applications. During GitOps application anomalies, users can swiftly

analyze and resolve issues using Argo CD's anomaly information and real-time

Workload logs without leaving the current interface.

Visual GitOps Cluster Configuration Management

Manages cluster configurations through GitOps, achieving unified management and

distribution of cluster configurations in a visual manner.

Closed-Loop GitOps Application Management Integrated with All Platform Products

Integrates the platform's DevOps capabilities for continuous building, artifact

management, and microservice gray release to realize fully automated GitOps

application management, forming a complete closed loop of continuous integration and

continuous delivery collaboration.

Combines with platform products like CrossPlane, MySQL, and Developer Portal to

achieve a comprehensive process spanning infrastructure initialization, business

Introduction - Alauda Container Platform

application initialization (including code, pipeline, GitOps application initialization, etc.),

and application code development and deployment.

Introduction - Alauda Container Platform

Alauda Container Platform GitOps abstracts the state of Application resources by leveraging

the status of underlying Kubernetes resources. The state of Application resources directly

governs the state of associated ApplicationSet resources.

Sync Status Explanation

Health Status Explanation

Recognition Rules

Both Kubernetes resources and applications have four sync states: Sync Failed, OutOfSync,

Syncing, and Synced.

Sync

Status
Description

Sync

Failed

Synchronization failed due to network errors, configuration issues, or

permissions problems. Check logs for root cause.

Alauda Container Platform GitOps Sync
and Health Status

TOC

Sync Status Explanation

Menu ON THIS PAGE

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Sync

Status
Description

OutOfSync
Cluster resource state diverges from Git-defined desired state.

Manual/auto sync required.

Syncing
Active reconciliation in progress between cluster state and Git-defined

state.

Synced Cluster resource state matches Git-defined desired state.

INFO

Sync Status Display Priority: Priority order Sync Failed > OutOfSync > Syncing > Synced.

Examples:

If an Application has two resources with Syncing and Synced statuses, its overall status is

Syncing.

If an ApplicationSet manages two Applications with Sync Failed and Synced statuses, its

overall status is Sync Failed.

Kubernetes resources and applications have six health states: Unknown, Missing,

Degraded, Paused, Progressing, and Healthy.

Health

Status
Description Reference Solution

Unknown

Unable to determine health state,

typically due to controller errors or

missing status data.

Inspect resource YAML's

status.conditions for

diagnostic details.

Missing Resource not found in cluster. Initial creation: Wait for

reconciliation

Health Status Explanation

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Health

Status
Description Reference Solution

Accidental deletion: Trigger

manual sync.

Degraded

Workload resources (e.g.,

Deployment) failed to achieve

healthy state within timeout period

(default: 10 mins).

Investigate Pod failures (e.g.,

crashes, resource

constraints).

Paused

Workload resources rollout

intentionally paused (e.g., via

kubectl rollout pause).

Resume rollout if appropriate.

Processing

Resource created successfully but

not fully ready (e.g., Pods

initializing).

Monitor until transition to

Healthy/Degraded.

Healthy Resource operating normally. -

INFO

Health Status Priority:Priority order Unknown > Missing > Degraded > Paused > Progressing
> Healthy

Examples:

If an Application has resources with Healthy and Unknown statuses, its overall health is

Unknown.

If an ApplicationSet manages Applications with Missing and Progressing statuses, its overall

health is Missing.

Healthy status recognition rules for Kubernetes resources:

Recognition Rules

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Resource

Type
Status

Deployment Rolling update completed with all replicas available.

StatefulSet Update completed with all pods ready.

ReplicaSet All Pods healthy.

DaemonSet Desired number of Pods scheduled and healthy.

Ingress LoadBalancer IP/hostname populated in status.

Service LoadBalancer IP/hostname populated (if applicable).

PVC Status is Bound.

Pod All containers ready with no restarts exceeding thresholds.

Job Job completed successfully (.status.succeeded >= 1).

HPA
Successful scaling operation with current replicas matching desired

count.

Alauda Container Platform GitOps Sync and Health Status - Alauda Container Platform

Guides

Creating GitOps Application

Creating GitOps Application

Prerequisites

Creating Argo CD Application via web console

Creating Argo CD Application via YAML

Creating Argo CD Application via CLI

Creating GitOps ApplicationSet

Overview

Prerequisites

Key Benefits

Creating GitOps Application

Managing GitOps Applications

GitOps Observability

Argo CD Component Monitoring
Overview

Prerequisites

Viewing the Argo CD component dashboard

Menu

Guides - Alauda Container Platform

GitOps Applications Ops
Overview

Prerequisites

Alert

Logs

Events

Guides - Alauda Container Platform

Creating GitOps Application

Creating GitOps Application

Prerequisites

Creating Argo CD Application via web console

Creating Argo CD Application via YAML

Creating Argo CD Application via CLI

Creating GitOps ApplicationSet

Overview

Prerequisites

Key Benefits

Creating GitOps Application

Managing GitOps Applications

Menu

Creating GitOps Application - Alauda Container Platform

Leverage Alauda Container Platform GitOps application management capabilities to

visually create Argo CD ApplicationSet for comprehensive lifecycle management of

containerized applications through GitOps Applications.

Prerequisites

Creating Argo CD Application via web console

Procedure

View Sync Ignore Configuration Fields in YAML file

Creating Argo CD Application via YAML

Procedure

Creating Argo CD Application via CLI

Prerequisites

Install Alauda Container Platform GitOps:

Creating GitOps Application

Overview

TOC

Prerequisites

Menu ON THIS PAGE

Creating GitOps Application - Alauda Container Platform

If not installed, please contact the Administrator to Installing Alauda Container Platform

GitOps

Git Repository Integration (Choose one method):

Integrating Code Repositories via Argo CD dashboard

The Administrator must provision Code Repositories through DevOps Toolchain >

Integrate

Streamline application distribution through visual management interfaces.

1. Container Platform, and navigate to GitOps Applications.

2. Click on Create GitOps Application.

3. Configure parameters in Basic Info and Code Repository sections:

Parameter Description

Type

Application: Argo CD Application object for single namespace

deployment

ApplicationSet: Argo CD ApplicationSet for cross-cluster/cross-

namespace deployments with differential configurations

Source

Platform integrated: Pre-configured GitLab/GitHub/Bitbucket

repositories

ArgoCD integrated: GitLab/GitHub/Bitbucket/Gitee/Gitea

repositories integrated via Argo CD. Please refer to Integrating Code

Repositories via Argo CD dashboard

Integration

Project Name
Toolchain project assigned by the Administrator

Creating Argo CD Application via web console

Procedure

Creating GitOps Application - Alauda Container Platform

Parameter Description

Version

Identifiers

Deployment basis: Branch / Tag / Commit

Note:

Branch uses latest commit

Tag / Commit defaults to latest but configurable

Source File

Type

Kustomize: Uses kustomization.yaml for overlay configurations; for

more details, please refer to the Kustomize Official Documentation

Helm: Uses values.yaml for templating; for more details, please refer

to the Helm Official Documentation

Directory: Raw manifests

Source

Directory

Repository path containing base manifests. Supports root directory

selection. All resources in this path will be deployed to target clusters

Custom

Values
Source File Type is Helm, you can select a custom Helm Values file

4. Configure parameters in Destination sections:

Application: Differential configs don't modify base files in source directory.

ApplicationSet: Multi-cluster deployment with Differentiated Configuration.

Note: Differentiated Configuration don't modify base files in Source Directory.

5. Sync Policy (3-minute reconciliation interval).

Parameter Description

Manually Sync Requires user confirmation when drift detected.

Automatic Sync Automatic reconciliation without human intervention.

Sync Ignore

Configuration

Configure using built-in/custom ignore templates, you can

View Sync Ignore Configuration Fields in YAML File.

Note: Custom templates require admin configuration.

↗

↗

Creating GitOps Application - Alauda Container Platform

https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/

6. Click Create.

INFO

Manual Sync Note: Choose Synchronize Immediately for immediate deployment or

Synchronize Later to trigger manually via details page.

After configuring sync ignore rules, verify via:

1. Navigate to GitOps Application

2. Select target application

3. Click Action > Update

4. Inspect YAML file.

1. Container Platform, and navigate to GitOps Applications.

2. Click on Create GitOps Application.

3. Switch to the YAML tab.

View Sync Ignore Configuration Fields in YAML file

Creating Argo CD Application via YAML

Procedure

ignoreDifferences: # The configuration actually ignored by the selected custom

synchronization ignore configuration template

 - group: apps

 kind: Deployment

 jsonPointers:

 - /spec/replicas

Creating GitOps Application - Alauda Container Platform

4. In the YAML sections, refer to the following YAML file and configure the relevant

information. Replace namespace and project with your own namespace and project.

5. Click Create.

The web-cli plugin is installed and the web-cli switch is enabled.

Creating Argo CD Application via CLI

Prerequisites

apiVersion: argoproj.io/v1alpha1

kind: Application

metadata:

 name: guestbook

 namespace: argocd # Replace with your own namespace

spec:

 project: default # Replace with your own project

 source:

 repoURL: https://github.com/argoproj/argocd-example-apps.git

 targetRevision: master

 path: helm-guestbook

 destination:

 server: https://kubernetes.default.svc

 namespace: guestbook

 syncPolicy:

 automated:

 prune: true

 selfHeal: true

 syncOptions:

 - CreateNamespace=true

kubectl apply -f application.yaml

Creating GitOps Application - Alauda Container Platform

Overview

Prerequisites

Key Benefits

Creating GitOps Application

Procedure

View Sync Ignore Configuration Fields in YAML File

Managing GitOps Applications

Leverage Alauda Container Platform GitOps application management capabilities to

visually create Argo CD ApplicationSet for comprehensive lifecycle management of

containerized applications through GitOps Applications.

Installing Alauda Container Platform GitOps:

If not installed, please contact the Administrator to Installing Alauda Container Platform

GitOps

Creating GitOps ApplicationSet

TOC

Overview

Prerequisites

Menu ON THIS PAGE

Creating GitOps ApplicationSet - Alauda Container Platform

Git Repository Integration (Choose one method):

Integrating Code Repositories via Argo CD dashboard

The Administrator must provision Code Repositories through DevOps Toolchain >

Integrate

Visual GitOps Application Distribution: Combines multi-cluster management, differential

configurations, and platform-aligned visual operations for simplified multi-cloud/multi-

environment deployments.

Streamline application distribution through visual management interfaces.

1. Container Platform, and navigate to GitOps Applications.

2. Click on Create GitOps Application.

3. Configure parameters in Basic Info and Code Repository sections:

Parameter Description

Type

Application: Argo CD Application object for single namespace

deployment

ApplicationSet: Argo CD ApplicationSet for cross-cluster/cross-

namespace deployments with differential configurations

Source Platform integrated: Pre-configured GitLab/GitHub/Bitbucket

repositories

ArgoCD integrated: GitLab/GitHub/Bitbucket/Gitee/Gitea

Key Benefits

Creating GitOps Application

Procedure

Creating GitOps ApplicationSet - Alauda Container Platform

Parameter Description

repositories integrated via Argo CD. Please refer to Integrating Code

Repositories via Argo CD dashboard

Integration

Project Name
Toolchain project assigned by the Administrator

Version

Identifiers

Deployment basis: Branch / Tag / Commit

Note:

Branch uses latest commit

Tag / Commit defaults to latest but configurable

Source File

Type

Kustomize: Uses kustomization.yaml for overlay configurations; for

more details, please refer to the Kustomize Official Documentation

Helm: Uses values.yaml for templating; for more details, please refer

to the Helm Official Documentation

Directory: Raw manifests

Source

Directory

Repository path containing base manifests. Supports root directory

selection. All resources in this path will be deployed to target clusters

Custom

Values
Source File Type is Helm, you can select a custom Helm Values file

4. Configure parameters in Destination sections:

Application: Differential configs don't modify base files in source directory.

ApplicationSet: Multi-cluster deployment with Differentiated Configuration.

Note: Differentiated Configuration don't modify base files in Source Directory.

5. Sync Policy (3-minute reconciliation interval).

Parameter Description

Manually Sync Requires user confirmation when drift detected

↗

↗

Creating GitOps ApplicationSet - Alauda Container Platform

https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://kubectl.docs.kubernetes.io/guides/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/
https://helm.sh/docs/chart_template_guide/values_files/

Parameter Description

Automatic Sync Automatic reconciliation without human intervention

Sync Ignore

Configuration

Configure using built-in/custom ignore templates, you can

View Sync Ignore Configuration Fields in YAML File

Note: Custom templates require admin configuration

6. Click Create.

INFO

Manual Sync Note: Choose Synchronize Immediately for immediate deployment or

Synchronize Later to trigger manually via details page.

After configuring sync ignore rules, verify via:

1. Navigate to GitOps Application.

2. Select target application.

3. Click Action > Update.

4. Inspect YAML file.

View Sync Ignore Configuration Fields in YAML File

Managing GitOps Applications

ignoreDifferences: # The configuration actually ignored by the selected custom

synchronization ignore configuration template

 - group: apps

 kind: Deployment

 jsonPointers:

 - /spec/replicas

Creating GitOps ApplicationSet - Alauda Container Platform

Action Description

Update

Initiate updates via:

Edit icon (✎) on GitOps Application list

Action > Update in detail view.

CAUTION: This operation will overwrite all created application

instances

Manually Sync

When Sync Policy is Manually Sync :

Trigger sync via Action > Sync in detail view upon detecting

configuration drift

Propagates latest commits to all managed instances

Delete

Delete via:

Delete icon (🗑) on list page

Action > Delete in detail view

DESTRUCTIVE: Removes application and ALL child resources

Automatic Sync
Enable auto-reconciliation to maintain desired state. All instances

automatically sync with repo changes every 3 minutes

Source

For ApplicationSet type apps:

Click Source link to navigate to parent Application details

page.

Application

Distribution

Extend:

1. Update existing ApplicationSet config

2. In ApplicationSet details: Applications > Add Distribution

Creating GitOps ApplicationSet - Alauda Container Platform

GitOps Observability

Argo CD Component Monitoring

Overview

Prerequisites

Viewing the Argo CD component dashboard

GitOps Applications Ops
Overview

Prerequisites

Alert

Logs

Events

Menu

GitOps Observability - Alauda Container Platform

Overview

Prerequisites

Viewing the Argo CD component dashboard

The monitoring dashboard of the web console offers a visual approach to monitor Argo CD

components. It proactively observes the resources and operational states of Argo CD

components, aiming to ensure their healthiness and availability. Here, the operational states

refer to the running conditions and performance metrics of the components in the Kubernetes

(K8s) environment. By closely tracking these aspects, we can promptly detect and address

any potential issues, maintaining the smooth operation of Argo CD within the K8s cluster.

Installing Alauda Container Platform GitOps

Installation of Monitoring Plugins

Argo CD Component Monitoring

TOC

Overview

Prerequisites

Viewing the Argo CD component dashboard

Menu ON THIS PAGE

Argo CD Component Monitoring - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

1. Login, and navigate to Administrator, and select the global cluster.

2. Click on Operations Center > Monitoring > Monitoring Dashboard.

3. Click on Switch button and select container-platform to view the ArgoCD dashboard.

4. Click the ArgoCD dashboard to view the Argo CD component monitoring information.

Argo CD Component Monitoring - Alauda Container Platform

Overview

Prerequisites

Alert

Logs

Events

The web console's GitOps Applications management capabilities enable viewing GitOps
Applications monitoring, logs, and events. You can also create alerting policies for GitOps
Applications. When anomalies occur in GitOps Applications, proactive alert notifications

will be triggered to facilitate rapid issue identification, analysis, and resolution.

A GitOps application has been created on the web console. Creating an Argo CD

Application via the web console

Installation of Monitoring Plugins

GitOps Applications Ops

TOC

Overview

Prerequisites

Menu ON THIS PAGE

GitOps Applications Ops - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

Create alerting rule in advance to configure rules. When GitOps applications encounter

anomalies, proactive notifications will be triggered to enable quick issue identification,

analysis, and resolution.

1. Container Platform, Click on GitOps Applications.

2. Select the GitOps application name from the list where you want to create an alert rule.

3. Switch to the Alerts tab.

4. Click on Create Rule and fill in the basic information as required.

5. Click on Add Alert Condition, navigate to the Alert Conditions page. The corresponding

metric descriptions are as follows:

INFO

For other parameter configurations and alert settings, refer to Alert Management.

Metric Name Rule Description

GitOps Application Health Status

gitops.applicationset.healthy

Health status of GitOps

application:

- 0: Unknown, Lost, Degraded,

or Paused

- 1: Syncing

- 2: Healthy

GitOps Application Sync Status

gitops.applicationset.synced

Sync status of GitOps

application:

- 0: Sync Failed or Pending

- 1: Syncing

- 2: Synced

6. Click Create.

Alert

GitOps Applications Ops - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/functions/manage_alert.html

View logs for all workload resources created by GitOps applications. Logs enable rapid

identification of system failure information without relying on Log cluster plugin.

On the GitOps application details page, under Kubernetes Resources, click on any

Workload name to view the Logs information for that resource on the right side.

View events for all resources distributed by GitOps Applications. Events enable rapid

identification of system failure event information without relying on Log cluster plugin.

On the GitOps application details page, go to the Events tab to view aggregated events for

all resources.

On the GitOps application details page, under Kubernetes Resources, click any resource

name to view events for that resource on the right side.

Logs

Events

GitOps Applications Ops - Alauda Container Platform

How To

Integrating Code Repositories via Argo CD dashboard

Use Cases

Prerequisites

Procedure

Operation Result

Creating an Argo CD Application via Argo CD dashboard

Prerequisites

Procedure

Creating an Argo CD Application via the web console
Use Cases

Prerequisites

Procedure

How to Obtain Argo CD Access Information
Use Cases

How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web
console?

How to Obtain Argo CD Access Information from Argo CD Operator?

Menu

How To - Alauda Container Platform

Use the native Argo CD dashboard to integrate code repositories and allocate repositories,

enabling developer to manage GitOps applications throughout their entire lifecycle via a visual

interface.

Use Cases

Prerequisites

Procedure

Operation Result

Simplify the creation process of GitOps Applications by selecting the associated

repository via the web console when creating them.

When creating an Application via the native Argo CD dashboard, you can choose to use

the associated repository.

Integrating Code Repositories via Argo CD
dashboard

TOC

Use Cases

Prerequisites

Menu ON THIS PAGE

Integrating Code Repositories via Argo CD dashboard - Alauda Container Platform

Installing Alauda Container Platform GitOps, and the Native Argo CD UI switch has been

enabled.

Access to the Native Argo CD UI URL along with username and password.

The Administrators can directly access the URL through the GitOps cluster plugin details

page.

Follow these steps to utilize the features:

1. Connect Code Repository

Log in to Argo CD using the access URL.

Click on Settings in the left navigation bar.

Click on the REPO card.

Click CONNECT REPO in the upper left corner of the page.

Choose the method to connect the repository and fill in the corresponding parameters as

needed.

Click CONNECT.

2. Associate Project

Click on Settings in the left navigation bar.

Click on the Projects card.

Click on the project where you need to create the GitOps application.

Note: Argo CD will automatically sync projects in the cluster, so there is no need to create

them manually.

Click EDIT in the SOURCE REPOSITORIES section.

Procedure

Integrating Code Repositories via Argo CD dashboard - Alauda Container Platform

Click ADD SOURCE, enter the repository URL from the Connect Repository step, and

associate it with the project.

Click SAVE.

Return to the web console and navigate to Container Platform > GitOps Applications.

On the Create page, you will see the associated repositories.

Operation Result

Integrating Code Repositories via Argo CD dashboard - Alauda Container Platform

Prerequisites

Procedure

Install (Choose one method):

Installing Alauda Container Platform GitOps

Installing Alauda Build of Argo CD

Access credentials (URL, username, password) for the Argo CD dashboard have been

obtained How to Obtain Argo CD Access Information

Follow these steps to utilize the features:

1. Enter the Argo CD dashboard access URL in your browser to open the interface.

Creating an Argo CD Application via Argo
CD dashboard

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

The Administrators can directly access the Argo CD Native UI through the global cluster

plugin details: locate the GitOps cluster plugin and click the access address.

2. Authenticate with your Argo CD credentials and login.

3. Click the + NEW APP button as shown below:

Configure the application according to the foållowing steps:

Basic Info Configuration

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

Application Name: Input guestbook

Project: Select default

Sync Policy: Maintain Manual (recommended for initial configuration)

Source Repo Configuration

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

Repository URL: Set to https://github.com/argoproj/argocd-example-apps.git

Revision: Use default HEAD

Path: Specify guestbook (directory containing Kubernetes manifests)

Destination Cluster Configuration

Clusternew: Set to https://kubernetes.default.svc (in-cluster access) or choose a specific

cluster name

Namespace: Set to default (or specify a target namespace)

4. Create Application After completing configurations, click the Create button at the top-right

corner to initialize the creation of the guestbook application.

Creating an Argo CD Application via Argo CD dashboard - Alauda Container Platform

This article will introduce the complete process of creating an Argo CD Application through the

web console's GitOps Applications, allowing for GitOps management of the application.

Use Cases

Prerequisites

Procedure

Code Repository Configuration

Create Argo CD Application by using GitOps Applications

Create a SpringBoot Argo CD Application using the web console to experience the

complete process of managing applications through GitOps.

Installing Alauda Container Platform GitOps

Projects and namespaces have been allocated

Creating an Argo CD Application via the
web console

TOC

Use Cases

Prerequisites

Menu ON THIS PAGE

Creating an Argo CD Application via the web console - Alauda Container Platform

Follow these steps to utilize the features:

If you do not see Integrated Code Repository in the Create GitOps Applications details

page, you can integrate the code repository first:

Integrating Code Repositories via Argo CD dashboard

INFO

If you don't have an available code repository, you can use the demo repository for demonstration

purposes. Repository URL: https://github.com/argoproj/argocd-example-apps.git Description:

This repository contains example applications that can be used to demonstrate and test Argo CD

functionalities.

1. Container Platform, click on GitOps Applications.

2. Click on Create GitOps Application.

3. In the Basic Info and Code Repository sections, configure the relevant information as per

the instructions below.

Parameter Input Content

Type Application

Source Argo CD Integration

Integrated Project Name argocd-example-apps

Version Identifier
Branch

master

Procedure

Code Repository Configuration

Create Argo CD Application by using GitOps Applications

Creating an Argo CD Application via the web console - Alauda Container Platform

Parameter Input Content

Source File Type Helm

Source File Directory helm-guestbook

Custom Values values.yaml

4. In the Distribution, use the platform's recommended Namespace, or select another

namespace.

5. Set the synchronization policy to Manually Sync by default.

6. Click on Create.

Creating an Argo CD Application via the web console - Alauda Container Platform

This article details how to acquire access information for the Argo CD, covering both the

Alauda Container Platform GitOps cluster plugin Argo CD installed on the web console

and the one installed via the Alauda Build of Argo CD Operator.

Use Cases

How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web console?

Prerequisites

Procedure

How to Obtain Argo CD Access Information from Argo CD Operator?

Prerequisites

Procedure

Obtain Argo CD dashboard URL

Retrieve Argo CD Password

Update Argo CD admin account password

Once you've obtained the Argo CD access information, you can manage all native Argo CD

resources via the Argo CD dashboard.

How to Obtain Argo CD Access Information

TOC

Use Cases

Menu ON THIS PAGE

How to Obtain Argo CD Access Information - Alauda Container Platform

Installing Alauda Container Platform GitOps

(Option) The CLI plugin is installed, and the web-cli switch is enabled

You possess Administrator permissions

INFO

It is advisable to enable the following settings when installing Alauda Container Platform GitOps

cluster plugin:

Enable the Native Argo CD UI switch.

Enable the Single Sign-On switch.

Follow these steps to utilize the features:

1. Login, and navigate to the Administrator page.

2. Click on Marketplace to access the Cluster Plugins list page.

3. Locate the GitOps plugin, click on GitOps, and a pop-up window will display the GitOps

Cluster Plugin details.

If it's not enabled: Go back to the Cluster Plugins list page, find the GitOps plugin, click the

Actions button, select Update, and enable the Argo CD Native UI switch. If it's enabled: Simply

click the Access Address to open the Argo CD Dashboard.

4. Argo CD Native UI

How to Obtain Argo CD Access Information for
the GitOps cluster plugin installed on the web
console?

Prerequisites

Procedure

How to Obtain Argo CD Access Information - Alauda Container Platform

If not enabled: Navigate to the Cluster Plugins list page, find the GitOps plugin, click

the Update button, and enable the Argo CD Native UI switch.

If enabled: Click the Access Address directly to open the Argo CD dashboard.

5. Single Sign-On

If enabled: Login to the Argo CD dashboard using the platform account.

If not enabled: The account defaults to admin , and you need to retrieve the password by

executing the following command in Kubectl Retrieve Argo CD Password.

Installing Argo CD

(Option) The CLI plugin is installed, and the web-cli switch is enabled

You possess Administrator permissions

1. Login, and navigate to the Administrator page.

2. Select Cluster Management to enter the Resource Management page.

3. In Resource Group, search for Service , select the argocd namespace (the namespace

where the argocd instance is created). The default namespace for Argo CD installed on the

web console is argocd.

4. In the right Resource List, find the argocd-gitops-server , click the Actions button, and

select Update to open the YAML details of argocd-gitops-server, details as shown in the

image below.

How to Obtain Argo CD Access Information from
Argo CD Operator?

Prerequisites

Procedure

Obtain Argo CD dashboard URL

How to Obtain Argo CD Access Information - Alauda Container Platform

5. Change the type to NodePort and record the nodePort , then click the Update button.

6. In the left sidebar, select Cluster Management to enter the Cluster List page.

7. Select the cluster where argocd operator is installed, enter the Cluster Details Page, and

select Nodes.

8. Obtain the IP address of any control plane node.

9. Access Argo CD dashboard via http://{control plane node IP}:{nodePort} .

Execute the following command in Kubectl to retrieve the password:

The default admin account password automatically created by installing Argo CD through

Alauda Container Platform GitOps or Alauda Build of Argo CD operator cannot be

modified via the Argo CD dashboard interface. You can change it by executing the following

command in the CLI tool. Here, newpassword is the new password you wish to set.

Retrieve Argo CD Password

Update Argo CD admin account password

kubectl get secret -n argocd argocd-gitops-cluster -o template --template='{{index .data

"admin.password"}}'|base64 -d

How to Obtain Argo CD Access Information - Alauda Container Platform

kubectl patch -n argocd secrets argocd-gitops-cluster -p '{"stringData":

{"admin.password":"<newpassword>"}}'

How to Obtain Argo CD Access Information - Alauda Container Platform

I've deleted/corrupted my repo and can't delete my app?

Why is my application still OutOfSync immediately after a successful Sync?

Why is my application stuck in Progressing state?

How to disable admin user?

Argo CD cannot deploy Helm Chart based applications without internet access, how can I solve it?

After creating my Helm application with Argo CD I cannot see it with helm ls and other Helm comman…

I've configured cluster secret but it does not show up in CLI/UI, how do I fix it?

Why Is My App Out Of Sync Even After Syncing?

How often does Argo CD check for changes to my Git or Helm repository?

How Do I Fix invalid cookie, longer than max length 4093?

Why Am I Getting rpc error: code = Unavailable desc = transport is closing When Using The CLI?

Why are resources of type SealedSecret stuck in the Progressing state?

How to rotate Redis keys?

How do I fix Manifest generation error (cached)?

Argo CD can't delete an app if it cannot generate manifests. You need to either:

Troubleshooting

TOC

I've deleted/corrupted my repo and can't delete
my app?

Menu ON THIS PAGE

Troubleshooting - Alauda Container Platform

1. Reinstate/fix your repo.

2. Delete the app using --cascade=false and then manually deleting the resources.

See Diffing Documentation for reasons resources can be OutOfSync, and ways to configure

Argo CD to ignore fields when differences are expected.

Argo CD provides health for several standard Kubernetes types. The Ingress , StatefulSet

and SealedSecret types have known issues which might cause health check to return

Progressing state instead of Healthy .

Ingress is considered healthy if status.loadBalancer.ingress list is non-empty, with at least

one value for hostname or IP . Some ingress controllers (contour , traefik) don't update

status.loadBalancer.ingress field which causes Ingress to stuck in Progressing state

forever.

StatefulSet is considered healthy if value of status.updatedReplicas field matches to

spec.replicas field. Due to Kubernetes bug kubernetes#68573 the

status.updatedReplicas is not populated. So unless you run Kubernetes version which

include the fix kubernetes#67570 StatefulSet might stay in Progressing state.

Your StatefulSet or DaemonSet is using OnDelete instead of RollingUpdate strategy.

For SealedSecret , see Why are resources of type SealedSecret stuck in the Progressing

state?

As workaround Argo CD allows providing health check customization which overrides

default behavior.

Why is my application still OutOfSync immediately
after a successful Sync?

↗

Why is my application stuck in Progressing state?

↗

↗

↗

Troubleshooting - Alauda Container Platform

https://argo-cd.readthedocs.io/en/stable/user-guide/diff-strategies/
https://argo-cd.readthedocs.io/en/stable/user-guide/diff-strategies/
https://argo-cd.readthedocs.io/en/stable/user-guide/diff-strategies/
https://github.com/kubernetes/kubernetes/issues/68573
https://github.com/kubernetes/kubernetes/issues/68573
https://github.com/kubernetes/kubernetes/issues/68573
https://github.com/kubernetes/kubernetes/pull/67570
https://github.com/kubernetes/kubernetes/pull/67570
https://github.com/kubernetes/kubernetes/pull/67570
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/
https://argo-cd.readthedocs.io/en/stable/operator-manual/health/

If you are using Traefik for your Ingress, you can update the Traefik config to publish the

loadBalancer IP using publishedservice , which will resolve this issue.

Add admin.enabled: "false" in the argocd-cm ConfigMap.

Argo CD might fail to generate Helm chart manifests if the chart has dependencies located in

external repositories. To solve the problem you need to make sure that requirements.yaml

uses only internally available Helm repositories. Even if the chart uses only dependencies

from internal repos Helm might decide to refresh stable repo. As workaround override

stable repo URL in argocd-cm config map:

↗

How to disable admin user?

Argo CD cannot deploy Helm Chart based
applications without internet access, how can I
solve it?

After creating my Helm application with Argo CD I
cannot see it with helm ls and other Helm

providers:

 kubernetesIngress:

 publishedService:

 enabled: true

data:

 repositories: |

 - type: helm

 url: http://<internal-helm-repo-host>:8080

 name: stable

Troubleshooting - Alauda Container Platform

https://doc.traefik.io/traefik/providers/kubernetes-ingress/#publishedservice
https://doc.traefik.io/traefik/providers/kubernetes-ingress/#publishedservice
https://doc.traefik.io/traefik/providers/kubernetes-ingress/#publishedservice

When deploying a Helm application Argo CD is using Helm only as a template mechanism. It

runs helm template and then deploys the resulting manifests on the cluster instead of doing

helm install . This means that you cannot use any Helm command to view/verify the

application. It is fully managed by Argo CD. Note that Argo CD supports natively some

capabilities that you might miss in Helm (such as the history and rollback commands).

This decision was made so that Argo CD is neutral to all manifest generators.

Check if the cluster secret has the label argocd.argoproj.io/secret-type: cluster . If the secret

has the label but the cluster is still not visible, it may be a permission issue. Try listing the

clusters using the admin user (e.g.: argocd login --username admin && argocd cluster list).

Check if cluster secret has argocd.argoproj.io/secret-type: cluster label. If secret has the

label but the cluster is still not visible then make sure it might be a permission issue. Try to list

clusters using admin user (e.g. argocd login --username admin && argocd cluster list).

In some cases, the tool you use may conflict with Argo CD by adding the

app.kubernetes.io/instance label. E.g. using Kustomize common labels feature.

Argo CD automatically sets the app.kubernetes.io/instance label and uses it to determine

which resources form the app. If the tool does this too, this causes confusion. You can change

this label by setting the application.instanceLabelKey value in the argocd-cm . We recommend

that you use argocd.argoproj.io/instance .

INFO

commands?

I've configured cluster secret but it does not
show up in CLI/UI, how do I fix it?

Why Is My App Out Of Sync Even After Syncing?

Troubleshooting - Alauda Container Platform

When you make this change your applications will become out of sync and will need re-syncing.

The default polling interval is 3 minutes (180 seconds) with a configurable jitter. You can

change the setting by updating the timeout.reconciliation value and the

timeout.reconciliation.jitter in the argocd-cm config map. If there are any Git changes,

Argo CD will only update applications with the auto-sync setting enabled. If you set it to 0

then Argo CD will stop polling Git repositories automatically and you can only use alternative

methods such as webhooks and/or manual syncs for creating applications.

Argo CD uses a JWT as the auth token. You likely are part of many groups and have gone

over the 4KB limit which is set for cookies. You can get the list of groups by opening

"developer tools -> network":

1. Click login to the Argo CD dashboard How to Obtain Argo CD Access Information

2. Find the call to <argocd_instance>/auth/callback?code=<random_string>

Decode the token at jwt.io . That will provide the list of teams that you can remove yourself

from.

Maybe you're behind a proxy that does not support HTTP 2? Try the --grpc-web flag:

How often does Argo CD check for changes to my
Git or Helm repository?

How Do I Fix invalid cookie, longer than max
length 4093?

↗

Why Am I Getting rpc error: code = Unavailable
desc = transport is closing When Using The CLI?

Troubleshooting - Alauda Container Platform

https://jwt.io/
https://jwt.io/
https://jwt.io/

The controller of the SealedSecret resource may expose the status condition on resource it

provisioned. Since version v2.0.0 Argo CD picks up that status condition to derive a health

status for the SealedSecret .

Versions before v0.15.0 of the SealedSecret controller are affected by an issue regarding

this status conditions updates, which is why this feature is disabled by default in these

versions. Status condition updates may be enabled by starting the SealedSecret controller

with the --update-status command line parameter or by setting the

SEALED_SECRETS_UPDATE_STATUS environment variable.

To disable Argo CD from checking the status condition on SealedSecret resources, add the

following resource customization in your argocd-cm ConfigMap via

resource.customizations.health.<group_kind> key.

Delete argocd-redis secret in the namespace where Argo CD is installed.

If you are running Redis in HA mode, restart Redis in HA.

Why are resources of type SealedSecret stuck in
the Progressing state?

How to rotate Redis keys?

argocd ... --grpc-web

resource.customizations.health.bitnami.com_SealedSecret: |

 hs = {}

 hs.status = "Healthy"

 hs.message = "Controller doesn't report resource status"

 return hs

kubectl delete secret argocd-redis -n <argocd namesapce>

Troubleshooting - Alauda Container Platform

If you are running Redis in non-HA mode, restart Redis.

Restart other components.

Manifest generation error (cached) means that there was an error when generating manifests

and that the error message has been cached to avoid runaway retries.

Doing a hard refresh (ignoring the cached error) can overcome transient issues. But if there's

an ongoing reason manifest generation is failing, a hard refresh will not help.

Instead, try searching the repo-server logs for the app name in order to identify the error that

is causing manifest generation to fail.

How do I fix Manifest generation error (cached)?

kubectl rollout restart deployment argocd-redis-ha-haproxy

kubectl rollout restart statefulset argocd-redis-ha-server

kubectl rollout restart deployment argocd-redis

kubectl rollout restart deployment argocd-server argocd-repo-server

kubectl rollout restart statefulset argocd-application-controller

Troubleshooting - Alauda Container Platform

	GitOps
	Introduction
	TOC
	GitOps Use Cases
	GitOps Advantages
	Alauda Container Platform GitOps Advantages

	Install
	Installing Alauda Build of Argo CD
	TOC
	Prerequisites
	Procedure
	Install Alauda Build of Argo CD Operator
	Create Argo CD Instance
	Create AppProject Instance

	Installing Alauda Container Platform GitOps
	TOC
	Prerequisites
	Installing Alauda Container Platform GitOps cluster plugin
	Constraints and Limitations
	Procedure
	Verification

	Upgrade
	Upgrading Alauda Container Platform GitOps
	TOC
	Prerequisites
	Upgrading Alauda Container Platform GitOps cluster plugin
	Constraints and Limitations
	Procedure
	Verification

	Architecture
	TOC
	GitOps and Argo CD
	GitOps Architecture
	Alauda Container Platform GitOps Architecture

	Concepts
	GitOps
	TOC
	Introduction
	Core Principles
	Advantages
	Popular GitOps Tools

	Argo CD Concept
	Introduction
	TOC
	Summary of Differences Between Application and ApplicationSet
	Argo CD Sync Statuses
	References

	Application
	TOC
	Introduction
	Use Cases for Application
	Application Example
	Reference

	ApplicationSet
	TOC
	Introduction
	Use Cases for ApplicationSet
	ApplicationSet Example
	References

	Tool
	TOC
	Introduction
	Supported Tools
	Development Workflow
	Feature Comparison
	References

	Helm
	TOC
	Introduction
	Core Concepts of Helm
	Advantages
	Use Cases

	References
	Kustomize
	TOC
	Introduction
	Core Concepts of Kustomize
	Advantages
	Use Cases

	References
	Directory
	TOC
	Introduction
	Advantages
	Use Cases

	References
	Sync
	TOC
	Sync Overview
	Sync Status Overview
	Sync operation status Overview
	Refresh Overview
	References

	Health
	TOC
	Introduction
	Health Scope
	Reference

	Alauda Container Platform GitOps Concepts
	Introduction
	TOC
	Why Argo CD?
	Advantages

	Alauda Container Platform GitOps Sync and Health Status
	TOC
	Sync Status Explanation
	Health Status Explanation
	Recognition Rules

	Guides
	Creating GitOps Application
	Creating GitOps Application
	Overview
	TOC
	Prerequisites
	Creating Argo CD Application via web console
	Procedure
	View Sync Ignore Configuration Fields in YAML file

	Creating Argo CD Application via YAML
	Procedure

	Creating Argo CD Application via CLI
	Prerequisites

	Creating GitOps ApplicationSet
	TOC
	Overview
	Prerequisites
	Key Benefits
	Creating GitOps Application
	Procedure
	View Sync Ignore Configuration Fields in YAML File

	Managing GitOps Applications

	GitOps Observability
	Argo CD Component Monitoring
	TOC
	Overview
	Prerequisites
	Viewing the Argo CD component dashboard

	GitOps Applications Ops
	TOC
	Overview
	Prerequisites
	Alert
	Logs
	Events

	How To
	Integrating Code Repositories via Argo CD dashboard
	TOC
	Use Cases
	Prerequisites
	Procedure
	Operation Result

	Creating an Argo CD Application via Argo CD dashboard
	TOC
	Prerequisites
	Procedure

	Creating an Argo CD Application via the web console
	TOC
	Use Cases
	Prerequisites
	Procedure
	Code Repository Configuration
	Create Argo CD Application by using GitOps Applications

	How to Obtain Argo CD Access Information
	TOC
	Use Cases
	How to Obtain Argo CD Access Information for the GitOps cluster plugin installed on the web console?
	Prerequisites
	Procedure

	How to Obtain Argo CD Access Information from Argo CD Operator?
	Prerequisites
	Procedure
	Obtain Argo CD dashboard URL
	Retrieve Argo CD Password

	Update Argo CD admin account password

	Troubleshooting
	TOC
	I've deleted/corrupted my repo and can't delete my app?
	Why is my application still OutOfSync immediately after a successful Sync?
	Why is my application stuck in Progressing state?
	How to disable admin user?
	Argo CD cannot deploy Helm Chart based applications without internet access, how can I solve it?
	After creating my Helm application with Argo CD I cannot see it with helm ls and other Helm commands?
	I've configured cluster secret but it does not show up in CLI/UI, how do I fix it?
	Why Is My App Out Of Sync Even After Syncing?
	How often does Argo CD check for changes to my Git or Helm repository?
	How Do I Fix invalid cookie, longer than max length 4093?
	Why Am I Getting rpc error: code = Unavailable desc = transport is closing When Using The CLI?
	Why are resources of type SealedSecret stuck in the Progressing state?
	How to rotate Redis keys?
	How do I fix Manifest generation error (cached)?

