Menu

Extend

Overview

Operator

Cluster Plugin

Upload Packages

Extend - Alauda Container Platform

Overview - Alauda Container Platform

Menu

Overview

The platform provides a comprehensive extension system that allows users to enhance the
functionality of their Kubernetes clusters. This system is designed to be flexible and user-

friendly, enabling users to easily add new features and capabilities to their clusters.
This system consists of two main extension types:

e Operators: Operators are built on the Operator Lifecycle Manager (OLM) vO framework,
providing specialized operational capabilities for the platform. These extensions enable

automated management of complex applications and services within your cluster.

o Cluster Plugins: The platform features a proprietary cluster plugin system specifically
designed for Chart-type plugins. This system delivers an improved installation and
management experience compared to standard methods, with a user-friendly interface for

handling Chart-based extensions.

With support for numerous Operators and cluster plugins, users can significantly expand the

platform's capabilities to meet specific operational requirements and use cases.

Menu

Operator

TOC

Overview
Operator Sources
Pre-installation Preparation
Installation Mode
Update Channel
Approval Strategy
Installation Location
Installing via Web Console
Installing via YAML
Manual
1. Check available versions
2. Confirm catalogSource
3. Create a namespace
4. Create a Subscription
5. Check Subscription status
6. Approve InstallPlan
Automatic
1. Check available versions
2. Confirm catalogSource
3. Create a namespace
4. Create a Subscription

5. Check Subscription status

Operator - Alauda Container Platform

ON THIS PAGE >

Operator - Alauda Container Platform

6. Verify CSV

Upgrade Process

Overview

Based on the OLM (Operator Lifecycle Manager) framework, OperatorHub provides a
unified interface for managing the installation, upgrade, and lifecycle of Operators.
Administrators can use OperatorHub to install and manage Operators, enabling full lifecycle

automation for Kubernetes applications, including creation, updates, and deletion.
OLM mainly consists of the following components and CRDs:

+ OLM (olm-operator): Manages the complete lifecycle of Operators, including installation,

upgrades, and version conflict detection.
o Catalog Operator: Manages Operator catalogs and generates corresponding InstallPlans.

o CatalogSource: A namespace-scoped CRD that manages the Operator catalog source
and provides Operator metadata (e.g., version info, managed CRDSs). The platform
provides 3 default CatalogSources: system, platform, and custom. Operators in system

are not displayed in OperatorHub.

o ClusterServiceVersion (CSV): A namespace-scoped CRD that describes a specific

version of an Operator, including the resources, CRDs, and permissions it requires.

e Subscription: A namespace-scoped CRD that describes the subscribed Operator, its

source, acquisition channel, and upgrade strategy.

 InstallPlan: A namespace-scoped CRD that describes the actual installation operations to
be performed (e.g., creating Deployments, CRDs, RBAC). An Operator will only be installed

or upgraded once the InstallPlan is approved.

Operator Sources

To clarify the lifecycle strategy of different Operators in OperatorHub, the platform provides 5

source types:

Operator - Alauda Container Platform

1. Alauda Provided and maintained by Alauda, including full lifecycle management, security

updates, technical support, and SLA commitments.

2. Curated Selected from the open-source community, consistent with community versions,
without code modifications or recompilation. Alauda provides guidance and security

updates but does not guarantee SLA or lifecycle management.

3. Community Provided by the open-source community, updated periodically to ensure
installability, but functional completeness is not guaranteed; no SLA or Alauda support is

provided.

4. Marketplace Provided and maintained by third-party vendors certified by Alauda. Alauda

provides platform integration support, while the vendor is responsible for core maintenance.

5. Custom Developed and uploaded by the user to meet custom use-case requirements.

Pre-installation Preparation

Before installing an Operator, you need to understand the following key parameters:

Installation Mode

OLM provides three installation modes:

¢ Single Namespace
e Multi Namespace

¢ Cluster

Cluster mode (AlINamespaces) is recommended. The platform will eventually be upgraded
to OLM v1, which only supports the AllNamespaces install mode. Therefore,

SingleNamespace and MultiNamespace should be strongly avoided.

Update Channel

If an Operator provides multiple update channels, you can choose which channel to subscribe

to, e.g., stable.

Operator - Alauda Container Platform

Approval Strategy

Options: Automatic or Manual.

e Automatic: OLM will automatically upgrade the Operator when a new version is released

in the selected channel.

e Manual: When a new version is available, OLM creates an upgrade request that must be

manually approved by the cluster administrator before the upgrade occurs.

Note: Operators from Alauda only support Manual mode; otherwise, installation will fail.

Installation Location

It is recommended to create a separate namespace for each Operator.

If multiple Operators share the same namespace, their Subscriptions may be resolved into a
single InstallPlan:

o If an InstallPlan in that namespace requires Manual approval and remains pending, it can

block automatic upgrades for other Subscriptions included in the same InstallPlan.

Installing via Web Console

1. Log in to the web console and switch to the Administrator view.
2. Navigate to Marketplace > OperatorHub.
3. If the status is Absent:

o Download the Operator package from the Alauda Customer Portal or contact support.
¢ Upload the package to the target cluster using violet (see CLI).
* On the Marketplace > Upload Packages page, switch to the Operator tab and confirm

the upload.

4. If the status is Ready, click Install and follow the Operator's user guide.

http://localhost:4173/container_platform/ui/cli_tools/index.html

Operator - Alauda Container Platform

Installing via YAML

The following examples demonstrate installation methods for Operators from Alauda (Manual

only) and non-Alauda sources (Manual or Automatic).

INFO

Unlike cluster plugins (which must always be installed in the global cluster when using YAML),
Operators are installed in the target cluster where you want them to run. Make sure you are

connected to the intended cluster before executing any YAML manifests.

Manual

The harbor-ce-operator is from Alauda and supports Manual approval only. In Manual mode,
even if a new version is released, the Operator will not upgrade automatically. You must

Approve manually before OLM executes the upgrade.

1. Check available versions

echo -e "CHANNEL\tNAME\tVERSION"

kubectl get packagemanifest harbor-ce-operator -o json | jq -r '
.status.channels[] |

.name as $channel |

.entries[] |

[$channel, .name, .version] | @tsv

) | column -t -s §$'\t'

Example output:

CHANNEL ~ NAME VERSION
harbor-2 harbor-ce-operator.v2.12.11 2.12.11
harbor-2 harbor-ce-operator.v2.12.10 2.12.10
stable harbor-ce-operator.v2.12.11 2.12.11
stable harbor-ce-operator.v2.12.10 2.12.10

Operator - Alauda Container Platform

Fields:

¢ CHANNEL: Operator channel name
¢ NAME: CSV resource name

¢ VERSION: Operator version
2. Confirm catalogSource

kubectl get packagemanifests harbor-ce-operator -ojsonpath="{.status.catalogSource}’

Example output:

platform

This indicates the harbor-ce-operator comes from the platform catalogSource.

3. Create a namespace

kubectl create namespace harbor-ce-operator

4. Create a Subscription

apiVersion: operators.coreos.com/vl1alphal
kind: Subscription
metadata:
annotations:
cpaas.io/target-namespaces: ""
name: harbor-ce-operator-subs
namespace: harbor-ce-operator
spec:
channel: stable
installPlanApproval: Manual
name: harbor-ce-operator
source: platform
sourceNamespace: cpaas-system
startingCSV: harbor-ce-operator.v2.12.11

Operator - Alauda Container Platform

Field explanations:

annotation cpaas.io/target-namespaces : It is recommended to set this to empty; empty

indicates cluster-wide installation.
* .metadata.name: Subscription name (DNS-compliant, max 253 characters).
+ .metadata.namespace: Namespace where the Operator will be installed.
+ .spec.channel: Subscribed Operator channel.

¢ .spec.installPlanApproval: Approval strategy (Manual or Automatic). Here, Manual

requires manual approval for install/upgrade.

.spec.source: Operator catalogSource.

.spec.sourceNamespace: Must be set to cpaas-system because all catalogSources

provided by the platform are located in this namespace.

.spec.startingCSV: Specifies the version to install for Manual approval; defaults to the

latest in the channel if empty. Not required for Automatic.

5. Check Subscription status

kubectl -n harbor-ce-operator get subscriptions harbor-ce-operator-subs -o yaml

Key output:

.status.state: UpgradePending indicates the Operator is awaiting installation or upgrade.

Condition InstallPlanPending = True: Waiting for manual approval.

.status.currentCSV: Latest subscribed CSV.

.status.installPlanRef: Associated InstallPlan; must be approved before installation

proceeds.

6. Approve InstallPlan

kubectl -n harbor-ce-operator get installplan \
"$(kubectl -n harbor-ce-operator get subscriptions harbor-ce-operator-subs -o

jsonpath="{.status.installPlanRef.name}")"

Example output:

Operator - Alauda Container Platform

NAME Csv APPROVAL APPROVED
install-27t29 harbor-ce-operator.v2.12.11 Manual false

Approve manually:

PLAN="$(kubectl -n harbor-ce-operator get subscription harbor-ce-operator-subs -o
jsonpath="{.status.installPlanRef.name}"')"
kubectl -n harbor-ce-operator patch installplan "$PLAN" --type=json -p="[{"op":

"replace", "path": "/spec/approved", "value": true}]’

Wait for CSV creation; Phase changes to Succeeded :

kubectl -n harbor-ce-operator get csv

Example output:

NAME DISPLAY VERSION REPLACES
PHASE

harbor-ce-operator.v2.12.11 Alauda Build of Harbor 2.12.11 harbor-ce-
operator.v2.12.10 Succeeded

Fields:

 NAME: Installed CSV name

o DISPLAY: Operator display name

o VERSION: Operator version

« REPLACES: CSV replaced during upgrade

o PHASE: Installation status (Succeeded indicates success)

Automatic

The clickhouse-operator comes from a non-Alauda source, and its Approval Strategy can be
set to Automatic. In Automatic mode, the Operator upgrades automatically when a new
version is released, without manual approval.

Operator - Alauda Container Platform

1. Check available versions

echo -e "CHANNEL\tNAME\tVERSION"

kubectl get packagemanifest clickhouse-operator -o json | jq -r

.status.channels[] |
.name as $channel |
.entries[] |

[$channel, .name, .version] | @tsv

) | column -t -s $'\t'

Example output:

CHANNEL ~ NAME VERSION
stable clickhouse-operator.v@.18.2 0.18.2

2. Confirm catalogSource

kubectl get packagemanifests clickhouse-operator -ojsonpath="{.status.catalogSource}’

Example output:

community-operators

This indicates the clickhouse-operator comes from the community-operators catalogSource.
3. Create a namespace

kubectl create namespace clickhouse-operator

4. Create a Subscription

Operator - Alauda Container Platform

apiVersion: operators.coreos.com/vialphal
kind: Subscription
metadata:
annotations:
cpaas.io/target-namespaces: ""
name: clickhouse-operator-subs
namespace: clickhouse-operator
spec:
channel: stable
installPlanApproval: Automatic
name: clickhouse-operator
source: community-operators

sourceNamespace: openshift-marketplace

Field explanations are the same as in Manual.

5. Check Subscription status

kubectl -n clickhouse-operator get subscriptions clickhouse-operator -oyaml
6. Verify CSV
kubectl -n clickhouse-operator get csv

Example output:

NAME DISPLAY VERSION PHASE

clickhouse-operator.v@.18.2 (lickHouse Operator 0.18.2 Succeeded

Installation is successful.

Upgrade Process

1. Upload the new Operator version.

Operator - Alauda Container Platform

2. Upgrades follow the strategy configured in the Subscription:

o Automatic Upgrade: Upgrades automatically upon upload.

e Manual Upgrade:

« Batch Upgrade: Execute on Platform Management > Cluster Management >
Cluster > Features page.

¢ Individual Upgrade: Manually approve upgrade requests in OperatorHub.

Note: Only Operators from Alauda support batch upgrades.

Cluster Plugin

TOC

Overview
Viewing Available Plugins
Installing via Web Console
Installing via YAML
non-config
1. Check available versions
2. Create a Modulelnfo
3. Verify installation
with-config
1. Check available versions
2. Create a Modulelnfo
3. Verify installation

Upgrade Process

Overview

Cluster Plugin - Alauda Container Platform

ON THIS PAGE >

A cluster plugin is a tool for extending the platform's functionality. Each plugin is managed

through three cluster-level CRDs: ModulePlugin, ModuleConfig, and Modulelnfo.

+ ModulePlugin: Defines the basic information of the cluster plugin.

Cluster Plugin - Alauda Container Platform

+ ModuleConfig: Defines the version information of the plugin. Each ModulePlugin can

correspond to one or more ModuleConfigs.

¢ Modulelnfo: Records the installed plugin's version and status information.

Cluster plugins support dynamic form configuration. Dynamic forms are simple Ul forms that
provide customizable configuration options or parameter combinations for plugins. For
example, when installing the Alauda Container Platform Log Collector, you can select the log
storage plugin as ElasticSearch or ClickHouse via the dynamic form. The dynamic form
definition is located in the .spec.config field of the ModuleConfig; if the plugin does not

require a dynamic form, this field is empty.
Plugins are published via the violet tool. Note:

» Plugins can only be published to the global cluster, but can be installed on either the

global or workload cluster depending on the configuration.
 In the same cluster, a plugin can only be installed once.

¢ Once published successfully, the platform will automatically create the corresponding
ModulePlugin and ModuleConfig in the global cluster—no manual modifications are

required.

e Creating a Modulelnfo resource installs the plugin and allows selecting the version, target
cluster, and dynamic form parameters. Refer to the ModuleConfig of the selected version
for the dynamic form definition. For more usage instructions, refer to the plugin-specific

documentation.

Viewing Available Plugins

To view all plugins provided by the platform:

1. Navigate to the platform management view.

2. Click the left navigation menu: Administrator > Marketplace > Cluster Plugin

This page lists all available plugins along with their current status.

Installing via Web Console

Cluster Plugin - Alauda Container Platform

If a plugin shows an "absent" status, follow these steps to install it:

1. Download the plugin package:

« Visit the Alauda Customer Portal to download the corresponding plugin package.

« If you don't have access to the Alauda Customer Portal, contact technical support.

2. Upload the package to the platform:

o Use the violet tool to publish the package to the platform.

o For detailed instructions on using this tool, refer to the CLI.

3. Verify the upload:

Navigate to Administrator > Marketplace > Upload Packages

Switch to the Cluster Plugin tab

Locate the uploaded plugin name

The plugin details will show the version(s) of the uploaded package
4. Install the plugin:

o If the plugin shows a "ready" status, click Install
e Some plugins require installation parameters; refer to the plugin-specific documentation

¢ Plugins without installation parameters will start installation immediately after clicking

Install

Installing via YAML

The installation method differs by plugin type:

* Non-config plugin: No additional parameters required; installation is straightforward.

» Config plugin: Requires filling in configuration parameters; refer to the plugin

documentation for detalils.

INFO

http://localhost:4173/container_platform/ui/cli_tools/index.html

Cluster Plugin - Alauda Container Platform
YAML-based installation must always be performed in the global cluster.

Although the plugin itself can target either the global cluster or a workload cluster (depending on
the affinity settings in the ModuleConfig), the ModuleInfo resource can only be created in the
global cluster.

The following examples demonstrate YAML-based installation.

non-config
Example: Alauda Container Platform Web Terminal

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources in the global cluster:

NAME AGE
web-cli 4d20h

NAME AGE
web-cli-v4.0.4 4d21h

This indicates that the ModulePlugin web-cli exists in the global cluster and version v4.0.4

is published.

Check the ModuleConfig for version v4.0.4:

Cluster Plugin - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModuleConfig
metadata:

name: web-cli-v4.0.4
spec:
affinity:
clusterAffinity:
matchLabels:
is-global: "true"
version: v4.0.4

config: {}

The .spec.affinity defines cluster affinity, indicating that web-cli can only be installed on
the global cluster. .spec.config is empty, meaning the plugin requires no configuration and

can be installed directly.

2. Create a Modulelnfo

Create a Modulelnfo resource in the global cluster to install the plugin without any
configuration parameters:

apiVersion: cluster.alauda.io/v1alphal
kind: ModulelInfo
metadata:
labels:
cpaas.io/cluster-name: global
cpaas.io/module-name: web-cli
cpaas.io/module-type: plugin
name: global-temporary-name
spec:
config: {}

version: v4.0.4

Field explanations:

e name : Temporary name for the cluster plugin. The platform will rename it after creation

based on the content, in the format <cluster-name>-<hash of content> , e.g., global-

Cluster Plugin - Alauda Container Platform

€e98c9991eal1464aaa8054bdachab313 .

o label cpaas.io/cluster-name : Specifies the target cluster where the plugin should be

installed. If it conflicts with the ModuleConfig's affinity, installation will fail.

Note: This label does not change where the YAML is applied—the YAML must still be

applied in the global cluster.
e label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

e label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.
e .spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

e .spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

3. Verify installation

Since the Modulelnfo name changes upon creation, locate the resource via label in the global
cluster to check the plugin status and version:

kubectl get moduleinfo -1 cpaas.io/module-name=web-cli

NAME CLUSTER MODULE DISPLAY_NAME STATUS
TARGET_VERSION CURRENT_VERSION NEW_VERSION
global-ee98c9991eal464aaa8054bdachab313 global web-cli web-cli Running
v4.0.4 v4.0.4 v4.0.4

Field explanations:

e NAME : Modulelnfo resource name

e CLUSTER : Cluster where the plugin is installed

e MODULE : Plugin name

e DISPLAY_NAME : Display name of the plugin

o STATUS : Installation status; Running means successfully installed and running

e TARGET_VERSION : Intended installation version

Cluster Plugin - Alauda Container Platform

e CURRENT_VERSION : Version before installation

e NEW_VERSION : Latest available version for installation
with-config
Example: Alauda Container Platform GPU Device Plugin

1. Check available versions

Ensure the plugin has been published by checking ModulePlugin and ModuleConfig
resources in the global cluster:

NAME AGE
gpu-device-plugin 4d23h

NAME AGE
gpu-device-plugin-v4.0.15 4d23h

This indicates that ModulePlugin gpu-device-plugin in the global cluster exists and version
v4.0.15 is published.

Check the ModuleConfig for v4.0.15:

Cluster Plugin - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModuleConfig
metadata:

name: gpu-device-plugin-v4.0.15
spec:
affinity:
clusterAffinity:
matchExpressions:
- key: cpaas.io/os-linux
operator: Exists
matchLabels:
cpaas.io/arch-amd64: "true"
config:
custom:
mps_enable: false
pgpu_enable: false
vgpu_enable: false

version: v4.0.15

Notes:

« This plugin can only be installed on clusters with Linux OS and amd64 architecture.

e The dynamic form includes three device driver switches: custom.mps_enable ,
custom.pgpu_enable , and custom.vgpu_enable . Only when setto true will the

corresponding driver be installed.

2. Create a Modulelnfo

Create a Modulelnfo resource in the global cluster to install the plugin, filling in dynamic form

parameters as needed (e.g., enabling pgpu and vgpu drivers):

Cluster Plugin - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ModulelInfo
metadata:
labels:
cpaas.io/cluster-name: business
cpaas.io/module-name: gpu-device-plugin
cpaas.io/module-type: plugin
name: business-temporary-name
spec:
config:
custom:
mps_enable: false
pgpu_enable: true
vgpu_enable: true

version: v4.0.15

Field explanations are the same as non-config. Refer to the plugin documentation for config
details.

3. Verify installation

Locate the Modulelnfo via label in the global cluster to check status and version:

NAME CLUSTER MODULE DISPLAY_NAME
STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION
business-7ebb241b4f77471235e57dd1ec7fbddd business gpu-device-plugin gpu-device-plugin
Running v4.0.15 v4.0.15 v4.0.15

Field explanations are the same as non-config.

Upgrade Process

To upgrade an existing plugin to a newer version:
1. Upload the new version:

o Follow the same process to upload the new version to the platform.

Cluster Plugin - Alauda Container Platform

2. Verify the new version:

* Navigate to Administrator > Marketplace > Upload Packages
e Switch to the Cluster Plugin tab

e The plugin details will show the newly uploaded version

3. Perform the upgrade:

» Navigate to Administrator > Clusters > Clusters

¢ Clusters with upgradable plugins will display an upgrade icon

» Enter the cluster details and switch to the Features tab

e The upgrade button will be enabled under the features component

o Click Upgrade to complete the plugin upgrade

Upload Packages - Alauda Container Platform

= Menu ON THIS PAGE >

Upload Packages

The platform provides a command-line tool violet , which is used to upload packages

downloaded from the Marketplace in the Alauda Customer Portal to the platform.

violet supports uploading the following types of packages:

e Operator
¢ Cluster Plugin

¢ Helm Chart

When the status of a package in Cluster Plugins or OperatorHub is shown as Absent , you
need to use this tool to upload the corresponding package.

The upload process of violet mainly includes the following steps:

1. Extract and retrieve information from the package
2. Push images to the image registry

3. Create Artifact and ArtifactVersion resources on the platform

TOC

Download the Tool
For Linux or macOS
For Windows

Prerequisites

Usage
violet show

violet push

Upload Packages - Alauda Container Platform

Upload an Operator to Multiple Clusters

Upload an Operator to a Standby Global Cluster
Upload a Cluster Plugin

Upload a Helm Chart to the chart repository

Push only images from all packages in a directory

Create only CRs from all packages in a directory

Download the Tool

Log in to the Alauda Customer Portal, navigate to the Downloads page, and click CLI

Tools. Download the binary that matches your operating system and architecture.

After downloading, install the tool on your server or PC.

For Linux or macOS

For non-root users:

sudo mv -f violet_ linux_amd64 /usr/local/bin/violet && sudo chmod +x
/usr/local/bin/violet

sudo mv -f violet linux_arm64 /usr/local/bin/violet && sudo chmod +x
/usr/local/bin/violet

sudo mv -f violet darwin_amd64 /usr/local/bin/violet &% sudo chmod +Xx
/usr/local/bin/violet

sudo mv -f violet darwin_armb64 /usr/local/bin/violet &% sudo chmod +x
/usr/local/bin/violet

For root users:

Upload Packages - Alauda Container Platform

mv -f violet_linux_amd64 /usr/bin/violet && chmod +x /usr/bin/violet
mv -f violet linux_armb4 /usr/bin/violet &&% chmod +x /usr/bin/violet
mv -f violet darwin_amd64 /usr/bin/violet && chmod +x /usr/bin/violet

mv -f violet darwin_armé4 /usr/bin/violet && chmod +x /usr/bin/violet

For Windows

1. Download the file and rename itto violet.exe , or use PowerShell to rename it:

mv -Force violet_windows_amd64.exe violet.exe

2. Run the tool in PowerShell.

Note: If the tool path is not added to your environment variables, you must specify the full

path when running commands.

Prerequisites

Permission requirements

¢ You must provide a valid platform user account (username and password).

¢ The account must have the role property setto System and the role name must be

platform-admin-system .

Note: If the role property of your account is set to Custom , you cannot use this tool.

Usage

Upload Packages - Alauda Container Platform

violet show

Before uploading a package, use the violet show command to preview its details.

violet show topolvm-operator.v2.3.0.tgz
Name: NativeStor

Type: bundle

Arch: [linux/amd64]

Version: 2.3.0

violet show topolvm-operator.v2.3.0.tgz --all

Name: NativeStor

Type: bundle

Arch: []

Version: 2.3.0

Artifact: harbor.demo.io/acp/topolvm-operator-bundle:v3.11.0

RelateImages: [harbor.demo.io/acp/topolvm-operator:v3.11.0
harbor.demo.io/acp/topolvm:v3.11.0 harbor.demo.io/3rdparty/k8scsi/csi-provisioner:v3.00

.

violet push

The following examples illustrate common usage scenarios.
Before digging into the examples, here are some common OPTIONAL parameters used in the

commands:

Upload Packages - Alauda Container Platform

--platform-address <platform access URL> # The access URL of the platform, e.g.,
"https://example.com"

--platform-username <platform user> # The username of the platform user
--platform-password <platform password> # The password of the platform user
--clusters <cluster names> # Specify target clusters, separated by

commas (e.g., regionl,region2)

--dest-repo <image repository URL> # Specify the destination image repository
URL. MUST be specified when uploading extensions to a standby cluster.
When ‘--dest-repo' is specified, either

the authentication info of the image registry or ‘--no-auth‘' MUST be provided.

--username <registry user> # The username of the specified image
registry.

--password <registry password> # The password of the specified image
registry.

--no-auth # Specify if the image registry does not

require authentication.
--plain # Specify if the image registry uses HTTP
instead of HTTPS.

--skip-crs # Skip creating ‘Artifact’ and
‘ArtifactVersion' resources, only push images.

This prevents Operators or Cluster
Plugins from being updated prematurely during the <Term name="productShort" /> upgrade
process.
--skip-push # Only create ‘Artifact' and

‘ArtifactVersion' resources, while images are not pushed.

Upload an Operator to Multiple Clusters

violet push opensearch-operator.v3.14.2.tgz \
--platform-address "https://example.com" \
--platform-username "<platform_user>" \
--platform-password "<platform_password>" \

--clusters regionl,region2

INFO

Upload Packages - Alauda Container Platform

o If --clusters is not specified, the Operator is uploaded to the global cluster by default.

Upload an Operator to a Standby Global Cluster

violet push opensearch-operator.v3.14.2.tgz \
--platform-address "https://example.com" \
--platform-username "<platform_user>" \
--platform-password "<platform_password>" \
--dest-repo "<standby-cluster-VIP>:11443" --username "<registry-username>" --password "

<registry-password>"

Upload a Cluster Plugin

violet push plugins-cloudedge-v@.3.16-hybrid.tgz \
--platform-address "https://example.com" \
--platform-username "<platform_user>" \

--platform-password "<platform_password>"

INFO

» You do not need to specify the --clusters parameter when uploading a Cluster Plugin, as the
platform will automatically distribute it based on its affinity configuration. If you specify --

clusters , the parameter will be ignored.

Upload a Helm Chart to the chart repository

violet push plugins-cloudedge-v@.3.16-hybrid.tgz \
--platform-address "https://example.com" \
--platform-username "<platform_user>" \

--platform-password "<platform_password>"

INFO

Upload Packages - Alauda Container Platform

e Helm Charts can only be uploaded to the default public-charts repository provided by the

platform.

Push only images from all packages in a directory

When multiple packages are downloaded from the Marketplace, you can place them in the
same directory and upload them all at once:

violet push <packages_dir_name> \
--skip-crs \
--platform-address "https://example.com" \
--platform-username "<platform_user>" \

--platform-password "<platform_password>"

Create only CRs from all packages in a directory

When multiple packages are downloaded from the Marketplace, you can place them in the

same directory and upload them all at once:

violet push <packages_dir_name> \
--skip-push \
--platform-address "https://example.com" \
--platform-username "<platform_user>" \
--platform-password "<platform_password>"

--clusters "<cluster_name>"

WARNING

When the upgrade target is the global cluster , you can omit the --clusters parameter, as it
defaults to uploading to the global cluster.

However, when the upgrade target is a workload cluster, you must specify the --clusters

<workload_cluster_name> parameter.

	Extend
	Overview
	Operator
	TOC
	Overview
	Operator Sources
	Pre-installation Preparation
	Installation Mode
	Update Channel
	Approval Strategy
	Installation Location

	Installing via Web Console
	Installing via YAML
	Manual
	1. Check available versions
	2. Confirm catalogSource
	3. Create a namespace
	4. Create a Subscription
	5. Check Subscription status
	6. Approve InstallPlan

	Automatic
	1. Check available versions
	2. Confirm catalogSource
	3. Create a namespace
	4. Create a Subscription
	5. Check Subscription status
	6. Verify CSV

	Upgrade Process

	Cluster Plugin
	TOC
	Overview
	Viewing Available Plugins
	Installing via Web Console
	Installing via YAML
	non-config
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	with-config
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Upgrade Process

	Upload Packages
	TOC
	Download the Tool
	For Linux or macOS
	For Windows

	Prerequisites
	Usage
	violet show
	violet push
	Upload an Operator to Multiple Clusters
	Upload an Operator to a Standby Global Cluster
	Upload a Cluster Plugin
	Upload a Helm Chart to the chart repository
	Push only images from all packages in a directory
	Create only CRs from all packages in a directory

