
Developer

Overview

Overview

Namespace Management

Application Lifecycle Management

Kubernetes Workload Management

Quick Start

Creating a simple application via image
Introduction

Important Notes

Prerequisites

Workflow Overview

Procedure

Building Applications

Menu

Developer - Alauda Container Platform

Build application architecture
Introduction to build application

Core components

Concepts

Namespaces

Creating Applications

Operation and Maintaining Applications

Workloads

Working with Helm charts

1. Understanding Helm

2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via UI

Configurations

Developer - Alauda Container Platform

Application Observability

How To

Images

Overview of images
Understanding containers and images

Images

Image registry

Image repository

Image tags

Image IDs

Containers

How To

Registry

Developer - Alauda Container Platform

Introduction
Principles and namespace isolation

Authentication and authorization

Advantages

Application Scenarios

Install

How To

Source to Image

Overview

Install

Upgrade

Guides

Developer - Alauda Container Platform

How To

Node Isolation Strategy

Introduction

Advantages

Application Scenarios

Architecture

Concepts

Guides

Permissions

FAQ

Developer - Alauda Container Platform

FAQ
Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist in a namespace when importing it?

Developer - Alauda Container Platform

Alauda Container Platform provides a unified interface to create, edit, delete, and manage

cloud-native applications through both a web console and CLI (Command-Line Interface).

Applications can be deployed across multiple namespaces with RBAC policies.

Namespace Management

Application Lifecycle Management

Application Creation Patterns

Application Operations

Application Observability

Kubernetes Workload Management

Namespaces provide logical isolation for Kubernetes resources. Key operations include:

Creating Namespaces: Define resource quotas and pod security admission policies.

Importing Namespaces: Importing existing Kubernetes namespaces into Alauda Container

Platform provides full platform capabilities parity with natively created namespaces.

Overview

TOC

Namespace Management

Application Lifecycle Management

Menu ON THIS PAGE

Overview - Alauda Container Platform

Alauda Container Platform supports end-to-end lifecycle management including:

In Alauda Container Platform, applications can be created in multiple ways. Here are some

common methods:

Create from Images: Create custom applications using pre-built container images. This

method supports creating complete application that include Deployments , Services ,

ConfigMaps , and other Kubernetes resources.

Create from Catalog: Alauda Container Platform provides application catalogs, allowing

users to select predefined application templates (Helm Charts or Operator Backed) for

creation.

Create from YAML: By importing a YAML file, create a custom application with all included

resources in one step.

Create from Code: Build images via Source to Image (S2I).

Updating Applications: Update an application's image version, environment variables, and

other configurations, or import existing Kubernetes resources for centralized management.

Exporting Applications: Export applications in YAML, Kustomize, or Helm Chart formats,

then import them to create new application instances in other namespaces or clusters.

Version Management: Support automatically or manually creating application versions, and

in case of issues, one-click rollback to a specific version is available for quick recovery.

Deleting Applications: Delete an application, it simultaneously deletes the application itself

and all of its directly contained Kubernetes resources. Additionally, this action severs any

association the application might have had with other Kubernetes resources that were not

directly part of its definition.

For continuous operation management, the platform provides logs, events, monitoring, etc.

Application Creation Patterns

Application Operations

Application Observability

Overview - Alauda Container Platform

Logs: Supports viewing real-time logs from the currently running Pod, and also provides

logs from previous container restarts.

Events: Supports viewing event information for all resources within a namespace.

Monitoring Dashboards: Provides namespace-level monitoring dashboards, including

dedicated views for Applications, Workloads, and Pods, and also support customizing

monitoring dashboards to suit specific operational requirements.

Support for core workload types:

Deployments: Manage stateless applications with rolling updates.

StatefulSets: Run stateful apps with stable network IDs.

DaemonSets: Deploy node-level services (e.g., log collectors).

CronJobs: Schedule batch jobs with retry policies.

Kubernetes Workload Management

Overview - Alauda Container Platform

Quick Start

Creating a simple application via image

Introduction

Important Notes

Prerequisites

Workflow Overview

Procedure

Menu

Quick Start - Alauda Container Platform

This technical guide demonstrates how to efficiently create, manage, and access

containerized applications in Alauda Container Platform using Kubernetes-native

methodologies.

Introduction

Use Cases

Time Commitment

Important Notes

Prerequisites

Workflow Overview

Procedure

Create namespace

Configure Image Repository

Method 1: Integrated Registry via Toolchain

Method 2: External Registry Services

Create application via Deployment

Expose Service via NodePort

Validate Application Accessibility

Creating a simple application via image

TOC

Introduction

Menu ON THIS PAGE

Creating a simple application via image - Alauda Container Platform

New users seeking to understand fundamental application creation workflows on

Kubernetes platforms

Practical exercise demonstrating core platform capabilities including:

Project/Namespace orchestration

Deployment creation

Service exposure patterns

Application accessibility verification

Estimated completion time: 10-15 minutes

This technical guide focuses on essential parameters - refer to comprehensive

documentation for advanced configurations

Required permissions:

Project/Namespace creation

Image repository integration

Workload deployment

Basic understanding of Kubernetes architecture and Alauda Container Platform platform

concepts

Pre-configured project following platform establishment procedures

Use Cases

Time Commitment

Important Notes

Prerequisites

Creating a simple application via image - Alauda Container Platform

No. Operation Description

1 Create Namespace Establish resource isolation boundary

2 Configure Image Repository Set up container image sources

3 Create application via Deployment Create Deployment workload

4 Expose Service via NodePort Configure NodePort service

5 Validate Application Accessibility Test endpoint connectivity

Namespaces provide logical isolation for resource grouping and quota management.

Prerequisites

Permissions to create, update, and delete namespaces(e.g., Administrator or Project

Administrator roles)

kubectl configured with cluster access

Creation Process

1. Log in, and navigate to Project Management > Namespaces

2. Select Create Namespace

3. Configure essential parameters:

** Parameter ** Description

Cluster Target cluster from project-associated clusters

Workflow Overview

Procedure

Create namespace

Creating a simple application via image - Alauda Container Platform

** Parameter ** Description

Namespace Unique identifier (auto-prefixed with project name)

4. Complete creation with default resource constraints

Alauda Container Platform supports multiple image sourcing strategies:

1. Access Administrator > Toolchain > Integration

2. Initiate new integration:

Parameter Requirement

Name Unique integration identifier

API Endpoint Registry service URL (HTTP/HTTPS)

Secret Pre-existing or newly created credential

3. Allocate registry to target platform project

Use publicly accessible registry URLs (e.g., Docker Hub)

Example: index.docker.io/library/nginx:latest

Verification Requirement

Cluster network must have egress access to registry endpoints

Deployments provide declarative updates for Pod replicasets.

Configure Image Repository

Method 1: Integrated Registry via Toolchain

Method 2: External Registry Services

Create application via Deployment

Creating a simple application via image - Alauda Container Platform

Creation Process

1. From Container Platform view:

Use namespace selector to choose target isolation boundary

2. Navigate to Workloads > Deployments

3. Click Create Deployment

4. Specify image source:

Select integrated registry or

Input external image URL (e.g., index.docker.io/library/nginx:latest)

5. Configure workload identity and launch

Management Operations

Monitor replica status

View events and logs

Inspect YAML manifests

Analyze resource metrics, alerts

Services enable network accessibility to Pod groups.

Creation Process

1. Navigate to Networking > Services

2. Click Create Service with parameters:

Parameter Value

Type NodePort

Selector Target Deployment name

Port Mapping Service Port: Container Port (e.g., 8080:80)

Expose Service via NodePort

Creating a simple application via image - Alauda Container Platform

3. Confirm creation.

Critical

Cluster-visible virtual IP

NodePort allocation range (30000-32767)

Internal routes enable service discovery for workloads by providing a unified IP address or

host port for access.

1. Click on Network > Service.

2. Click on Create Service.

3. Configure the Details based on the parameters below, keeping other parameters at their

defaults.

Parameter Description

Name Enter the name of the Service.

Type NodePort

Workload

Name
Select the Deployment created previously.

Port

Service Port: The port number exposed by the Service within the

cluster, i.e., Port, e.g., 8080 .

Container Port: The target port number (or name) mapped by the

service port, i.e., targetPort, e.g., 80 .

4. Click on Create. At this point, the Service is successfully created.

Verification Method

1. Obtain exposed endpoint components:

Node IP: Worker node public address

Validate Application Accessibility

Creating a simple application via image - Alauda Container Platform

NodePort: Allocated external port

2. Construct access URL: http://<Node_IP>:<NodePort>

3. Expected result: Nginx welcome page

Creating a simple application via image - Alauda Container Platform

Building Applications

Build application architecture

Build application architecture

Introduction to build application

Core components

Concepts

Application Types

Custom Applications
UnderStanding Custom Applications

Custom Application CRD Architecture Design

Workload Types

Menu

Building Applications - Alauda Container Platform

Understanding Parameters
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Understanding Environment Variables

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Understanding Startup Commands

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Advanced Usage Patterns

Resource Unit Description

Building Applications - Alauda Container Platform

Namespaces

Creating Namespaces
Understanding namespaces

Creating namespaces by using web console

Creating namespace by using CLI

Importing Namespaces
Overview

Use Cases

Prerequisites

Procedure

Resource Quota
Understanding Resource Requests & Limits

Quotas

Hardware accelerator Resources Quotas

Limit Range
Understanding Limit Range

Create Limit Range by using CLI

Building Applications - Alauda Container Platform

Pod Security Admission
Security Modes

Security Standards

Configuration

UID/GID Assignment
Enable UID/GID Assignment

Verify UID/GID Assignment

Overcommit Ratio
UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Managing Namespace Members
Importing Members

Adding Members

Removing Members

Updating Namespaces

Updating Quotas

Updating Container LimitRanges

Updating Pod Security Admission

Building Applications - Alauda Container Platform

Deleting/Removing Namespaces
Deleting Namespaces

Removing Namespaces

Creating Applications

Creating applications from Image

Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Creating applications from Chart
Precautions

Prerequisites

Procedure

Status Analysis Reference

Creating applications from YAML
Precautions

Prerequisites

Procedure

Building Applications - Alauda Container Platform

Creating applications from Code
Prerequisites

Procedure

Creating applications from Operator Backed

UnderStanding Operator Backed Application

Creating a Operator Backed Application by using web console

Troubleshooting

Creating applications by using CLI
Prerequisites

Procedure

Example

Reference

Operation and Maintaining Applications

Application Rollout

Status Description
Applications

KEDA(Kubernetes Event-driven Autoscaling)

Building Applications - Alauda Container Platform

Configuring HPA
Understanding Horizontal Pod Autoscalers

Prerequisites

Creating a Horizontal Pod Autoscaler

Calculation Rules

Starting and Stopping Applications
Starting the Application

Stopping the Application

Configuring VerticalPodAutoscaler (VPA)

Understanding VerticalPodAutoscalers

Prerequisites

Creating a VerticalPodAutoscaler

Follow-Up Actions

Configuring CronHPA
Understanding Cron Horizontal Pod Autoscalers

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Schedule Rule Explanation

Updating Applications
Importing Resources

Removing/Batch Removing Resources

Building Applications - Alauda Container Platform

Exporting Applications
Exporting Helm Charts

Exporting YAML to Local

Exporting YAML to Code Repository (Alpha)

Updating and deleting Chart Applications
Important Notes

Prerequisites

Status Analysis Description

Version Management for Applications

Creating a Version Snapshot

Rolling Back to a Historical Version

Deleting Applications

Building Applications - Alauda Container Platform

Handling Out of Resource Errors
Overview

Configuring Eviction Policies

Creating Eviction Policies in Node Configuration

Eviction Signals

Eviction Thresholds

Configuring Allocatable Resources for Scheduling

Preventing Node Condition Oscillation

Reclaiming Node-level Resources

Pod Eviction

Quality of Service and Out of Memory Killer

Scheduler and Out of Resource Conditions

Example Scenario

Recommended Practices

Health Checks

Understanding Health Checks

YAML file example

Health Checks configuration parameters by using web console

Troubleshooting probe failures

Workloads

Deployments

Understanding Deployments

Creating Deployments

Managing Deployments

Troubleshooting by using CLI

Building Applications - Alauda Container Platform

DaemonSets
Understanding DaemonSets

Creating DaemonSets

Managing DaemonSets

StatefulSets
Understanding StatefulSets

Creating StatefulSets

Managing StatefulSets

CronJobs

Understanding CronJobs

Creating CronJobs

Execute Immediately

Deleting CronJobs

Jobs
Understanding Jobs

YAML file example

Execution Overview

Pods
Understanding Pods

YAML file example

Managing a Pod by using CLI

Managing a Pod by using web console

Building Applications - Alauda Container Platform

Containers
Understanding Containers

Understanding Ephemeral Containers

Interacting with Containers

Working with Helm charts

Working with Helm charts
1. Understanding Helm

2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via UI

Configurations

Configuring ConfigMap

Understanding Config Maps

Config Map Restrictions

Example ConfigMap

Creating a ConfigMap by using the web console

Creating a ConfigMap by using the CLI

Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

ConfigMap vs Secret

Building Applications - Alauda Container Platform

Configuring Secrets
Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console

How to Use a Secret in a Pod

Follow-up Actions

Operations

Application Observability

Monitoring Dashboards

Prerequisites

Namespace-Level Monitoring Dashboards

Workload-Level Monitoring

Logs
Procedure

Events
Procedure

Event records interpretation

Building Applications - Alauda Container Platform

How To

Setting Scheduled Task Trigger Rules
Time Conversion

Writing Crontab Expressions

Building Applications - Alauda Container Platform

Introduction to build application

Core components

Archon

Metis

Captain controller manager

Icarus

Alauda Container Platform is a platform for developing and running containerized applications.

It is designed to allow applications and the data centers that support them to expand from just

a few machines and applications to thousands of machines that serve millions of clients.

Built on Kubernetes, Alauda Container Platform leverages the same robust technology that

powers large-scale telecommunications, streaming video, gaming, banking, and other critical

applications. This foundation enables you to extend your containerized applications across

hybrid environments - from on-premise infrastructure to multi-cloud deployments.

Build application architecture

TOC

Introduction to build application

Core components

Menu ON THIS PAGE

Build application architecture - Alauda Container Platform

Provides advanced APIs for application and resource management operations. As a control

plane component, Archon exclusively runs on the global cluster, serving as the central

management interface for cluster-wide operations. Its API layer enables declarative

configuration of applications, namespaces, and infrastructure resources across the entire

platform.

Functions as the multi-purpose controller within business clusters , delivering critical cluster-

level operations:

Webhook management: Implements admission webhooks for resource validation,

including resources ratio enforcement and resource labeling policies and so on.

Status synchronization: Maintains consistency across distributed components through:

Helm chart application status reconciliation

Project quota synchronization

Application status updates (writing to application.status fields)

Serves as the Helm chart application lifecycle management controller operating exclusively

on the global cluster . Its responsibilities include:

Chart installation: Orchestrating deployment of Helm chart across clusters

Version management: Handling seamless upgrades and rollbacks of Helm chart releases

Uninstallation: Complete removal of Helm chart application and associated resources

Release tracking: Maintaining state and history of all deployed Helm chart releases

Provides the centralized web-based management interface for Container Platform . As the

presentation layer component, Icarus :

Archon

Metis

Captain controller manager

Icarus

Build application architecture - Alauda Container Platform

Delivers comprehensive dashboard visualizations for cluster health monitoring

Enables GUI-based application deployment and management workflows

Implements Kubernetes RBAC-based multi-tenant management:

Distinguishes tenant accounts through namespace isolation

Manages resource access permissions per tenant

Provides tenant-specific view isolation

Exclusively runs on the global cluster , serving as the unified control point for multi-cluster

operations

Build application architecture - Alauda Container Platform

Concepts

Application Types

Custom Applications
UnderStanding Custom Applications

Custom Application CRD Architecture Design

Workload Types

Understanding Parameters

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Menu

Concepts - Alauda Container Platform

Understanding Environment Variables
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Understanding Startup Commands

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Advanced Usage Patterns

Resource Unit Description

Concepts - Alauda Container Platform

In the platform's Container Platform > Applications, the following types of applications can

be created:

Custom Application: A Custom Application represents a complete business application

composed of one or more interconnected computing components (such as Workloads like

Deployments or StatefulSets), internal networking configurations (Services), and other

native Kubernetes resources. This type of application offers flexible creation methods,

supporting direct UI editing, YAML orchestration, and templated deployments, making it

suitable for development, testing, and production environments. To learn more about this

application type, refer to Custom Application. Different types of native applications can be

created in the following ways:

Create from Image: Quickly create applications using existing container images.

Create from YAML: Create applications using YAML configuration files.

Create from Code: Create applications using source code.

Helm Chart Application: A Helm Chart Application allows you to deploy and manage

applications packaged as Helm Charts. Helm Charts are bundles of pre-configured

Kubernetes resources that can be deployed as a single unit, simplifying the installation and

management of complex applications. To learn more about this application type, refer to

Helm Chart Application

Operator Backed Application: An Operator-Backed Application leverages the power of

Kubernetes Operators to automate the lifecycle management of complex applications. By

deploying an application backed by an Operator, you benefit from automated deployment,

scaling, upgrades, and maintenance, as the Operator acts as an intelligent controller

tailored to the specific application. To learn more about this application type, refer to

Operator Backed Application.

Application Types

Menu

Application Types - Alauda Container Platform

UnderStanding Custom Applications

Core Capabilities

Design Value

Custom Application CRD Architecture Design

Application CRD Define

ApplicationHistory Define

A Custom Application is an application paradigm built on native Kubernetes resources (e.g.,

Deployment, Service, ConfigMap), strictly adhering to Kubernetes declarative API design

principles. Users can define and deploy applications through standard YAML files or direct

Kubernetes API calls, enabling fine-grained control over the application lifecycle. These are

created from sources such as Images, code, and YAML are classified as custom application in

Alauda Container Platform. Its design core lies in balancing flexibility and standardization,

ideal for scenarios requiring deeply customized management.

1. Declarative API-Driven Management

Custom Applications

TOC

UnderStanding Custom Applications

Core Capabilities

Menu ON THIS PAGE

Custom Applications - Alauda Container Platform

Aggregates distributed resources (e.g., Deployment, Service, Ingress) into a logical

application unit through Application CRD, enabling atomic operations.

2. Application-Level Abstraction & State Aggregation

Masks low-level resource details (e.g., Pod replica status). Developers can monitor overall

application health (e.g., ready endpoint ratio, version consistency) directly via the

Application resource.

Supports cross-component dependency declarations (e.g., database service must start

before application service) to ensure resource initialization order and coordination.

3. Full Lifecycle Governance

Version Control: Tracks historical configurations, enabling one-click rollback to any stable

state.

Dependency Resolution: Automatically identifies and manages version compatibility

between components (e.g., matching Service API versions with Ingress controllers).

4. Enhanced Observability

Aggregates status metrics of all associated resources (e.g., Deployment available replicas,

Service traffic load), providing a global view through a unified Dashboard.

Dimension Value Proposition

Complexity

Management

Encapsulates scattered resources (e.g., Deployment, Service)

into a single logical entity, reducing cognitive and operational

overhead.

Standardization

Unifies application description standards via Application CRD,

eliminating management entropy caused by YAML

fragmentation.

Ecosystem

Compatibility

Ecosystem Compatibility Seamlessly integrates with native

toolchains (e.g., kubectl, Kubernetes Dashboard) and supports

Helm Chart extensions.

Design Value

Custom Applications - Alauda Container Platform

Dimension Value Proposition

DevOps Efficiency
Implements declarative delivery through GitOps pipelines (e.g.,

Argo CD), accelerating CI/CD automation.

The Custom Application module defines two core CRD resources, forming atomic abstraction

units for application management:

Dimension Value Proposition

Application

Describes metadata and component topology of logical

application units, aggregating resources like

Deployment/Service into a single entity.

ApplicationHistory

Records all application lifecycle operations

(create/update/rollback/delete) as versioned snapshots, tightly

coupled with the Application CRD to enable end-to-end change

traceability.

The Application CRD uses the spec.componentKinds field to declare Kubernetes resource

types (e.g., Deployment, Service), enabling cross-resource lifecycle management.

Custom Application CRD Architecture Design

Application CRD Define

Custom Applications - Alauda Container Platform

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: applications.app.k8s.io

spec:

 group: app.k8s.io

 names:

 kind: Application

 listKind: ApplicationList

 plural: applications

 singular: application

 scope: Namespaced

 subresources:

 status: {}

 validation:

 openAPIV3Schema:

 properties:

 apiVersion:

 description: 'APIVersion defines the versioned schema of this representation

 of an object. Servers should convert recognized schemas to the latest

 internal value, and may reject unrecognized values. More info:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#resources'

 type: string

 kind:

 description: 'Kind is a string value representing the REST resource this

 object represents. Servers may infer this from the endpoint the client

 submits requests to. Cannot be updated. In CamelCase. More info:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#types-kinds'

 type: string

 metadata:

 description: 'Metadata is a object value representing the metadata of the

kubernetes resource.

 More info:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#metadata'

 type: object

 spec:

 properties:

 assemblyPhase:

 description: |

 The installer can set this field to indicate that the application's

Custom Applications - Alauda Container Platform

components

 are still being deployed ("Pending") or all are deployed already

("Succeeded"). When the

 application cannot be successfully assembled, the installer can set this

field to "Failed".'

 type: string

 componentKinds:

 description: |

 This array of GroupKinds is used to indicate the types of resources that

the

 application is composed of. As an example an Application that has a

service and a deployment

 would set this field to [{"group":"core","kind": "Service"},

{"group":"apps","kind":"Deployment"}]

 items:

 description: 'The item of the GroupKinds, with a structure like \"

{"group":"core","kind": "Service"}\"'

 type: object

 type: array

 descriptor:

 properties:

 description:

 description: 'A short, human readable textual description of the

Application.'

 type: string

 icons:

 description: 'A list of icons for an application. Icon information

includes the source, size, and mime type.'

 items:

 properties:

 size:

 description: 'The size of the icon.'

 type: string

 src:

 description: 'The source of the icon.'

 type: string

 type:

 description: 'The mime type of the icon.'

 type: string

 required:

 - src

 type: object

 type: array

 keywords:

Custom Applications - Alauda Container Platform

 description: 'A list of keywords that identify the application.'

 items:

 type: string

 type: array

 links:

 description: 'Links are a list of descriptive URLs intended to be used

to surface additional documentation, dashboards, etc.'

 items:

 properties:

 description:

 description: 'The description of the link.'

 type: string

 url:

 description: 'The url of the link.'

 type: string

 type: object

 type: array

 maintainers:

 description: 'A list of the maintainers of the Application. Each

maintainer has a

 name, email, and URL. This field is meant for the distributors of the

Application

 to indicate their identity and contact information.'

 items:

 properties:

 email:

 description: 'The email of the maintainer.'

 type: string

 name:

 description: 'The name of the maintainer.'

 type: string

 url:

 description: 'The url to contact the maintainer.'

 type: string

 type: object

 type: array

 notes:

 description: 'Notes contain human readable snippets intended as a quick

start

 for the users of the Application. They may be plain text or

CommonMark markdown.'

 type: string

 owners:

 items:

Custom Applications - Alauda Container Platform

 properties:

 email:

 description: 'The email of the owner.'

 type: string

 name:

 description: 'The name of the owner.'

 type: string

 url:

 description: 'The url to contact the owner.'

 type: string

 type: object

 type: array

 type:

 description: 'The type of the application (e.g. WordPress, MySQL,

Cassandra).

 You can have many applications of different names in the same

namespace.

 They type field is used to indicate that they are all the same type

of application.'

 type: string

 version:

 description: 'A version indicator for the application (e.g. 5.7 for

MySQL version 5.7).'

 type: string

 type: object

 info:

 description: 'Info contains human readable key-value pairs for the

Application.'

 items:

 properties:

 name:

 description: 'The name of the information.'

 type: string

 type:

 description: 'The type of the information.'

 type: string

 value:

 description: 'The value of the information.'

 type: string

 valueFrom:

 description: 'The value reference from other resource.'

 properties:

 configMapKeyRef:

 description: 'The config map key reference.'

Custom Applications - Alauda Container Platform

 properties:

 key:

 type: string

 type: object

 ingressRef:

 description: 'The ingress reference.'

 properties:

 host:

 description: 'The host of the ingress reference.'

 type: string

 path:

 description: 'The path of the ingress reference.'

 type: string

 type: object

 secretKeyRef:

 description: 'The secret key reference.'

 properties:

 key:

 type: string

 type: object

 serviceRef:

 description: 'The service reference.'

 properties:

 path:

 description: 'The path of the service reference.'

 type: string

 port:

 description: 'The port of the service reference.'

 format: int32

 type: integer

 type: object

 type:

 type: string

 type: object

 type: object

 type: array

 selector:

 description: 'The selector is used to match resources that belong to the

Application.

 All of the applications resources should have labels such that they match

this selector.

 Users should use the app.kubernetes.io/name label on all components of

the Application

 and set the selector to match this label. For instance,

Custom Applications - Alauda Container Platform

The ApplicationHistory CRD captures all lifecycle operations (e.g., creation, update, rollback)

as version-controlled snapshots and is tightly integrated with the Application CRD to deliver

end-to-end audit trails.

ApplicationHistory Define

 ,

 {"matchLabels": [{"app.kubernetes.io/name": "my-cool-app"}]} should be

used as the selector

 for an Application named "my-cool-app", and each component should contain

a label that matches.'

 type: object

 type: object

 status:

 description: 'The status summarizes the current state of the object.'

 properties:

 observedGeneration:

 description: 'The observedGeneration is the generation most recently

observed by the component

 responsible for acting upon changes to the desired state of the

resource.'

 format: int64

 type: integer

 type: object

 version: v1beta1

 versions:

 - name: v1beta1

 served: true

 storage: true

Custom Applications - Alauda Container Platform

apiVersion: apiextensions.k8s.io/v1beta1

kind: CustomResourceDefinition

metadata:

 name: applicationhistories.app.k8s.io

spec:

 group: app.k8s.io

 names:

 kind: ApplicationHistory

 listKind: ApplicationHistoryList

 plural: applicationhistories

 singular: applicationhistory

 scope: Namespaced

 validation:

 openAPIV3Schema:

 properties:

 apiVersion:

 description: 'APIVersion defines the versioned schema of this representation

 of an object. Servers should convert recognized schemas to the latest

 internal value, and may reject unrecognized values. More info:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#resources'

 type: string

 kind:

 description: 'Kind is a string value representing the REST resource this

 object represents. Servers may infer this from the endpoint the client

 submits requests to. Cannot be updated. In CamelCase. More info:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#types-kinds'

 type: string

 metadata:

 description: 'Metadata is a object value representing the metadata of the

kubernetes resource.

 More info:

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-

architecture/api-conventions.md#metadata'

 type: object

 spec:

 properties:

 changeCause:

 description: 'The change cause of the application to generate the

ApplicationHistory.'

 type: string

 creationTimestamp:

' '

Custom Applications - Alauda Container Platform

 description: 'The creation timestamp of the application history.'

 format: date-time

 type: string

 resourceDiffs:

 description: 'The resource differences between the current and last version

of application. It contains 3 types of diff: `create`,

 `delete` and `update`. The item of the diff compose of the kind and name

of the diff resource object.'

 properties:

 create:

 items:

 properties:

 kind:

 description: 'The kind of the created resource.'

 type: string

 name:

 description: 'The name of the created resource.'

 type: string

 type: object

 type: array

 delete:

 items:

 properties:

 kind:

 description: 'The kind of the deleted resource.'

 type: string

 name:

 description: 'The name of the deleted resource.'

 type: string

 type: object

 type: array

 update:

 items:

 properties:

 kind:

 description: 'The kind of the updated resource.'

 type: string

 name:

 description: 'The name of the updated resource.'

 type: string

 type: object

 type: array

 type: object

 revision:

Custom Applications - Alauda Container Platform

 description: |

 The revision number of the application history. It's an integer that will

be incremented on

 every change of the application.'

 type: integer

 user:

 description: 'The user name who triggered the change of the application.'

 type: string

 yaml:

 description: |

 The YAML string of the snapshot of the application and it's components.

 type: string

 type: object

 status:

 description: 'The status summarizes the current state of the object.'

 properties:

 observedGeneration:

 description: 'The observedGeneration is the generation most recently

observed by the component

 responsible for acting upon changes to the desired state of the

resource.'

 format: int64

 type: integer

 type: object

 type: object

 version: v1beta1

 versions:

 - name: v1beta1

 served: true

 storage: true

Custom Applications - Alauda Container Platform

Custom Applications - Alauda Container Platform

In addition to creating cloud-native applications via the Applications module, workloads can

also be directly created in Container Platform > Workloads:

Deployment: The most commonly used workload controller for deploying stateless

applications. It ensures a specified number of Pod replicas are running, supporting rolling

updates and rollbacks, ideal for stateless services like web servers and APIs.

DaemonSet: Ensures a Pod runs on every node (or specific nodes) in the cluster. Pods are

automatically created when nodes join and removed when nodes leave. Ideal for node-

level tasks such as logging agents and monitoring daemons.

StatefulSet: A workload controller for managing stateful applications. It provides stable

network identities (hostname) and persistent storage for each Pod, ensuring data

consistency even during rescheduling. Suitable for databases, distributed caches, and

other stateful services.

CronJob: Manages time-based Jobs using cron expressions. The system automatically

creates Jobs at scheduled intervals, ideal for periodic tasks like backups, report generation,

and cleanup jobs.

Job: A workload for running finite tasks. It creates one or more Pods and ensures a

specified number of successful completions before terminating. Suitable for batch

processing, data migrations, and other one-time operations.

In addition to creating workloads via the web console, Kubernetes also supports direct

management of lower-level resources via CLI tools::

Pod: The smallest deployable unit in Kubernetes. A Pod can contain one or more tightly

coupled containers sharing storage, network, and lifecycle. Pods are typically managed by

higher-level controllers (e.g., Deployments).

Container: A standardized unit encapsulating application code and dependencies, ensuring

consistent execution across environments. Containers run within Pods and share the Pod's

resources.

Workload Types

Menu

Workload Types - Alauda Container Platform

Workload Types - Alauda Container Platform

Overview

Core Concepts

What are Parameters?

Relationship with Docker

Use Cases and Scenarios

1. Application Configuration

2. Environment-Specific Deployment

3. Database Connection Configuration

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create

Complex Parameter Examples

Web Server with Custom Configuration

Application with Multiple Parameters

Best Practices

1. Parameter Design Principles

2. Security Considerations

3. Configuration Management

Troubleshooting Common Issues

1. Parameter Not Recognized

2. Parameter Override Not Working

3. Debugging Parameter Issues

Understanding Parameters

TOC

Menu ON THIS PAGE

Understanding Parameters - Alauda Container Platform

Advanced Usage Patterns

1. Conditional Parameters with Init Containers

2. Parameter Templating with Helm

Parameters in Kubernetes refer to command-line arguments passed to containers at runtime.

They correspond to the args field in Kubernetes Pod specifications and override the default

CMD arguments defined in container images. Parameters provide a flexible way to configure

application behavior without rebuilding images.

Parameters are runtime arguments that:

Override the default CMD instruction in Docker images

Are passed to the container's main process as command-line arguments

Allow dynamic configuration of application behavior

Enable reuse of the same image with different configurations

In Docker terminology:

ENTRYPOINT: Defines the executable (maps to Kubernetes command)

CMD: Provides default arguments (maps to Kubernetes args)

Parameters: Override CMD arguments while preserving ENTRYPOINT

Overview

Core Concepts

What are Parameters?

Relationship with Docker

Understanding Parameters - Alauda Container Platform

Pass configuration options to applications:

Use Cases and Scenarios

1. Application Configuration

2. Environment-Specific Deployment

Dockerfile example

FROM nginx:alpine

ENTRYPOINT ["nginx"]

CMD ["-g", "daemon off;"]

Kubernetes override

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: nginx

 image: nginx:alpine

 args: ["-g", "daemon off;", "-c", "/custom/nginx.conf"]

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web-server

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 args:

 - "--port=8080"

 - "--log-level=info"

 - "--config=/etc/app/config.yaml"

Understanding Parameters - Alauda Container Platform

Different parameters for different environments:

3. Database Connection Configuration

CLI Examples and Practical Usage

Using kubectl run

Development

args: ["--debug", "--reload", "--port=3000"]

Production

args: ["--optimize", "--port=80", "--workers=4"]

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: db-client

 image: postgres:13

 args:

 - "psql"

 - "-h"

 - "postgres.example.com"

 - "-p"

 - "5432"

 - "-U"

 - "myuser"

 - "-d"

 - "mydb"

Understanding Parameters - Alauda Container Platform

Using kubectl create

Complex Parameter Examples

Web Server with Custom Configuration

Basic parameter passing

kubectl run nginx --image=nginx:alpine --restart=Never -- -g "daemon off;" -c

"/custom/nginx.conf"

Multiple parameters

kubectl run myapp --image=myapp:latest --restart=Never -- --port=8080 --log-level=debug

Interactive debugging

kubectl run debug --image=ubuntu:20.04 --restart=Never -it -- /bin/bash

Create deployment with parameters

kubectl create deployment web --image=nginx:alpine --dry-run=client -o yaml >

deployment.yaml

Edit the generated YAML to add args:

spec:

template:

spec:

containers:

- name: nginx

image: nginx:alpine

args: ["-g", "daemon off;", "-c", "/custom/nginx.conf"]

kubectl apply -f deployment.yaml

Understanding Parameters - Alauda Container Platform

Application with Multiple Parameters

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-custom

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx-custom

 template:

 metadata:

 labels:

 app: nginx-custom

 spec:

 containers:

 - name: nginx

 image: nginx:1.21-alpine

 args:

 - "-g"

 - "daemon off;"

 - "-c"

 - "/etc/nginx/custom.conf"

 ports:

 - containerPort: 80

 volumeMounts:

 - name: config

 mountPath: /etc/nginx/custom.conf

 subPath: nginx.conf

 volumes:

 - name: config

 configMap:

 name: nginx-config

Understanding Parameters - Alauda Container Platform

Use meaningful parameter names: --port=8080 instead of -p 8080

Provide sensible defaults: Ensure applications work without parameters

Document all parameters: Include help text and examples

Validate input: Check parameter values and provide error messages

Best Practices

1. Parameter Design Principles

2. Security Considerations

apiVersion: v1

kind: Pod

metadata:

 name: myapp

spec:

 containers:

 - name: app

 image: mycompany/myapp:v1.2.3

 args:

 - "--server-port=8080"

 - "--database-url=postgresql://db:5432/mydb"

 - "--log-level=info"

 - "--metrics-enabled=true"

 - "--cache-size=256MB"

 - "--worker-threads=4"

Understanding Parameters - Alauda Container Platform

3. Configuration Management

Troubleshooting Common Issues

1. Parameter Not Recognized

❌ Avoid sensitive data in parameters

args: ["--api-key=secret123", "--password=mypass"]

✅ Use environment variables for secrets

env:

- name: API_KEY

 valueFrom:

 secretKeyRef:

 name: app-secrets

 key: api-key

args: ["--config-from-env"]

✅ Combine parameters with ConfigMaps

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 args:

 - "--config=/etc/config/app.yaml"

 - "--log-level=info"

 volumeMounts:

 - name: config

 mountPath: /etc/config

 volumes:

 - name: config

 configMap:

 name: app-config

Understanding Parameters - Alauda Container Platform

2. Parameter Override Not Working

3. Debugging Parameter Issues

Advanced Usage Patterns

1. Conditional Parameters with Init Containers

Check container logs

kubectl logs pod-name

Common error: unknown flag

Solution: Verify parameter syntax and application documentation

❌ Incorrect: mixing command and args

command: ["myapp", "--port=8080"]

args: ["--log-level=debug"]

✅ Correct: use args only to override CMD

args: ["--port=8080", "--log-level=debug"]

Run container interactively to test parameters

kubectl run debug --image=myapp:latest -it --rm --restart=Never -- /bin/sh

Inside container, test the command manually

/app/myapp --port=8080 --log-level=debug

Understanding Parameters - Alauda Container Platform

2. Parameter Templating with Helm

apiVersion: v1

kind: Pod

spec:

 initContainers:

 - name: config-generator

 image: busybox

 command: ['sh', '-c']

 args:

 - |

 if ["$ENVIRONMENT" = "production"]; then

 echo "--optimize --workers=8" > /shared/args

 else

 echo "--debug --reload" > /shared/args

 fi

 volumeMounts:

 - name: shared

 mountPath: /shared

 containers:

 - name: app

 image: myapp:latest

 command: ['sh', '-c']

 args: ['exec myapp $(cat /shared/args)']

 volumeMounts:

 - name: shared

 mountPath: /shared

 volumes:

 - name: shared

 emptyDir: {}

Understanding Parameters - Alauda Container Platform

Parameters provide a powerful mechanism for configuring containerized applications in

Kubernetes. By understanding how to properly use parameters, you can create flexible,

reusable, and maintainable deployments that adapt to different environments and

requirements.

values.yaml

app:

 parameters:

 port: 8080

 logLevel: info

 workers: 4

deployment.yaml template

apiVersion: apps/v1

kind: Deployment

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 args:

 - "--port={{ .Values.app.parameters.port }}"

 - "--log-level={{ .Values.app.parameters.logLevel }}"

 - "--workers={{ .Values.app.parameters.workers }}"

Understanding Parameters - Alauda Container Platform

Overview

Core Concepts

What are Environment Variables?

Environment Variable Sources in Kubernetes

Environment Variable Precedence

Use Cases and Scenarios

1. Application Configuration

2. Database Configuration

3. Dynamic Runtime Information

4. Environment-Specific Configuration

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create

Complex Environment Variable Examples

Microservices with Service Discovery

Multi-Container Pod with Shared Configuration

Best Practices

1. Security Best Practices

2. Configuration Organization

3. Environment Variable Naming

4. Default Values and Validation

Understanding Environment Variables

TOC

Menu ON THIS PAGE

Understanding Environment Variables - Alauda Container Platform

Environment variables in Kubernetes are key-value pairs that provide configuration data to

containers at runtime. They offer a flexible and secure way to inject configuration information,

secrets, and runtime parameters into your applications without modifying container images or

application code.

Environment variables are:

Key-value pairs available to processes running inside containers

Runtime configuration mechanism that doesn't require image rebuilds

Standard way to pass configuration data to applications

Accessible through standard operating system APIs in any programming language

Kubernetes supports multiple sources for environment variables:

Source Type Description Use Case

Static Values Direct key-value pairs Simple configuration

ConfigMap
Reference to ConfigMap

keys
Non-sensitive configuration

Secret Reference to Secret keys
Sensitive data (passwords,

tokens)

Field Reference Pod/Container metadata Dynamic runtime information

Overview

Core Concepts

What are Environment Variables?

Environment Variable Sources in Kubernetes

Understanding Environment Variables - Alauda Container Platform

Source Type Description Use Case

Resource

Reference
Resource requests/limits Resource-aware configuration

Environment variables override configuration in this order:

1. Kubernetes env (highest priority)

2. Referenced ConfigMaps/Secrets

3. Dockerfile ENV instructions

4. Application default values (lowest priority)

Basic application settings:

Environment Variable Precedence

Use Cases and Scenarios

1. Application Configuration

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: web-app

 image: myapp:latest

 env:

 - name: PORT

 value: "8080"

 - name: LOG_LEVEL

 value: "info"

 - name: ENVIRONMENT

 value: "production"

 - name: MAX_CONNECTIONS

 value: "100"

Understanding Environment Variables - Alauda Container Platform

Database connection settings using ConfigMaps and Secrets:

2. Database Configuration

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1

kind: ConfigMap

metadata:

 name: db-config

data:

 DB_HOST: "postgres.example.com"

 DB_PORT: "5432"

 DB_NAME: "myapp"

 DB_POOL_SIZE: "10"

apiVersion: v1

kind: Secret

metadata:

 name: db-secret

type: Opaque

data:

 DB_USER: bXl1c2Vy # base64 encoded "myuser"

 DB_PASSWORD: bXlwYXNzd29yZA== # base64 encoded "mypassword"

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 # From ConfigMap

 - name: DB_HOST

 valueFrom:

 configMapKeyRef:

 name: db-config

 key: DB_HOST

 - name: DB_PORT

 valueFrom:

 configMapKeyRef:

 name: db-config

 key: DB_PORT

 - name: DB_NAME

 valueFrom:

 configMapKeyRef:

 name: db-config

Understanding Environment Variables - Alauda Container Platform

Access Pod and Node metadata:

3. Dynamic Runtime Information

 key: DB_NAME

 # From Secret

 - name: DB_USER

 valueFrom:

 secretKeyRef:

 name: db-secret

 key: DB_USER

 - name: DB_PASSWORD

 valueFrom:

 secretKeyRef:

 name: db-secret

 key: DB_PASSWORD

Understanding Environment Variables - Alauda Container Platform

Different configurations for different environments:

4. Environment-Specific Configuration

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 # Pod information

 - name: POD_NAME

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: POD_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: POD_IP

 valueFrom:

 fieldRef:

 fieldPath: status.podIP

 - name: NODE_NAME

 valueFrom:

 fieldRef:

 fieldPath: spec.nodeName

 # Resource information

 - name: CPU_REQUEST

 valueFrom:

 resourceFieldRef:

 resource: requests.cpu

 - name: MEMORY_LIMIT

 valueFrom:

 resourceFieldRef:

 resource: limits.memory

Understanding Environment Variables - Alauda Container Platform

CLI Examples and Practical Usage

Development environment

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config-dev

data:

 DEBUG: "true"

 LOG_LEVEL: "debug"

 CACHE_TTL: "60"

 RATE_LIMIT: "1000"

Production environment

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config-prod

data:

 DEBUG: "false"

 LOG_LEVEL: "warn"

 CACHE_TTL: "3600"

 RATE_LIMIT: "100"

Deployment using environment-specific config

apiVersion: apps/v1

kind: Deployment

metadata:

 name: myapp

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 envFrom:

 - configMapRef:

 name: app-config-prod # Change to app-config-dev for development

Understanding Environment Variables - Alauda Container Platform

Using kubectl run

Using kubectl create

Complex Environment Variable Examples

Microservices with Service Discovery

Set environment variables directly

kubectl run myapp --image=nginx --env="PORT=8080" --env="DEBUG=true"

Multiple environment variables

kubectl run webapp --image=myapp:latest \

 --env="DATABASE_URL=postgresql://localhost:5432/mydb" \

 --env="REDIS_URL=redis://localhost:6379" \

 --env="LOG_LEVEL=info"

Interactive pod with environment variables

kubectl run debug --image=ubuntu:20.04 -it --rm \

 --env="TEST_VAR=hello" \

 --env="ANOTHER_VAR=world" \

 -- /bin/bash

Create ConfigMap from literal values

kubectl create configmap app-config \

 --from-literal=DATABASE_HOST=postgres.example.com \

 --from-literal=DATABASE_PORT=5432 \

 --from-literal=CACHE_SIZE=256MB

Create ConfigMap from file

echo "DEBUG=true" > app.env

echo "LOG_LEVEL=debug" >> app.env

kubectl create configmap app-env --from-env-file=app.env

Create Secret for sensitive data

kubectl create secret generic db-secret \

 --from-literal=username=myuser \

 --from-literal=password=mypassword

Understanding Environment Variables - Alauda Container Platform

Multi-Container Pod with Shared Configuration

apiVersion: v1

kind: ConfigMap

metadata:

 name: service-config

data:

 USER_SERVICE_URL: "http://user-service:8080"

 ORDER_SERVICE_URL: "http://order-service:8080"

 PAYMENT_SERVICE_URL: "http://payment-service:8080"

 NOTIFICATION_SERVICE_URL: "http://notification-service:8080"

apiVersion: apps/v1

kind: Deployment

metadata:

 name: api-gateway

spec:

 template:

 spec:

 containers:

 - name: gateway

 image: api-gateway:latest

 env:

 - name: PORT

 value: "8080"

 - name: ENVIRONMENT

 value: "production"

 envFrom:

 - configMapRef:

 name: service-config

 - secretRef:

 name: api-keys

Understanding Environment Variables - Alauda Container Platform

Best Practices

apiVersion: v1

kind: Pod

metadata:

 name: multi-container-app

spec:

 containers:

 # Main application

 - name: app

 image: myapp:latest

 env:

 - name: ROLE

 value: "primary"

 - name: SHARED_SECRET

 valueFrom:

 secretKeyRef:

 name: shared-secret

 key: token

 envFrom:

 - configMapRef:

 name: shared-config

 # Sidecar container

 - name: sidecar

 image: sidecar:latest

 env:

 - name: ROLE

 value: "sidecar"

 - name: MAIN_APP_URL

 value: "http://localhost:8080"

 - name: SHARED_SECRET

 valueFrom:

 secretKeyRef:

 name: shared-secret

 key: token

 envFrom:

 - configMapRef:

 name: shared-config

Understanding Environment Variables - Alauda Container Platform

1. Security Best Practices

2. Configuration Organization

✅ Use Secrets for sensitive data

apiVersion: v1

kind: Secret

metadata:

 name: app-secrets

type: Opaque

data:

 api-key: <base64-encoded-value>

 database-password: <base64-encoded-value>

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 # ✅ Reference secrets

 - name: API_KEY

 valueFrom:

 secretKeyRef:

 name: app-secrets

 key: api-key

 # ❌ Avoid hardcoding sensitive data

 # - name: API_KEY

 # value: "secret-api-key-123"

Understanding Environment Variables - Alauda Container Platform

3. Environment Variable Naming

✅ Organize configuration by purpose

apiVersion: v1

kind: ConfigMap

metadata:

 name: database-config

data:

 DB_HOST: "postgres.example.com"

 DB_PORT: "5432"

 DB_POOL_SIZE: "10"

apiVersion: v1

kind: ConfigMap

metadata:

 name: cache-config

data:

 REDIS_HOST: "redis.example.com"

 REDIS_PORT: "6379"

 CACHE_TTL: "3600"

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 envFrom:

 - configMapRef:

 name: database-config

 - configMapRef:

 name: cache-config

Understanding Environment Variables - Alauda Container Platform

4. Default Values and Validation

✅ Use consistent naming conventions

env:

- name: DATABASE_HOST # Clear, descriptive names

 value: "postgres.example.com"

- name: DATABASE_PORT # Use underscores for separation

 value: "5432"

- name: LOG_LEVEL # Use uppercase for environment variables

 value: "info"

- name: FEATURE_FLAG_NEW_UI # Prefix related variables

 value: "true"

❌ Avoid unclear or inconsistent naming

- name: db # Too short

- name: databaseHost # Inconsistent casing

- name: log-level # Inconsistent separator

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 env:

 - name: PORT

 value: "8080" # Provide sensible defaults

 - name: LOG_LEVEL

 value: "info" # Default to safe values

 - name: TIMEOUT_SECONDS

 value: "30" # Include units in names

 - name: MAX_RETRIES

 value: "3" # Limit retry attempts

Understanding Environment Variables - Alauda Container Platform

Overview

Core Concepts

What are Startup Commands?

Relationship with Docker and Parameters

Command vs Args Interaction

Use Cases and Scenarios

1. Custom Application Startup

2. Debugging and Troubleshooting

3. Initialization Scripts

4. Multi-Purpose Images

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create job

Complex Startup Command Examples

Multi-Step Initialization

Conditional Startup Logic

Best Practices

1. Signal Handling and Graceful Shutdown

2. Error Handling and Logging

3. Security Considerations

4. Resource Management

Advanced Usage Patterns

Understanding Startup Commands

TOC

Menu ON THIS PAGE

Understanding Startup Commands - Alauda Container Platform

1. Init Containers with Custom Commands

2. Sidecar Containers with Different Commands

3. Job Patterns with Custom Commands

Startup commands in Kubernetes define the primary executable that runs when a container

starts. They correspond to the command field in Kubernetes Pod specifications and override

the default ENTRYPOINT instruction defined in container images. Startup commands provide

complete control over what process runs inside your containers.

Startup commands are:

The primary executable that runs when a container starts

Override the ENTRYPOINT instruction in Docker images

Define the main process (PID 1) inside the container

Work in conjunction with parameters (args) to form the complete command line

Understanding the relationship between Docker instructions and Kubernetes fields:

Docker Kubernetes Purpose

ENTRYPOINT command Defines the executable

CMD args Provides default arguments

Overview

Core Concepts

What are Startup Commands?

Relationship with Docker and Parameters

Understanding Startup Commands - Alauda Container Platform

Scenario Docker Image
Kubernetes

Spec

Resulting

Command

Default
ENTRYPOINT +

CMD
(none)

ENTRYPOINT +

CMD

Override args

only

ENTRYPOINT +

CMD

args: ["new-

args"]

ENTRYPOINT +

new-args

Override

command only

ENTRYPOINT +

CMD

command: ["new-

cmd"]
new-cmd

Override both
ENTRYPOINT +

CMD

command: ["new-

cmd"]

args: ["new-

args"]

new-cmd + new-args

Command vs Args Interaction

Use Cases and Scenarios

Dockerfile example

FROM ubuntu:20.04

ENTRYPOINT ["/usr/bin/myapp"]

CMD ["--config=/etc/default.conf"]

Kubernetes override

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: myapp

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/custom.conf", "--debug"]

Understanding Startup Commands - Alauda Container Platform

Run different applications using the same base image:

Override the default command to start a shell for debugging:

Run custom initialization before starting the main application:

1. Custom Application Startup

2. Debugging and Troubleshooting

3. Initialization Scripts

apiVersion: v1

kind: Pod

metadata:

 name: web-server

spec:

 containers:

 - name: nginx

 image: ubuntu:20.04

 command: ["/usr/sbin/nginx"]

 args: ["-g", "daemon off;", "-c", "/etc/nginx/nginx.conf"]

apiVersion: v1

kind: Pod

metadata:

 name: debug-pod

spec:

 containers:

 - name: debug

 image: myapp:latest

 command: ["/bin/bash"]

 args: ["-c", "sleep 3600"]

Understanding Startup Commands - Alauda Container Platform

Use the same image for different purposes:

4. Multi-Purpose Images

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 echo "Initializing application..."

 /scripts/init.sh

 echo "Starting main application..."

 exec /usr/bin/myapp --config=/etc/app.conf

Understanding Startup Commands - Alauda Container Platform

Web server

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web

spec:

 template:

 spec:

 containers:

 - name: web

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["server", "--port=8080"]

Background worker

apiVersion: apps/v1

kind: Deployment

metadata:

 name: worker

spec:

 template:

 spec:

 containers:

 - name: worker

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["worker", "--queue=tasks"]

Database migration

apiVersion: batch/v1

kind: Job

metadata:

 name: migrate

spec:

 template:

 spec:

 containers:

 - name: migrate

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["migrate", "--up"]

Understanding Startup Commands - Alauda Container Platform

CLI Examples and Practical Usage

Using kubectl run

Using kubectl create job

Complex Startup Command Examples

Multi-Step Initialization

 restartPolicy: Never

Override command completely

kubectl run debug --image=nginx:alpine --command -- /bin/sh -c "sleep 3600"

Run interactive shell

kubectl run -it debug --image=ubuntu:20.04 --restart=Never --command -- /bin/bash

Custom application startup

kubectl run myapp --image=myapp:latest --command -- /usr/local/bin/start.sh --

config=/etc/app.conf

One-time task

kubectl run task --image=busybox --restart=Never --command -- /bin/sh -c "echo 'Task

completed'"

Create a job with custom command

kubectl create job backup --image=postgres:13 --dry-run=client -o yaml -- pg_dump -h

db.example.com mydb > backup.yaml

Apply the job

kubectl apply -f backup.yaml

Understanding Startup Commands - Alauda Container Platform

Conditional Startup Logic

apiVersion: v1

kind: Pod

metadata:

 name: complex-init

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 set -e

 echo "Step 1: Checking dependencies..."

 /scripts/check-deps.sh

 echo "Step 2: Setting up configuration..."

 /scripts/setup-config.sh

 echo "Step 3: Running database migrations..."

 /scripts/migrate.sh

 echo "Step 4: Starting application..."

 exec /usr/bin/myapp --config=/etc/app/config.yaml

 volumeMounts:

 - name: scripts

 mountPath: /scripts

 - name: config

 mountPath: /etc/app

 volumes:

 - name: scripts

 configMap:

 name: init-scripts

 defaultMode: 0755

 - name: config

 configMap:

 name: app-config

Understanding Startup Commands - Alauda Container Platform

Best Practices

1. Signal Handling and Graceful Shutdown

apiVersion: apps/v1

kind: Deployment

metadata:

 name: conditional-app

spec:

 template:

 spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 if ["$APP_MODE" = "worker"]; then

 exec /usr/bin/myapp worker --queue=$QUEUE_NAME

 elif ["$APP_MODE" = "scheduler"]; then

 exec /usr/bin/myapp scheduler --interval=60

 else

 exec /usr/bin/myapp server --port=8080

 fi

 env:

 - name: APP_MODE

 value: "server"

 - name: QUEUE_NAME

 value: "default"

Understanding Startup Commands - Alauda Container Platform

2. Error Handling and Logging

✅ Proper signal handling

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 # Trap SIGTERM for graceful shutdown

 trap 'echo "Received SIGTERM, shutting down gracefully..."; kill -TERM $PID; wait

$PID' TERM

 # Start the main application in background

 /usr/bin/myapp --config=/etc/app.conf &

 PID=$!

 # Wait for the process

 wait $PID

Understanding Startup Commands - Alauda Container Platform

3. Security Considerations

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 set -euo pipefail # Exit on error, undefined vars, pipe failures

 log() {

 echo "[$(date '+%Y-%m-%d %H:%M:%S')] $*" >&2

 }

 log "Starting application initialization..."

 if ! /scripts/health-check.sh; then

 log "ERROR: Health check failed"

 exit 1

 fi

 log "Starting main application..."

 exec /usr/bin/myapp --config=/etc/app.conf

Understanding Startup Commands - Alauda Container Platform

4. Resource Management

✅ Run as non-root user

apiVersion: v1

kind: Pod

spec:

 securityContext:

 runAsNonRoot: true

 runAsUser: 1000

 runAsGroup: 1000

 containers:

 - name: app

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/app.conf"]

 securityContext:

 allowPrivilegeEscalation: false

 readOnlyRootFilesystem: true

 capabilities:

 drop:

 - ALL

apiVersion: v1

kind: Pod

spec:

 containers:

 - name: app

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/app.conf"]

 resources:

 requests:

 memory: "64Mi"

 cpu: "250m"

 limits:

 memory: "128Mi"

 cpu: "500m"

Understanding Startup Commands - Alauda Container Platform

Advanced Usage Patterns

1. Init Containers with Custom Commands

apiVersion: v1

kind: Pod

spec:

 initContainers:

 - name: setup

 image: busybox

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 echo "Setting up shared data..."

 mkdir -p /shared/data

 echo "Setup complete" > /shared/data/status

 volumeMounts:

 - name: shared-data

 mountPath: /shared

 containers:

 - name: app

 image: myapp:latest

 command: ["/bin/sh"]

 args:

 - "-c"

 - |

 while [! -f /shared/data/status]; do

 echo "Waiting for setup to complete..."

 sleep 1

 done

 echo "Starting application..."

 exec /usr/bin/myapp

 volumeMounts:

 - name: shared-data

 mountPath: /shared

 volumes:

 - name: shared-data

 emptyDir: {}

Understanding Startup Commands - Alauda Container Platform

2. Sidecar Containers with Different Commands

3. Job Patterns with Custom Commands

apiVersion: v1

kind: Pod

spec:

 containers:

 # Main application

 - name: app

 image: myapp:latest

 command: ["/usr/bin/myapp"]

 args: ["--config=/etc/app.conf"]

 # Log shipper sidecar

 - name: log-shipper

 image: fluent/fluent-bit:latest

 command: ["/fluent-bit/bin/fluent-bit"]

 args: ["--config=/fluent-bit/etc/fluent-bit.conf"]

 # Metrics exporter sidecar

 - name: metrics

 image: prom/node-exporter:latest

 command: ["/bin/node_exporter"]

 args: ["--path.rootfs=/host"]

Understanding Startup Commands - Alauda Container Platform

Startup commands provide complete control over container execution in Kubernetes. By

understanding how to properly configure and use startup commands, you can create flexible,

maintainable, and robust containerized applications that meet your specific requirements.

Backup job

apiVersion: batch/v1

kind: Job

metadata:

 name: database-backup

spec:

 template:

 spec:

 containers:

 - name: backup

 image: postgres:13

 command: ["/bin/bash"]

 args:

 - "-c"

 - |

 set -e

 echo "Starting backup at $(date)"

 pg_dump -h $DB_HOST -U $DB_USER $DB_NAME > /backup/dump-$(date +%Y%m%d-

%H%M%S).sql

 echo "Backup completed at $(date)"

 env:

 - name: DB_HOST

 value: "postgres.example.com"

 - name: DB_USER

 value: "backup_user"

 - name: DB_NAME

 value: "myapp"

 volumeMounts:

 - name: backup-storage

 mountPath: /backup

 restartPolicy: Never

 volumes:

 - name: backup-storage

 persistentVolumeClaim:

 claimName: backup-pvc

Understanding Startup Commands - Alauda Container Platform

CPU: Optional units are: core, m (millicore). Where 1 core = 1000 m.

Memory: Optional units are: Mi (1 MiB = 2^20 bytes), Gi (1 GiB = 2^30 bytes). Where 1 Gi

= 1024 Mi.

Virtual GPU (optional): This parameter is only effective when there are GPU resources

under the cluster. The number of virtual GPU cores; 100 virtual cores equal 1 physical GPU

core. It supports positive integers.

Video Memory (optional): This parameter is only effective when there are GPU resources

under the cluster. Virtual GPU video memory; 1 unit of video memory equals 256 Mi. It

supports positive integers.

Resource Unit Description

Menu

Resource Unit Description - Alauda Container Platform

Namespaces

Creating Namespaces

Understanding namespaces

Creating namespaces by using web console

Creating namespace by using CLI

Importing Namespaces
Overview

Use Cases

Prerequisites

Procedure

Resource Quota
Understanding Resource Requests & Limits

Quotas

Hardware accelerator Resources Quotas

Limit Range

Understanding Limit Range

Create Limit Range by using CLI

Menu

Namespaces - Alauda Container Platform

Pod Security Admission
Security Modes

Security Standards

Configuration

UID/GID Assignment
Enable UID/GID Assignment

Verify UID/GID Assignment

Overcommit Ratio
UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Managing Namespace Members
Importing Members

Adding Members

Removing Members

Updating Namespaces

Updating Quotas

Updating Container LimitRanges

Updating Pod Security Admission

Namespaces - Alauda Container Platform

Deleting/Removing Namespaces
Deleting Namespaces

Removing Namespaces

Namespaces - Alauda Container Platform

Understanding namespaces

Creating namespaces by using web console

Creating namespace by using CLI

YAML file examples

Create via YAML file

Create via command line directly

Refer to the official Kubernetes documentation: Namespaces

In Kubernetes, namespaces provide a mechanism for isolating groups of resources within a

single cluster. Names of resources need to be unique within a namespace, but not across

namespaces. Namespace-based scoping is applicable only for namespaced objects (e.g.

Deployments, Services, etc.) and not for cluster-wide objects (e.g. StorageClass, Nodes,

PersistentVolumes, etc.).

Creating Namespaces

TOC

Understanding namespaces

↗

Creating namespaces by using web console

Menu ON THIS PAGE

Creating Namespaces - Alauda Container Platform

https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/

Within the cluster associated with the project, create a new namespace aligned with the

project's available resource quotas. The new namespace operates within the resource

quotas allocated to the project (e.g., CPU, memory), and all resources in the namespace

must reside within the associated cluster.

1. In the Project Management view, click on the Project Name for which you want to create

a namespace.

2. In the left navigation bar, click on Namespaces > Namespaces.

3. Click on Create Namespace.

4. Configure Basic Information.

Parameter Description

Cluster Select the cluster linked to the project to host the namespace.

Namespace
The namespace name must include a mandatory prefix, which is the

project name.

5. (Optional) Configure Resource Quota.

Every time a resource limit (limits) for computational or storage resources is specified for a

container within the namespace, or each time a new Pod or PVC is added, it will consume

the quota set here.

NOTICE:

The namespace's resource quota is inherited from the project's allocated quota in the

cluster. The maximum allowable quota for a resource type cannot exceed the remaining

available quota of the project. If any resource's available quota reaches 0, namespace

creation will be blocked. Contact your platform administrator for quota adjustments.

GPU Quota Configuration Requirements:

GPU quotas (vGPU or pGPU) can only be configured if GPU resources are

provisioned in the cluster.

When using vGPU, memory quotas can also be set.

Creating Namespaces - Alauda Container Platform

GPU Unit Definitions:

vGPU Units: 100 virtual GPU units (vGPU) = 1 physical GPU core (pGPU).

Note: pGPU units are counted in whole numbers only (e.g., 1 pGPU = 1 core = 100

vGPU).

Memory Units:

1 memory unit = 256 MiB.

1 GiB = 4 memory units (1024 MiB = 4 × 256 MiB).

Default Quota Behavior:

If no quota is specified for a resource type, the default is unbounded.

This means the namespace can consume all available resources of that type

allocated to the project without explicit limits.

Quota Parameter Description

Category Quota Type

Value

and

Unit

Description

Storage

Resource

Quota All

Gi The total requested storage

capacity of all Persistent

Volume Claims (PVCs) in this

namespace cannot exceed this

value.

Storage Class The total requested storage

capacity of all Persistent

Volume Claims (PVCs)

associated with the selected

StorageClass in this

namespace cannot exceed this

value.

Note: Please allocate

Creating Namespaces - Alauda Container Platform

Category Quota Type

Value

and

Unit

Description

StorageClass to the project

that the namespace belongs to

in advance.

Extended

Resources

Obtained from the

configuration

dictionary

(ConfigMap); please

refer to Extended

Resources Quotas

description for

details.

-

This category will not be

displayed if there is no

corresponding configuration

dictionary.

Other

Quotas

Enter custom quotas;

for specific input

rules, please refer to

Other Quota

description.

-

To avoid problems of resource

duplication, the following

values are not allowed as

quota types:

limits.cpu

limits.memory

requests.cpu

requests.memory

pods

cpu

memory

6. (Optional) Configure Container Limit Range; please refer to Limit Range for more details.

7. (Optional) Configure Pod Security Admission; please refer to Pod Security Admission for

specific details.

8. (Optional) In the More Configuration area, add labels and annotations for the current

namespace.

Creating Namespaces - Alauda Container Platform

Tip: You can define the attributes of the namespace through labels or supplement the

namespace with additional information through annotations; both can be used to filter and

sort namespaces.

9. Click on Create.

Creating namespace by using CLI

YAML file examples

example-namespace.yaml

example-resourcequota.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: example

 labels:

 pod-security.kubernetes.io/audit: baseline # Option, to ensure security, it is

recommended to choose the baseline or restricted mode.

 pod-security.kubernetes.io/enforce: baseline

 pod-security.kubernetes.io/warn: baseline

apiVersion: v1

kind: ResourceQuota

metadata:

 name: example-resourcequota

 namespace: example

spec:

 hard:

 limits.cpu: '20'

 limits.memory: 20Gi

 pods: '500'

 requests.cpu: '2'

 requests.memory: 2Gi

Creating Namespaces - Alauda Container Platform

example-limitrange.yaml

Create via YAML file

Create via command line directly

apiVersion: v1

kind: LimitRange

metadata:

 name: example-limitrange

 namespace: example

spec:

 limits:

 - default:

 cpu: 100m

 memory: 100Mi

 defaultRequest:

 cpu: 50m

 memory: 50Mi

 max:

 cpu: 1000m

 memory: 1000Mi

 type: Container

kubectl apply -f example-namespace.yaml

kubectl apply -f example-resourcequota.yaml

kubectl apply -f example-limitrange.yaml

kubectl create namespace example

kubectl create resourcequota example-resourcequota --namespace=example --

hard=limits.cpu=20,limits.memory=20Gi,pods=500

kubectl create limitrange example-limitrange --namespace=example --

default='cpu=100m,memory=100Mi' --default-request='cpu=50m,memory=50Mi' --

max='cpu=1000m,memory=1000Mi'

Creating Namespaces - Alauda Container Platform

Overview

Use Cases

Prerequisites

Procedure

Namespace Lifecycle Management Capabilities:

Cross-Cluster Namespace Import: Importing Namespaces into a Project centralizes their

management across all Kubernetes Clusters provisioned by the platform. This provides

administrators with unified resource governance and monitoring capabilities across

distributed environments.

Namespace Disassociation:

The Disassociate Namespace feature enables you to unlink a Namespace from its current

Project, resetting its association for subsequent reassignment or cleanup.

Importing a Namespace into a Project grants it capabilities equivalent to those of natively

created Namespaces on the platform. This includes inherited Project-level Policies (e.g.,

Resource Quotas), unified monitoring, and centralized governance controls.

Importing Namespaces

TOC

Overview

Menu ON THIS PAGE

Importing Namespaces - Alauda Container Platform

Important Notes:

A Namespace can only be associated with one Project at any given time.

If a Namespace is already linked to a Project, it cannot be imported into or reassigned to

another Project without first disassociating it from its original Project.

Common use cases for Namespace management include:

Upon connecting a new Kubernetes cluster to the platform, you can utilize the Import

Namespace feature to associate its existing Kubernetes Namespaces with a Project.

Simply select the target Project and Cluster to initiate the import. This action grants the

project governance over these namespace, encompassing Resource Quotas,

monitoring, and policy enforcement.

Create/Import
Clusters

Create Project

YESNO

Add Cluster

Create / Import
Namespace

Whether to
associate with

existing projects

A namespace that has been disassociated from one project can be seamlessly re-

associated with another project via the Import Namespace feature for continued

centralized governance.

Namespaces not currently managed by any project (e.g., those created via cluster-level

scripts) must be linked to a target project using the Import Namespace feature to enable

platform-level governance, including visibility and centralized management.

Use Cases

Importing Namespaces - Alauda Container Platform

The Namespace is not currently managed by any existing Project within the platform.

Namespaces can only be imported into a Project that is already associated with their target

Kubernetes Cluster. If no such Project exists, you must first provision a Project linked to

that Cluster.

1. Project Management, click on the Project name where the namespace is to be imported.

2. Navigate to Namespaces > Namespaces.

3. Click on the Dropdown button next to Create Namespace, then select Import

Namespace.

4. Refer to the Creating Namespaces documentation for parameter configuration details.

5. Click Import.

Prerequisites

Procedure

Importing Namespaces - Alauda Container Platform

Refer to the official Kubernetes documentation: Resource Quotas

Understanding Resource Requests & Limits

Quotas

Resource Quotas

YAML file example

Create resouce quota by using CLI

Storage Quotas

Hardware accelerator Resources Quotas

Other Quotas

Used to restrict resources available to a specific namespace. The total resource usage by all

Pods in the namespace (excluding those in a Terminating state) must not exceed the quota.

Resource Requests: Define the minimum resources (e.g., CPU, memory) required by a

container, guiding the Kubernetes Scheduler to place the Pod on a node with sufficient

capacity.

Resource Limits: Define the maximum resources a container can consume, preventing

resource exhaustion and ensuring cluster stability.

Resource Quota

↗

TOC

Understanding Resource Requests & Limits

Menu ON THIS PAGE

Resource Quota - Alauda Container Platform

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/

If a resource is marked as Unlimited , no explicit quota is enforced, but usage cannot

exceed the cluster's available capacity.

Resource Quotas track the cumulative resource consumption (e.g., container limits, new

Pods, or PVCs) within a namespace.

Supported Quota Types

Field Description

Resource Requests

Total requested resources for all Pods in the namespace:

CPU

Memory

Resource Limits

Total limit resources for all Pods in the namespace:

CPU

Memory

Number of Pods Maximum number of Pods allowed in the namespace.

Note:

Namespace quotas are derived from the project's allocated cluster resources. If any

resource's available quota is 0, namespace creation will fail. Contact the administrator.

Unlimited implies the namespace can consume the project's remaining cluster resources

for that resource type.

Quotas

Resource Quotas

YAML file example

Resource Quota - Alauda Container Platform

Create via YAML file

Create via command line directly

Quota Type:

All: Total PVC storage capacity in the namespace.

Storage Class: Total PVC storage capacity for a specific storage class.

Note: Ensure the storage class is pre-assigned to the project containing the namespace.

Create resouce quota by using CLI

Storage Quotas

Hardware accelerator Resources Quotas

example-resourcequota.yaml

apiVersion: v1

kind: ResourceQuota

metadata:

 name: example-resourcequota

 namespace: <example>

spec:

 hard:

 limits.cpu: "20"

 limits.memory: 20Gi

 pods: "500"

 requests.cpu: "2"

 requests.memory: 2Gi

kubectl apply -f example-resourcequota.yaml

kubectl create resourcequota example-resourcequota --namespace=<example> --

hard=limits.cpu=20,limits.memory=20Gi,pods=500

Resource Quota - Alauda Container Platform

When Alauda Build of Hami or NVIDIA GPU Device Plugin installed, you will be able to use

extended resources quotas about hardware accelerator.

Refer to Alauda Build of Hami and Alauda Build of NVIDIA GPU Device Plugin.

The format for custom quota names must comply with the following specifications:

If the custom quota name does not contain a slash (/): It must start and end with a letter or

number, and can contain letters, numbers, hyphens (-), underscores (_), or periods (.),

forming a qualified name with a maximum length of 63 characters.

If the custom quota name contains a slash (/): The name is divided into two parts: prefix

and name, in the form of: prefix/name. The prefix must be a valid DNS subdomain, while

the name must comply with the rules for a qualified name.

DNS Subdomain:

Label: Must start and end with lowercase letters or numbers, may contain hyphens (-),

but cannot be exclusively composed of hyphens, with a maximum length of 63

characters.

Subdomain: Extends the rules of the label, allowing multiple labels to be connected by

periods (.) to form a subdomain, with a maximum length of 253 characters.

Other Quotas

Resource Quota - Alauda Container Platform

http://localhost:4173/container_platform/hardware_accelerator/hami.html
http://localhost:4173/container_platform/hardware_accelerator/pgpu.html

Understanding Limit Range

Create Limit Range by using CLI

YAML file examples

Create via YAML file

Create via command line directly

Refer to the official Kubernetes documentation: Limit Ranges

Using Kubernetes LimitRange as an admission controller is resource limitations at the
container or Pod level. It sets default request values, limit values, and maximum values for

containers or Pods created after the LimitRange is created or updated, while continuously

monitoring container usage to ensure that no resources exceed the defined maximum values

within the namespace.

The resource request of a container is the ratio between resource limits and cluster

overcommitment. Resource request values serve as a reference and criterion for the

scheduler when scheduling containers. The scheduler will check the available resources for

each node (total resources - sum of resource requests of containers within Pods scheduled

on the node). If the total resource requests of the new Pod container exceed the remaining

available resources of the node, that Pod will not be scheduled on that node.

Limit Range

TOC

Understanding Limit Range

↗

Menu ON THIS PAGE

Limit Range - Alauda Container Platform

https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/

LimitRange is an admission controller:

It applies default request and limit values for all Containers that do not set compute

resource requirements.

It tracks usage to ensure it does not exceed resource maximum and ratio defined in any

LimitRange present in the namespace.

Includes the following configurations

Resource Field

CPU

Default Request

Limit

Max

Memory

Default Request

Limit

Max

Create Limit Range by using CLI

YAML file examples

Limit Range - Alauda Container Platform

Create via YAML file

Create via command line directly

example-limitrange.yaml

apiVersion: v1

kind: LimitRange

metadata:

 name: example-limitrange

 namespace: example

spec:

 limits:

 - default:

 cpu: 100m

 memory: 100Mi

 defaultRequest:

 cpu: 50m

 memory: 50Mi

 max:

 cpu: 1000m

 memory: 1000Mi

 type: Container

kubectl apply -f example-limitrange.yaml

kubectl create limitrange example-limitrange --namespace=example --

default='cpu=100m,memory=100Mi' --default-request='cpu=50m,memory=50Mi' --

max='cpu=1000m,memory=1000Mi'

Limit Range - Alauda Container Platform

Refer to the official Kubernetes documentation: Pod Security Admission

Pod Security Admission (PSA) is a Kubernetes admission controller that enforces security

policies at the namespace level by validating Pod specifications against predefined standards.

Security Modes

Security Standards

Configuration

Namespace Labels

Exemptions

PSA defines three modes to control how policy violations are handled:

Mode Behavior Use Case

Enforce
Denies creation/modification of non-

compliant Pods.

Production environments requiring

strict security enforcement.

Pod Security Admission

↗

TOC

Security Modes

Menu ON THIS PAGE

Pod Security Admission - Alauda Container Platform

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/

Mode Behavior Use Case

Audit
Allows Pod creation but logs

violations in audit logs.

Monitoring and analyzing security

incidents without blocking

workloads.

Warn
Allows Pod creation but returns

client warnings for violations.

Testing environments or transitional

phases for policy adjustments.

Key Notes:

Enforce acts on Pods only (e.g., rejects Pods but allows non-Pod resources like

Deployments).

Audit and Warn apply to both Pods and their controllers (e.g., Deployments).

PSA defines three security standards to restrict Pod privileges:

Standard Description Key Restrictions

Privileged

Unrestricted access. Suitable

for trusted workloads (e.g.,

system components).

No validation of securityContext

fields.

Baseline
Minimal restrictions to prevent

known privilege escalations.

Blocks hostNetwork , hostPID ,

privileged containers, and unrestricted

hostPath volumes.

Restricted
Strictest policy enforcing

security best practices.

Requires:

- runAsNonRoot: true

- seccompProfile.type: RuntimeDefault

- Dropped Linux capabilities.

Security Standards

Configuration

Pod Security Admission - Alauda Container Platform

Apply labels to namespaces to define PSA policies.

YAML file example

CLI command

Exempt specific users, namespaces, or runtime classes from PSA checks.

Example Configuration:

Namespace Labels

Exemptions

apiVersion: v1

kind: Namespace

metadata:

 name: example-namespace

 labels:

 pod-security.kubernetes.io/enforce: restricted

 pod-security.kubernetes.io/audit: baseline

 pod-security.kubernetes.io/warn: baseline

Step 1: Update Pod Admission labels

kubectl label namespace <namespace-name> \

 pod-security.kubernetes.io/enforce=baseline \

 pod-security.kubernetes.io/audit=restricted \

 --overwrite

Step 2: Verify labels

kubectl get namespace <namespace-name> --show-labels

apiVersion: pod-security.admission.config.k8s.io/v1

kind: PodSecurityConfiguration

exemptions:

 usernames: ['admin']

 runtimeClasses: ['nvidia']

 namespaces: ['kube-system']

Pod Security Admission - Alauda Container Platform

In Kubernetes, each Pod runs with a specific User ID (UID) and Group ID (GID) to ensure

security and proper access control. By default, Pods may run as the root user (UID 0), which

can pose security risks. To enhance security, it's recommended to assign non-root UIDs and

GIDs to Pods.

ACP allows to auto assign a namespace with specific UID and GID ranges to ensure that all

Pods within the namespace run with the designated user and group IDs.

Enable UID/GID Assignment

Verify UID/GID Assignment

The UID/GID Range

Verify the Pod UID/GID

To enable UID/GID assignment for a namespace, follow these steps:

1. Enter Project Management.

2. In the left navigation bar, click Namespace.

3. Click on the target namespace.

4. Click Actions > Upate Pod Security Policy.

UID/GID Assignment

TOC

Enable UID/GID Assignment

Menu ON THIS PAGE

UID/GID Assignment - Alauda Container Platform

5. Change the Enforce option value to Restricted, click Update.

6. Click edit icon next to Labels, add a label with key security.cpaas.io/enabled and value

true , click Update. (To disable, remove this label or set the value to false .)

7. Click Save.

In the namespace details page, you can view the assigned UID and GID ranges in the

Annotations.

The security.cpaas.io/uid-range annotation specifies the range of UID/GIDs that can be

assigned to Pods in the namespace, e.g. security.cpaas.io/uid-range=1000002000-
1000011999, means the uid/gid range is between 1000002000 to 1000011999.

If the pod does not specify runAsUser and fsGroup in the securityContext , the platform will

automatically assign the first value from the assigned uid range.

1. Create a Pod in the namespace with the following YAML configuration:

2. After the Pod is created, get the Pod yaml to check the assigned UID and GID:

Verify UID/GID Assignment

The UID/GID Range

Verify the Pod UID/GID

apiVersion: v1

kind: Pod

metadata:

 name: uid-gid-test-pod

spec:

 containers:

 - name: test-container

 image: busybox

 command: ["sleep", "3600"]

UID/GID Assignment - Alauda Container Platform

the Pod YAML will show the assigned UID and GID in the securityContext section:

If the pod specifies runAsUser and fsGroup in the securityContext, the platform will validate if

the specified UID/GID are within the assigned range. If they are not, the Pod creation will fail.

1. Create a Pod in the namespace with the following YAML configuration:

2. After applying the YAML, the Pod creation will fail with an error message indicating that the

specified UID/GID are outside the assigned range.

kubectl get pod uid-gid-test-pod -n <namespace-name> -o yaml

apiVersion: v1

kind: Pod

metadata:

 name: uid-gid-test-pod

spec:

 containers:

 - name: test-container

 image: busybox

 command: ["sleep", "3600"]

 securityContext:

 runAsUser: 1000000

 securityContext:

 fsGroup: 1000000

apiVersion: v1

kind: Pod

metadata:

 name: uid-gid-test-pod-invalid

spec:

 containers:

 - name: test-container

 image: busybox

 command: ["sleep", "3600"]

 securityContext:

 runAsUser: 2000000 # Invalid UID, outside the assigned range

 securityContext:

 fsGroup: 2000000 # Invalid GID, outside the assigned range

UID/GID Assignment - Alauda Container Platform

UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Precautions

Procedure

Alauda Container Platform allows you to set a resource overcommit ratio (CPU and memory)

per namespace. This manages the relationship between container limits (maximum usage)

and requests (guaranteed minimum) within that namespace, optimizing resource utilization.

By configuring this ratio, you ensure user-defined container limits and requests remain within

reasonable bounds, improving overall cluster resource efficiency.

Key Concepts

Limits: The maximum resource a container can use. Exceeding limits can lead to throttling

(CPU) or termination (memory).

Overcommit Ratio

TOC

UnderStanding Namespace Resource
Overcommit Ratio

Menu ON THIS PAGE

Overcommit Ratio - Alauda Container Platform

Requests: The guaranteed minimum resource a container needs. Kubernetes schedules

containers based on these requests.

Overcommit Ratio: Limits / Requests. This setting defines the acceptable range for this

ratio within the namespace, balancing resource guarantees and preventing over-

consumption.

Core Capabilities

Enhance resource density and application stability within the namespace by setting an

appropriate overcommit ratio to manage the balance between resource limits and requests.

Example

Assuming the namespace overcommit ratio is set to 2, when creating an application and

specifies a CPU limit of 4c, the corresponding CPU request value is calculated as:

CPU Request = CPU Limit / Overcommit ratio. Thus, the CPU request becomes 4c / 2 = 2c.

CRD Define

Creating overcommit ratio by using CLI

example-namespace-overcommit.yaml

apiVersion: resource.alauda.io/v1

kind: NamespaceResourceRatio

metadata:

 namespace: example

 name: example-namespace-overcommit

spec:

 cpu: 3 # Absence of this field indicates inheritance of the cluster overcommit ratio; 0

means no limitation.

 memory: 4 # Absence of this field indicates inheritance of the cluster overcommit

ratio; 0 means no limitation.

status:

 clusterCPU: 2 # Cluster Overcommit Ratio

 clusterMemory: 3

Overcommit Ratio - Alauda Container Platform

Allows adjusting the overcommit ratio for a namespace to manage the ratio between

resource limits and requests. This ensures container's resource allocations remain within

defined bounds, improving cluster resource utilization.

If the cluster uses node virtualization (e.g., virtual nodes), disable oversubscription at the

cluster/namespace level before configuring it for virtual machines.

1. Enter the Project Management and navigation to Namespaces > Namespace List.

2. Click the target Namespace name.

3. Click Actions > Update Overcommit.

4. Select the appropriate overcommit ratio configuration method to set the CPU or memory

overcommit ratio for the namespace.

Parameter Description

Inherit from

Cluster

Namespace inherits the cluster's oversubscription ratio.

Example: If cluster CPU/memory ratio is 4, namespace

defaults to 4.

Container requests = limit / cluster ratio.

If no limit is set, use the namespace's default container quota.

Creating/Updating Overcommit Ratio by using
web console

Precautions

Procedure

kubectl apply -f example-namespace-overcommit.yaml

Overcommit Ratio - Alauda Container Platform

Parameter Description

Custom

Set a namespace-specific ratio (integer > 1).

Example: Cluster ratio = 4, namespace ratio = 2 → requests =

limit / 2.

Leave empty to disable oversubscription for the namespace.

5. Click Update.

Note: Changes apply only to newly created Pods. Existing Pods retain their original requests

until rebuilt.

Overcommit Ratio - Alauda Container Platform

Importing Members

Constraints and Limitations

Prerequisites

Procedure

Adding Members

Procedure

Removing Members

Procedure

The platform supports bulk importing members into a namespace and assigning roles such as

Namespace Administrator or Developer to grant corresponding permissions.

Members can only be imported into the namespace from the Project Members of the

namespace's project.

The platform does not support importing default system-created admin users or the active

user.

Managing Namespace Members

TOC

Importing Members

Constraints and Limitations

Menu ON THIS PAGE

Managing Namespace Members - Alauda Container Platform

To import users as namespace members, they must first be added to the namespace's

project.

1. Project Management, click on Project Name where the members to be imported are

located.

2. Navigation to Namespaces > Namespaces.

3. Click on Namespace Name of the members to be imported.

4. In the Namespace Members tab, click Import Members.

5. Follow the procedures below to import all or some users from the list into the namespace.

TIP

You can select a user group using the dropdown box at the top right of the dialog and perform a

fuzzy search by entering the username in the username search box.

Import all users in the list as namespace members and assign roles to users in bulk.

1. Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign.

2. Click Import All.

Import one or more users from the list as namespace members.

1. Click the checkbox in front of the username/display name to select one or more

users.

2. Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign to the selected users.

3. Click Import.

Prerequisites

Procedure

Managing Namespace Members - Alauda Container Platform

When the platform has added an OICD type IDP, OIDC users can be added as namespace

members.

You can add valid OIDC accounts that meet the input requirements as namespace roles and

assign the corresponding namespace roles to the user.

Note: When adding members, the system does not verify the validity of the accounts. Please

ensure that the accounts you add are valid; otherwise, these accounts will not be able to log in

to the platform successfully.

Valid OIDC accounts include: Valid accounts in the OIDC identity authentication service

configured via IDP for the platform, including those that have successfully logged in to the

platform and those that have not logged in to the platform.

Prerequisites

The platform has added an OICD type IDP.

1. Project Management, click on Project Name where the member to be added is located.

2. Navigation to Namespaces > Namespaces.

3. Click on Namespace Name of the member to be added.

4. In the Namespace Members tab, click Add Member.

5. In the Username input box, enter a username for an existing third-party platform account

supported by the platform.

Note: Please confirm that the entered username corresponds to an existing account on the

third-party platform; otherwise, that account will not be able to log in to this platform

successfully.

6. In the Role dropdown, select the role name to configure for this user.

Adding Members

Procedure

Managing Namespace Members - Alauda Container Platform

7. Click Add. After a successful addition, you can view the member in the namespace

member list. At the same time, in the user list (Platform Management > User

Management), you can view that user. Before the user successfully logs in or is

synchronized to this platform, the source will be - , and it can be deleted; when the

account successfully logs in or synchronizes to the platform, the platform will record the

account's source information and display it in the user list.

Remove specified namespace members and delete their associated roles to revoke their

namespace permissions.

1. Project Management, click on Project Name where the member to be removed is located.

2. Navigation to Namespaces > Namespaces.

3. Click on Namespace Name of the member to be removed.

4. In the Namespace Members tab, click ⋮ on the right side of the record of the member to be

removed > Remove.

5. Click Remove.

Removing Members

Procedure

Managing Namespace Members - Alauda Container Platform

Updating Quotas

Updating a Resource Quota by using web console

Updating a Resource Quota by using CLI

Updating Container LimitRanges

Updating a LimitRange by using web console

Updating a LimitRange by using CLI

Updating Pod Security Admission

Updating a Pod Security Admission by using web console

Updating a Pod Security Admission by using CLI

Resource Quota

1. Project Management, and navigate to Namespaces > Namespace List in the left sidebar.

2. Click the target namespace name.

3. Click Actions > Update Quota.

Updating Namespaces

TOC

Updating Quotas

Updating a Resource Quota by using web console

Menu ON THIS PAGE

Updating Namespaces - Alauda Container Platform

4. Adjust resource quotas (CPU, Memory, Pods, etc.) and click Update.

Resource Quota YAML file example

Limit Range

1. Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.

2. Click the target namespace name.

3. Click Actions > Update Container LimitRange.

4. Adjust container limit range (defaultRequest , default , max) and click Update.

Limit Range YAML file example

Updating a Resource Quota by using CLI

Updating Container LimitRanges

Updating a LimitRange by using web console

Updating a LimitRange by using CLI

Step 1: Edit the namespace quota

kubectl edit resourcequota <quota-name> -n <namespace-name>

Step 2: Verify changes

kubectl get resourcequota <quota-name> -n <namespace-name> -o yaml

Updating Namespaces - Alauda Container Platform

Pod Security Admission

1. Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.

2. Click the target namespace name.

3. Click Actions > Update Pod Security Admission.

4. Adjust security standard (enforce , audit , warn) and click Update.

Update Pod Security Admission CLI command

Updating Pod Security Admission

Updating a Pod Security Admission by using web console

Updating a Pod Security Admission by using CLI

Step 1: Edit the LimitRange

kubectl edit limitrange <limitrange-name> -n <namespace-name>

Step 2: Verify changes

kubectl get limitrange <limitrange-name> -n <namespace-name> -o yaml

Updating Namespaces - Alauda Container Platform

You can either delete a namespace permanently or remove it from the current project.

Deleting Namespaces

Removing Namespaces

Delete Namespace: Permanently deletes a namespace and all resources within it (e.g.,

Pods, Services, ConfigMaps). This action cannot be undone and releases allocated resource

quotas.

Remove Namespace: Removing a namespace from the current project without deleting its

resources. The namespace remains in the cluster and can be imported into other projects via

Import Namespace.

Deleting/Removing Namespaces

TOC

Deleting Namespaces

Removing Namespaces

kubectl delete namespace <namespace-name>

Menu ON THIS PAGE

Deleting/Removing Namespaces - Alauda Container Platform

NOTE

This feature is exclusive to the Alauda Container Platform.

Kubernetes does not natively support "removing" namespaces from projects.

kubectl label namespace <namespace-name> cpaas.io/project- --overwrite

Deleting/Removing Namespaces - Alauda Container Platform

Creating Applications

Creating applications from Image

Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Creating applications from Chart

Precautions

Prerequisites

Procedure

Status Analysis Reference

Creating applications from YAML
Precautions

Prerequisites

Procedure

Menu

Creating Applications - Alauda Container Platform

Creating applications from Code
Prerequisites

Procedure

Creating applications from Operator Backed

UnderStanding Operator Backed Application

Creating a Operator Backed Application by using web console

Troubleshooting

Creating applications by using CLI
Prerequisites

Procedure

Example

Reference

Creating Applications - Alauda Container Platform

Prerequisites

Procedure 1 - Workloads

Workload 1 - Configure Basic Info

Workload 2 - Configure Pod

Workload 3 - Configure Containers

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Storage Volume Mounting Instructions

Health Check Parameters

Common Parameters

Protocol-Specific Parameters

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

Creating applications from Image

TOC

Prerequisites

Menu ON THIS PAGE

Creating applications from Image - Alauda Container Platform

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1. Container Platform, navigate to Applications > Applications in the left sidebar.

2. Click Create.

3. Choose Create from Image as the creation approach.

4. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

6. Refer to the following instructions to configure the related parameters.

In the Workload > Basic Info section, configure declarative parameters for workloads

Parameters Description

Model Select a workload as needed:

Deployment: For detailed parameter descriptions, please refer

to Creating Deployment.

Procedure 1 - Workloads

Workload 1 - Configure Basic Info

Creating applications from Image - Alauda Container Platform

Parameters Description

DaemonSet: For detailed parameter descriptions, please refer

to Creating DaemonSet.

StatefulSet: For detailed parameter descriptions, please refer

to Creating StatefulSet.

Replicas
Defines the desired number of Pod replicas in the Deployment

(default: 1). Adjust based on workload requirements.

More > Update

Strategy

Configures the rollingUpdate strategy for zero-downtime

deployments:

Max surge (maxSurge):

Maximum number of Pods that can exceed the desired replica

count during an update.

Accepts absolute values (e.g., 2) or percentages (e.g., 20%).

Percentage calculation: ceil(current_replicas × percentage) .

Example: 4.1 → 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

Maximum number of Pods that can be temporarily unavailable

during an update.

Percentage values cannot exceed 100% .

Percentage calculation: floor(current_replicas × percentage) .

Example: 4.9 → 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1 , maxUnavailable=1 if not explicitly

set.

2. Non-running Pods (e.g., in Pending / CrashLoopBackOff states)

are considered unavailable.

3. Simultaneous constraints:

maxSurge and maxUnavailable cannot both be 0 or 0% .

Creating applications from Image - Alauda Container Platform

Parameters Description

If percentage values resolve to 0 for both parameters,

Kubernetes forces maxUnavailable=1 to ensure update progress.

Example:

For a Deployment with 10 replicas:

maxSurge=2 → Total Pods during update: 10 + 2 = 12 .

maxUnavailable=3 → Minimum available Pods: 10 - 3 = 7 .

This ensures availability while allowing controlled rollout.

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1. Pod section, configure container runtime parameters and lifecycle management:

Parameters Description

Volumes

Mount persistent volumes to containers. Supported volume types

include PVC , ConfigMap , Secret , emptyDir , hostPath , and so

on. For implementation details, see Storage Volume Mounting

Instructions.

Image

Credential

Required only when pulling images from third-party registries

(via manual image URL input).

Note: Images from the platform's integrated registry

automatically inherit associated secrets.

More > Close

Grace Period

Duration (default: 30s) allowed for a Pod to complete graceful

shutdown after receiving termination signal.

- During this period, the Pod completes inflight requests and

releases resources.

- Setting 0 forces immediate deletion (SIGKILL), which may

cause request interruptions.

Workload 2 - Configure Pod

Creating applications from Image - Alauda Container Platform

2. Node Affinity Rules

Parameters Description

More >

Node

Selector

Constrain Pods to nodes with specific labels (e.g., kubernetes.io/os:

linux).

More >

Affinity

Define fine-grained scheduling rules based on existing Pods.

Pod Affinity Types:

Inter-Pod Affinity: Schedule new Pods to nodes hosting specific

Pods (same topology domain).

Inter-Pod Anti-affinity: Prevent co-location of new Pods with

specific Pods.

Enforcement Modes:

RequiredDuringSchedulingIgnoredDuringExecution: Pods are

scheduled only if rules are satisfied.

PreferredDuringSchedulingIgnoredDuringExecution: Prioritize

nodes meeting rules, but allow exceptions.

Configuration Fields:

topologyKey : Node label defining topology domains (default:

kubernetes.io/hostname).

labelSelector : Filters target Pods using label queries.

3. Network Configuration

Kube-OVN

Creating applications from Image - Alauda Container Platform

Parameters Description

Bandwidth

Limits

Enforce QoS for Pod network traffic:

Egress rate limit: Maximum outbound traffic rate (e.g.,

10Mbps).

Ingress rate limit: Maximum inbound traffic rate.

Subnet
Assign IPs from a predefined subnet pool. If unspecified, uses

the namespace's default subnet.

Static IP

Address

Bind persistent IP addresses to Pods:

Multiple Pods across Deployments can claim the same IP,

but only one Pod can use it concurrently.

Critical: Number of static IPs must ≥ Pod replica count.

Calico

Parameters Description

Static IP Address

Assign fixed IPs with strict uniqueness:

Each IP can be bound to only one Pod in the cluster.

Critical: Static IP count must ≥ Pod replica count.

1. Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource Requests

& Limits
Requests: Minimum CPU/memory required for container

operation.

Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.

Workload 3 - Configure Containers

Creating applications from Image - Alauda Container Platform

Parameters Description

Namespace overcommit ratio:

Without overcommit ratio:

If namespace resource quotas exist: Container

requests/limits inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

With overcommit ratio:

Requests auto-calculated as Limits / Overcommit ratio

(immutable).

Constraints:

Request ≤ Limit ≤ Namespace quota maximum.

Overcommit ratio changes require pod recreation to take

effect.

Overcommit ratio disables manual request configuration.

No namespace quotas → no container resource

constraints.

Extended

Resources

Configure cluster-available extended resources (e.g., vGPU,

pGPU).

Volume Mount Persistent storage configuration. See Storage Volume

Mounting Instructions.

Operations:

Existing pod volumes: Click Add

No pod volumes: Click Add & Mount

Parameters:

mountPath : Container filesystem path (e.g., /data)

subPath : Relative file/directory path within volume.

For ConfigMap / Secret : Select specific key

readOnly : Mount as read-only (default: read-write)

Creating applications from Image - Alauda Container Platform

Parameters Description

See Kubernetes Volumes .

Port

Expose container ports.

Example: Expose TCP port 6379 with name redis .

Fields:

protocol : TCP/UDP

Port : Exposed port (e.g., 6379)

name : DNS-compliant identifier (e.g., redis)

Startup Commands

& Arguments

Override default ENTRYPOINT/CMD:

Example 1: Execute top -b

- Command: ["top", "-b"]

- OR Command: ["top"] , Args: ["-b"]

Example 2: Output $MESSAGE :

/bin/sh -c "while true; do echo $(MESSAGE); sleep 10; done"

See Defining Commands .

More >

Environment

Variables

Static values: Direct key-value pairs

Dynamic values: Reference ConfigMap/Secret keys, pod

fields (fieldRef), resource metrics (resourceFieldRef)

Note: Env variables override image/configuration file

settings.

More > Referenced

ConfigMap

Inject entire ConfigMap/Secret as env variables. Supported

Secret types: Opaque , kubernetes.io/basic-auth .

More > Health

Checks

Liveness Probe: Detect container health (restart if

failing)

Readiness Probe: Detect service availability (remove

from endpoints if failing)

See Health Check Parameters.

↗

↗

Creating applications from Image - Alauda Container Platform

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Parameters Description

More > Log File

Configure log paths:

- Default: Collect stdout

- File patterns: e.g., /var/log/*.log

Requirements:

Storage driver overlay2 : Supported by default

devicemapper : Manually mount EmptyDir to log directory

Windows nodes: Ensure parent directory is mounted

(e.g., c:/a for c:/a/b/c/*.log)

More > Exclude Log

File

Exclude specific logs from collection (e.g.,

/var/log/aaa.log).

More > Execute

before Stopping

Execute commands before container termination.

Example: echo "stop"

Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2. Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

1. Start before app containers (sequential execution).

2. Release resources after completion.

3. Deletion allowed when:

Pod has >1 app container AND ≥1 init container.

Not allowed for single-app-container pods.

3. Click Create.

↗

Procedure 2 - Services

Creating applications from Image - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Parameters Description

Service

Kubernetes Service, expose an application running in your cluster

behind a single outward-facing endpoint, even when the workload is

split across multiple backends.. For specific parameter explanations,

please refer to Creating Services.

Note The default name prefix for the internal routing created under the

application is the name of the compute component. If the compute

component type (deployment mode) is StatefulSet, it is advisable not to

change the default name of the internal routing (the name of the

workload); otherwise, it may lead to accessibility issues for the

workload.

Parameters Description

Ingress

Kubernetes Ingress, make your HTTP (or HTTPS) network service

available using a protocol-aware configuration mechanism, that

understands web concepts like URIs, hostnames, paths, and more. The

Ingress concept lets you map traffic to different backends based on

rules you define via the Kubernetes API. For detailed parameter

descriptions, please refer to Creating Ingresses.

Note: The Service used when creating Ingress under the application

must be resources created under the current application. However,

ensure that the Service is associated with the workload under the

application; otherwise, service discovery and access for workload will

fail.

7. Click Create.

Procedure 3 - Ingress

Application Management Operations

Creating applications from Image - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_service.html
http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

To modify application configurations, use one of the following methods:

1. Click the vertical ellipsis (⋮) on the right side of the application list.

2. Select Actions from the upper-right corner of the application details page.

Operation Description

Update

Update: Modifies only the target workload using its defined update

strategy (Deployment strategy shown as example). Preserves existing

replica count and rollout configuration.

Force Update: Triggers full application rollout using each component's

update strategy.

1. Use cases:

Batch configuration changes requiring immediate cluster-wide

propagation (e.g., ConfigMap/Secret updates referenced as

environment variables).

Coordinated component restarts for critical security.

2. Warning Caution:

May cause temporary service degradation during mass restarts.

Not recommended for production environments without business

continuity validation.

Network Implications:

Ingress Rule Deletion: External access remains available via

LB_IP:NodePort if:

1) LoadBalancer Service uses default ports.

2) Surviving routing rules reference application components.

Full external access termination requires Service deletion.

Service Deletion: Irreversible loss of network connectivity to

application components. Associated Ingress rules become non-

functional despite API object persistence.

Creating applications from Image - Alauda Container Platform

Operation Description

Delete

Cascading Deletion:

1. Removes all child resources including Deployments, Services, and

Ingress rules.

2. Persistent Volume Claims (PVCs) follow retention policy defined in

StorageClass

Pre-deletion Checklist:

1. Verify no active traffic through associated Services.

2. Confirm data backup completion for stateful components.

3. Check dependent resource relationships using kubectl describe

ownerReferences .

Type Purpose

Persistent

Volume Claim

Binds an existing PVC to request persistent storage.

Note: Only bound PVCs (with associated PV) are selectable.

Unbound PVCs will cause pod creation failures.

ConfigMap

Mounts full/partial ConfigMap data as files:

Full ConfigMap: Creates files named after keys under mount

path

Subpath selection: Mount specific key (e.g., my.cnf)

Reference Information

Storage Volume Mounting Instructions

Creating applications from Image - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Type Purpose

Secret

Mounts full/partial Secret data as files:

Full Secret: Creates files named after keys under mount path

Subpath selection: Mount specific key (e.g., tls.crt)

Ephemeral

Volumes

Cluster-provisioned temporary volume with features:

Dynamic provisioning

Lifecycle tied to pod

Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Empty Directory

Ephemeral storage sharing between containers in same pod:

- Created on node when pod starts

- Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage.

See EmptyDir

Host Path
Mounts host machine directory (must start with / , e.g.,

/volumepath).

Parameters Description

Initial Delay Grace period (seconds) before starting probes. Default: 300 .

Period Probe interval (1-120s). Default: 60 .

Timeout Probe timeout duration (1-300s). Default: 30 .

Health Check Parameters

Common Parameters

Creating applications from Image - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Parameters Description

Success Threshold Minimum consecutive successes to mark healthy. Default: 0 .

Failure Threshold

Maximum consecutive failures to trigger action:

- 0 : Disables failure-based actions

- Default: 5 failures → container restart.

Parameter
Applicable

Protocols
Description

Protocol HTTP/HTTPS Health check protocol

Port HTTP/HTTPS/TCP Target container port for probing.

Path HTTP/HTTPS Endpoint path (e.g., /healthz).

HTTP

Headers
HTTP/HTTPS Custom headers (Add key-value pairs).

Command EXEC

Container-executable check command (e.g.,

sh -c "curl -I localhost:8080 | grep OK").

Note: Escape special characters and test

command viability.

Protocol-Specific Parameters

Creating applications from Image - Alauda Container Platform

Based on Helm Chart represents a native application deployment pattern. A Helm Chart is a

collection of files that define Kubernetes resources, designed to package applications and

facilitate application distribution with version control capabilities. This enables seamless

environment transitions, such as migrations from development to production environments.

Precautions

Prerequisites

Procedure

Status Analysis Reference

When a cluster contains both Linux and Windows nodes, explicit node selection MUST be

configured to prevent scheduling conflicts. Example:

Creating applications from Chart

TOC

Precautions

spec:

 spec:

 nodeSelector:

 kubernetes.io/os: linux

Menu ON THIS PAGE

Creating applications from Chart - Alauda Container Platform

If the template is from a application and references relevant resources (e.g., secret

dictionaries), ensure the to-be-referenced resources already exist in the current namespace

before application deployment.

1. Container Platform, navigate to Applications > Applications in the left sidebar.

2. Click Create.

3. Choose Create from Catalog as the creation approach.

4. Select a Chart and configure parameters, pick a Chart and configure the required

parameters, such as resources.requests , resources.limits , and other parameters that are

closely related to the chart.

5. Click Create.

The web console will redirect you to the Application > [Native Applications] details page.

The process will take some time, so please be patient. In case of operation failure, follow the

interface prompts to complete the operation.

Click on Application Name to display detailed status analysis of the Chart in the details

information.

Type Reason

Initialized Indicates the status of Chart template download.

True: It indicates that the Chart template has been successfully

downloaded.

Prerequisites

Procedure

Status Analysis Reference

Creating applications from Chart - Alauda Container Platform

Type Reason

False: It indicates that the Chart template download has failed; you can

check the specific failure reason in the message column.

ChartLoadFailed : Chart template download failed.

InitializeFailed : There was an exception in the initialization

process before the Chart was downloaded.

Validated

Indicates the status of user permissions, dependencies, and other

validations for the Chart template.

True: It indicates that all validation checks have passed.

False: It indicates that there are validation checks that have not

passed; you can check the specific failure reason in the message

column.

DependenciesCheckFailed : Chart dependency check failed.

PermissionCheckFailed : The current user lacks permission to perform

operations on certain resources.

ConsistentNamespaceCheckFailed : When deploying applications

through templates in native applications, the Chart contains

resources that require cross-namespace deployment.

Synced

Indicates the deployment status of the Chart template.

True: It indicates that the Chart template has been successfully

deployed.

False: It indicates that the Chart template deployment has failed; the

reason column shows ChartSyncFailed , and you can check the specific

failure reason in the message column.

WARNING

If the template references cross - namespace resources, contact the Administrator for help with

creation. Afterward, you can normally Updating and deleting Chart Applications on web console.

Creating applications from Chart - Alauda Container Platform

If the template references cluster - level resources (e.g., StorageClasses), it's recommended to

contact the Administrator for assistance with creation.

Creating applications from Chart - Alauda Container Platform

If you are proficient in YAML syntax and prefer to define configurations outside of forms or pre-

defined templates, you can choose the one-click YAML creation method. This approach offers

more flexible configuration of basic information and resources for your cloud-native

application.

Precautions

Prerequisites

Procedure

When both Linux and Windows nodes exist in the cluster, to prevent scheduling the

application on incompatible nodes, you must configure node selection. For example:

Creating applications from YAML

TOC

Precautions

Prerequisites

spec:

 spec:

 nodeSelector:

 kubernetes.io/os: linux

Menu ON THIS PAGE

Creating applications from YAML - Alauda Container Platform

Ensure the images defined in the YAML can be pulled within the current cluster. You can verify

this using the docker pull command.

1. Container Platform, and navigate to Application > Applications.

2. Click Create.

3. Select the Create from YAML.

4. Complete the configuration and click Create.

5. The corresponding Deployment can be viewed on the Details page.

Procedure

Creating applications from YAML - Alauda Container Platform

webapp-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp

 labels:

 app: webapp

 env: prod

spec:

 replicas: 3

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 tier: frontend

 spec:

 containers:

 - name: webapp

 image: nginx:1.25-alpine

 ports:

 - containerPort: 80

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "250m"

 memory: "256Mi"

webapp-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: webapp-service

spec:

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

Creating applications from YAML - Alauda Container Platform

 targetPort: 80

 type: ClusterIP

Creating applications from YAML - Alauda Container Platform

Creating application from code is implemented using Source to Image(S2I) technology. S2I is

an automated framework for building container images directly from source code. This

approach standardizes and automates the application build process, allowing developers to

focus on source code development without worrying about containerization details.

Prerequisites

Procedure

Complete the installation of Alauda Container Platform Builds

1. Container Platform, and navigate to Application > Applications.

2. Click Create.

3. Select the Create from Code.

Creating applications from Code

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Creating applications from Code - Alauda Container Platform

4. For detailed parameter descriptions, please refer to Managing applications created from

Code

5. After completing the parameter input, click Create.

6. The corresponding deployment can be viewed on the Detail Information page.

Creating applications from Code - Alauda Container Platform

UnderStanding Operator Backed Application

Core Capabilities

Operator Backed Application CRD

Creating a Operator Backed Application by using web console

Troubleshooting

An Operator is an extension mechanism built upon Kubernetes Custom Controllers and

Custom Resource Definitions (CRDs), designed to automate the complete lifecycle

management of complex applications. Within Alauda Container Platform, an Operator Backed

Application refers to an application instance provisioned through pre-integrated or user-

defined Operators, with its operational workflows managed by the Operator Lifecycle Manager

(OLM). This encompasses critical processes such as installation, upgrades, dependency

resolution, and access control.

1. Automation of Complex Operations: Operators overcome the inherent limitations of

native Kubernetes resources (e.g., Deployment, StatefulSet) to address the complexities of

Creating applications from Operator
Backed

TOC

UnderStanding Operator Backed Application

Core Capabilities

Menu ON THIS PAGE

Creating applications from Operator Backed - Alauda Container Platform

managing stateful applications, including distributed coordination, persistent storage, and

versioned rolling updates. Example: Operator-encoded logic enables autonomous

operations for database cluster failover, cross-node data consistency, and backup recovery.

2. Declarative, State-Driven Architecture: Operators utilize YAML-based declarative APIs to

define desired application states (e.g., spec.replicas: 5). Operators continuously reconcile

the actual state with the declared state, providing self-healing capabilities. Deep integration

with GitOps tools (e.g., Argo CD) ensures consistent environment configurations.

3. Intelligent Lifecycle Management:

Rolling Updates & Rollback: OLM's Subscription object subscribes to update channels

(e.g., stable, alpha), triggering automated version iterations for both Operators and their

managed applications.

Dependency Resolution: Operators dynamically identify runtime dependencies (e.g.,

specific storage drivers, CNI plugins) to ensure successful deployment.

4. Standardized Ecosystem Integration: OLM standardizes Operator packaging (Bundle)

and distribution channels, enabling one-click deployment of production-grade applications

(e.g., Etcd) from OperatorHub or private registries. Enterprise Enhancements: Alauda

Container Platform extends RBAC policies and multi-cluster distribution capabilities to meet

enterprise compliance requirements.

This Operator is designed and implemented by fully embracing open-source community

standards and solutions. Its Custom Resource Definition (CRD) design thoughtfully

incorporates established best practices and architectural patterns prevalent within the

Kubernetes ecosystem. CRD design reference materials:

1. CatalogSource : Defines the source of Operator packages available to the cluster, such

as OperatorHub or custom Operator repositories.

2. ClusterServiceVersion (CSV) : The core metadata definition for an Operator, containing its

name, version, provided APIs, required permissions, installation strategy, and detailed

lifecycle management information.

Operator Backed Application CRD

↗

↗

Creating applications from Operator Backed - Alauda Container Platform

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-catalogsources.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-catalogsources.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-catalogsources.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-clusterserviceversions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-clusterserviceversions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-clusterserviceversions.crd.yaml

3. InstallPlan : The actual execution plan for installing an Operator, automatically generated

by OLM based on the Subscription and CSV, detailing the specific steps to create the

Operator and its dependent resources.

4. OperatorGroup : Defines a set of target namespaces where an Operator will provide its

services and reconcile resources, while also limiting the scope of the Operator's RBAC

permissions.

5. Subscription : Used to declare the specific Operator that a user wants to install and track

in the cluster, including the Operator's name, target channel (e.g., stable, alpha), and

update strategy. OLM uses the Subscription to create and manage the Operator's

installation and upgrades.

1. Container Platform, navigate to Applications > Applications in the left sidebar.

2. Click Create.

3. Choose Create from Catalog as the creation approach.

4. Select an Operator-Backed Instance and Configure Custom Resource Parameters.

Select an Operator-managed application instance and configure its Custom Resource (CR)

specifications in the CR manifest, including:

spec.resources.limits (container-level resource constraints).

spec.resourceQuota (Operator-defined quota policies). Other CR-specific parameters

such as spec.replicas , spec.storage.className , etc.

5. Click Create.

The web console will navigate to Applications > Operator Backed Apps page.

INFO

↗

↗

↗

Creating a Operator Backed Application by using
web console

Creating applications from Operator Backed - Alauda Container Platform

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-installplans.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-installplans.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-installplans.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-operatorgroups.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-operatorgroups.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-operatorgroups.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-subscriptions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-subscriptions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-subscriptions.crd.yaml

Note: The Kubernetes resource creation process requires asynchronous reconciliation. Completion

may take several minutes depending on cluster conditions.

If resource creation fails:

1. Inspect controller reconciliation errors:

2. Verify API resource availability:

3. Retry creation after verifying CRD/Operator readiness:

Troubleshooting

kubectl get events --field-selector involvedObject.kind=<Your-Custom-Resource> --sort-

by=.metadata.creationTimestamp

kubectl api-resources | grep <Your-Resource-Type>

kubectl apply -f your-resource-manifest.yaml

Creating applications from Operator Backed - Alauda Container Platform

kubectl is the primary command-line interface (CLI) for interacting with Kubernetes clusters.

It functions as a client for the Kubernetes API Server - a RESTful HTTP API that serves as the

control plane's programmatic interface. All Kubernetes operations are exposed through API

endpoints, and kubectl essentially translates CLI commands into corresponding API requests

to manage cluster resources and application workloads (Deployments, StatefulSets, etc.).

The CLI tools facilitates application deployment by intelligently interpreting input artifacts

(images, or Chart, etc.) and generating corresponding Kubernetes API objects. The generated

resources vary based on input types:

Image: Directly creates Deployment.

Chart: Instantiates all objects defined in the Helm Chart.

Prerequisites

Procedure

Example

YAML

kubectl commands

Reference

Creating applications by using CLI

TOC

Prerequisites

Menu ON THIS PAGE

Creating applications by using CLI - Alauda Container Platform

The Alauda Container Platform Web Terminal plugin is installed, and the web-cli switch is

enabled.

1. Contianer Platform, click the terminal icon in the lower-right corner.

2. Wait for session initialization (1-3 sec).

3. Execute kubectl commands in the interactive shell:

4. View real-time command output

Procedure

Example

YAML

kubectl get pods -n ${CURRENT_NAMESPACE}

Creating applications by using CLI - Alauda Container Platform

webapp.yaml

apiVersion: app.k8s.io/v1beta1

kind: Application

metadata:

 name: webapp

spec:

 componentKinds:

 - group: apps

 kind: Deployment

 - group: ""

 kind: Service

 descriptor: {}

webapp-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: webapp

 labels:

 app: webapp

 env: prod

spec:

 replicas: 3

 selector:

 matchLabels:

 app: webapp

 template:

 metadata:

 labels:

 app: webapp

 tier: frontend

 spec:

 containers:

 - name: webapp

 image: nginx:1.25-alpine

 ports:

 - containerPort: 80

 resources:

 requests:

 cpu: "100m"

 memory: "128Mi"

 limits:

 cpu: "250m"

" "

Creating applications by using CLI - Alauda Container Platform

Conceptual Guide: kubectl Overview

Syntax Reference: kubectl Cheat Sheet

Command Manual: kubectl Commands

kubectl commands

Reference

↗

↗

↗

 memory: "256Mi"

webapp-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: webapp-service

spec:

 selector:

 app: webapp

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

 type: ClusterIP

kubectl apply -f webapp.yaml -n {CURRENT_NAMESPACE}

kubectl apply -f webapp-deployment.yaml -n {CURRENT_NAMESPACE}

kubectl apply -f webapp-service.yaml -n {CURRENT_NAMESPACE}

Creating applications by using CLI - Alauda Container Platform

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Operation and Maintaining Applications

Application Rollout

Installing Alauda Container Platform Argo Rollouts

Prerequisites

Installing Alauda Container Platform Argo Rollouts

Application Blue Green Deployment
Prerequisites

Procedure

Application Canary Deployment
Prerequisites

Procedure

Status Description

Status Description
Applications

Menu

Operation and Maintaining Applications - Alauda Container Platform

KEDA(Kubernetes Event-driven Autoscaling)

KEDA Overview
Introduction

Advantages

How KEDA works

Installing KEDA
Prerequisites

Installing via Command Line

Installing via Web Console

Verification

Additional Scenarios

Uninstalling KEDA Operator

How To

Configuring HPA

Configuring HPA
Understanding Horizontal Pod Autoscalers

Prerequisites

Creating a Horizontal Pod Autoscaler

Calculation Rules

Operation and Maintaining Applications - Alauda Container Platform

Starting and Stopping Applications

Starting and Stopping Applications
Starting the Application

Stopping the Application

Configuring VerticalPodAutoscaler (VPA)

Configuring VerticalPodAutoscaler (VPA)

Understanding VerticalPodAutoscalers

Prerequisites

Creating a VerticalPodAutoscaler

Follow-Up Actions

Configuring CronHPA

Configuring CronHPA

Understanding Cron Horizontal Pod Autoscalers

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Schedule Rule Explanation

Updating Applications

Operation and Maintaining Applications - Alauda Container Platform

Updating Applications
Importing Resources

Removing/Batch Removing Resources

Exporting Applications

Exporting Applications

Exporting Helm Charts

Exporting YAML to Local

Exporting YAML to Code Repository (Alpha)

Updating and deleting Chart Applications

Updating and deleting Chart Applications
Important Notes

Prerequisites

Status Analysis Description

Version Management for Applications

Version Management for Applications

Creating a Version Snapshot

Rolling Back to a Historical Version

Operation and Maintaining Applications - Alauda Container Platform

Deleting Applications

Deleting Applications

Handling Out of Resource Errors

Handling Out of Resource Errors

Overview

Configuring Eviction Policies

Creating Eviction Policies in Node Configuration

Eviction Signals

Eviction Thresholds

Configuring Allocatable Resources for Scheduling

Preventing Node Condition Oscillation

Reclaiming Node-level Resources

Pod Eviction

Quality of Service and Out of Memory Killer

Scheduler and Out of Resource Conditions

Example Scenario

Recommended Practices

Health Checks

Operation and Maintaining Applications - Alauda Container Platform

Health Checks
Understanding Health Checks

YAML file example

Health Checks configuration parameters by using web console

Troubleshooting probe failures

Operation and Maintaining Applications - Alauda Container Platform

Application Rollout

Installing Alauda Container Platform Argo Rollouts

Prerequisites

Installing Alauda Container Platform Argo Rollouts

Application Blue Green Deployment
Prerequisites

Procedure

Application Canary Deployment
Prerequisites

Procedure

Menu

Application Rollout - Alauda Container Platform

Prerequisites

Installing Alauda Container Platform Argo Rollouts

Procedure

1. Download the Alauda Container Platform Argo Rollouts cluster plugin installation

package corresponding to your platform architecture.

2. Upload the installation package using the Upload Packages mechanism.

3. Install the installation package to the cluster using the cluster plugins mechanism.

INFO

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the cluster plugin to cluster. For more

details, please refer to CLI.

Installing Alauda Container Platform Argo
Rollouts

TOC

Prerequisites

Menu ON THIS PAGE

Installing Alauda Container Platform Argo Rollouts - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

2. Click Marketplace > Cluster Plugins to enter the Cluster Plugins list page.

3. Find the Alauda Container Platform Argo Rollouts cluster plugin, click Install, and

navigate to the Install Alauda Container Platform Argo Rollouts Plugin page.

4. Simply click Install to complete the Alauda Container Platform Argo Rollouts cluster

plugin installation.

Installing Alauda Container Platform Argo
Rollouts

Procedure

Installing Alauda Container Platform Argo Rollouts - Alauda Container Platform

In the modern world of software development, deploying new versions of applications is a

crucial part of the development cycle. However, rolling out updates to production

environments can be a risky proposition, as even small issues can result in significant

downtime and lost revenue. Blue-Green Deployments are a deployment strategy that

mitigates this risk by ensuring that new versions of applications can be deployed with zero

downtime.

A Blue-Green Deployment is a deployment strategy where two identical environments, the

“blue” environment and the “green” environment, are set up. The blue environment is the

production environment, where the live version of the application is currently running, and the

green environment is the non-production environment, where new versions of the application

are deployed.

When a new version of the application is ready to be deployed, it is deployed to the green

environment. Once the new version is deployed and tested, traffic is switched to the green

environment, making it the new production environment. The blue environment then becomes

the non-production environment, where future versions of the application can be deployed.

Zero Downtime: Blue-Green Deployments allow new versions of applications to be

deployed with zero downtime, as traffic is switched from the blue environment to the green

environment seamlessly.

Easy Rollback: If a new version of the application has issues, rolling back to the previous

version is easy, as the blue environment is still available.

Reduced Risk: By using Blue-Green Deployments, the risk of deploying new versions of

applications is reduced significantly. This is because the new version can be deployed and

tested in the green environment before traffic is switched over from the blue environment.

This allows for thorough testing and reduces the chance of issues arising in production.

Application Blue Green Deployment

Benefits of Blue Green Deployments

Menu ON THIS PAGE

Application Blue Green Deployment - Alauda Container Platform

Increased Reliability: By using Blue-Green Deployments, the reliability of the application is

increased. This is because the blue environment is always available, and any issues with

the green environment can be quickly identified and resolved without affecting users.

Flexibility: Blue-Green Deployments provide flexibility in the deployment process. Multiple

versions of an application can be deployed side-by-side, allowing for easy testing and

experimentation.

Argo Rollouts is a Kubernetes controller and set of CRDs which provide advanced

deployment capabilities such as blue-green, canary, canary analysis, experimentation, and

progressive delivery features to Kubernetes.

Argo Rollouts (optionally) integrates with ingress controllers and service meshes, leveraging

their traffic shaping abilities to gradually shift traffic to the new version during an update.

Additionally, Rollouts can query and interpret metrics from various providers to verify key KPIs

and drive automated promotion or rollback during an update.

With Argo Rollouts, you can automate blue green deployments on Alauda Container Platform

(ACP) clusters. The typical process includes:

1. Defining Rollout resources to manage different application versions.

2. Configuring Kubernetes services to route traffic between blue (current) and green (new)

environments.

3. Deploying the new version to the green environment.

4. Verifying and testing the new version.

5. Promoting the green environment to production by switching traffic.

This approach minimizes downtime and enables controlled, safe deployments.

Key Concepts:

Rollout: A custom resource definition (CRD) in Kubernetes that replaces standard

Deployment resources, enabling advanced deployment control such as blue-green,

canary deployment.

Blue Green Deployment with Argo Rollouts

Application Blue Green Deployment - Alauda Container Platform

Prerequisites

Procedure

Creating the Deployment

Creating the Blue Service

Verify the Blue Deployment

Verify Traffic Routing to Blue

Creating the Rollout

Verify the Rollouts

Preparing Green Deployment

Promoting the Rollout to Green

1. ACP (Alauda Container Platform).

2. Kubernetes Cluster managed by ACP.

3. Argo Rollouts installed in the cluster.

4. Argo Rollouts kubectl plugin.

5. A project to create a namespace in it.

6. A namespace in the cluster where the application will be deployed.

Start by defining the "blue" version of your application. This is the current version that

users will access. Create a Kubernetes deployment with the appropriate number of

TOC

Prerequisites

Procedure

Creating the Deployment1

Application Blue Green Deployment - Alauda Container Platform

replicas, container image version (e.g., hello:1.23.1), and proper labels such as

app=web .

Use the following YAML:

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the resource.

kind : Specifies that this is a Deployment resource.

metadata.name : The name of the deployment.

spec.replicas : Number of desired pod replicas.

spec.selector.matchLabels : Defines how the Deployment finds which pods to

manage.

template.metadata.labels : Labels applied to pods, used by Services to select them.

spec.containers : The containers to run in each pod.

containers.name : Name of the container.

containers.image : Docker image to run.

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web

spec:

 replicas: 2

 selector:

 matchLabels:

 app: web

 template:

 metadata:

 labels:

 app: web

 spec:

 containers:

 - name: web

 image: hello:1.23.1

 ports:

 - containerPort: 80

Application Blue Green Deployment - Alauda Container Platform

containers.ports.containerPort : Port exposed by the container.

Apply the configuration using kubectl :

This sets up the production environment.

Alternative, you could use helm chart to create the deployments and services.

Create a Kubernetes Service that exposes the blue deployment. This service will

forward traffic to the blue pods based on matching labels. Initially, the service selector

targets pods labeled with app=web .

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the Service.

kind : Specifies this resource is a Service.

metadata.name : Name of the Service.

spec.selector : Identifies pods to route traffic to, based on labels.

ports.protocol : The protocol used (TCP).

ports.port : Port exposed by the Service.

ports.targetPort : The port on the container to which the traffic is directed.

Creating the Blue Service2

kubectl apply -f deployment.yaml

apiVersion: v1

kind: Service

metadata:

 name: web

spec:

 selector:

 app: web

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

Application Blue Green Deployment - Alauda Container Platform

Apply it using:

This allows external access to the blue deployment.

Confirm that the blue deployment is running correctly by listing the pods:

Check that all expected replicas (2) are in the Running state. This ensures the

application is ready to serve traffic.

Ensure that the web service is correctly forwarding traffic to the blue deployment. Use

this command:

The output should list the IP addresses of the blue pods. These are the endpoints

receiving traffic.

Next, creating the Rollout resource from Argo Rollouts with BlueGreen strategy.

Verify the Blue Deployment3

Verify Traffic Routing to Blue4

Creating the Rollout5

kubectl apply -f web-service.yaml

kubectl get pods -l app=web

kubectl describe service web | grep Endpoints

Application Blue Green Deployment - Alauda Container Platform

Explanation of YAML fields:

spec.selector : Label selector for pods. Existing ReplicaSets whose pods are

selected by this will be the ones affected by this rollout. It must match the pod

template's labels.

workloadRef : Specify the workload reference and scale down strategy to apply the

rollouts.

scaleDown : Specifies if the workload (Deployment) is scaled down after migrating

to Rollout. The possible options are:

"never": the Deployment is not scaled down.

"onsuccess": the Deployment is scaled down after the Rollout becomes healthy.

"progressively": as the Rollout is scaled up the Deployment is scaled down. If

the Rollout fails the Deployment will be scaled back up.

strategy : The rollout strategy, support BlueGreen and Canary strategy.

blueGreen : The BlueGreen rollout strategy definition.

apiVersion: argoproj.io/v1alpha1

kind: Rollout

metadata:

 name: rollout-bluegreen

spec:

 replicas: 2

 revisionHistoryLimit: 2

 selector:

 matchLabels:

 app: web

 workloadRef:

 apiVersion: apps/v1

 kind: Deployment

 name: web

 scaleDown: onsuccess

 strategy:

 blueGreen:

 activeService: web

 autoPromotionEnabled: false

Application Blue Green Deployment - Alauda Container Platform

activeService : Specifies the service to update with the new template hash at

time of promotion. This field is mandatory for the blueGreen update strategy.

autoPromotionEnabled : autoPromotionEnabled disables automated promotion of

the new stack by pausing the rollout immediately before the promotion. If

omitted, the default behavior is to promote the new stack as soon as the

ReplicaSet are completely ready/available. Rollouts can be resumed using:

kubectl argo rollouts promote ROLLOUT

Apply it with:

This sets up the rollouts for the deployment with BlueGreen strategy.

After the Rollout was created, the Argo Rollouts will create a new ReplicaSet with

same template of the deployment. While the pods of new ReplicaSet is healthy, the

deployment is scaled down to 0.

Use the following command to ensure the pods are running properly:

Verify the Rollouts6

kubectl apply -f rollout.yaml

Application Blue Green Deployment - Alauda Container Platform

The service web will forward traffic to the pods created by rollouts. Use this command:

Next, prepare the new version of the application as the green deployment. Update the

deployment web with the new image version (e.g., hello:1.23.2).

Preparing Green Deployment7

kubectl argo rollouts get rollout rollout-bluegreen

Name: rollout-bluegreen

Namespace: default

Status: ✔ Healthy

Strategy: BlueGreen

Images: hello:1.23.1 (stable, active)

Replicas:

 Desired: 2

 Current: 2

 Updated: 2

 Ready: 2

 Available: 2

NAME KIND STATUS AGE INFO

⟳ rollout-bluegreen Rollout ✔ Healthy 95s

└──# revision:1

 └──⧉ rollout-bluegreen-595d4567cc ReplicaSet ✔ Healthy 18s

stable,active

 ├──□ rollout-bluegreen-595d4567cc-mc769 Pod ✔ Running 8s

ready:1/1

 └──□ rollout-bluegreen-595d4567cc-zdc5x Pod ✔ Running 8s

ready:1/1

kubectl describe service web | grep Endpoints

Application Blue Green Deployment - Alauda Container Platform

Explanation of YAML fields:

Identical to the original deployment, with the exception of:

containers.image : Updated to new image version.

Apply it with:

This sets up the new application version for testing.

The rollouts will create a new Replicaset to manage the green pods, and the traffic still

forward to the blue pods. Use the following command to verify:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web

spec:

 replicas: 2

 selector:

 matchLabels:

 app: web

 template:

 metadata:

 labels:

 app: web

 spec:

 containers:

 - name: web

 image: hello:1.23.2

 ports:

 - containerPort: 80

kubectl apply -f deployment.yaml

Application Blue Green Deployment - Alauda Container Platform

Currently, there are 4 pods running, with blue and green version. And the active service

is the blue version, the rollout process is paused.

If you use helm chart to deploy the application, use helm tool to upgrade the application

to the green version.

When the green version is ready, promote the rollout to switch traffic to the green pods.

Use the following command:

Promoting the Rollout to Green8

kubectl argo rollouts get rollout rollout-bluegreen

Name: rollout-bluegreen

Namespace: default

Status: ॥ Paused

Message: BlueGreenPause

Strategy: BlueGreen

Images: hello:1.23.1 (stable, active)

 hello:1.23.2

Replicas:

 Desired: 2

 Current: 4

 Updated: 2

 Ready: 2

 Available: 2

NAME KIND STATUS AGE INFO

⟳ rollout-bluegreen Rollout ॥ Paused 14m

├──# revision:2

│ └──⧉ rollout-bluegreen-776b688d57 ReplicaSet ✔ Healthy 24s

│ ├──□ rollout-bluegreen-776b688d57-kxr66 Pod ✔ Running 23s

ready:1/1

│ └──□ rollout-bluegreen-776b688d57-vv7t7 Pod ✔ Running 23s

ready:1/1

└──# revision:1

 └──⧉ rollout-bluegreen-595d4567cc ReplicaSet ✔ Healthy 12m

stable,active

 ├──□ rollout-bluegreen-595d4567cc-mc769 Pod ✔ Running 12m

ready:1/1

 └──□ rollout-bluegreen-595d4567cc-zdc5x Pod ✔ Running 12m

ready:1/1

Application Blue Green Deployment - Alauda Container Platform

To Verify if the rollout is completed:

If the active Images is updated to hello:1.23.2 , and the blue ReplicaSet is scaled down

to 0, that means the rollout is completed.

kubectl argo rollouts promote rollout-bluegreen

kubectl argo rollouts get rollout rollout-bluegreen

Name: rollout-bluegreen

Namespace: default

Status: ✔ Healthy

Strategy: BlueGreen

Images: hello:1.23.2 (stable, active)

Replicas:

 Desired: 2

 Current: 2

 Updated: 2

 Ready: 2

 Available: 2

NAME KIND STATUS AGE

INFO

⟳ rollout-bluegreen Rollout ✔ Healthy 3h2m

├──# revision:2

│ └──⧉ rollout-bluegreen-776b688d57 ReplicaSet ✔ Healthy 168m

stable,active

│ ├──□ rollout-bluegreen-776b688d57-kxr66 Pod ✔ Running 168m

ready:1/1

│ └──□ rollout-bluegreen-776b688d57-vv7t7 Pod ✔ Running 168m

ready:1/1

└──# revision:1

 └──⧉ rollout-bluegreen-595d4567cc ReplicaSet • ScaledDown 3h1m

 ├──□ rollout-bluegreen-595d4567cc-mc769 Pod ◌ Terminating 3h

ready:1/1

 └──□ rollout-bluegreen-595d4567cc-zdc5x Pod ◌ Terminating 3h

ready:1/1

Application Blue Green Deployment - Alauda Container Platform

Canary Deployment is a progressive release strategy where a new application version is

gradually introduced to a small subset of users or traffic. This incremental rollout allows teams

to monitor system behavior, collect metrics, and ensure stability before a full-scale

deployment. The approach significantly reduces risk, especially in production environments.

Argo Rollouts is a Kubernetes-native progressive delivery controller that facilitates advanced

deployment strategies. It extends Kubernetes capabilities by offering features like Canary,

Blue-Green Deployments, Analysis Runs, Experimentation, and Automated Rollbacks. It

integrates with observability stacks for metric-based health checks and provides CLI and

dashboard-based control over application delivery.

Key Concepts:

Rollout: A custom resource definition (CRD) in Kubernetes that replaces standard

Deployment resources, enabling advanced deployment control such as blue-green,

canary deployment.

Canary Steps: A series of incremental traffic shifting actions, such as directing 25%,

then 50% of traffic to the new version.

Pause Steps: Introduce wait intervals for manual or automatic validation before

progressing to the next canary step.

Risk mitigation: By deploying changes to a small subset of servers initially, you can find

issues and address them before the full rollout, minimizing the impact on users.

Incremental rollouts: This approach allows gradual exposure to new features, which helps

you effectively monitor performance and user feedback.

Real-time feedback: Canary deployments provide immediate insights into the performance

and stability of new releases under real-world conditions.

Application Canary Deployment

Benefits of Canary Deployments

Menu ON THIS PAGE

Application Canary Deployment - Alauda Container Platform

Flexibility: You can adjust the deployment process based on performance metrics. This

allows for a dynamic rollout that you can pause or roll back as needed.

Cost-effectiveness: Unlike blue/green deployments, canary deployments don't require a

separate environment, making them more resource-efficient.

Argo Rollouts supports canary deployment strategy to rollout a deployment, and control the

traffic through Gateway API Plugin. In ACP, you could use ALB to act as a Gateway API

Provider to implement the traffic control for Argo Rollouts.

Prerequisites

Procedure

Creating the Deployment

Creating the Stable Service

Creating the Canary Service

Creating the Gateway

DNS Configuration

Creating the HTTPRoute

Accessing the Stable service

Creating the Rollout

Verify the Rollouts

Preparing Canary Deployment

Promoting the Rollout

Aborting the Rollout (Optional)

Canary Deployments with Argo Rollouts

TOC

Application Canary Deployment - Alauda Container Platform

1. Argo Rollouts with Gateway API plugin installed in the cluster.

2. Argo Rollouts kubectl plugin (Install from here).

3. A project to create a namespace in it.

4. ALB deployed in the cluster and allocated to the project.

5. A namespace in the cluster where the application will be deployed.

Start by defining the "stable" version of your application. This is the current version that

users will access. Create a Kubernetes deployment with the appropriate number of

replicas, container image version (e.g., hello:1.23.1), and proper labels such as

app=web .

Use the following YAML:

Prerequisites

↗

Procedure

Creating the Deployment1

Application Canary Deployment - Alauda Container Platform

https://argoproj.github.io/argo-rollouts/installation/#kubectl-plugin-installation
https://argoproj.github.io/argo-rollouts/installation/#kubectl-plugin-installation
https://argoproj.github.io/argo-rollouts/installation/#kubectl-plugin-installation

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the resource.

kind : Specifies that this is a Deployment resource.

metadata.name : The name of the deployment.

spec.replicas : Number of desired pod replicas.

spec.selector.matchLabels : Defines how the Deployment finds which pods to

manage.

template.metadata.labels : Labels applied to pods, used by Services to select them.

spec.containers : The containers to run in each pod.

containers.name : Name of the container.

containers.image : Docker image to run.

containers.ports.containerPort : Port exposed by the container.

Apply the configuration using kubectl :

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web

spec:

 replicas: 2

 selector:

 matchLabels:

 app: web

 template:

 metadata:

 labels:

 app: web

 spec:

 containers:

 - name: web

 image: hello:1.23.1

 ports:

 - containerPort: 80

Application Canary Deployment - Alauda Container Platform

This sets up the production environment.

Alternative, you could use helm chart to create the deployments and services.

Create a Kubernetes Service that exposes the stable deployment. This service will

forward traffic to the pods of stable version based on matching labels. Initially, the

service selector targets pods labeled with app=web .

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the Service.

kind : Specifies this resource is a Service.

metadata.name : Name of the Service.

spec.selector : Identifies pods to route traffic to, based on labels.

ports.protocol : The protocol used (TCP).

ports.port : Port exposed by the Service.

ports.targetPort : The port on the container to which the traffic is directed.

Apply it using:

Creating the Stable Service2

kubectl apply -f deployment.yaml

apiVersion: v1

kind: Service

metadata:

 name: web-stable

spec:

 selector:

 app: web

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

Application Canary Deployment - Alauda Container Platform

This allows external access to the stable deployment.

Create a Kubernetes Service that exposes the canary deployment. This service will

forward traffic to the pods of canary version based on matching labels. Initially, the

service selector targets pods labeled with app=web .

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the Service.

kind : Specifies this resource is a Service.

metadata.name : Name of the Service.

spec.selector : Identifies pods to route traffic to, based on labels.

ports.protocol : The protocol used (TCP).

ports.port : Port exposed by the Service.

ports.targetPort : The port on the container to which the traffic is directed.

Apply it using:

Creating the Canary Service3

kubectl apply -f web-stable-service.yaml

apiVersion: v1

kind: Service

metadata:

 name: web-canary

spec:

 selector:

 app: web

 ports:

 - protocol: TCP

 port: 80

 targetPort: 80

kubectl apply -f web-canary-service.yaml

Application Canary Deployment - Alauda Container Platform

This allows external access to the canary deployment.

Use example.com as the domain to access the service, create the gateway to expose the

service with the domain:

Use the command:

The gateway will be allocated an external IP address, get the IP address from the

status.addresses of type IPAddress in the gateway resource.

Creating the Gateway4

apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: default

spec:

 gatewayClassName: exclusive-gateway

 listeners:

 - allowedRoutes:

 namespaces:

 from: All

 name: gateway-metric

 port: 11782

 protocol: TCP

 - allowedRoutes:

 namespaces:

 from: All

 hostname: example.com

 name: web

 port: 80

 protocol: HTTP

kubectl apply -f gateway.yaml

Application Canary Deployment - Alauda Container Platform

Configure the domain in your dns server to resolve the domain to the IP address of the

gateway. Verify the dns resolve with the command:

It should return the address of the gateway.

DNS Configuration5

Creating the HTTPRoute6

apiVersion: gateway.networking.k8s.io/v1

kind: Gateway

metadata:

 name: default

...

status:

 addresses:

 - type: IPAddress

 value: 192.168.134.30

nslookup example.com

Server: 192.168.16.19

Address: 192.168.16.19#53

Non-authoritative answer:

Name: example.com

Address: 192.168.134.30

Application Canary Deployment - Alauda Container Platform

Use the command:

Outside the cluster, use the command to access the service from the domain:

Accessing the Stable service7

apiVersion: gateway.networking.k8s.io/v1

kind: HTTPRoute

metadata:

 name: web

spec:

 hostnames:

 - example.com

 parentRefs:

 - group: gateway.networking.k8s.io

 kind: Gateway

 name: default

 namespace: default

 sectionName: web

 rules:

 - backendRefs:

 - group: ""

 kind: Service

 name: web-canary

 namespace: default

 port: 80

 weight: 0

 - group: ""

 kind: Service

 name: web-stable

 namespace: default

 port: 80

 weight: 100

 matches:

 - path:

 type: PathPrefix

 value: /

kubectl apply -f httproute.yaml

Application Canary Deployment - Alauda Container Platform

Or you can access http://example.com in the browser.

Next, creating the Rollout resource from Argo Rollouts with Canary strategy.

Creating the Rollout8

curl http://example.com

apiVersion: argoproj.io/v1alpha1

kind: Rollout

metadata:

 name: rollout-canary

spec:

 minReadySeconds: 30

 replicas: 2

 revisionHistoryLimit: 3

 selector:

 matchLabels:

 app: web

 strategy:

 canary:

 canaryService: web-canary

 maxSurge: 25%

 maxUnavailable: 0

 stableService: web-stable

 steps:

 - setWeight: 50

 - pause: {}

 - setWeight: 100

 trafficRouting:

 plugins:

 argoproj-labs/gatewayAPI:

 httpRoute: web

 namespace: default

 workloadRef:

 apiVersion: apps/v1

 kind: Deployment

 name: web

 scaleDown: onsuccess

Application Canary Deployment - Alauda Container Platform

Explanation of YAML fields:

spec.selector : Label selector for pods. Existing ReplicaSets whose pods are

selected by this will be the ones affected by this rollout. It must match the pod

template's labels.

workloadRef : Specify the workload reference and scale down strategy to apply the

rollouts.

scaleDown : Specifies if the workload (Deployment) is scaled down after migrating to

Rollout. The possible options are:

"never": the Deployment is not scaled down.

"onsuccess": the Deployment is scaled down after the Rollout becomes healthy.

"progressively": as the Rollout is scaled up the Deployment is scaled down. If the

Rollout fails the Deployment will be scaled back up.

strategy : The rollout strategy, support BlueGreen and Canary strategy.

canary : The Canary rollout strategy definition.

canaryService : Reference to a service which the controller will update to select

canary pods. Required for traffic routing.

stableService : Reference to a service which the controller will update to select

stable pods. Required for traffic routing.

steps : Steps define sequence of steps to take during an update of the canary.

Skipped upon initial deploy of a rollout.

setWeight : Sets the ratio of canary ReplicaSet.

pause : Pauses the rollout indefinitely or for a time. Supported units: s, m, h.

{} means indefinitely.

plugin : executes the configured plugin, here we configure it with the

gatewayAPI plugin.

Apply it with:

kubectl apply -f rollout.yaml

Application Canary Deployment - Alauda Container Platform

This sets up the rollouts for the deployment with Canary strategy. It will set weight to 50

initially, and wait for the promoting. The 50% of the traffic will forward to the canary

service. After promoting the rollout, the weight will be set to 100, and 100% of the traffic

will forward to the canary service. Finally, the canary service will become the stable

service.

After the Rollout was created, the Argo Rollouts will create a new ReplicaSet with

same template of the deployment. While the pods of new ReplicaSet is healthy, the

deployment is scaled down to 0.

Use the following command to ensure the pods are running properly:

Verify the Rollouts9

Preparing Canary Deployment10

kubectl argo rollouts get rollout rollout-canary

Name: rollout-canary

Namespace: default

Status: ✔ Healthy

Strategy: Canary

Step: 9/9

SetWeight: 100

ActualWeight: 100

Images: hello:1.23.1 (stable)

Replicas:

Desired: 2

Current: 2

Updated: 2

Ready: 2

Available: 2

NAME KIND STATUS AGE INFO

⟳ rollout-canary Rollout ✔ Healthy 32s

└──# revision:1

 └──⧉ rollout-canary-5c9d79697b ReplicaSet ✔ Healthy 32s stable

 ├──□ rollout-canary-5c9d79697b-fh78d Pod ✔ Running 32s ready:1/1

 └──□ rollout-canary-5c9d79697b-rrbtj Pod ✔ Running 32s ready:1/1

Application Canary Deployment - Alauda Container Platform

Next, prepare the new version of the application as the green deployment. Update the

deployment web with the new image version (e.g., hello:1.23.2). Use the command:

This sets up the new application version for testing.

The rollouts will create a new Replicaset to manage the canary pods, and the 50% traffic

will forward to the canary pods. Use the following command to verify:

kubectl patch deployment web -p '{"spec":{"template":{"spec":{"containers":

[{"name":"web","image":"hello:1.23.2"}]}}}}'

kubectl argo rollouts get rollout rollout-canary

Name: rollout-canary

Namespace: default

Status: ॥ Paused

Message: CanaryPauseStep

Strategy: Canary

Step: 1/3

SetWeight: 50

ActualWeight: 50

Images: hello:1.23.1 (stable)

 hello:1.23.2 (canary)

Replicas:

Desired: 2

Current: 3

Updated: 1

Ready: 3

Available: 3

NAME KIND STATUS AGE INFO

⟳ rollout-canary Rollout ॥ Paused 95s

├──# revision:2

│ └──⧉ rollout-canary-5898765588 ReplicaSet ✔ Healthy 46s canary

│ └──□ rollout-canary-5898765588-ls5jk Pod ✔ Running 45s

ready:1/1

└──# revision:1

 └──⧉ rollout-canary-5c9d79697b ReplicaSet ✔ Healthy 95s stable

 ├──□ rollout-canary-5c9d79697b-fk269 Pod ✔ Running 94s ready:1/1

 └──□ rollout-canary-5c9d79697b-wkmcn Pod ✔ Running 94s ready:1/1

Application Canary Deployment - Alauda Container Platform

Currently, there are 3 pods running, with stable and canary version. And the weight is

50, 50% of the traffic will forward to the canary service. The rollout process is paused to

wait for the promoting.

If you use helm chart to deploy the application, use helm tool to upgrade the application

to the canary version.

Accessing http://example.com , the 50% traffic will forward to the canary service. You

should have different response from the URL.

When the canary version is tested ok, you could promote the rollout to switch all traffic to

the canary pods. Use the following command:

To Verify if the rollout is completed:

Promoting the Rollout11

kubectl argo rollouts promote rollout-canary

Application Canary Deployment - Alauda Container Platform

If the stable Images is updated to hello:1.23.2 , and the ReplicaSet of revision 1 is

scaled down to 0, that means the rollout is completed.

Accessing http://example.com , the 100% traffic will forward to the canary service.

If you found the canary version has some problems during rollout process, you can

abort the process to switch all traffic to the stable service. Use the command:

Aborting the Rollout (Optional)12

kubectl argo rollouts get rollout rollout-canary

Name: rollout-canary

Namespace: default

Status: ✔ Healthy

Strategy: Canary

Step: 3/3

SetWeight: 100

ActualWeight: 100

Images: hello:1.23.2 (stable)

Replicas:

Desired: 2

Current: 2

Updated: 2

Ready: 2

Available: 2

NAME KIND STATUS AGE INFO

⟳ rollout-canary Rollout ✔ Healthy 8m42s

├──# revision:2

│ └──⧉ rollout-canary-5898765588 ReplicaSet ✔ Healthy 7m53s

stable

│ ├──□ rollout-canary-5898765588-ls5jk Pod ✔ Running 7m52s

ready:1/1

│ └──□ rollout-canary-5898765588-dkfwg Pod ✔ Running 68s

ready:1/1

└──# revision:1

 └──⧉ rollout-canary-5c9d79697b ReplicaSet • ScaledDown 8m42s

 ├──□ rollout-canary-5c9d79697b-fk269 Pod ◌ Terminating 8m41s

ready:1/1

 └──□ rollout-canary-5c9d79697b-wkmcn Pod ◌ Terminating 8m41s

ready:1/1

Application Canary Deployment - Alauda Container Platform

To verify the results:

Accessing http://example.com , the 100% traffic will forward to the stable service.

kubectl argo rollouts abort rollout-canary

kubectl argo rollouts get rollout rollout-canary

Name: rollout-demo

Namespace: default

Status: ✖ Degraded

Message: RolloutAborted: Rollout aborted update to revision 3

Strategy: Canary

Step: 0/3

SetWeight: 0

ActualWeight: 0

Images: hello:1.23.1 (stable)

Replicas:

Desired: 2

Current: 2

Updated: 0

Ready: 2

Available: 2

NAME KIND STATUS AGE INFO

⟳ rollout-canary Rollout ✖ Degraded 18m

├──# revision:3

│ └──⧉ rollout-canary-5c9d79697b ReplicaSet • ScaledDown 18m

canary,delay:passed

└──# revision:2

 └──⧉ rollout-canary-5898765588 ReplicaSet ✔ Healthy 17m

stable

 ├──□ rollout-canary-5898765588-ls5jk Pod ✔ Running 17m

ready:1/1

 └──□ rollout-canary-5898765588-dkfwg Pod ✔ Running 10m

ready:1/1

Application Canary Deployment - Alauda Container Platform

Applications

The status of native applications and their corresponding meanings are as follows. The

numbers following the status indicate the number of computing components.

Status Meaning

Running All computing components are in normal operation.

Partially Running
Some computing components are running, while others

have stopped.

Stopped All computing components have stopped.

Processing At least one computing component is in a pending state.

No Computing

Components

There are no computing components under the

application.

Failed Deployment has failed.

Note: Similarly, the numbers in the computing component status indicate the number of

container groups.

Status Description

TOC

Applications

Menu ON THIS PAGE

Status Description - Alauda Container Platform

Running: All Pods are in normal operation.

Processing: There are Pods that are not in a running state.

Stopped: All Pods have stopped.

Failed: Deployment has failed.

Deployment

Status Description - Alauda Container Platform

KEDA(Kubernetes Event-driven
Autoscaling)

KEDA Overview

KEDA Overview
Introduction

Advantages

How KEDA works

Installing KEDA

Installing KEDA

Prerequisites

Installing via Command Line

Installing via Web Console

Verification

Additional Scenarios

Uninstalling KEDA Operator

How To

Menu

KEDA(Kubernetes Event-driven Autoscaling) - Alauda Container Platform

Integrating ACP Monitoring with Prometheus Plugin
Prerequisites

Procedure

Verification

Pausing Autoscaling in KEDA
Procedure

Scaling to Zero

Verification

KEDA(Kubernetes Event-driven Autoscaling) - Alauda Container Platform

Introduction

Advantages

How KEDA works

KEDA Custom Resource Definitions (CRDs)

KEDA is a Kubernetes-based Event Driven Autoscaler. Home Page . With KEDA, you can

drive the scaling of any container in Kubernetes based on the number of events needing to be

processed.

KEDA is a single-purpose and lightweight component that can be added into any Kubernetes

cluster. KEDA works alongside standard Kubernetes components like the Horizontal Pod

Autoscaler and can extend functionality without overwriting or duplication. With KEDA, you

can explicitly map the apps you want to use event-driven scale, with other apps continuing to

function. This makes KEDA a flexible and safe option to run alongside any number of any

other Kubernetes applications or frameworks.

See the official documentation for more details: Keda Documentation

KEDA Overview

TOC

Introduction

↗

↗

↗

Advantages

Menu ON THIS PAGE

KEDA Overview - Alauda Container Platform

https://keda.sh/
https://keda.sh/
https://keda.sh/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/docs/2.17/
https://keda.sh/docs/2.17/
https://keda.sh/docs/2.17/

Core advantages of KEDA:

Autoscaling Made Simple: Bring rich scaling to every workload in your Kubernetes

cluster.

Event-driven: Intelligently scale your event-driven application.

Built-in Scalers: Catalog of 70+ built-in scalers for various cloud platforms, databases,

messaging systems, telemetry systems, CI/CD, and more.

Multiple Workload Types: Support for variety of workload types such as deployments,

jobs & custom resources with /scale sub-resource.

Reduce environmental impact: Build sustainable platforms by optimizing workload

scheduling and scale-to-zero.

Extensible: Bring-your-own or use community-maintained scalers.

Vendor-Agnostic: Support for triggers across variety of cloud providers & products.

Azure Functions Support: Run and scale your Azure Functions on Kubernetes in

production workloads.

KEDA monitors external event sources and adjusts your app's resources based on the

demand. Its main components work together to make this possible:

1. KEDA Operator keeps track of event sources and changes the number of app instances

up or down, depending on the demand.

2. Metrics Server provides external metrics to Kubernetes' HPA so it can make scaling

decisions.

3. Scalers connect to event sources like message queues or databases, pulling data on

current usage or load.

4. **Custom Resource Definitions (CRDs)**define how your apps should scale based on

triggers like queue length or API request rates.

In simple terms, KEDA listens to what's happening outside Kubernetes, fetches the data it

needs, and scales your apps accordingly. It's efficient and integrates well with Kubernetes to

handle scaling dynamically.

How KEDA works

KEDA Overview - Alauda Container Platform

KEDA uses Custom Resource Definitions (CRDs) to manage scaling behavior:

ScaledObject: Links your app (like a Deployment or StatefulSet) to an external event

source, defining how scaling works.

ScaledJob: Handles batch processing tasks by scaling Jobs based on external metrics.

TriggerAuthentication: Provides secure ways to access event sources, supporting

methods like environment variables or cloud-specific credentials.

These CRDs give you control over scaling while keeping your apps secure and responsive to

demand.

ScaledObject Example:

The following example targets CPU utilization of entire pod. If the pod has multiple containers,

it will be sum of all the containers in it.

KEDA Custom Resource Definitions (CRDs)

kind: ScaledObject

metadata:

 name: cpu-scaledobject

 namespace: <your-namespace>

spec:

 scaleTargetRef:

 name: <your-deployment>

 triggers:

 - type: cpu

 metricType: Utilization # Allowed types are 'Utilization' or 'AverageValue'

 metadata:

 value: "50"

KEDA Overview - Alauda Container Platform

Prerequisites

Installing via Command Line

Installing KEDA Operator

Creating the KedaController instance

Installing via Web Console

Installing KEDA Operator

Creating the KedaController instance

Verification

Additional Scenarios

Integrating ACP Log Collector

Uninstalling KEDA Operator

Removing the KedaController instance

Uninstalling KEDA Operator via CLI

Uninstalling KEDA Operator via Web Console

KEDA is a tool that helps Kubernetes scale applications based on real-world events. With

KEDA, you can adjust the size of your containers automatically, depending on the workload—

like the number of messages in a queue or incoming requests.

Installing KEDA

TOC

Prerequisites

Menu ON THIS PAGE

Installing KEDA - Alauda Container Platform

1. Download the KEDA installation package from Alauda Cloud.

2. Upload the installation package using the Upload Packages mechanism.

INFO

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the operator to cluster. For more

details, please refer to CLI.

Create namespace for KEDA operator if it does not exist:

Run the following command to install KEDA Operator in your target cluster:

Installing via Command Line

Installing KEDA Operator

kubectl apply -f - <<EOF

apiVersion: v1

kind: Namespace

metadata:

 name: "keda"

EOF

Installing KEDA - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

Configuration Parameters:

Parameter Recommended Configuration

metadata.name keda : The Subscription name is set to keda.

metadata.namespace keda : The Subscription namespace is set to keda.

spec.channel stable : The default Channel is set to stable.

spec.installPlanApproval
Automatic : The Upgrade action will be executed

automatically.

spec.name keda : The operator package name, must be keda.

spec.source
custom : The catalog source of keda operator, must be

custom.

spec.sourceNamespace
cpaas-system : The namespace of catalog source, must

be cpaas-system.

spec.startingCSV keda.v2.17.2 : The starting CSV name of keda operator.

kubectl apply -f - <<EOF

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

 annotations:

 cpaas.io/target-namespaces: ""

 labels:

 catalog: platform

 name: keda

 namespace: keda

spec:

 channel: stable

 installPlanApproval: Automatic

 name: keda

 source: custom

 sourceNamespace: cpaas-system

 startingCSV: keda.v2.17.2

EOF

Installing KEDA - Alauda Container Platform

Create KedaController resource named keda in namespace keda:

1. Log in, and navigate to the Administrator page.

2. Click Marketplace > OperatorHub.

3. Find the KEDA operator, click Install, and enter the Install page.

Configuration Parameters:

Parameter Recommended Configuration

Channel stable : The default Channel is set to stable.

Creating the KedaController instance

Installing via Web Console

Installing KEDA Operator

kubectl apply -f - <<EOF

apiVersion: keda.sh/v1alpha1

kind: KedaController

metadata:

 name: keda

 namespace: keda

spec:

 admissionWebhooks:

 logEncoder: console

 logLevel: info

 metricsServer:

 logLevel: "0"

 operator:

 logEncoder: console

 logLevel: info

 serviceAccount: null

 watchNamespace: ""

EOF

Installing KEDA - Alauda Container Platform

Parameter Recommended Configuration

Version Please select the latest version.

Installation

Mode

Cluster : A single Operator is shared across all namespaces in the

cluster for instance creation and management, resulting in lower

resource usage.

Installation

Location
Recommended : It will be created automatically if it does not exist.

Upgrade

Strategy

Please select the Auto .

the Upgrade action will be executed automatically.

4. On the Install page, select default configuration, click Install, and complete the installation

of the KEDA Operator.

1. Click on Marketplace > OperatorHub.

2. Find the installed KEDA operator, navigate to All Instances.

3. Click Create Instance button, and click KedaController card in the resource area.

4. On the parameter configuration page for the instance, you may use the default

configuration unless there are specific requirements.

5. Click Create.

After the instance is successfully created, wait approximately 20 minutes, then checking if the

KEDA components is already running with the command:

Creating the KedaController instance

Verification

Installing KEDA - Alauda Container Platform

Ensure ACP Log Collector Plugin is installed in target cluster. Refer to ACP Log Collector

Plugin Install.

Enable the Platform logging switch when installing the ACP Log Collector Plugin.

Use the following command to add label to the keda namespace:

To uninstall KEDA Operator, click on Marketplace > OperatorHub, select installed operator

KEDA, and click Uninstall.

Additional Scenarios

Integrating ACP Log Collector

Uninstalling KEDA Operator

Removing the KedaController instance

Uninstalling KEDA Operator via CLI

Uninstalling KEDA Operator via Web Console

kubectl get pods -n keda

kubectl label namespace keda cpaas.io/product=Container-Platform --overwrite

kubectl delete kedacontroller keda -n keda

kubectl delete subscription keda -n keda

Installing KEDA - Alauda Container Platform

http://localhost:4173/container_platform/observability/log/install_log.html#install-acp-log-collector-plugin
http://localhost:4173/container_platform/observability/log/install_log.html#install-acp-log-collector-plugin

How To

Integrating ACP Monitoring with Prometheus Plugin

Prerequisites

Procedure

Verification

Pausing Autoscaling in KEDA
Procedure

Scaling to Zero

Verification

Menu

How To - Alauda Container Platform

This guide outlines how to configure integration with the ACP Monitoring with
Prometheus Plugin to enable application autoscaling based on Prometheus metrics.

Prerequisites

Procedure

Verification

Before using this functionality, ensure that:

Installing ACP Monitoring with Prometheus Plugin

Retrieve the Prometheus endpoint URL and secretName for the current Kubernetes cluster:

Retrieve the Prometheus secret for the current Kubernetes cluster:

Integrating ACP Monitoring with
Prometheus Plugin

TOC

Prerequisites

PrometheusEndpoint=$(kubectl get feature monitoring -o

jsonpath='{.spec.accessInfo.database.address}')

Menu ON THIS PAGE

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/install_monitor.html#install-the-acp-monitoring-with-prometheus-plugin

Create a deployment named <your-deployment> in the <your-namespace> namespace.

Configure Prometheus Authentication Secret in keda Namespace.

Steps to Copy Secret from cpaas-system to keda Namespace

Configure KEDA Authentication for Prometheus Access Using

ClusterTriggerAuthentication.

To configure authentication credentials for KEDA to access Prometheus, define a

ClusterTriggerAuthentication resource that references the Secret containing the username

and password. Below is an example configuration:

Procedure

PrometheusSecret=$(kubectl get feature monitoring -o

jsonpath='{.spec.accessInfo.database.basicAuth.secretName}')

Get Prometheus auth info

PrometheusUsername=$(kubectl get secret $PrometheusSecret -n cpaas-system -o

jsonpath='{.data.username}' | base64 -d)

PrometheusPassword=$(kubectl get secret $PrometheusSecret -n cpaas-system -o

jsonpath='{.data.password}' | base64 -d)

create secret in keda namespace

kubectl create secret generic $PrometheusSecret \

 -n keda \

 --from-literal=username=$PrometheusUsername \

 --from-literal=password=$PrometheusPassword

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

Configure Autoscaling for Kubernetes Deployments Using Prometheus Metrics with

ScaledObject.

To scale a Kubernetes Deployment based on Prometheus metrics, define a ScaledObject
resource referencing the configured ClusterTriggerAuthentication. Below is an example

configuration:

kubectl apply -f - <<EOF

apiVersion: keda.sh/v1alpha1

kind: ClusterTriggerAuthentication

metadata:

 name: cluster-prometheus-auth

spec:

 secretTargetRef:

 - key: username

 name: $PrometheusSecret

 parameter: username

 - key: password

 name: $PrometheusSecret

 parameter: password

EOF

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

To verify that the ScaledObject has scaled the deployment, you can check the number of

replicas of the target deployment:

Or you can use the following command to check the number of pods:

Verification

kubectl apply -f - <<EOF

apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

 name: prometheus-scaledobject

 namespace: <your-namespace>

spec:

 cooldownPeriod: 300 # Time in seconds to wait before scaling down

 maxReplicaCount: 5 # Maximum number of replicas

 minReplicaCount: 1 # Minimum replicas (note: HPA may enforce a minimum of 1)

 pollingInterval: 30 # Interval (seconds) to poll Prometheus metrics

 scaleTargetRef:

 name: <your-deployment> # Name of the target Kubernetes Deployment

 triggers:

 - authenticationRef:

 kind: ClusterTriggerAuthentication

 name: cluster-prometheus-auth # Reference to the ClusterTriggerAuthentication

 metadata:

 authModes: basic # Authentication method (basic auth in this case)

 query:

sum(container_memory_working_set_bytes{container!="POD",container!="",namespace="<your-

namespace>",pod=~"<your-deployment-name>.*"})

 queryParameters: timeout=10s # Optional query parameters

 serverAddress: $PrometheusEndpoint

 threshold: "1024000" # Threshold value for scaling

 unsafeSsl: "true" # Skip SSL certificate validation (not recommended for

production)

 type: prometheus # Trigger type

EOF

kubectl get deployment <your-deployment> -n <your-namespace>

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

The number of replicas should increase or decrease based on the metrics specified in the

ScaledObject. If the deployment is scaled correctly, you should see the number of pods have

changed to maxReplicaCount value.

KEDA scalers can both detect if a deployment should be activated or deactivated, and feed

custom metrics for a specific event source.

KEDA supports a wide range of additional scalers. For more details, see the official

documentation: KEDA Scalers .

Other KEDA scalers

↗

kubectl get pods -n <your-namespace> -l <your-deployment-label-key>=<your-deployment-

label-value>

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

https://keda.sh/docs/2.17/scalers/
https://keda.sh/docs/2.17/scalers/
https://keda.sh/docs/2.17/scalers/

KEDA allows you to pause autoscaling of workloads temporarily, which is useful for:

Cluster maintenance.

Avoiding resource starvation by scaling down non-critical workloads.

Procedure

Immediate Pause with Current Replicas

Pause After Scaling to a Specific Replica Count

Behavior When Both Annotations are Set

Unpausing Autoscaling

Scaling to Zero

Verification

Add the following annotation to your ScaledObject definition to pause scaling without

changing the current replica count:

Pausing Autoscaling in KEDA

TOC

Procedure

Immediate Pause with Current Replicas

Menu ON THIS PAGE

Pausing Autoscaling in KEDA - Alauda Container Platform

Use this annotation to scale the workload to a specific number of replicas and then pause:

If both paused and paused-replicas are specified:

KEDA scales the workload to the value defined in paused-replicas.

Autoscaling is paused afterward.

To resume autoscaling:

Remove both paused and paused-replicas annotations from the ScaledObject.

If only paused: "true" was used, set it to false:

Example ScaledObject Configuration:

Pause After Scaling to a Specific Replica Count

Behavior When Both Annotations are Set

Unpausing Autoscaling

Scaling to Zero

metadata:

 annotations:

 autoscaling.keda.sh/paused: "true"

metadata:

 annotations:

 autoscaling.keda.sh/paused-replicas: "<number>"

metadata:

 annotations:

 autoscaling.keda.sh/paused: "false"

Pausing Autoscaling in KEDA - Alauda Container Platform

To verify that the ScaledObject has scaled to zero, you can check the number of replicas of

the target deployment:

Or you can check the number of pods in the target deployment:

The number of pods should be zero, indicating that the deployment has scaled to zero.

Verification

apiVersion: keda.sh/v1alpha1

kind: ScaledObject

metadata:

 name: example-scaledobject

 namespace: <your-namespace>

 annotations:

 autoscaling.keda.sh/paused-replicas: "0" # Scale to 0 replicas and pause

kubectl get deployment <your-deployment> -n <your-namespace>

kubectl get pods -n <your-namespace> -l <your-deployment-label-key>=<your-deployment-

label-value>

Pausing Autoscaling in KEDA - Alauda Container Platform

HPA (Horizontal Pod Autoscaler) automatically scales the number of pods up or down based

on preset policies and metrics, enabling applications to handle sudden spikes in business load

while optimizing resource utilization during low-traffic periods.

Understanding Horizontal Pod Autoscalers

How Does the HPA Work?

Supported Metrics

Prerequisites

Creating a Horizontal Pod Autoscaler

Using the CLI

Using the Web Console

Using Custom Metrics for HPA

Requirements

Traditional (Core Metrics) HPA

Custom Metrics HPA

Trigger Condition Definition

Custom Metrics HPA Compatibility

Updates in autoscaling/v2beta2

Calculation Rules

Configuring HPA

TOC

Menu ON THIS PAGE

Configuring HPA - Alauda Container Platform

You can create a horizontal pod autoscaler to specify the minimum and maximum number of

pods you want to run, as well as the CPU utilization or memory utilization your pods should

target.

After you create a horizontal pod autoscaler, the platform begins to query the CPU and/or

memory resource metrics on the pods. When these metrics are available, the horizontal pod

autoscaler computes the ratio of the current metric utilization with the desired metric

utilization, and scales up or down accordingly. The query and scaling occurs at a regular

interval, but can take one to two minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication

controller. For deployment configurations, scaling corresponds directly to the replica count of

the deployment configuration. Note that autoscaling applies only to the latest deployment in

the Complete phase.

The platform automatically accounts for resources and prevents unnecessary autoscaling

during resource spikes, such as during start up. Pods in the unready state have 0 CPU usage

when scaling up and the autoscaler ignores the pods when scaling down. Pods without known

metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows

for more stability during the HPA decision. To use this feature, you must configure readiness

checks to determine if a new pod is ready for use.

The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets

you create and manage a group of load-balanced nodes. The HPA automatically increases or

decreases the number of pods when a given CPU or memory threshold is crossed.

The HPA works as a control loop with a default of 15 seconds for the sync period. During this

period, the controller manager queries the CPU, memory utilization, or both, against what is

defined in the configuration for the HPA. The controller manager obtains the utilization metrics

from the resource metrics API for per-pod resource metrics like CPU or memory, for each pod

that is targeted by the HPA.

If a utilization value target is set, the controller calculates the utilization value as a percentage

of the equivalent resource request on the containers in each pod. The controller then takes

Understanding Horizontal Pod Autoscalers

How Does the HPA Work?

Configuring HPA - Alauda Container Platform

the average of utilization across all targeted pods and produces a ratio that is used to scale

the number of desired replicas.

The following metrics are supported by horizontal pod autoscalers:

Metric Description

CPU Utilization
Number of CPU cores used. Can be used to calculate a

percentage of the pod's requested CPU.

Memory Utilization
Amount of memory used. Can be used to calculate a

percentage of the pod's requested memory.

Network Inbound

Traffic

Amount of network traffic coming into the pod, measured in

KiB/s.

Network Outbound

Traffic

Amount of network traffic going out from the pod, measured in

KiB/s.

Storage Read

Traffic
Amount of data read from storage, measured in KiB/s.

Storage Write

Traffic
Amount of data written to storage, measured in KiB/s.

Important: For memory-based autoscaling, memory usage must increase and decrease

proportionally to the replica count. On average:

An increase in replica count must lead to an overall decrease in memory (working set)

usage per-pod.

A decrease in replica count must lead to an overall increase in per-pod memory usage.

Use the platform to check the memory behavior of your application and ensure that your

application meets these requirements before using memory-based autoscaling.

Supported Metrics

Prerequisites

Configuring HPA - Alauda Container Platform

Please ensure that the monitoring components are deployed in the current cluster and are

functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform > Platform Health Status..

You can create a horizontal pod autoscaler using the command line interface by defining a

YAML file and using the kubectl create command. The following example shows autoscaling

for a Deployment object. The initial deployment requires 3 pods. The HPA object increases the

minimum to 5. If CPU usage on the pods reaches 75%, the pods increase to 7:

1. Create a YAML file named hpa.yaml with the following content:

1. Use the autoscaling/v2 API.

2. The name of the HPA resource.

3. The name of the deployment to scale.

4. The maximum number of replicas to scale up to.

5. The minimum number of replicas to maintain.

6. Specify the API version of the object to scale.

Creating a Horizontal Pod Autoscaler

Using the CLI

apiVersion: autoscaling/v2 1

kind: HorizontalPodAutoscaler 2

metadata:

 name: hpa-demo 3

 namespace: default

spec:

 maxReplicas: 7 4

 minReplicas: 3 5

 scaleTargetRef:

 apiVersion: apps/v1 6

 kind: Deployment 7

 name: deployment-demo 8

 targetCPUUtilizationPercentage: 75 9

Configuring HPA - Alauda Container Platform

7. Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.

8. The target resource to which the HPA applies.

9. The target CPU utilization percentage that triggers scaling.

2. Apply the YAML file to create the HPA:

Example output:

3. After you create the HPA, you can view the new state of the deployment by running the

following command:

Example output:

4. You can also check the status of your HPA:

Example output:

1. Enter Container Platform.

Using the Web Console

kubectl create -f hpa.yaml

horizontalpodautoscaler.autoscaling/hpa-demo created

kubectl get deployment deployment-demo

NAME READY UP-TO-DATE AVAILABLE AGE

deployment-demo 5/5 5 5 3m

kubectl get hpa hpa-demo

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE

hpa-demo Deployment/deployment-demo 0%/75% 3 7 3 2m

Configuring HPA - Alauda Container Platform

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling area and click on Update on the right.

5. Select Horizontal Scaling and complete the policy configuration.

Parameter Description

Pod Count

After a deployment is successfully created, you need to evaluate the

Minimum Pod Count corresponding to known and regular business

volume changes, as well as the Maximum Pod Count that can be

supported by the namespace quota under high business pressure.

The maximum or minimum pod counts can be changed after setting,

and it is recommended to first derive a more accurate value through

performance testing and to continuously adjust during usage to meet

business needs.

Trigger

Policy

List the Metrics that are sensitive to business changes and their

Target Thresholds to trigger scale-up or scale-down actions.

For example, if you set CPU Utilization = 60%, once the CPU

utilization deviates from 60%, the platform will start to automatically

adjust the number of pods based on the current deployment's

insufficient or excessive resource allocation.

Note: Metric types include built-in metrics and custom metrics.

Custom metrics only apply to deployments in native applications,

and you must first add custom metrics .

Scale

Up/Down

Step

(Alpha)

For businesses with specific scaling rate requirements, you can

gradually adapt to changes in business volume by specifying Scale-

Up Step or Scale-Down Step.

For the scale-down step, you can customize the Stability Window,

which defaults to 300 seconds, meaning that you must wait 300

seconds before executing scale-down actions.

6. Click Update.

Configuring HPA - Alauda Container Platform

Custom metrics HPA extends the original HorizontalPodAutoscaler by supporting additional

metrics beyond CPU and memory utilization.

kube-controller-manager: horizontal-pod-autoscaler-use-rest-clients=true

Pre-installed metrics-server

Prometheus

custom-metrics-api

Traditional HPA supports CPU utilization and memory metrics to dynamically adjust the

number of Pod instances, as shown in the example below:

In this YAML, scaleTargetRef specifies the workload object for scaling, and

targetCPUUtilizationPercentage specifies the CPU utilization trigger metric.

To use custom metrics, you need to install prometheus-operator and custom-metrics-api. After

installation, custom-metrics-api provides a large number of custom metric resources:

Using Custom Metrics for HPA

Requirements

Traditional (Core Metrics) HPA

Custom Metrics HPA

apiVersion: autoscaling/v2

kind: HorizontalPodAutoscaler

metadata:

 name: nginx-app-nginx

 namespace: test-namespace

spec:

 maxReplicas: 1

 minReplicas: 1

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nginx-app-nginx

 targetCPUUtilizationPercentage: 50

Configuring HPA - Alauda Container Platform

These resources are all sub-resources under MetricValueList. You can create rules through

Prometheus to create or maintain sub-resources. The HPA YAML format for custom metrics

differs from traditional HPA:

{

 "kind": "APIResourceList",

 "apiVersion": "v1",

 "groupVersion": "custom.metrics.k8s.io/v1beta1",

 "resources": [

 {

 "name": "namespaces/go_memstats_heap_sys_bytes",

 "singularName": "",

 "namespaced": false,

 "kind": "MetricValueList",

 "verbs": ["get"]

 },

 {

 "name": "jobs.batch/go_memstats_last_gc_time_seconds",

 "singularName": "",

 "namespaced": true,

 "kind": "MetricValueList",

 "verbs": ["get"]

 },

 {

 "name": "pods/go_memstats_frees",

 "singularName": "",

 "namespaced": true,

 "kind": "MetricValueList",

 "verbs": ["get"]

 }

]

}

Configuring HPA - Alauda Container Platform

In this example, scaleTargetRef specifies the workload.

metrics is an array type, supporting multiple metrics

metric type can be: Object (describing k8s resources), Pods (describing metrics for each

Pod), Resources (built-in k8s metrics: CPU, memory), or External (typically metrics external

to the cluster)

If the custom metric is not provided by Prometheus, you need to create a new metric

through a series of operations such as creating rules in Prometheus

The main structure of a metric is as follows:

Trigger Condition Definition

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: demo

spec:

 scaleTargetRef:

 apiVersion: extensions/v1beta1

 kind: Deployment

 name: demo

 minReplicas: 2

 maxReplicas: 10

 metrics:

 - type: Pods

 pods:

 metricName: metric-demo

 targetAverageValue: 10

Configuring HPA - Alauda Container Platform

This metric data is collected and updated by Prometheus.

Custom metrics HPA YAML is actually compatible with the original core metrics (CPU). Here's

how to write it:

Custom Metrics HPA Compatibility

{

 "describedObject": { # Described object (Pod)

 "kind": "Pod",

 "namespace": "monitoring",

 "name": "nginx-788f78d959-fd6n9",

 "apiVersion": "/v1"

 },

 "metricName": "metric-demo",

 "timestamp": "2020-02-5T04:26:01Z",

 "value": "50"

}

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: nginx

spec:

 scaleTargetRef:

 apiVersion: extensions/v1beta1

 kind: Deployment

 name: nginx

 minReplicas: 2

 maxReplicas: 10

 metrics:

 - type: Resource

 resource:

 name: cpu

 targetAverageUtilization: 80

 - type: Resource

 resource:

 name: memory

 targetAverageValue: 200Mi

Configuring HPA - Alauda Container Platform

targetAverageValue is the average value obtained for each Pod

targetAverageUtilization is the utilization calculated from the direct value

The algorithm reference is:

autoscaling/v2beta2 supports memory utilization:

Changes: targetAverageUtilization and targetAverageValue have been changed to target

and converted to a combination of xxxValue and type :

Updates in autoscaling/v2beta2

replicas = ceil(sum(CurrentPodsCPUUtilization) / Target)

apiVersion: autoscaling/v2beta2

kind: HorizontalPodAutoscaler

metadata:

 name: nginx

 namespace: default

spec:

 minReplicas: 1

 maxReplicas: 3

 metrics:

 - resource:

 name: cpu

 target:

 averageUtilization: 70

 type: Utilization

 type: Resource

 - resource:

 name: memory

 target:

 averageUtilization:

 type: Utilization

 type: Resource

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: nginx

Configuring HPA - Alauda Container Platform

xxxValue : AverageValue (average value), AverageUtilization (average utilization), Value

(direct value)

type : Utilization (utilization), AverageValue (average value)

Notes:

For CPU Utilization and Memory Utilization metrics, auto-scaling will only be triggered

when the actual value fluctuates outside the range of ±10% of the target threshold.

Scale-down may impact ongoing business operations; please proceed with caution.

When business metrics change, the platform will automatically calculate the target pod count

that matches the business volume according to the following rules and adjust accordingly. If

the business metrics continue to fluctuate, the value will be adjusted to the set Minimum Pod
Count or Maximum Pod Count.

Single Policy Target Pod Count: ceil[(sum(actual metric values)/metric threshold)] . This

means that the sum of the actual metric values of all pods divided by the metric threshold,

rounded up to the smallest integer that is greater than or equal to the result. For example: If

there are currently 3 pods with CPU utilizations of 80%, 80%, and 90%, and the set CPU

utilization threshold is 60%. According to the formula, the number of pods will be

automatically adjusted to: ceil[(80%+80%+90%)/60%] = ceil 4.1 = 5 pods.

Note:

If the calculated target pod count exceeds the set Maximum Pod Count (for example

4), the platform will only scale up to 4 pods. If after changing the maximum pod count

the metrics remain persistently high, you may need to use alternate scaling methods,

such as increasing the namespace pod quota or adding hardware resources.

If the calculated target pod count (in the previous example 5) is less than the pod count

adjusted according to the Scale-Up Step (for example 10), the platform will only scale

up to 5 pods.

Calculation Rules

Configuring HPA - Alauda Container Platform

Multiple Policy Target Pod Count: Take the maximum value among the results of each

policy calculation.

Configuring HPA - Alauda Container Platform

Starting the Application

Stopping the Application

1. Access the Container Platform.

2. In the left navigation bar, click Application > Applications.

3. Click on the application name.

4. Click Start.

1. Access the Container Platform.

2. In the left navigation bar, click Application > Applications.

3. Click on the application name.

4. Click Stop.

Starting and Stopping Applications

TOC

Starting the Application

Stopping the Application

Menu ON THIS PAGE

Starting and Stopping Applications - Alauda Container Platform

5. Read the prompt message, and after confirming that everything is correct, click Stop.

Starting and Stopping Applications - Alauda Container Platform

For both stateless and stateful applications, VerticalPodAutoscaler (VPA) automatically

recommends and optionally applies more appropriate CPU and memory resource limits based

on your business needs, ensuring that pods have sufficient resources while improving cluster

resource utilization.

Understanding VerticalPodAutoscalers

How Does the VPA Work?

Supported Features

Prerequisites

Installing the Vertical Pod Autoscaler Plugin

Creating a VerticalPodAutoscaler

Using the CLI

Using the Web Console

Advanced VPA Configuration

Update Policy Options

Container Policy Options

Follow-Up Actions

Configuring VerticalPodAutoscaler (VPA)

TOC

Understanding VerticalPodAutoscalers

Menu ON THIS PAGE

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

You can create a VerticalPodAutoscaler to recommend or automatically update the CPU and

memory resource requests and limits for your pods based on their historical usage patterns.

After you create a VerticalPodAutoscaler, the platform begins to monitor the CPU and memory

resource usage of the pods. When sufficient data is available, the VerticalPodAutoscaler

calculates recommended resource values based on the observed usage patterns. Depending

on the configured update mode, VPA can either automatically apply these recommendations

or simply make them available for manual application.

The VPA works by analyzing the resource usage of your pods over time and making

recommendations based on this analysis. It can help ensure that your pods have the

resources they need without over-provisioning, which can lead to more efficient resource

utilization across your cluster.

The VerticalPodAutoscaler (VPA) extends the concept of pod resource optimization. The VPA

monitors the resource usage of your pods and provides recommendations for CPU and

memory requests based on the observed usage patterns.

The VPA works by continuously monitoring the resource usage of your pods and updating its

recommendations as new data becomes available. The VPA can operate in the following

modes:

Off: VPA only provides recommendations without automatically applying them.

Manual Adjustment: You can manually adjust resource configurations based on VPA

recommendations.

Important: Elastic scaling can achieve horizontal or vertical scaling of Pods. When

sufficient resources are available, elastic scaling can bring good results, but when cluster

resources are insufficient, it may cause Pods to be in a Pending state. Therefore, please

ensure that the cluster has sufficient resources or reasonable quotas, or you can configure

alerts to monitor scaling conditions.

The VerticalPodAutoscaler provides resource recommendations based on historical usage

patterns, allowing you to optimize your pod's CPU and memory configurations.

How Does the VPA Work?

Supported Features

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Important: When manually applying VPA recommendations, pod recreation will occur,

which can cause temporary disruption to your application. Consider applying

recommendations during maintenance windows for production workloads.

Please ensure that the monitoring components are deployed in the current cluster and are

functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform

> Platform Health Status..

The Alauda Container Platform Vertical Pod Autoscaler cluster plugin must be installed in

your cluster.

Before using VPA, you need to install the Vertical Pod Autoscaler cluster plugin:

1. Log in and navigate to the Administrators page.

2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Vertical Pod Autoscaler cluster plugin, click Install,

then proceed to the installation page.

You can create a VerticalPodAutoscaler using the command line interface by defining a YAML

file and using the kubectl create command. The following example shows vertical pod

autoscaling for a Deployment object:

1. Create a YAML file named vpa.yaml with the following content:

Prerequisites

Installing the Vertical Pod Autoscaler Plugin

Creating a VerticalPodAutoscaler

Using the CLI

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

1. Use the autoscaling.k8s.io/v1 API.

2. The name of the VPA

3. Specify the target workload object. VPA uses the workload's selector to find pods that

need resource adjustment. Supported workload types include DaemonSet, Deployment,

ReplicaSet, StatefulSet, ReplicationController, Job, and CronJob.

4. Specify the API version of the object to scale.

5. Specify the type of object.

6. The target resource to which the VPA applies

7. Update policy that defines how VPA applies recommendations. The updateMode can be:

Auto: Automatically sets resource requests when creating pods and updates current

pods to recommended resource requests. Currently equivalent to "Recreate". This

mode may cause application downtime. Once in-place pod resource updates are

supported, "Auto" mode will adopt this update mechanism.

Recreate: Automatically sets resource requests when creating pods and evicts

current pods to update to recommended resource requests. Will not use in-place

updates.

Initial: Only sets resource requests when creating pods, no modifications afterward.

apiVersion: autoscaling.k8s.io/v1 1

kind: VerticalPodAutoscaler 2

metadata:

 name: my-deployment-vpa 3

 namespace: default

spec:

 targetRef:

 apiVersion: apps/v1 4

 kind: Deployment 5

 name: my-deployment 6

 updatePolicy:

 updateMode: 'Off' 7

 resourcePolicy: 8

 containerPolicies:

 - containerName: '*' 9

 mode: 'Auto' 10

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Off: Does not automatically modify pod resource requests, only provides

recommendations in the VPA object.

8. Resource policy that can set specific strategies for different containers. For example,

setting a container's mode to "Auto" means it will calculate recommendations for that

container, while "Off" means it won't calculate recommendations.

9. Apply policy to all containers in the pod.

10. Set the mode to Auto or Off. Auto means recommendations will be generated for this

container, Off means no recommendations will be generated.

2. Apply the YAML file to create the VPA:

Example output:

3. After you create the VPA, you can view the recommendations by running the following

command:

Example output (partial):

kubectl create -f vpa.yaml

verticalpodautoscaler.autoscaling.k8s.io/my-deployment-vpa created

kubectl describe vpa my-deployment-vpa

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling area and click Update on the right.

5. Select Vertical Scaling and configure the scaling rules.

Parameter Description

Scaling

Mode

Currently supports Manual Scaling mode, which provides

recommended resource configurations by analyzing past resource

usage. You can manually adjust according to the recommended

values. Adjustments will cause pods to be recreated and restarted, so

please choose an appropriate time to avoid impacting running

applications.

Typically, after pods have been running for more than 8 days, the

recommended values will become accurate.

Note that when cluster resources are insufficient, scaling may cause

Pods to be in a Pending state. Please ensure that the cluster has

Using the Web Console

Status:

 Recommendation:

 Container Recommendations:

 Container Name: my-container

 Lower Bound:

 Cpu: 100m

 Memory: 262144k

 Target:

 Cpu: 200m

 Memory: 524288k

 Upper Bound:

 Cpu: 300m

 Memory: 786432k

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Parameter Description

sufficient resources or reasonable quotas, or configure alerts to

monitor scaling conditions.

Target

Container

Defaults to the first container of the workload. You can choose to

enable resource limit recommendations for one or more containers as

needed.

6. Click Update.

updateMode: "Off" - VPA only provides recommendations without automatically applying

them. You can manually apply these recommendations as needed.

updateMode: "Auto" - Automatically sets resource requests when creating pods and

updates current pods to recommended values. Currently equivalent to "Recreate".

updateMode: "Recreate" - Automatically sets resource requests when creating pods and

evicts current pods to update to recommended values.

updateMode: "Initial" - Only sets resource requests when creating pods, no modifications

afterward.

minReplicas: <number> - Minimum number of replicas. Ensures this minimum number of

pods remain available when the Updater evicts pods. Must be greater than 0.

containerName: "*" - Apply policy to all containers in the pod.

mode: "Auto" - Automatically generate recommendations for the container.

mode: "Off" - Do not generate recommendations for the container.

Notes:

VPA recommendations are based on historical usage data, so it may take several days of

pod operation before recommendations become accurate.

Advanced VPA Configuration

Update Policy Options

Container Policy Options

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Pod recreation will occur when VPA recommendations are applied in Auto mode, which can

cause temporary disruption to your application.

After configuring VPA, the recommended values for CPU and memory resource limits of the

target container can be viewed in the Elastic Scaling area. In the Containers area, select the

target container tab and click the icon on the right side of Resource Limits to update the

resource limits according to the recommended values.

Follow-Up Actions

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

For stateless applications with periodic fluctuations in business usage, CronHPA (Cron

Horizontal Pod Autoscaler) supports adjusting the number of pods based on the time policies

you set, allowing you to optimize resource usage according to predictable business patterns.

Understanding Cron Horizontal Pod Autoscalers

How Does the CronHPA Work?

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Using the CLI

Using the Web Console

Schedule Rule Explanation

You can create a cron horizontal pod autoscaler to specify the number of pods you want to run

at specific times according to a schedule, allowing you to prepare for predictable traffic

patterns or reduce resource usage during off-peak hours.

After you create a cron horizontal pod autoscaler, the platform begins to monitor the schedule

and automatically adjusts the number of pods at the specified times. This time-based scaling

occurs independently of resource utilization metrics, making it ideal for applications with

known usage patterns.

Configuring CronHPA

TOC

Understanding Cron Horizontal Pod Autoscalers

Menu ON THIS PAGE

Configuring CronHPA - Alauda Container Platform

The CronHPA works by defining one or more schedule rules, each specifying a time (using

crontab format) and a target number of replicas. When a scheduled time is reached, the

CronHPA adjusts the pod count to match the specified target, regardless of the current

resource utilization.

The cron horizontal pod autoscaler (CronHPA) extends the concept of pod auto-scaling with

time-based controls. The CronHPA lets you define specific times when the number of pods

should change, allowing you to prepare for predictable traffic patterns or reduce resource

usage during off-peak hours.

The CronHPA works by continuously checking the current time against the defined schedules.

When a scheduled time is reached, the controller adjusts the number of pods to match the

target replica count specified for that schedule. If multiple schedules trigger at the same time,

the platform will use the rule with higher priority (the one defined earlier in the configuration).

Please ensure that the monitoring components are deployed in the current cluster and are

functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform > Platform Health Status..

You can create a cron horizontal pod autoscaler using the command line interface by defining

a YAML file and using the kubectl create command. The following example shows scheduled

scaling for a Deployment object:

1. Create a YAML file named cronhpa.yaml with the following content:

How Does the CronHPA Work?

Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Using the CLI

Configuring CronHPA - Alauda Container Platform

1. Use the tkestack.io/v1 API.

2. The name of the CronHPA resource.

3. The name of the deployment to scale.

4. Specify the API version of the object to scale.

5. Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.

6. The target resource to which the CronHPA applies.

7. The cron schedule in standard crontab format (minute hour day month weekday).

8. The target number of replicas to scale to when the schedule is triggered.

This example configures the deployment to:

Scale down to 0 replicas at midnight every day

Scale up to 3 replicas at 8:00 AM on weekdays (Monday-Friday)

Scale down to 1 replica at 6:00 PM on weekdays

2. Apply the YAML file to create the CronHPA:

apiVersion: tkestack.io/v1 1

kind: CronHPA 2

metadata:

 name: my-deployment-cronhpa 3

 namespace: default

spec:

 scaleTargetRef:

 apiVersion: apps/v1 4

 kind: Deployment 5

 name: my-deployment 6

 crons:

 - schedule: '0 0 * * *' 7

 targetReplicas: 0 8

 - schedule: '0 8 * * 1-5' 9

 targetReplicas: 3 10

 - schedule: '0 18 * * 1-5' 11

 targetReplicas: 1 12

kubectl create -f cronhpa.yaml

Configuring CronHPA - Alauda Container Platform

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling section and click Update on the right.

5. Select Scheduled Scaling, and configure the scaling rules. When the type is Custom, you

must provide a Crontab expression for the trigger condition, formatted as minute hour day

month week . For detailed introduction, please refer to Writing Crontab Expressions.

6. Click Update.

1. Indicates that starting from 01:00 AM every Monday, only 1 pod will be retained.

2. Indicates that starting from 02:00 AM every Tuesday, only 2 pods will be retained.

3. Indicates that starting from 02:00 AM every Tuesday, only 3 pods will be retained.

Important Notes:

When multiple rules have the same trigger time (Examples 2 and 3), the platform will

execute automatic scaling based only on the rule that is higher in priority (Example 2).

CronHPA operates independently of HPA. If both are configured for the same workload,

they may conflict with each other. Consider your scaling strategy carefully.

Using the Web Console

Schedule Rule Explanation

Configuring CronHPA - Alauda Container Platform

The schedule uses the crontab format (minute hour day month week) and follows the same

rules as Kubernetes CronJobs.

Time is based on the cluster's timezone setting.

For workloads with critical availability requirements, ensure that your scheduled scaling

doesn't unexpectedly reduce capacity during high-traffic periods.

Configuring CronHPA - Alauda Container Platform

Custom Applications greatly facilitate the unified management of workloads, networks,

storage, and configurations, but not all resources belong to the application.

Resources added during the application creation process, or added through application

updates, are by default associated with the application and do not require additional

importing.

Resources created outside the application do not belong to the application and cannot be

found in the application's details. However, as long as the resource definitions meet

business requirements, the business can operate normally. In this case, it is recommended

that you import the resources into the application for unified management.

Image Management

Rollout new container images with tag/patch version control

Configure imagePullPolicy (Always/IfNotPresent/Never)

Runtime Configuration

Modify environment variables via ConfigMaps/Secrets

Update resource requests/limits (CPU/Memory)

Resource Orchestration

Import existing Kubernetes resources (Deployments/Services/Ingresses)

Synchronize configurations across namespaces using kubectl apply -f

Resources imported into the application can benefit from the following features:

Feature Description

Version

Snapshot

When creating a version snapshot for the application, a snapshot will

also be generated for the resources within the application.

Updating Applications

Menu ON THIS PAGE

Updating Applications - Alauda Container Platform

Feature Description

If the application is rolled back, the resources will also roll back to

the state in the snapshot.

If a specific version of the application is distributed, the platform

will automatically create the resources recorded in the snapshot

upon redeploying the application.

Deleted with

Application

If an application is no longer needed, deleting the application will

automatically remove all resources associated with the application,

including computing components, internal routes, and inbound rules.

Easier to Find

In the application detail information, you can quickly view the

resources associated with the application.

For example: External traffic can access Deployment D through

Service S, which belongs to Application A, but the corresponding

access address can only be quickly found in the application details if

Service S also belongs to Application A.

Importing Resources

Removing/Batch Removing Resources

Batch import related resources under the namespace where the application resides; a

resource can belong to only one application.

1. Enter Container Platform.

TOC

Importing Resources

Updating Applications - Alauda Container Platform

2. In the left navigation bar, click Application Management > Native Applications.

3. Click on Application Name.

4. Click Actions > Manage Resources.

5. In the Resource Type at the bottom, select the type of resources to be imported.

Note: Common resource types include Deployment, DaemonSet, StatefulSet, Job,

CronJob, Service, Ingress, PVC, ConfigMap, Secret, and HorizontalPodAutoscaler, which

are displayed at the top; other resources are arranged in alphabetical order, and you can

quickly query specific resource types by searching keywords.

6. In the Resources section, select the resources to be imported.

Attention: For Job type resources, only tasks created through YAML are supported for

import.

7. Click Import Resources.

Removing / batch removing resources from an application only disassociates the

application from the resources and does not delete the resources.

If there are interconnections between resources under an application, removing any resource

from the application will not change the associations between the resources. For example,

even if Service S is removed from Application A, external traffic can still access Deployment D

through Service S.

1. Enter Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.

3. Click on Application Name.

4. Click Actions > Manage Resources.

Removing/Batch Removing Resources

Updating Applications - Alauda Container Platform

5. Click Remove on the right side of a resource to remove it; or select multiple resources at

once, and click Remove at the top of the table to batch remove resources.

Updating Applications - Alauda Container Platform

To standardize the export process of applications between development, testing, and

production environments, and to facilitate the rapid migration of business to new

environments, you can export native applications as application templates (Charts) or export

simplified YAML files that can be used directly for deployment. This allows the native

application to run in different environments or namespaces. You can also export YAML files to

a code repository to deploy applications across clusters quickly using GitOps functionality.

Exporting Helm Charts

Procedure

Follow-Up Actions

Exporting YAML to Local

Steps

Method 1

Method 2

Follow-Up Actions

Exporting YAML to Code Repository (Alpha)

Precautions

Steps

Follow-Up Actions

Exporting Applications

TOC

Exporting Helm Charts

Menu ON THIS PAGE

Exporting Applications - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on the application name of the type Custom Application .

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Choose one export method as needed and refer to the following instructions to configure

the relevant information.

Exporting Helm Charts to a template repository with management permissions

Note: The template repository is added by the platform administrator. Please contact the

platform administrator to obtain a valid template repository of type Chart or OCI Chart

with Management permissions.

Parameter Description

Target

Location

Select Template Repository to directly sync the template to a

template repository of type Chart or OCI Chart with

Management permissions. The project owner assigned to this

Template Repository can directly use the template.

Template

Directory

When the selected template repository type is OCI Chart, you

need to select or manually input the directory for storing the

Helm Chart.

Note: When manually entering a new template directory, the

platform will create this directory in the template repository, but

there is a risk of the creation failing.

Version

The version number of the application template.

The format should be v<Major>.<Minor>.<Patch> . The default

value is the current application version or the current snapshot

version.

Procedure

Exporting Applications - Alauda Container Platform

Parameter Description

Icon
Supports JPG, PNG, and GIF image formats, with a file size of

no more than 500KB. Suggested dimensions are 80*60 pixels.

Description
The description will be displayed in the list of application

templates within the application directory.

README
Description file. Supports editing in Markdown format and will be

displayed on the details page of the application template.

NOTES

Template help file. Supports standard plaintext editing; after the

deployment template is completed, it will be displayed on the

template application details page.

Exporting Helm Charts to local for manual upload to the template repository: Select

Local as the target location and choose Helm Chart as the file format to generate a

Helm Chart package which will be downloaded locally for offline transmission.

6. Click Export.

If you export the Helm Chart to local, you will need to add the template to a template

repository with management permissions.

Regardless of the export method chosen, you can refer to Creating Native Applications -

Template Method to create a Template Application type of native application in a non-

current namespace.

Follow-Up Actions

Exporting YAML to Local

Steps

Method 1

Exporting Applications - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on application name.

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Select Local as the target location and YAML as the file format, at which point you can

export a simplified YAML file that can be deployed directly in other environments.

6. Click Export.

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on application name.

4. Click on the YAML tab, configure settings as needed, and preview the YAML file.

Type Description

Full YAML

By default, Preview Simplified YAML is not selected, displaying the

YAML file with the managedFields fields hidden. You can preview it

and export directly; you may also uncheck Hide managedFields

fields to export the full YAML file.

Note: Full YAML is primarily used for operations and troubleshooting

and cannot be used to quickly create native applications on the

platform.

Simplified

YAML

Check Preview Simplified YAML, at which point you can preview

and export a simplified YAML file that can be deployed directly in

other environments.

5. Click Export.

Method 2

Exporting Applications - Alauda Container Platform

After exporting the simplified YAML, you can refer to Creating Native Applications - YAML

Method to create a Custom Application type of native application in a non-current
namespace.

Only platform administrators and project administrators can directly export native

application YAML files to the code repository.

Template Applications do not support exporting Kustomize formatted application

configuration files or directly exporting YAML files to the code repository; you can first

detach from the template and convert it to a Custom Application .

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on the application name of type Custom .

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Choose one export method as needed and refer to the following instructions to configure

the relevant information.

Exporting YAML to a code repository:

Follow-Up Actions

Exporting YAML to Code Repository (Alpha)

Precautions

Steps

Exporting Applications - Alauda Container Platform

Parameter Description

Target

Location

Select Code Repository to directly sync the YAML file to the

specified Git code repository. The project owner assigned to

this Code Repository can directly use the YAML file.

Integration

Project Name

The name of the integration tool project assigned or associated

with your project by the platform administrator.

Repository

Address

The repository address assigned for your use under the

integrated tool project.

Export

Method

Existing Branch: Export the application YAML to the

selected branch.

New Branch: Create a new branch based on the selected

Branch/Tag/Commit ID and export the application YAML to

the new branch.

If Submit PR (Pull Request) is checked, the platform will

create a new branch and submit a Pull Request.

If Automatically delete source branch after merging

PR is checked, the source branch will be automatically

deleted after you merge the PR in the Git code repository.

File Path

The specific location where the file should be saved in the code

repository; you can also input a file path, and the platform will

create a new path in the code repository based on the input.

Commit

Message

Fill in commit information to identify the content of this

submission.

Preview

Preview the YAML file to be submitted and compare differences

with the existing YAML in the code repository, displayed with

color differentiation.

Exporting Kustomize-type files to local for manual upload to the code repository: Select

Local as the target location and choose Kustomize as the file format to export the

Exporting Applications - Alauda Container Platform

Kustomize-type application configuration file locally. This file supports differentiated

configurations and is suitable for cross-cluster application deployments.

6. Click Export.

After exporting the YAML to a Git code repository, you can refer to Creating GitOps

Applications to create a Custom Application type of GitOps application across clusters.

Follow-Up Actions

Exporting Applications - Alauda Container Platform

http://localhost:4173/container_platform/gitops/functions/create_argocd_application/create_application_via_platform.html
http://localhost:4173/container_platform/gitops/functions/create_argocd_application/create_application_via_platform.html

Due to overlapping functionality between the current template applications and native

applications, and the enhanced operational capabilities available under native applications,

independent management of template applications will no longer be offered in future versions.

Please upgrade your currently successfully deployed template applications to native

applications as soon as possible.

Important Notes

Prerequisites

Status Analysis Description

This feature is going to be discontinued. Please upgrade your currently successfully

deployed template applications to native applications as soon as possible.

Please contact the platform administrator to enable template application-related features.

Updating and deleting Chart Applications

TOC

Important Notes

Prerequisites

Menu ON THIS PAGE

Updating and deleting Chart Applications - Alauda Container Platform

Click on Template Application Name to display detailed deployment status analysis of the

Chart in the detail information.

Type Reason

Initialized

Indicates the state of the Chart template download.

When the status is True, it indicates that the Chart template download

was successful.

When the status is False, it indicates that the Chart template download

has failed, and the reason for failure can be viewed in the message

column.

ChartLoadFailed: Chart template download failed.

InitializeFailed: An exception occurred during initialization before

downloading the Chart.

Validated

Indicates the state of user permissions and dependencies verification for

the Chart template.

When the status is True, it indicates that all validation checks have

passed.

When the status is False, it indicates that there are validation checks

that have failed, and the reason for failure can be viewed in the

message column.

DependenciesCheckFailed: Chart dependency check failed.

PermissionCheckFailed: The current user lacks permissions for

certain resource operations.

ConsistentNamespaceCheckFailed: When deploying the template

application as a native application, the Chart contains resources that

require cross-namespace deployment.

Synced Indicates the state of the Chart template deployment.

Status Analysis Description

Updating and deleting Chart Applications - Alauda Container Platform

Type Reason

When the status is True, it indicates that the Chart template deployment

was successful.

When the status is False, it indicates that the Chart template

deployment has failed, with the reason displayed as ChartSyncFailed,

and the specific reason for failure can be viewed in the message

column.

Updating and deleting Chart Applications - Alauda Container Platform

After updating the application through the platform interface, a historical version record is

automatically generated. For application updates triggered by non-interface operations, such

as updating the application via API calls, you can manually create a version snapshot to

record the changes.

Note: When the number of version snapshot entries exceeds 6, the platform retains only the

latest 6 entries and automatically deletes the others, prioritizing the removal of the oldest

version snapshot entries.

Creating a Version Snapshot

Procedure

Rolling Back to a Historical Version

Procedure

1. Access Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.

Version Management for Applications

TOC

Creating a Version Snapshot

Procedure

Menu ON THIS PAGE

Version Management for Applications - Alauda Container Platform

3. Click on Application Name.

4. In the Version Snapshot tab, click Create Version Snapshot.

5. Configure the information and click Confirm.

Note: You can also Distribute the Application, which allows you to distribute the version

snapshot of the application as a Chart, facilitating the rapid deployment of the same

application across multiple clusters and namespaces on the platform.

Roll back the current application's configuration to a historical version.

1. Access Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.

3. Click on Application Name.

4. In the Historical Versions tab, click on Version Number.

5. Click ⋮ > Roll Back to This Version.

6. Click Roll Back.

Rolling Back to a Historical Version

Procedure

Version Management for Applications - Alauda Container Platform

Delete an application, it simultaneously deletes the application itself and all of its directly

contained Kubernetes resources. Additionally, this action severs any association the

application might have had with other Kubernetes resources that were not directly part of its

definition.

Deleting Applications

Menu

Deleting Applications - Alauda Container Platform

Overview

Configuring Eviction Policies

Creating Eviction Policies in Node Configuration

Eviction Signals

Eviction Thresholds

Hard Eviction Thresholds

Default Hard Eviction Thresholds

Soft Eviction Thresholds

Configuring Allocatable Resources for Scheduling

Preventing Node Condition Oscillation

Reclaiming Node-level Resources

Pod Eviction

Quality of Service and Out of Memory Killer

Scheduler and Out of Resource Conditions

Example Scenario

Recommended Practices

Daemon Sets and Out of Resource Handling

Handling Out of Resource Errors

TOC

Overview

Menu ON THIS PAGE

Handling Out of Resource Errors - Alauda Container Platform

This guide describes how to prevent Alauda Container Platform nodes from running out of

memory (OOM) or disk space. Stable node operation is critical, especially for non-

compressible resources like memory and disk. Resource exhaustion can lead to node

instability.

Administrators can configure eviction policies to monitor nodes and reclaim resources before

stability is compromised.

This document covers how Alauda Container Platform handles out-of-resource scenarios,

including resource reclamation, pod eviction, pod scheduling, and the Out of Memory Killer.

Example configurations and best practices are also provided.

NOTE

If swap memory is enabled on a node, memory pressure cannot be detected. Disable swap to

enable memory-based evictions.

Eviction policies allow nodes to terminate pods when resources are low, reclaiming needed

resources. Policies combine eviction signals and threshold values, set in the node

configuration or via command line. Evictions can be:

Hard: Immediate action when a threshold is exceeded.

Soft: Grace period before action is taken.

Properly configured eviction policies help nodes proactively prevent resource exhaustion.

NOTE

When a pod is evicted, all containers in the pod are terminated, and the PodPhase transitions to

Failed.

For disk pressure, nodes monitor both nodefs (root filesystem) and imagefs (container image

storage).

Configuring Eviction Policies

Handling Out of Resource Errors - Alauda Container Platform

nodefs/rootfs: Used for local disk volumes, logs, and other storage (e.g.,

/var/lib/kubelet).

imagefs: Used by the container runtime for images and writable layers (e.g.,

/var/lib/docker/overlay2 for Docker overlay2 driver, /var/lib/containers/storage for CRI-

O).

NOTE

Without local storage isolation (ephemeral storage) or XFS quota (volumeConfig), pod disk usage

cannot be limited.

To set eviction thresholds, edit the node configuration map under eviction-hard or eviction-

soft .

Hard Eviction Example:

1. The type of eviction: use eviction-hard for hard eviction thresholds.

2. Each eviction threshold is defined as <eviction_signal><operator><quantity> , such as

memory.available<500Mi or nodefs.available<10% .

NOTE

Use percentage values for inodesFree . Other parameters accept percentages or numeric values.

Soft Eviction Example:

Creating Eviction Policies in Node Configuration

kubeletArguments:

 eviction-hard: 1

 - memory.available<100Mi 2

 - nodefs.available<10%

 - nodefs.inodesFree<5%

 - imagefs.available<15%

 - imagefs.inodesFree<10%

Handling Out of Resource Errors - Alauda Container Platform

1. The type of eviction: use eviction-soft for soft eviction thresholds.

2. Each eviction threshold is defined as <eviction_signal><operator><quantity> , such as

memory.available<500Mi or nodefs.available<10% .

3. The grace period for the soft eviction. Leave the default values for optimal performance.

Restart the kubelet service for changes to take effect:

Nodes can trigger evictions based on the following signals:

Node Condition Eviction Signal Description

MemoryPressure memory.available Available memory below threshold

DiskPressure
nodefs.available

Node root filesystem space below

threshold

nodefs.inodesFree Free inodes below threshold

imagefs.available Image filesystem space below threshold

Eviction Signals

kubeletArguments:

 eviction-soft: 1

 - memory.available<100Mi 2

 - nodefs.available<10%

 - nodefs.inodesFree<5%

 - imagefs.available<15%

 - imagefs.inodesFree<10%

 eviction-soft-grace-period: 3

 - memory.available=1m30s

 - nodefs.available=1m30s

 - nodefs.inodesFree=1m30s

 - imagefs.available=1m30s

 - imagefs.inodesFree=1m30s

$ systemctl restart kubelet

Handling Out of Resource Errors - Alauda Container Platform

imagefs.inodesFree Free inodes in imagefs below threshold

inodesFree must be specified as a percentage.

Memory calculations exclude reclaimable inactive file memory.

Do not use free -m in containers.

Nodes monitor these filesystems every 10 seconds. Dedicated filesystems for volumes/logs

are not monitored.

NOTE

Before evicting pods due to disk pressure, nodes perform container and image garbage collection.

Eviction thresholds trigger resource reclamation. When a threshold is met, the node reports a

pressure condition, preventing new pods from being scheduled until resources are reclaimed.

Hard thresholds: Immediate action.

Soft thresholds: Action after a grace period.

Thresholds are configured as:

Example:

memory.available<1Gi

memory.available<10%

Nodes evaluate thresholds every 10 seconds.

Eviction Thresholds

Hard Eviction Thresholds

<eviction_signal><operator><quantity>

Handling Out of Resource Errors - Alauda Container Platform

No grace period; immediate action is taken.

Example:

Soft thresholds require a grace period. Optionally, set a maximum pod termination grace

period (eviction-max-pod-grace-period).

Example:

Default Hard Eviction Thresholds

Soft Eviction Thresholds

kubeletArguments:

 eviction-hard:

 - memory.available<500Mi

 - nodefs.available<500Mi

 - nodefs.inodesFree<5%

 - imagefs.available<100Mi

 - imagefs.inodesFree<10%

kubeletArguments:

 eviction-hard:

 - memory.available<100Mi

 - nodefs.available<10%

 - nodefs.inodesFree<5%

 - imagefs.available<15%

Handling Out of Resource Errors - Alauda Container Platform

Control how much node resource is available for scheduling by setting system-reserved for

system daemons. Evictions occur only if pods exceed their requested resources.

Capacity: Total resource on the node.

Allocatable: Resource available for scheduling.

Example:

Determine appropriate values using the node summary API.

Restart the kubelet for changes:

Configuring Allocatable Resources for
Scheduling

kubeletArguments:

 eviction-soft:

 - memory.available<500Mi

 - nodefs.available<500Mi

 - nodefs.inodesFree<5%

 - imagefs.available<100Mi

 - imagefs.inodesFree<10%

 eviction-soft-grace-period:

 - memory.available=1m30s

 - nodefs.available=1m30s

 - nodefs.inodesFree=1m30s

 - imagefs.available=1m30s

 - imagefs.inodesFree=1m30s

kubeletArguments:

 eviction-hard:

 - "memory.available<500Mi"

 system-reserved:

 - "memory=1.5Gi"

$ systemctl restart kubelet

Handling Out of Resource Errors - Alauda Container Platform

To avoid oscillation above/below soft eviction thresholds, set eviction-pressure-transition-

period :

Example:

Default is 5 minutes. Restart services for changes.

When eviction criteria are met, nodes reclaim resources before evicting user pods.

With imagefs:

If nodefs threshold is met: Delete dead pods/containers.

If imagefs threshold is met: Delete unused images.

Without imagefs:

If nodefs threshold is met: Delete dead pods/containers, then unused images.

If a threshold and grace period are met, pods are evicted until the signal is below the

threshold.

Pods are ranked for eviction by quality of service (QoS) and resource consumption.

Preventing Node Condition Oscillation

Reclaiming Node-level Resources

Pod Eviction

kubeletArguments:

 eviction-pressure-transition-period:

 - 5m

Handling Out of Resource Errors - Alauda Container Platform

QoS Level Description

Guaranteed Highest resource consumers evicted first.

Burstable Highest resource consumers relative to request evicted first.

BestEffort Highest resource consumers evicted first.

Guaranteed pods are only evicted if system daemons exceed reserved resources or only

guaranteed pods remain.

Disk is a best-effort resource; pods are evicted one at a time to reclaim disk space, ranked by

QoS and disk usage.

If a system OOM event occurs before memory can be reclaimed, the OOM killer responds.

OOM scores are set based on QoS:

QoS Level oom_score_adj Value

Guaranteed -998

Burstable
min(max(2, 1000 - (1000 * memoryRequestBytes) /

machineMemoryCapacityBytes), 999)

BestEffort 1000

OOM killer ends the container with the highest score. Containers with lowest QoS and highest

memory usage are ended first. Containers may be restarted per node policy.

Scheduler considers node conditions when placing pods.

Quality of Service and Out of Memory Killer

Scheduler and Out of Resource Conditions

Handling Out of Resource Errors - Alauda Container Platform

Node Condition Scheduler Behavior

MemoryPressure BestEffort pods not scheduled.

DiskPressure No additional pods scheduled.

Operator wants:

Node with 10Gi memory.

Reserve 10% for system daemons.

Evict pods at 95% utilization.

Calculation:

capacity = 10Gi

system-reserved = 1Gi

allocatable = 9Gi

To trigger eviction below 10% available memory for 30s, or immediately below 5%:

system-reserved = 2Gi

allocatable = 8Gi

Configuration:

Example Scenario

kubeletArguments:

 system-reserved:

 - "memory=2Gi"

 eviction-hard:

 - "memory.available<.5Gi"

 eviction-soft:

 - "memory.available<1Gi"

 eviction-soft-grace-period:

 - "memory.available=30s"

Handling Out of Resource Errors - Alauda Container Platform

This prevents immediate memory pressure and eviction after scheduling.

Pods created by daemon sets are immediately recreated if evicted. Daemon sets should avoid

best-effort pods and use guaranteed QoS to reduce eviction risk.

Recommended Practices

Daemon Sets and Out of Resource Handling

Handling Out of Resource Errors - Alauda Container Platform

Understanding Health Checks

Probe Types

HTTP GET Action

exec Action

TCP Socket Action

Best Practices

YAML file example

Health Checks configuration parameters by using web console

Common parameters

Protocol specific parameters

Troubleshooting probe failures

Check pod events

View container logs

Test probe endpoint manually

Review probe configuration

Check application code

Resource constraints

Network issues

Health Checks

TOC

Understanding Health Checks

Menu ON THIS PAGE

Health Checks - Alauda Container Platform

Refer to the official Kubernetes documentation:

Liveness, Readiness, and Startup Probes

Configure Liveness, Readiness and Startup Probes

In Kubernetes, health checks, also known as probes, are a critical mechanism to ensure

the high availability and resilience of your applications. Kubernetes uses these probes to

determine the health and readiness of your Pods, allowing the system to take appropriate

actions, such as restarting containers or routing traffic. Without proper health checks,

Kubernetes cannot reliably manage your application's lifecycle, potentially leading to

service degradation or outages.

Kubernetes offers three types of probes:

livenessProbe : Detects if the container is still running. If a liveness probe fails, Kubernetes

will terminate the Pod and restart it according to its restart policy.

readinessProbe : Detects if the container is ready to serve traffic. If a readiness probe fails,

the Endpoint Controller removes the Pod from the Service's Endpoint list until the probe

succeeds.

startupProbe : Specifically checks if the application has successfully started. Liveness and

readiness probes will not execute until the startup probe succeeds. This is very useful for

applications with long startup times.

Properly configuring these probes is essential for building robust and self-healing applications

on Kubernetes.

Kubernetes supports three mechanisms for implementing probes:

Executes an HTTP GET request against the Pod's IP address on a specified port and path.

The probe is considered successful if the response code is between 200 and 399.

Use Cases: Web servers, REST APIs, or any application exposing an HTTP endpoint.

↗

↗

Probe Types

HTTP GET Action

Health Checks - Alauda Container Platform

https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Example:

Executes a specified command inside the container. The probe is successful if the

command exits with status code 0.

Use Cases: Applications without HTTP endpoints, checking internal application state, or

performing complex health checks that require specific tools.

Example:

Attempts to open a TCP socket on the container's IP address and a specified port. The

probe is successful if the TCP connection can be established.

Use Cases: Databases, message queues, or any application that communicates over a

TCP port but might not have an HTTP endpoint.

Example:

exec Action

TCP Socket Action

livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 15

 periodSeconds: 20

readinessProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 5

 periodSeconds: 5

Health Checks - Alauda Container Platform

Liveness vs. Readiness:

Liveness: If your application is unresponsive, it's better to restart it. If it fails, Kubernetes

will restart it.

Readiness: If your application is temporarily unable to serve traffic (e.g., connecting to a

database), but might recover without a restart, use a Readiness Probe. This prevents

traffic from being routed to an unhealthy instance.

Startup Probes for Slow Applications: Use Startup Probes for applications that take a

significant amount of time to initialize. This prevents premature restarts due to Liveness

Probe failures or traffic routing issues due to Readiness Probe failures during startup.

Lightweight Probes: Ensure your probe endpoints are lightweight and perform quickly.

They should not involve heavy computation or external dependencies (like database calls)

that could make the probe itself unreliable.

Meaningful Checks: Probe checks should genuinely reflect the health and readiness of

your application, not just whether the process is running. For example, for a web server,

check if it can serve a basic page, not just if the port is open.

Adjust initialDelaySeconds: Set initialDelaySeconds appropriately to give your

application enough time to start before the first probe.

Tune periodSeconds and failureThreshold: Balance the need for quick detection of

failures with avoiding false positives. Too frequent probes or too low a failureThreshold can

lead to unnecessary restarts or unready states.

Logs for Debugging: Ensure your application logs clear messages related to health check

endpoint calls and internal state to aid in debugging probe failures.

Combine Probes: Often, all three probes (Liveness, Readiness, Startup) are used

together to manage application lifecycle effectively.

Best Practices

startupProbe:

 tcpSocket:

 port: 3306

 initialDelaySeconds: 5

 periodSeconds: 10

 failureThreshold: 30

Health Checks - Alauda Container Platform

YAML file example

Health Checks configuration parameters by using
web console

spec:

 template:

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2 # Container image

 ports:

 - containerPort: 80 # Container exposed port

 startupProbe:

 httpGet:

 path: /startup-check

 port: 8080

 initialDelaySeconds: 0 # Usually 0 for startup probes, or very small

 periodSeconds: 5

 failureThreshold: 60 # Allows 60 * 5 = 300 seconds (5 minutes) for startup

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 5 # Delay 5 seconds after Pod starts before checking

 periodSeconds: 10 # Check every 10 seconds

 timeoutSeconds: 5 # Timeout after 5 seconds

 failureThreshold: 3 # Consider unhealthy after 3 consecutive failures

 readinessProbe:

 httpGet:

 path: /ready

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

 timeoutSeconds: 5

 failureThreshold: 3

Health Checks - Alauda Container Platform

Parameters Description

Initial Delay
initialDelaySeconds : Grace period (seconds) before starting

probes. Default: 300 .

Period periodSeconds : Probe interval (1-120s). Default: 60 .

Timeout timeoutSeconds : Probe timeout duration (1-300s). Default: 30 .

Success

Threshold

successThreshold : Minimum consecutive successes to mark

healthy. Default: 0 .

Failure

Threshold

failureThreshold : Maximum consecutive failures to trigger action:

- 0 : Disables failure-based actions

- Default: 5 failures → container restart.

Parameter
Applicable

Protocols
Description

Protocol HTTP/HTTPS Health check protocol

Port HTTP/HTTPS/TCP Target container port for probing.

Path HTTP/HTTPS Endpoint path (e.g., /healthz).

HTTP

Headers
HTTP/HTTPS Custom headers (Add key-value pairs).

Command EXEC

Container-executable check command (e.g.,

sh -c "curl -I localhost:8080 | grep OK").

Note: Escape special characters and test

command viability.

Common parameters

Protocol specific parameters

Health Checks - Alauda Container Platform

When a Pod's status indicates issues related to probes, here's how to troubleshoot:

Look for events related to LivenessProbe failed, ReadinessProbe failed, or StartupProbe

failed. These events often provide specific error messages (e.g., connection refused, HTTP

500 error, command exit code).

Examine application logs to see if there are errors or warnings around the time the probe

failed. Your application might be logging why its health endpoint isn't responding correctly.

HTTP: If possible, kubectl exec -it <pod-name> -- curl <probe-path>:<probe-port> or wget

from within the container to see the actual response.

Exec: Run the probe command manually: kubectl exec -it <pod-name> -- <command-from-

probe> and check its exit code and output.

TCP: Use nc (netcat) or telnet from another Pod in the same network or from the host if

allowed, to test TCP connectivity: kubectl exec -it <another-pod> -- nc -vz <pod-ip> <probe-

port> .

Double-check the probe parameters (path, port, command, delays, thresholds) in your

Deployment/Pod YAML. A common mistake is an incorrect port or path.

Troubleshooting probe failures

Check pod events

View container logs

Test probe endpoint manually

Review probe configuration

kubectl describe pod <pod-name>

kubectl logs <pod-name> -c <container-name>

Health Checks - Alauda Container Platform

Ensure your application's health check endpoint is correctly implemented and truly reflects

the application's readiness/liveness. Sometimes, the endpoint might return success even

when the application itself is broken.

Insufficient CPU or memory resources could cause your application to become

unresponsive, leading to probe failures. Check Pod resource usage (kubectl top pod <pod-

name>) and consider adjusting resources limits/requests.

In rare cases, network policies or CNI issues might prevent probes from reaching the

container. Verify network connectivity within the cluster.

Check application code

Resource constraints

Network issues

Health Checks - Alauda Container Platform

Workloads

Deployments

Understanding Deployments

Creating Deployments

Managing Deployments

Troubleshooting by using CLI

DaemonSets

Understanding DaemonSets

Creating DaemonSets

Managing DaemonSets

StatefulSets
Understanding StatefulSets

Creating StatefulSets

Managing StatefulSets

CronJobs

Understanding CronJobs

Creating CronJobs

Execute Immediately

Deleting CronJobs

Menu

Workloads - Alauda Container Platform

Jobs
Understanding Jobs

YAML file example

Execution Overview

Pods
Understanding Pods

YAML file example

Managing a Pod by using CLI

Managing a Pod by using web console

Containers
Understanding Containers

Understanding Ephemeral Containers

Interacting with Containers

Workloads - Alauda Container Platform

Understanding Deployments

Creating Deployments

Creating a Deployment by using CLI

Prerequisites

YAML file example

Creating a Deployment via YAML

Creating a Deployment by using web console

Prerequisites

Procedure - Configure Basic Info

Procedure - Configure Pod

Procedure - Configure Containers

Reference Information

Heath Checks

Managing Deployments

Managing a Deployment by using CLI

Viewing a Deployment

Updating a Deployment

Scaling a Deployment

Rolling Back a Deployment

Deleting a Deployment

Managing a Deployment by using web console

Viewing a Deployment

Deployments

TOC

Menu ON THIS PAGE

Deployments - Alauda Container Platform

Updating a Deployment

Deleting a Deployment

Troubleshooting by using CLI

Check Deployment status

Check ReplicaSet status

Check Pod status

View Logs

Enter Pod for debugging

Check Health configuration

Check Resource Limits

Refer to the official Kubernetes documentation: Deployments

Deployment is a Kubernetes higher-level workload resource used to declaratively manage

and update Pod replicas for your applications. It provides a robust and flexible way to

define how your application should run, including how many replicas to maintain and how to

safely perform rolling updates.

A Deployment is an object in the Kubernetes API that manages Pods and ReplicaSets. When

you create a Deployment, Kubernetes automatically creates a ReplicaSet, which is then

responsible for maintaining the specified number of Pod replicas.

By using Deployments, you can:

Declarative Management: Define the desired state of your application, and Kubernetes

automatically ensures the cluster's actual state matches the desired state.

Version Control and Rollback: Track each revision of a Deployment and easily roll back to a

previous stable version if issues arise.

Zero-Downtime Updates: Gradually update your application using a rolling update strategy

without service interruption.

Understanding Deployments

↗

Deployments - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Self-Healing: Deployments automatically replace Pod instances if they crash, are

terminated, or are removed from a node, ensuring the specified number of Pods are always

available.

How it works:

1. You define the desired state of your application through a Deployment (e.g., which image to

use, how many replicas to run).

2. The Deployment creates a ReplicaSet to ensure the specified number of Pods are running.

3. The ReplicaSet creates and manages the actual Pod instances.

4. When you update a Deployment (e.g., change the image version), the Deployment creates

a new ReplicaSet and gradually replaces the old Pods with new ones according to the

predefined rolling update strategy until all new Pods are running, then it removes the old

ReplicaSet.

Ensure you have kubectl configured and connected to your cluster.

Creating Deployments

Creating a Deployment by using CLI

Prerequisites

YAML file example

Deployments - Alauda Container Platform

Creating a Deployment via YAML

Creating a Deployment by using web console

example-deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment # Name of the Deployment

 labels:

 app: nginx # Labels for identification and selection

spec:

 replicas: 3 # Desired number of Pod replicas

 selector:

 matchLabels:

 app: nginx # Selector to match Pods managed by this Deployment

 template:

 metadata:

 labels:

 app: nginx # Pod's labels, must match selector.matchLabels

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2 # Container image

 ports:

 - containerPort: 80 # Container exposed port

 resources: # Resource limits and requests

 requests:

 cpu: 100m

 memory: 128Mi

 limits:

 cpu: 200m

 memory: 256Mi

Step 1: Create Deployment via yaml

kubectl apply -f example-deployment.yaml

Step 2: Check the Deployment status

kubectl get deployment nginx-deployment # View Deployment

kubectl get pod -l app=nginx # View Pods created by this Deployment

Deployments - Alauda Container Platform

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1. Container Platform, navigate to Workloads > Deployments in the left sidebar.

2. Click on Create Deployment.

3. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

4. In the Basic Info section, configure declarative parameters for Deployment workloads:

Parameters Description

Replicas
Defines the desired number of Pod replicas in the Deployment

(default: 1). Adjust based on workload requirements.

More > Update

Strategy

Configures the rollingUpdate strategy for zero-downtime

deployments:

Max surge (maxSurge):

Prerequisites

Procedure - Configure Basic Info

Deployments - Alauda Container Platform

Parameters Description

Maximum number of Pods that can exceed the desired

replica count during an update.

Accepts absolute values (e.g., 2) or percentages (e.g.,

20%).

Percentage calculation: ceil(current_replicas × percentage) .

Example: 4.1 → 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

Maximum number of Pods that can be temporarily

unavailable during an update.

Percentage values cannot exceed 100% .

Percentage calculation: floor(current_replicas ×

percentage) .

Example: 4.9 → 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1 , maxUnavailable=1 if not explicitly

set.

2. Non-running Pods (e.g., in Pending / CrashLoopBackOff

states) are considered unavailable.

3. Simultaneous constraints:

maxSurge and maxUnavailable cannot both be 0 or 0% .

If percentage values resolve to 0 for both parameters,

Kubernetes forces maxUnavailable=1 to ensure update

progress.

Example:

For a Deployment with 10 replicas:

maxSurge=2 → Total Pods during update: 10 + 2 = 12 .

maxUnavailable=3 → Minimum available Pods: 10 - 3 = 7 .

This ensures availability while allowing controlled rollout.

Deployments - Alauda Container Platform

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1. Pod section, configure container runtime parameters and lifecycle management:

Parameters Description

Volumes

Mount persistent volumes to containers. Supported volume types

include PVC , ConfigMap , Secret , emptyDir , hostPath , and so on.

For implementation details, see Volume Mounting Guide.

Pull Secret

Required only when pulling images from third-party registries (via

manual image URL input).

Note: Secret for authentication when pulling image from a secured

registry.

Close Grace

Period

Duration (default: 30s) allowed for a Pod to complete graceful

shutdown after receiving termination signal.

- During this period, the Pod completes inflight requests and

releases resources.

- Setting 0 forces immediate deletion (SIGKILL), which may

cause request interruptions.

2. Node Affinity Rules

Parameters Description

More >

Node

Selector

Constrain Pods to nodes with specific labels (e.g. kubernetes.io/os:

linux).

More >

Affinity

Define fine-grained scheduling rules based on existing.

Affinity Types:

Pod Affinity: Schedule new Pods to nodes hosting specific

Pods(same topology domain).

Procedure - Configure Pod

Deployments - Alauda Container Platform

Parameters Description

Pod Anti-affinity: Prevent co-location of new Pods with specific

Pods.

Enforcement Modes:

requiredDuringSchedulingIgnoredDuringExecution : Pods are

scheduled only if rules are satisfied.

preferredDuringSchedulingIgnoredDuringExecution : Prioritize nodes

meeting rules, but allow exceptions.

Configuration Fields:

topologyKey : Node label defining topology domains

(default: kubernetes.io/hostname).

labelSelector : Filters target Pods using label queries.

3. Network Configuration

Kube-OVN

Parameters Description

Bandwidth

Limits

Enforce QoS for Pod network traffic:

Egress rate limit: Maximum outbound traffic rate (e.g.,

10Mbps).

Ingress rate limit: Maximum inbound traffic rate.

Subnet
Assign IPs from a predefined subnet pool. If unspecified, uses

the namespace's default subnet.

Static IP

Address

Bind persistent IP addresses to Pods:

Multiple Pods across Deployments can claim the same IP,

but only one Pod can use it concurrently.

Critical: Number of static IPs must ≥ Pod replica count.

Deployments - Alauda Container Platform

Calico

Parameters Description

Static IP Address

Assign fixed IPs with strict uniqueness:

Each IP can be bound to only one Pod in the cluster.

Critical: Static IP count must ≥ Pod replica count.

1. Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource Requests

& Limits
Requests: Minimum CPU/memory required for container

operation.

Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.

Namespace overcommit ratio:

Without overcommit ratio:

If namespace resource quotas exist: Container

requests/limits inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

With overcommit ratio:

Requests auto-calculated as Limits / Overcommit ratio

(immutable).

Constraints:

Request ≤ Limit ≤ Namespace quota maximum.

Overcommit ratio changes require pod recreation to take

effect.

Overcommit ratio disables manual request configuration.

Procedure - Configure Containers

Deployments - Alauda Container Platform

Parameters Description

No namespace quotas → no container resource

constraints.

Extended

Resources

Configure cluster-available extended resources (e.g., vGPU,

pGPU).

Volume Mounts

Persistent storage configuration. See Storage Volume

Mounting Instructions.

Operations:

Existing pod volumes: Click Add

No pod volumes: Click Add & Mount

Parameters:

mountPath : Container filesystem path (e.g., /data)

subPath : Relative file/directory path within volume.

For ConfigMap / Secret : Select specific key

readOnly : Mount as read-only (default: read-write)

See Kubernetes Volumes .

Ports

Expose container ports.

Example: Expose TCP port 6379 with name redis .

Fields:

protocol : TCP/UDP

Port : Exposed port (e.g., 6379)

name : DNS-compliant identifier (e.g., redis)

Startup Commands

& Arguments

Override default ENTRYPOINT/CMD:

Example 1: Execute top -b

- Command: ["top", "-b"]

- OR Command: ["top"] , Args: ["-b"]

Example 2: Output $MESSAGE :

↗

Deployments - Alauda Container Platform

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

Parameters Description

/bin/sh -c "while true; do echo $(MESSAGE); sleep 10; done"

See Defining Commands .

More >

Environment

Variables

Static values: Direct key-value pairs

Dynamic values: Reference ConfigMap/Secret keys, pod

fields (fieldRef), resource metrics (resourceFieldRef)

Note: Env variables override image/configuration file

settings.

More > Referenced

ConfigMaps

Inject entire ConfigMap/Secret as env variables. Supported

Secret types: Opaque , kubernetes.io/basic-auth .

More > Health

Checks

Liveness Probe: Detect container health (restart if

failing)

Readiness Probe: Detect service availability (remove

from endpoints if failing)

See Health Check Parameters.

More > Log Files

Configure log paths:

- Default: Collect stdout

- File patterns: e.g., /var/log/*.log

Requirements:

Storage driver overlay2 : Supported by default

devicemapper : Manually mount EmptyDir to log directory

Windows nodes: Ensure parent directory is mounted

(e.g., c:/a for c:/a/b/c/*.log)

More > Exclude Log

Files

Exclude specific logs from collection (e.g.,

/var/log/aaa.log).

More > Execute

before Stopping

Execute commands before container termination.

Example: echo "stop"

↗

Deployments - Alauda Container Platform

https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Parameters Description

Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2. Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

1. Start before app containers (sequential execution).

2. Release resources after completion.

3. Deletion allowed when:

Pod has >1 app container AND ≥1 init container.

Not allowed for single-app-container pods.

3. Click Create.

Type Purpose

Persistent

Volume Claim

Binds an existing PVC to request persistent storage.

Note: Only bound PVCs (with associated PV) are selectable.

Unbound PVCs will cause pod creation failures.

ConfigMap

Mounts full/partial ConfigMap data as files:

Full ConfigMap: Creates files named after keys under mount

path

Subpath selection: Mount specific key (e.g., my.cnf)

↗

Reference Information

Storage Volume Mounting instructions

Deployments - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Type Purpose

Secret

Mounts full/partial Secret data as files:

Full Secret: Creates files named after keys under mount path

Subpath selection: Mount specific key (e.g., tls.crt)

Ephemeral

Volumes

Cluster-provisioned temporary volume with features:

Dynamic provisioning

Lifecycle tied to pod

Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Empty Directory

Ephemeral storage sharing between containers in same pod:

Created on node when pod starts

Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage.

See EmptyDir

Host Path
Mounts host machine directory (must start with / , e.g.,

/volumepath).

Health checks YAML file example

Health checks configuration parameters in web console

Heath Checks

Managing Deployments

Managing a Deployment by using CLI

Viewing a Deployment

Deployments - Alauda Container Platform

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Check the Deployment was created.

Get details of your Deployment.

Follow the steps given below to update your Deployment:

1. Let's update the nginx Pods to use the nginx:1 .16.1 image.

or use the following command:

Alternatively, you can edit the Deployment and change

.spec.template.spec.containers[0].image from nginx:1.14.2 to nginx:1.16.1 :

2. To see the rollout status, run:

Run kubectl get rs to see that the Deployment updated the Pods by creating a new

ReplicaSet and scaling it up to 3 replicas, as well as scaling down the old ReplicaSet to 0

replicas.

Updating a Deployment

kubectl get deployments

kubectl describe deployments

kubectl set image deployment.v1.apps/nginx-deployment nginx=nginx:1.16.1

kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1

kubectl edit deployment/nginx-deployment

kubectl rollout status deployment/nginx-deployment

kubectl get rs

Deployments - Alauda Container Platform

Running get pods should now show only the new Pods:

You can scale a Deployment by using the following command:

Suppose that you made a typo while updating the Deployment, by putting the image name

as nginx:1.161 instead of nginx:1.16.1 :

The rollout gets stuck. You can verify it by checking the rollout status:

Deleting a Deployment will also delete its managed ReplicaSet and all associated Pods.

You can view a deployment to get information of your application.

1. Container Platform, and navigate to Workloads > Deployments.

Scaling a Deployment

Rolling Back a Deployment

Deleting a Deployment

Managing a Deployment by using web console

Viewing a Deployment

kubectl get pods

kubectl scale deployment/nginx-deployment --replicas=10

kubectl set image deployment/nginx-deployment nginx=nginx:1.161

kubectl rollout status deployment/nginx-deployment

kubectl delete deployment <deployment-name>

Deployments - Alauda Container Platform

2. Locate the Deployment you wish to view.

3. Click the deployment name to see the Details, Topology, Logs, Events, Monitoring, etc.

1. Container Platform, and navigate to Workloads > Deployments.

2. Locate the Deployment you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit Deployment page.

1. Container Platform, and navigate to Workloads > Deployments.

2. Locate the Deployment you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

When a Deployment encounters issues, here are some common troubleshooting methods.

Updating a Deployment

Deleting a Deployment

Troubleshooting by using CLI

Check Deployment status

Check ReplicaSet status

Check Pod status

kubectl get deployment nginx-deployment

kubectl describe deployment nginx-deployment # View detailed events and status

kubectl get rs -l app=nginx

kubectl describe rs <replicaset-name>

Deployments - Alauda Container Platform

Ensure livenessProbe and readinessProbe are correctly configured, and your application's

health check endpoints are responding properly. Troubleshooting probe failures

Ensure container resource requests and limits are reasonable and that containers are not

being killed due to insufficient resources.

View Logs

Enter Pod for debugging

Check Health configuration

Check Resource Limits

kubectl get pods -l app=nginx

kubectl describe pod <pod-name>

kubectl logs <pod-name> -c <container-name> # View logs for a specific container

kubectl logs <pod-name> --previous # View logs for the previously terminated

container

kubectl exec -it <pod-name> -- /bin/bash # Enter the container shell

Deployments - Alauda Container Platform

Understanding DaemonSets

Creating DaemonSets

Creating a DaemonSet by using CLI

Prerequisites

YAML file example

Creating a DaemonSet via YAML

Creating a DaemonSet by using web console

Prerequisites

Procedure - Configure Basic Info

Procedure - Configure Pod

Procedure - Configure Containers

Procedure - Create

Managing DaemonSets

Managing a DaemonSet by using CLI

Viewing a DaemonSet

Updating a DaemonSet

Deleting a DaemonSet

Managing a DaemonSet by using web console

Viewing a DaemonSet

Updating a DaemonSet

Deleting a DaemonSet

DaemonSets

TOC

Menu ON THIS PAGE

DaemonSets - Alauda Container Platform

Refer to the official Kubernetes documentation: DaemonSets

A DaemonSet is a Kubernetes controller that ensures all (or a subset of) cluster nodes run

exactly one replica of a specified Pod. Unlike Deployments, DaemonSets are node-centric

rather than application-centric, making them ideal for deploying cluster-wide infrastructure

services such as log collectors, monitoring agents, or storage daemons.

WARNING

DaemonSet Operational Notes

1. Behavior Characteristics

Pod Distribution: A DaemonSet deploys exactly one Pod replica per schedulable Node that

matches its criteria:

Deploys exactly one Pod replica per schedulable node matching:

Matches nodeSelector or nodeAffinity criteria (if specified).

Is not in the NotReady state.

Does not have NoSchedule or NoExecute Taints unless corresponding Tolerations

are configured in the Pod Template.

Pod Count Formula: The number of Pods managed by a DaemonSet equals the number

of qualified Nodes.

Dual-Role Node Handling: Nodes serving both Control Plane and Worker Node roles will

only run one Pod instance of the DaemonSet, regardless of their role labels, provided they

are schedulable.

2. Key Constraints (Excluded Nodes)

Nodes explicitly marked Unschedulable: true (e.g., via kubectl cordon).

Nodes with a NotReady status.

Nodes having incompatible Taints without matching Tolerations configured in the

DaemonSet's Pod Template.

Understanding DaemonSets

↗

DaemonSets - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

Ensure you have kubectl configured and connected to your cluster.

Creating DaemonSets

Creating a DaemonSet by using CLI

Prerequisites

YAML file example

DaemonSets - Alauda Container Platform

example-daemonSet.yaml

apiVersion: apps/v1

kind: DaemonSet

metadata:

 name: fluentd-elasticsearch

 namespace: kube-system

 labels:

 k8s-app: fluentd-logging

spec:

 selector: # defines how the DaemonSet identifies its managed Pods. Must match

`template.metadata.label`s.

 matchLabels:

 name: fluentd-elasticsearch

 updateStrategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 template: # defines the Pod Template for the DaemonSet. Each Pod created by this

DaemonSet will conform to this template

 metadata:

 labels:

 name: fluentd-elasticsearch

 spec:

 tolerations: # these tolerations are to have the daemonset runnable on control

plane nodes, remove them if your control plane nodes should not run pods

 - key: node-role.kubernetes.io/control-plane

 operator: Exists

 effect: NoSchedule

 - key: node-role.kubernetes.io/master

 operator: Exists

 effect: NoSchedule

 containers:

 - name: fluentd-elasticsearch

 image: quay.io/fluentd_elasticsearch/fluentd:v2.5.2

 resources:

 limits:

 memory: 200Mi

 requests:

 cpu: 100m

 memory: 200Mi

 volumeMounts:

 - name: varlog

 mountPath: /var/log

DaemonSets - Alauda Container Platform

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

1. Container Platform, navigate to Workloads > DaemonSets in the left sidebar.

2. Click Create DaemonSet.

Creating a DaemonSet via YAML

Creating a DaemonSet by using web console

Prerequisites

Procedure - Configure Basic Info

 # it may be desirable to set a high priority class to ensure that a DaemonSet Pod

 # preempts running Pods

 # priorityClassName: important

 terminationGracePeriodSeconds: 30

 volumes:

 - name: varlog

 hostPath:

 path: /var/log

Step 1: To create the DaemonSet defined in *example-daemonSet.yaml*, execute the

following command

kubectl apply -f example-daemonSet.yaml

Step 2: To verify the creation and status of your DaemonSet and its associated Pods:

kubectl get daemonset fluentd-elasticsearch # View DaemonSet

kubectl get pods -l name=fluentd-elasticsearch -o wide # Check Pods managed by this

DaemonSet on specific nodes

DaemonSets - Alauda Container Platform

3. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for DaemonSet workloads:

Parameters Description

More > Update

Strategy

Configures the rollingUpdate strategy for zero-downtime updates of

DaemonSet Pods.

Max unavailable (maxUnavailable): The maximum number of Pods

that can be temporarily unavailable during an update. Accepts

absolute values (e.g., 1) or percentages (e.g., 10%).

Example: If there are 10 nodes and maxUnavailable is 10%, then

floor(10 * 0.1) = 1 Pod can be unavailable.

Notes:

Default Values: If not explicitly set, maxSurge defaults to 0 and

maxUnavailable defaults to 1 (or 10% if maxUnavailable is

specified as a percentage).

Non-running Pods: Pods in states like Pending or

CrashLoopBackOff are considered unavailable.

Simultaneous Constraints: maxSurge and maxUnavailable

cannot both be 0 or 0%. If percentage values resolve to 0 for both

parameters, Kubernetes forces maxUnavailable=1 to ensure

update progress.

Pod section, please refer to Deployment - Configure Pod

Procedure - Configure Pod

DaemonSets - Alauda Container Platform

Containers section, please refer to Deployment - Configure Containers

Click Create.

After clicking Create, the DaemonSet will:

✅ Automatically deploy Pod replicas to all eligible Nodes meeting:

nodeSelector criteria (if defined).

tolerations configuration (allowing scheduling on tainted nodes).

Node is in Ready state and Schedulable: true .

❌ Excluded Nodes:

Nodes with a NoSchedule taint (unless explicitly tolerated).

Manually cordoned Nodes (kubectl cordon).

Nodes in NotReady or Unschedulable states.

To get a summary of all DaemonSets in a namespace.

To get detailed information about a specific DaemonSet, including its events and Pod

status

Procedure - Configure Containers

Procedure - Create

Managing DaemonSets

Managing a DaemonSet by using CLI

Viewing a DaemonSet

kubectl get daemonsets -n <namespace>

DaemonSets - Alauda Container Platform

When you modify the Pod Template of a DaemonSet (e.g., changing the container image or

adding a volume mount), Kubernetes automatically performs a rolling update by default (if

updateStrategy.type is RollingUpdate , which is the default).

First, edit the YAML file (e.g., example-daemonset.yaml) with the desired changes, then apply

it:

You can monitor the progress of the rolling update:

To delete a DaemonSet and all the Pods it manages:

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to view.

3. Click the DaemonSet name to see the Details, Topology, Logs, Events, Monitoring, etc.

1. Container Platform, and navigate to Workloads > DaemonSets.

Updating a DaemonSet

Deleting a DaemonSet

Managing a DaemonSet by using web console

Viewing a DaemonSet

Updating a DaemonSet

kubectl describe daemonset <daemonset-name>

kubectl apply -f example-daemonset.yaml

kubectl rollout status daemonset/<daemonset-name>

kubectl delete daemonset <daemonset-name>

DaemonSets - Alauda Container Platform

2. Locate the DaemonSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit DaemonSet page, you can

update Replicas , image , updateStrategy , etc.

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

Deleting a DaemonSet

DaemonSets - Alauda Container Platform

Understanding StatefulSets

Creating StatefulSets

Creating a StatefulSet by using CLI

Prerequisites

YAML file example

Creating a StatefulSet via YAML

Creating a StatefulSet by using web console

Prerequisites

Procedure - Configure Basic Info

Procedure - Configure Pod

Procedure - Configure Containers

Procedure - Create

Heath Checks

Managing StatefulSets

Managing a StatefulSet by using CLI

Viewing a StatefulSet

Scaling a StatefulSet

Updating a StatefulSet (Rolling Update)

Deleting a StatefulSet

Managing a StatefulSet by using web console

Viewing a StatefulSet

Updating a StatefulSet

StatefulSets

TOC

Menu ON THIS PAGE

StatefulSets - Alauda Container Platform

Deleting a StatefulSet

Refer to the official Kubernetes documentation: StatefulSets

StatefulSet is a Kubernetes workload API object designed to manage stateful applications by

providing:

Stable network identity: DNS hostname <statefulset-name>-<ordinal>.<service-

name>.ns.svc.cluster.local .

Stable persistent storage: via volumeClaimTemplates .

Ordered deployment/scaling: sequential Pod creation/deletion: Pod-0 → Pod-1 → Pod-N.

Ordered rolling updates: reverse-ordinal Pod updates: Pod-N → Pod-0.

In distributed systems, multiple StatefulSets can be deployed as discrete components to

deliver specialized stateful services (e.g., Kafka brokers, MongoDB shards).

Ensure you have kubectl configured and connected to your cluster.

Understanding StatefulSets

↗

Creating StatefulSets

Creating a StatefulSet by using CLI

Prerequisites

YAML file example

StatefulSets - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

example-statefulset.yaml

apiVersion: apps/v1

kind: StatefulSet

metadata:

 name: web

spec:

 selector:

 matchLabels:

 app: nginx # has to match .spec.template.metadata.labels

 serviceName: 'nginx' # this headless Service is responsible for the network identity of

the Pods

 replicas: 3 # defines the desired number of Pod replicas (default: 1)

 minReadySeconds: 10 # by default is 0

 template: # defines the Pod template for the StatefulSet

 metadata:

 labels:

 app: nginx # has to match .spec.selector.matchLabels

 spec:

 terminationGracePeriodSeconds: 10

 containers:

 - name: nginx

 image: registry.k8s.io/nginx-slim:0.24

 ports:

 - containerPort: 80

 name: web

 volumeMounts:

 - name: www

 mountPath: /usr/share/nginx/html

 volumeClaimTemplates: # defines PersistentVolumeClaim (PVC) templates. Each Pod gets a

unique PersistentVolume (PV) dynamically provisioned based on these templates.

 - metadata:

 name: www

 spec:

 accessModes: ['ReadWriteOnce']

 storageClassName: 'my-storage-class'

 resources:

 requests:

 storage: 1Gi

example-service.yaml

apiVersion: v1

kind: Service

metadata:

StatefulSets - Alauda Container Platform

Obtain the image address. The source of the images can be from the image repository

integrated by the platform administrator through the toolchain or from third-party platforms'

image repositories.

For the former, the Administrator typically assigns the image repository to your project, and

you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

If it is a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Creating a StatefulSet via YAML

Creating a StatefulSet by using web console

Prerequisites

Procedure - Configure Basic Info

 name: nginx

 labels:

 app: nginx

spec:

 ports:

 - port: 80

 name: web

 clusterIP: None

 selector:

 app: nginx

Step 1: To create the StatefulSet defined in *example-statefulset.yaml*, execute the

following command

kubectl apply -f example-statefulset.yaml

Step 2: To verify the creation and status of your StatefulSet and its associated Pods

and PVCs:

kubectl get statefulset web # View StatefulSet

kubectl get pods -l app=nginx # Check Pods managed by this StatefulSet

kubectl get pvc -l app=nginx # Check PVCs created by volumeClaimTemplates

StatefulSets - Alauda Container Platform

1. Container Platform, navigate to Workloads > StatefulSets in the left sidebar.

2. Click Create StatefulSet.

3. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for StatefulSet workloads:

Parameters Description

Replicas

Defines the desired number of Pod replicas in the StatefulSet

(default: 1). Adjust based on workload requirements and expected

request volume.

Update

Strategy

Controls phased updates during StatefulSet rolling updates. The

RollingUpdate strategy is default and recommended.

Partition value: Ordinal threshold for Pod updates.

Pods with index ≥ partition update immediately.

Pods with index < partition retain previous spec.

Example:

Replicas=5 (Pods: web-0 ~ web-4)

Partition=3 (Updates web-3 & web-4 only)

Volume Claim

Templates

volumeClaimTemplates is a critical feature of StatefulSets that enables

dynamic per-Pod persistent storage provisioning. Each Pod replica in

a StatefulSet automatically gets its own dedicated

PersistentVolumeClaim (PVC) based on predefined templates.

StatefulSets - Alauda Container Platform

Parameters Description

1. Dynamic PVC Creation: Automatically creates unique PVCs for

each Pod with a naming pattern: <statefulset-name>-<claim-

template-name>-<pod-ordinal> . Example: web-www-web-0 , web-www-

web-1 .

2. Access Modes: Supports all Kubernetes access modes.

ReadWriteOnce (RWO - single-node read/write)

ReadOnlyMany (ROX - multi-node read-only)

ReadWriteMany (RWX - multi-node read/write).

3. Storage Class: Specify the storage backend via

storageClassName. It uses the cluster's default StorageClass if

unspecified. Supports various cloud/on-prem storage types (e.g.,

SSD, HDD).

4. Capacity: Configure storage capacity through

resources.requests.storage. Example: 1Gi. Supports dynamic

volume expansion if enabled by the StorageClass.

Pod section, please refer to Deployment - Configure Pod

Containers section, please refer to Deployment - Configure Containers

Click Create.

Health checks YAML file example

Health checks configuration parameters in web console

Procedure - Configure Pod

Procedure - Configure Containers

Procedure - Create

Heath Checks

StatefulSets - Alauda Container Platform

You can view a StatefulSet to get information of your application.

Check the StatefulSet was created.

Get details of your StatefulSet.

To change the number of replicas for an existing StatefulSet:

Example:

When you modify the Pod template of a StatefulSet (e.g., changing the container image),

Kubernetes performs a rolling update by default (if updateStrategy is set to RollingUpdate,

which is the default).

First, edit the YAML file (e.g., example-statefulset.yaml) with the desired changes, then

apply it:

Managing StatefulSets

Managing a StatefulSet by using CLI

Viewing a StatefulSet

Scaling a StatefulSet

Updating a StatefulSet (Rolling Update)

kubectl get statefulsets

kubectl describe statefulsets

kubectl scale statefulset <statefulset-name> --replicas=<new-replica-count>

kubectl scale statefulset web --replicas=5

StatefulSets - Alauda Container Platform

Then, you can monitor the progress of the rolling update:

To delete a StatefulSet and its associated Pods:

By default, deleting a StatefulSet does not delete its associated PersistentVolumeClaims

(PVCs) or PersistentVolumes (PVs) to prevent data loss. To also delete the PVCs, you must

do so explicitly:

Alternatively, if your volumeClaimTemplates use a StorageClass with a reclaimPolicy of

Delete , the PVs and underlying storage will be deleted automatically when the PVCs are

deleted.

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to view.

3. Click the statefulSet name to see the Details, Topology, Logs, Events, Monitoring, etc.

1. Container Platform, and navigate to Workloads > StatefulSets.

Deleting a StatefulSet

Managing a StatefulSet by using web console

Viewing a StatefulSet

Updating a StatefulSet

kubectl apply -f example-statefulset.yaml

kubectl rollout status statefulset/<statefulset-name>

kubectl delete statefulset <statefulset-name>

kubectl delete pvc -l app=<label-selector-for-your-statefulset> # Example: kubectl delete

pvc -l app=nginx

StatefulSets - Alauda Container Platform

2. Locate the StatefulSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit StatefulSet page, you can

update Replicas , image , updateStrategy , etc.

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

Deleting a StatefulSet

StatefulSets - Alauda Container Platform

Understanding CronJobs

Creating CronJobs

Creating a CronJob by using CLI

Prerequisites

YAML file example

Creating a CronJobs via YAML

Creating CronJobs by using web console

Prerequisites

Procedure - Configure basic info

Procedure - Configure Pod

Procedure - Configure Containers

Create

Execute Immediately

Locate the CronJob resource

Initiate ad-hoc execution

Verify Job details:

Monitor execution status

Deleting CronJobs

Deleting CronJobs by using web console

Deleting CronJobs by using CLI

CronJobs

TOC

Menu ON THIS PAGE

CronJobs - Alauda Container Platform

Refer to the official Kubernetes documentation:

CronJobs

Running Automated Tasks with a CronJob

CronJob define tasks that run to completion and then stop. They allow you to run the same

Job multiple times according to a schedule.

A CronJob is a type of workload controller in Kubernetes. You can create a CronJob through

the web console or CLI to periodically or repeatedly run a non-persistent program, such as

scheduled backups, scheduled clean-ups, or scheduled email dispatches.

Ensure you have kubectl configured and connected to your cluster.

Understanding CronJobs

↗

↗

Creating CronJobs

Creating a CronJob by using CLI

Prerequisites

YAML file example

CronJobs - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

Obtain the image address. Images can be sourced from an image registry integrated by the

platform administrator via a toolchain, or from third-party image registries.

For images from an integrated registry, the Administrator typically assigns the image

registry to your project, allowing you to use the images within it. If the required image

registry is not found, please contact the Administrator for allocation.

If using a third-party image registry, ensure that images can be pulled directly from it within

the current cluster.

Creating a CronJobs via YAML

Creating CronJobs by using web console

Prerequisites

example-cronjob.yaml

apiVersion: batch/v1

kind: CronJob

metadata:

 name: hello

spec:

 schedule: "* * * * *"

 jobTemplate:

 spec:

 template:

 spec:

 containers:

 - name: hello

 image: busybox:1.28

 imagePullPolicy: IfNotPresent

 command:

 - /bin/sh

 - -c

 - date; echo Hello from the Kubernetes cluster

 restartPolicy: OnFailure

kubectl apply -f example-cronjob.yaml

CronJobs - Alauda Container Platform

1. Container Platform, navigate to Workloads > CronJobs in the left sidebar.

2. Click on Create CronJob.

3. Select or Input an image, and click Confirm.

Note: Image filtering is available only when using images from the platform's integrated

image registry. For example, an integrated project name like containers (docker-registry-

projectname) indicates the platform's project name projectname and the image registry's

project name containers.

4. In the Cron Configuration section, configure the task execution method and associated

parameters.

Execute Type:

Manual: Manual execution requires explicit manual triggering for each task run.

Scheduled: Scheduled execution requires configuring the following scheduling

parameters:

Parameter Description

Schedule

Define the cron schedule using Crontab syntax . The

CronJob controller calculates the next execution time based

on the selected timezone.

Notes:

For Kubernetes clusters < v1.25: Timezone selection is

unsupported; schedules MUST use UTC.

For Kubernetes clusters ≥ v1.25: Timezone-aware

scheduling is supported (default: user's local timezone).

Concurrency

Policy

Specify how concurrent Job executions are handled (Allow ,

Forbid , or Replace per K8s spec).

Procedure - Configure basic info

↗

↗

CronJobs - Alauda Container Platform

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy

Job History Retention:

Set retention limits for completed Jobs:

History Limits: Successful jobs history limit (default: 20)

Failed Jobs: Failed jobs history limit** (default: 20)

When retention limits are exceeded, the oldest jobs are garbage-collected first.

5. In the Job Configuration section, select the job type. A CronJob manages Jobs composed

of Pods. Configure the Job template based on your workload type:

Parameter Description

Job Type
Select Job completion mode (Non-parallel , Parallel with fixed

completion count , or Indexed Job per K8s Job patterns).

Backoff

Limit

Set the maximum number of retry attempts before marking a Job as

failed.

Pod section, please refer to Deployment - Configure Pod

Container section, please refer to Deployment - Configure Containers

Click Create.

web console: Container Platform, and navigate to Workloads > CronJobs in the left

sidebar.

↗

Procedure - Configure Pod

Procedure - Configure Containers

Create

Execute Immediately

Locate the CronJob resource

CronJobs - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns

CLI:

web console: Execute Immediately

1. Click the vertical ellipsis (⋮) on the right side of the cronjob list.

2. Click Execute Immediately. (Alternatively, from the CronJob details page, click Actions

in the upper-right corner and select Execute Immediately).

CLI:

Status Description

Pending The Job has been created but not yet scheduled.

Running The Job Pod(s) are actively executing.

Succeeded All Pods associated with the Job completed successfully (exit code 0).

Failed
At least one Pod associated with the Job terminated unsuccessfully

(non-zero exit code).

Initiate ad-hoc execution

Verify Job details:

Monitor execution status

kubectl get cronjobs -n <namespace>

kubectl create job --from=cronjob/<cronjob-name> <job-name> -n <namespace>

kubectl describe job/<job-name> -n <namespace>

kubectl logs job/<job-name> -n <namespace>

CronJobs - Alauda Container Platform

1. Container Platform, and navigate to Workloads > CronJobs.

2. Locate the CronJobs you wish to delete.

3. In the Actions drop-down menu, Click the Delete button and confirm.

Deleting CronJobs

Deleting CronJobs by using web console

Deleting CronJobs by using CLI

 kubectl delete cronjob <cronjob-name>

CronJobs - Alauda Container Platform

Understanding Jobs

YAML file example

Execution Overview

Refer to the official Kubernetes documentation: Jobs

A Job provide different ways to define tasks that run to completion and then stop. You can use

a Job to define a task that runs to completion, just once.

Atomic Execution Unit: Each Job manages one or more Pods until successful

completion.

Retry Mechanism: Controlled by spec.backoffLimit (default: 6).

Completion Tracking: Use spec.completions to define required success count.

Jobs

TOC

Understanding Jobs

↗

YAML file example

Menu ON THIS PAGE

Jobs - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Each Job execution in Kubernetes creates a dedicated Job object, enabling users to:

Creating a job via

Track job lifecycle via

Inspect execution details via

View Pod logs via

Execution Overview

example-job.yaml

apiVersion: batch/v1

kind: Job

metadata:

 name: data-processing-job

spec:

 completions: 1 # Number of successful completions required

 parallelism: 1 # Maximum parallel Pods

 backoffLimit: 3 # Maximum retry attempts

 template:

 spec:

 restartPolicy: Never # Job-specific policy (Never/OnFailure)

 containers:

 - name: processor

 image: alpine:3.14

 command: ['/bin/sh', '-c']

 args:

 - echo "Processing data..."; sleep 30; echo "Job completed"

kubectl apply -f example-job.yaml

kubectl get jobs

kubectl describe job/<job-name>

Jobs - Alauda Container Platform

kubectl logs <pod-name>

Jobs - Alauda Container Platform

Understanding Pods

YAML file example

Managing a Pod by using CLI

Viewing a Pod

Viewing a Pod Logs

Executing Commands in a Pod

Port Forwarding to a Pod

Deleting a Pod

Managing a Pod by using web console

Viewing a Pod

Procedure

Pod Parameters

Deleting a Pod

Use Cases

Procedure

Refer to the official Kubernetes website documentation: Pod

Pods

TOC

Understanding Pods

↗

Menu ON THIS PAGE

Pods - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/

A Pod is the smallest deployable unit of computing that you can create and manage in

Kubernetes. A Pod (as in a pod of whales or a pea pod) is a group of one or more containers

(such as Docker containers), with shared storage and network resources, and a specification

for how to run the containers. Pods are the fundamental building blocks on which all higher-

level controllers (like Deployments, StatefulSets, DaemonSets) are built.

While Pods are often managed by higher-level controllers, direct kubectl operations on Pods

are useful for troubleshooting, inspection, and ad-hoc tasks.

YAML file example

pod-example.yaml

Managing a Pod by using CLI

apiVersion: v1

kind: Pod

metadata:

 name: my-nginx-pod

 labels:

 app: nginx

spec:

 containers:

 - name: nginx

 image: nginx:latest # The container image to use.

 ports:

 - containerPort: 80 # Container ports exposed.

 resources: # Defines CPU and memory requests and limits for the container.

 requests:

 cpu: '100m'

 memory: '128Mi'

 limits:

 cpu: '200m'

 memory: '256Mi'

Pods - Alauda Container Platform

To list all Pods in the current namespace:

To list all Pods across all namespaces:

To get detailed information about a specific Pod:

To stream logs from a container within a Pod (useful for debugging):

If a Pod has multiple containers, you must specify the container name:

To follow the logs (stream new logs as they appear):

Viewing a Pod

Viewing a Pod Logs

kubectl get pods

kubectl get pods --all-namespaces

Or a shorter version:

kubectl get pods -A

kubectl describe pod <pod-name> -n <namespace>

Example

kubectl describe pod my-nginx-pod -n default

kubectl logs <pod-name> -n <namespace>

kubectl logs <pod-name> -c <container-name> -n <namespace>

kubectl logs -f <pod-name> -n <namespace>

Pods - Alauda Container Platform

To execute a command inside a specific container within a Pod (useful for debugging, like

accessing a shell):

To forward a local port to a port on a Pod, allowing direct access to a service running inside

the Pod from your local machine (useful for testing or direct access without exposing the

service externally):

After running this command, you can access the Nginx web server running in my-nginx-pod by

visiting localhost:8080 in your web browser.

To delete a specific Pod:

To delete multiple Pods by their names:

Executing Commands in a Pod

Port Forwarding to a Pod

Deleting a Pod

kubectl exec -it <pod-name> -n <namespace> -- <command>

Example (to get a shell):

kubectl exec -it my-nginx-pod -n default -- /bin/bash

kubectl port-forward <pod-name> <local-port>:<pod-port> -n <namespace>

#Example

kubectl port-forward my-nginx-pod 8080:80 -n default

kubectl delete pod <pod-name> -n <namespace>

Example

kubectl delete pod my-nginx-pod -n default

Pods - Alauda Container Platform

To delete Pods based on a label selector (e.g., delete all Pods with the label app=nginx):

The platform interface provides various information about the pods for quick reference.

1. Container Platform, navigate to Workloads > Pods in the left sidebar.

2. Locate the Pod you wish to view.

3. Click the deployment name to see the Details, YAML, Configuration, Logs, Events,

Monitoring, etc.

Below are some parameter explanations:

Parameter Description

Resource

Requests &

Limits

Resource Requests and Limits define the CPU and memory

consumption boundaries for Containers within a Pod, which then

aggregate to form the Pod's overall resource profile. These values are

crucial for Kubernetes' scheduler to efficiently place Pods on Nodes

and for the kubelet to enforce resource governance.

Requests: The minimum guaranteed CPU/memory required for a

container to be scheduled and run. This value is used by the

Managing a Pod by using web console

Viewing a Pod

Procedure

Pod Parameters

kubectl delete pod <pod-name-1> <pod-name-2> -n <namespace>

kubectl delete pods -l app=nginx -n <namespace>

Pods - Alauda Container Platform

Parameter Description

Kubernetes scheduler to decide which Node a Pod can run on.

Limits: The maximum CPU/memory a container is allowed to

consume during its execution. Exceeding CPU limits results in

throttling, while exceeding memory limits leads to the container

being terminated (Out Of Memory - OOM Killed).

For detailed unit definitions (e.g., m for milliCPU, Mi for mebibytes),

refer to Resource Units.

Pod-Level Resource Calculation Logic

The effective CPU and memory Requests and Limits values for a Pod

are derived from the sum and maximum of its individual container

specifications. The calculation method for Pod-level Requests and

Limits is analogous; this document illustrates the logic using Limit

values as an example. When a Pod contains only standard containers

(business containers): The Pod's effective CPU/Memory Limit value is

the sum of the CPU/Memory Limit values of all containers within the

Pod.

Example: If a Pod includes two containers with CPU/Memory Limits of

100m/100Mi and 50m/200Mi respectively, the Pod's aggregated

CPU/Memory Limit will be 150m/300Mi. When a Pod contains both

initContainers and standard containers: The calculation steps for the

Pod's CPU/Memory Limit values are as follows:

1. Determine the maximum CPU/Memory Limit value among all

initContainers.

2. Calculate the sum of CPU/Memory Limit values of all standard

containers.

3. Compare the results from step 1 and step 2. The Pod's

comprehensive CPU/Memory Limit will be the maximum of the CPU

values (from initContainers max and containers sum) and the

maximum of the Memory values (from initContainers max and

containers sum).

Pods - Alauda Container Platform

Parameter Description

Calculation Example: If a Pod contains two initContainers with

CPU/Memory Limits of 100m/200Mi and 200m/100Mi, the maximum

effective CPU/Memory Limit for the initContainers would be

200m/200Mi. Simultaneously, if the Pod also contains two standard

containers with CPU/Memory Limits of 100m/100Mi and 50m/200Mi,

the total aggregated Limit for the standard containers will be

150m/300Mi. Therefore, the Pod's comprehensive CPU/Memory Limit

would be max(200m, 150m) for CPU and max(200Mi, 300Mi) for

Memory, resulting in 200m/300Mi.

Source
The Kubernetes workload controller that manages this Pod's life cycle.

This includes Deployments, StatefulSets, DaemonSets, Jobs.

Restart

The number of times the Container within the Pod has restarted since

the Pod was started. A high restart count often indicates an issue with

the application or its environment.

Node
The name of the Kubernetes Node where the Pod is currently

scheduled and running.

Service

Account

A Service Account is a Kubernetes object that provides an identity for

processes and services running inside a Pod, allowing them to

authenticate and access the Kubernetes APIServer. This field is

typically visible only when the currently logged-in user has the platform

administrator role or the platform auditor role, enabling the viewing of

the Service Account's YAML definition.

Deleting pods may affect the operation of computing components; please proceed with

caution.

Restore the pods to its desired state promptly: If a pods remains in a state that affects

business operations, such as Pending or CrashLoopBackOff , manually deleting the pods

Deleting a Pod

Use Cases

Pods - Alauda Container Platform

after addressing the error message can help it quickly return to its desired state, such as

Running . At this time, the deleted pods will be rebuilt on the current node or rescheduled.

Resource cleanup for operations management: Some podss reach a designated stage

where they no longer change, and these groups often accumulate in large numbers,

complicating the management of other podss. The podss to be cleaned up may include

those in the Evicted status due to insufficient node resources or those in the Completed

status triggered by recurring scheduled tasks. In this case, the deleted podss will no longer

exist.

Note: For scheduled tasks, if you need to check the logs of each task execution, it is not

recommended to delete the corresponding Completed status podss.

1. Go to Container Platform.

2. In the left navigation bar, click Workloads > Pods.

3. (Delete individually) Click the ⋮ on the right side of the pods to be deleted > Delete, and

confirm.

4. (Delete in bulk) Select the podss to be deleted, click Delete above the list, and confirm.

Procedure

Pods - Alauda Container Platform

Understanding Containers

Understanding Ephemeral Containers

Implementation Principle: Leveraging Ephemeral Containers

Debugging Ephemeral Containers by using CLI

Debugging Ephemeral Containers by using web console

Interacting with Containers

Interacting with Containers by using CLI

Exec

Transfer Files

Interacting with Containers by using web console

Entering the Container through Applications

Entering the Container through the Pod

Refer to the official Kubernetes website documentation: Containers .

A container is a lightweight, executable package of software that includes everything needed

to run an application: code, runtime, system tools, system libraries, and settings. While Pods

are the smallest deployable units, containers are the core components within Pods.

Containers

TOC

Understanding Containers

↗

Menu ON THIS PAGE

Containers - Alauda Container Platform

https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/

Debugging Containers with Refer to the official Kubernetes website documentation:

Ephemeral Containers

The Kubernetes Ephemeral Containers feature provides a robust way to debug running

containers by injecting specialized debugging tools (system, network, and disk utilities) into an

existing Pod.

While you can often execute commands directly within a running container using kubectl exec,

many production container images are intentionally minimal and may lack essential debugging

utilities (e.g., bash, net-tools, tcpdump) to reduce image size and attack surface. Ephemeral

Containers address this limitation by providing a pre-configured environment with a rich set of

debugging tools, making them ideal for the following scenarios:

Fault Diagnosis: When a primary application container experiences issues (e.g.,

unexpected crashes, performance degradation, network connectivity problems), beyond

checking standard Pod events and logs, you often need to perform deeper, interactive

troubleshooting directly within the Pod's runtime environment.

Configuration Tuning and Experimentation: If the current application configuration

exhibits suboptimal behavior, you might want to temporarily adjust component settings or

test new configurations directly within the running container to observe immediate effects

and devise improved solutions.

The debugging functionality is implemented using Ephemeral Containers. An Ephemeral

Container is a special type of container designed for introspection and debugging. It shares

the Pod's network namespace and process namespace (if enabled) with the existing primary

containers , allowing it to directly interact with and observe the application processes.

You can dynamically add an Ephemeral Container (e.g., my-app-debug) to a running Pod and

utilize its pre-installed debugging tools. The diagnostic results from this Ephemeral Container

are directly relevant to the behavior and state of the primary application containers within the

same Pod.

Understanding Ephemeral Containers

↗

Implementation Principle: Leveraging Ephemeral
Containers

Containers - Alauda Container Platform

https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/

:::Notes * You cannot add an Ephemeral Container by directly modifying a Pod's static

manifest (PodSpec). The Ephemeral Containers feature is designed for dynamic injection into

running Pods, typically via API calls (like kubectl debug). * **Ephemeral Containers** created

via the debug feature do not have resource (CPU/Memory) or scheduling guarantees (i.e.,

they don't block Pod startup or get their own QoS class) and will not automatically restart if

they exit. Therefore, avoid running persistent business applications within them; they are

strictly for debugging purposes. * Exercise caution when using the debug feature if the Node

where the Pod is located is experiencing high resource utilization or is nearing resource

exhaustion. Injecting an Ephemeral Container, even with minimal resource footprint, could

potentially contribute to Pod eviction under severe resource pressure. :::

Kubernetes 1.25+ offers the kubectl debug command for creating ephemeral containers. This

method provides a powerful command-line alternative for debugging.

Command

Debugging Ephemeral Containers by using CLI

Containers - Alauda Container Platform

Pod YAML file example

Example: Debugging nginx in my-nginx-pod

First, ensure you have a Pod running:

Now, create an ephemeral debug container named debugger inside my-nginx-pod ,

targeting my-nginx-container, using the busybox image:

This command will attach you to a shell inside the debugger ephemeral container. You can

now use busybox tools to debug my-nginx-container.

To view the ephemeral containers attached to a Pod:

Look for the Ephemeral Containers section in the output.

1. Container Platform, and navigate to Workloads > Pods in the left sidebar.

2. Locate the Pod you wish to view, and click ⋮ > Debug.

Debugging Ephemeral Containers by using web console

kubectl debug -it <pod-name> --image=<debug-image> --target=<target-container-name> -n

<namespace>

--image: Specifies the debug image (e.g., busybox, ubuntu, nicolaka/netshoot)

containing necessary tools.

--target: (Optional) Specifies the name of the container in the Pod to target. If

omitted, and there's only one container, it defaults to that. If multiple, it defaults to

the first.

-n: Specifies the namespace.

kubectl apply -f pod-example.yaml

kubectl debug -it my-nginx-pod --image=busybox --target=nginx -- /bin/sh

kubectl describe pod my-nginx-pod

Containers - Alauda Container Platform

3. Choose the specific container within the Pod you wish to debug.

4. (Optional) If the interface prompts that initialization is required (e.g., for setting up

necessary debug environment), click Initialize.

INFO

After initializing the Debug feature, as long as the pod is not recreated, you can directly enter the

Ephemeral Container (for example, Container A-debug) for debugging.

5. Wait for the debugging terminal window to become ready, then begin your debugging

operations. Tip: Click the "Command Query" option in the upper right corner of the terminal

to view a list of common debugging tools and their usage examples.

INFO

Click the command query in the upper right corner to view common tools and their usage.

6. Once debugging is complete, close the terminal window.

You can directly interact with the internal instance of a running container using the kubectl

exec command, allowing you to execute arbitrary command-line operations. Additionally,

Kubernetes provides convenient features for uploading and downloading files to and from

containers.

To execute a command inside a specific container within a Pod (useful for getting a shell,

running diagnostic commands, etc.):

Interacting with Containers

Interacting with Containers by using CLI

Exec

Containers - Alauda Container Platform

Example: Getting a Bash shell in the nginx of my-nginx-pod

Example: Listing files in /tmp of a container

To copy files from your local machine to a container within a Pod:

To copy files from a container within a Pod to your local machine:

Transfer Files

Interacting with Containers by using web console

kubectl exec -it <pod-name> -c <container-name> -n <namespace> -- <command>

-it: Ensures interactive mode and a TTY (pseudo-terminal) for a shell session.

-c: Specifies the target container name within the Pod. Omit if the Pod has only one

container.

--: Separates kubectl arguments from the command to be executed in the container.

kubectl exec -it my-nginx-pod -c nginx -n default -- /bin/bash

kubectl exec my-nginx-pod -c nginx -n default -- ls /tmp

kubectl cp <local-file-path> <namespace>/<pod-name>:<container-file-path> -c

<container-name>

-c: (Optional) Specifies the target container name if the Pod has multiple

containers.

Example: Uploading `my-config.txt` to Nginx's HTML directory

kubectl cp my-config.txt default/my-nginx-pod:/usr/share/nginx/html/my-config.txt -c

nginx

kubectl cp <namespace>/<pod-name>:<container-file-path> <local-file-path> -c

<container-name>

Example: Downloading Nginx access logs

kubectl cp default/my-nginx-pod:/var/log/nginx/access.log ./nginx_access.log -c nginx

Containers - Alauda Container Platform

You can enter the internal instance of the container using the kubectl exec command,

allowing you to execute command-line operations in the Web console window. Additionally,

you can easily upload and download files within the container using the file transfer feature.

1. Container Platform, and navigate to Application > Applications in the life sidebar.

2. Click on Application Name.

3. Locate the associated workload (e.g., Deployment, StatefulSet), click EXEC, and then

select the specific Pod Name you wish to enter. EXEC > Contianer Name.

4. Enter the command you wish to execute.

5. Click OK to enter the Web console window and execute command-line operations.

6. Click File Transfer.

Enter an Upload Path to upload local files into the container (e.g., configuration files for

testing).

Enter a Download Path to download logs, diagnostic data, or other files from the

container to your local machine for analysis.

1. Container Platform, and navigate to Workloads > Pods.

2. Locate the target Pod, click the vertical ellipsis (⋮) next to it, select EXEC, and then choose

the specific Container Name within that Pod you wish to enter.

3. Enter the command you wish to execute.

4. Click OK to enter the Web console window and execute command-line operations.

5. Click File Transfer.

Enter an Upload Path to upload local files into the container (e.g., configuration files for

testing).

Entering the Container through Applications

Entering the Container through the Pod

Containers - Alauda Container Platform

Enter a Download Path to download logs, diagnostic data, or other files from the

container to your local machine for analysis.

Containers - Alauda Container Platform

1. Understanding Helm

1.1. Key features

1.2. Catalog

Terminology Definitions

1.3 Understanding HelmRequest

Differences Between HelmRequest and Helm

HelmRequest and Application Integration

Deployment Workflow

Component Definitions

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

2.2 Preparing the Chart

2.3 Packaging the Chart

2.4 Obtaining an API Token

2.5 Creating a Chart Repository

2.6 Uploading the Chart

2.7 Uploading Related Images

2.8 Deploying the Application

2.9 Updating the Application

2.10 Uninstalling the Application

2.11 Deleting the Chart Repository

3. Deploying Helm Charts as Applications via UI

Working with Helm charts

TOC

Menu ON THIS PAGE

Working with Helm charts - Alauda Container Platform

3.1 Workflow Overview

3.2 Prerequisites

3.3 Adding Templates to Manageable Repositories

3.4 Deleting Specific Versions of Templates

Steps to Operate

Helm is a package manager that simplifies the deployment of applications and services on

Alauda Container Platform clusters. Helm uses a packaging format called charts. A Helm chart

is a collection of files that describe Kubernetes resources. Creating a chart in a cluster

generates a chart running instance called a release. Each time a chart is created, or a release

is upgraded or rolled back, an incremental revision is created.

Helm provides the ability to:

Search for a large collection of charts in chart repositories

Modify existing charts

Create your own charts using Kubernetes resources

Package applications and share them as charts

The Catalog is built on Helm and provides a comprehensive Chart distribution management

platform, extending the limitations of the Helm CLI tool. The platform enables developers to

more conveniently manage, deploy, and use charts through a user-friendly interface.

1. Understanding Helm

1.1. Key features

1.2. Catalog

Terminology Definitions

Working with Helm charts - Alauda Container Platform

Term Definition Notes

Application

Catalog

A one-stop management platform for Helm

Charts

Helm Charts An application packaging format

HelmRequest
CRD. Defines the configuration needed to

deploy a Helm Chart

Template

Application

ChartRepo
CRD. Corresponds to a Helm charts

repository

Template

Repository

Chart CRD. Corresponds to Helm Charts Template

In Alauda Container Platform, Helm deployments are primarily managed through a custom

resource called HelmRequest. This approach extends standard Helm functionality and

integrates it seamlessly into the Kubernetes native resource model.

Standard Helm uses CLI commands to manage releases, while Alauda Container Platform

uses HelmRequest resources to define, deploy, and manage Helm charts. Key differences

include:

1. Declarative vs Imperative: HelmRequest provides a declarative approach to Helm

deployments, while traditional Helm CLI is imperative.

2. Kubernetes Native: HelmRequest is a custom resource directly integrated with the

Kubernetes API.

3. Continuous Reconciliation: Captain continuously monitors and reconciles HelmRequest

resources with their desired state.

4. Multi-cluster Support: HelmRequest supports deployments across multiple clusters

through the platform.

5. Platform Feature Integration: HelmRequest can be integrated with other platform

features, such as Application resources.

1.3 Understanding HelmRequest

Differences Between HelmRequest and Helm

Working with Helm charts - Alauda Container Platform

HelmRequest and Application resources have conceptual similarities, and users may want to

view them uniformly. The platform provides a mechanism to synchronize HelmRequest as

Application resources.

Users can mark a HelmRequest to be deployed as an Application by adding the following

annotation:

When this feature is enabled, the platform UI displays additional fields and links to the

corresponding Application page.

The workflow for deploying charts via HelmRequest includes:

1. User creates or updates a HelmRequest resource

2. HelmRequest contains chart references and values to apply

3. Captain processes the HelmRequest and creates a Helm Release

4. Release contains the deployed resources

5. Metis monitors HelmRequests with application annotations and synchronizes them to

Applications

6. Application provides a unified view of deployed resources

HelmRequest: Custom resource definition that describes the desired Helm chart

deployment

Captain: Controller that processes HelmRequest resources and manages Helm releases

(source code available at https://github.com/alauda/captain)

Release: Deployed instance of a Helm chart

Charon: Component that monitors HelmRequests and creates corresponding Application

resources

HelmRequest and Application Integration

Deployment Workflow

Component Definitions

↗

alauda.io/create-app: "true"

Working with Helm charts - Alauda Container Platform

https://github.com/alauda/captain
https://github.com/alauda/captain
https://github.com/alauda/captain

Application: Unified representation of deployed resources, providing additional

management capabilities

Archon-api: Component responsible for specific advanced API functions within the

platform

Prepare chart → Package chart → Obtain API token → Create chart repository → Upload

chart → Upload related images → Deploy application → Update application → Uninstall

application → Delete chart repository

Helm uses a packaging format called charts. A chart is a collection of files that describe

Kubernetes resources. A single chart can be used to deploy anything from a simple pod to a

complex application stack.

Refer to the official documentation: Helm Charts Documentation

Example chart directory structure:

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

2.2 Preparing the Chart

↗

Working with Helm charts - Alauda Container Platform

https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/

nginx/

├── Chart.lock

├── Chart.yaml

├── README.md

├── charts/

│ └── common/

│ ├── Chart.yaml

│ ├── README.md

│ ├── templates/

│ │ ├── _affinities.tpl

│ │ ├── _capabilities.tpl

│ │ ├── _errors.tpl

│ │ ├── _images.tpl

│ │ ├── _ingress.tpl

│ │ ├── _labels.tpl

│ │ ├── _names.tpl

│ │ ├── _secrets.tpl

│ │ ├── _storage.tpl

│ │ ├── _tplvalues.tpl

│ │ ├── _utils.tpl

│ │ ├── _warnings.tpl

│ │ └── validations/

│ │ ├── _cassandra.tpl

│ │ ├── _mariadb.tpl

│ │ ├── _mongodb.tpl

│ │ ├── _postgresql.tpl

│ │ ├── _redis.tpl

│ │ └── _validations.tpl

│ └── values.yaml

├── ci/

│ ├── ct-values.yaml

│ └── values-with-ingress-metrics-and-serverblock.yaml

├── templates/

│ ├── NOTES.txt

│ ├── _helpers.tpl

│ ├── deployment.yaml

│ ├── extra-list.yaml

│ ├── health-ingress.yaml

│ ├── hpa.yaml

│ ├── ingress.yaml

│ ├── ldap-daemon-secrets.yaml

│ ├── pdb.yaml

│ ├── server-block-configmap.yaml

│ ├

Working with Helm charts - Alauda Container Platform

Key file descriptions:

values.descriptor.yaml (optional): Works with ACP UI to display user-friendly forms

values.schema.json (optional): Validates values.yaml content and renders a simple UI

values.yaml (required): Defines chart deployment parameters

Use the helm package command to package the chart:

1. In Alauda Container Platform, click the avatar in the top-right corner => Profile

2. Click Add Api Token

3. Enter appropriate Description & Remaining Validity

4. Save the displayed token information (only shown once)

Create a local chart repository via API:

2.3 Packaging the Chart

2.4 Obtaining an API Token

2.5 Creating a Chart Repository

│ ├── serviceaccount.yaml

│ ├── servicemonitor.yaml

│ ├── svc.yaml

│ └── tls-secrets.yaml

├── values.descriptor.yaml

├── values.schema.json

└── values.yaml

helm package nginx

输出: Successfully packaged chart and saved it to: /charts/nginx-8.8.0.tgz

Working with Helm charts - Alauda Container Platform

Upload the packaged chart to the repository:

2.6 Uploading the Chart

curl -k --request POST \

--url https://$ACP_DOMAIN/catalog/v1/chartrepos \

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/json' \

--data '{

 "apiVersion": "v1",

 "kind": "ChartRepoCreate",

 "metadata": {

 "name": "test",

 "namespace": "cpaas-system"

 },

 "spec": {

 "chartRepo": {

 "apiVersion": "app.alauda.io/v1beta1",

 "kind": "ChartRepo",

 "metadata": {

 "name": "test",

 "namespace": "cpaas-system",

 "labels": {

 "project.cpaas.io/catalog": "true"

 }

 },

 "spec": {

 "type": "Local",

 "url": null,

 "source": null

 }

 }

 }

}'

curl -k --request POST \

--url https://$ACP_DOMAIN/catalog/v1/chartrepos/cpaas-system/test/charts \

--header 'Authorization:Bearer $API_TOKEN' \

--data-binary @"/root/charts/nginx-8.8.0.tgz"

Working with Helm charts - Alauda Container Platform

1. Pull the image: docker pull nginx

2. Save as tar package: docker save nginx > nginx.latest.tar

3. Load and push to private registry:

Create Application resource via API:

2.7 Uploading Related Images

2.8 Deploying the Application

docker load -i nginx.latest.tar

docker tag nginx:latest 192.168.80.8:30050/nginx:latest

docker push 192.168.80.8:30050/nginx:latest

curl -k --request POST \

--url

https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPACE/applications \

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/json' \

--data '{

 "apiVersion": "app.k8s.io/v1beta1",

 "kind": "Application",

 "metadata": {

 "name": "test",

 "namespace": "catalog-ns",

 "annotations": {

 "app.cpaas.io/chart.source": "test/nginx",

 "app.cpaas.io/chart.version": "8.8.0",

 "app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"IfNotPresent\"}}"

 },

 "labels": {

 "sync-from-helmrequest": "true"

 }

 }

}'

Working with Helm charts - Alauda Container Platform

Update the application using PATCH request:

Delete the Application resource:

2.9 Updating the Application

2.10 Uninstalling the Application

2.11 Deleting the Chart Repository

curl -k --request PATCH \

--url

https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPACE/applications/test

\

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/merge-patch+json' \

--data '{

 "apiVersion": "app.k8s.io/v1beta1",

 "kind": "Application",

 "metadata": {

 "annotations": {

 "app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"Always\"}}"

 }

 }

}'

curl -k --request DELETE \

--url

https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPACE/applications/test

\

--header 'Authorization:Bearer $API_TOKEN'

curl -k --request DELETE \

--url https://$ACP_DOMAIN/apis/app.alauda.io/v1beta1/namespaces/cpaas-

system/chartrepos/test \

--header 'Authorization:Bearer $API_TOKEN'

Working with Helm charts - Alauda Container Platform

Add templates to manageable repositories → Upload templates → Manage template versions

Template repositories are added by platform administrators. Please contact the platform

administrator to obtain the available Chart or OCI Chart type template repository names with

Management permissions.

1. Go to Catalog.

2. In the left navigation bar, click Helm Charts.

3. Click Add Template in the upper right corner of the page, and select the template

repository based on the parameters below.

Parameter Description

Template

Repository

Synchronize the template directly to a Chart or OCI Chart type

template repository with Management permissions. Project

owners assigned to this Template Repository can directly use the

template.

Template

Directory

When the selected template repository type is OCI Chart, a

directory to store the Helm Chart must be selected or manually

entered.

Note: When manually entering a new template directory, the

platform will create this directory in the template repository, but

there is a risk of creation failure.

4. Click Upload Template and upload the local template to the repository.

3. Deploying Helm Charts as Applications via UI

3.1 Workflow Overview

3.2 Prerequisites

3.3 Adding Templates to Manageable Repositories

Working with Helm charts - Alauda Container Platform

5. Click Confirm. The template upload process may take a few minutes, please be patient.

Note: When the template status changes from Uploading to Upload Successful , it indicates

that the template has been uploaded successfully.

6. If the upload fails, please troubleshoot according to the following prompts.

Note: An illegal file format means there is an issue with the files in the uploaded

compressed package, such as missing content or incorrect formatting.

If a version of a template is no longer applicable, it can be deleted.

1. Go to Catalog.

2. In the left navigation bar, click Helm Charts.

3. Click on the Chart card to view details.

4. Click Manage Versions.

5. Find the template that is no longer applicable, click Delete, and confirm.

After deleting the version, the corresponding application will not be able to be updated.

3.4 Deleting Specific Versions of Templates

Steps to Operate

Working with Helm charts - Alauda Container Platform

Configurations

Configuring ConfigMap

Understanding Config Maps

Config Map Restrictions

Example ConfigMap

Creating a ConfigMap by using the web console

Creating a ConfigMap by using the CLI

Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

ConfigMap vs Secret

Configuring Secrets

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console

How to Use a Secret in a Pod

Follow-up Actions

Operations

Menu

Configurations - Alauda Container Platform

Config maps allow you to decouple configuration artifacts from image content to keep

containerized applications portable. The following sections define config maps and how to

create and use them.

Understanding Config Maps

Config Map Restrictions

Example ConfigMap

Creating a ConfigMap by using the web console

Creating a ConfigMap by using the CLI

Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

As Environment Variables

As Files in a Volume

As Individual Environment Variables

ConfigMap vs Secret

Many applications require configuration by using some combination of configuration files,

command-line arguments, and environment variables. In OpenShift Container Platform, these

Configuring ConfigMap

TOC

Understanding Config Maps

Menu ON THIS PAGE

Configuring ConfigMap - Alauda Container Platform

configuration artifacts are decoupled from image content to keep containerized applications

portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while

keeping containers agnostic of OpenShift Container Platform. A config map can be used to

store fine-grained information like individual properties or coarse-grained information like

entire configuration files or JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in

pods or used to store configuration data for system components such as controllers. For

example:

Note: You can use the binaryData field when you create a config map from a binary file, such

as an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used

to:

Populate environment variable values in containers

Set command-line arguments in a container

Populate configuration files in a volume

my-app-config.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-app-config

 namespace: default

data:

 app_mode: "development"

 feature_flags: "true"

 database.properties: |-

 jdbc.url=jdbc:mysql://localhost:3306/mydb

 jdbc.username=user

 jdbc.password=password

 log_settings.json: |-

 {

 "level": "INFO",

 "format": "json"

 }

Configuring ConfigMap - Alauda Container Platform

Users and system components can store configuration data in a config map. A config map is

similar to a secret, but designed to more conveniently support working with strings that do not

contain sensitive information.

A config map must be created before its contents can be consumed in pods.

Controllers can be written to tolerate missing configuration data. Consult individual

components configured by using config maps on a case-by-case basis.

ConfigMap objects reside in a project.

They can only be referenced by pods in the same project.

The Kubectl only supports the use of a config map for pods it gets from the API server. This

includes any pods created by using the CLI, or indirectly from a replication controller. It

does not include pods created by using the OpenShift Container Platform node's --

manifest-url flag, its --config flag, or its REST API because these are not common ways

to create pods.

NOTE

A Pod can only use ConfigMaps within the same namespace.

You can now use app-config in a Pod .

Config Map Restrictions

Example ConfigMap

Configuring ConfigMap - Alauda Container Platform

1. Go to Container Platform.

2. In the left sidebar, click Configuration > ConfigMap.

3. Click Create ConfigMap.

4. Refer to the instructions below to configure the relevant parameters.

Parameter Description

Entries

Refers to key:value pairs, supporting both Add and Import

methods.

Add: You can add configuration items one by one, or you can

paste one or multiple lines of key=value pairs in the Key input

area to bulk add configuration items.

Import: Import a text file not larger than 1M. The file name will be

used as the key, and the file content will be used as the value,

filled into a configuration item.

Creating a ConfigMap by using the web console

app-config.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: app-config

 namespace: k-1

data:

 APP_ENV: "production"

 LOG_LEVEL: "debug"

Configuring ConfigMap - Alauda Container Platform

Parameter Description

Binary

Entries

Refers to binary files not larger than 1M. The file name will be used

as the key, and the file content will be used as the value, filled into a

configuration item.

Note: After creating a ConfigMap, the imported files cannot be

modified.

Example of Bulk Add Format:

5. Click Create.

Or from a file:

You can click the (⋮) on the right side of the list page or click Actions in the upper right corner

of the detail page to update or delete the ConfigMap as needed.

Creating a ConfigMap by using the CLI

Operations

One key=value pair per line, multiple pairs must be on separate lines, otherwise

they will not be recognized correctly after pasting.

key1=value1

key2=value2

key3=value3

kubectl create configmap app-config \

 --from-literal=APP_ENV=production \

 --from-literal=LOG_LEVEL=debug

kubectl apply -f app-config.yaml -n k-1

Configuring ConfigMap - Alauda Container Platform

Changes to the ConfigMap will affect the workloads that reference the configuration, so please

read the operation instructions in advance.

Operations Description

Update

After adding or updating a ConfigMap, any workloads that have

referenced this ConfigMap (or its configuration items) through

environment variables need to rebuild their Pods for the new

configuration to take effect.

For imported binary configuration items, only key updates are

supported, not value updates.

Delete

After deleting a ConfigMap, workloads that have referenced this

ConfigMap (or its configuration items) through environment variables

may be adversely affected during Pod creation if they are rebuilt and

cannot find the reference source.

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

As Environment Variables

kubectl get configmap app-config -n k-1 -o yaml

kubectl edit configmap app-config -n k-1

kubectl delete configmap app-config -n k-1

envFrom:

 - configMapRef:

 name: app-config

Configuring ConfigMap - Alauda Container Platform

Each key becomes an environment variable in the container.

Each key is a file under /etc/config , and the file content is the value.

Feature ConfigMap Secret

Data Type Non-sensitive Sensitive (e.g., passwords)

Encoding Plaintext Base64-encoded

Use Cases Configs, flags Passwords, tokens

As Files in a Volume

As Individual Environment Variables

ConfigMap vs Secret

volumes:

 - name: config-volume

 configMap:

 name: app-config

volumeMounts:

 - name: config-volume

 mountPath: /etc/config

env:

 - name: APP_ENV

 valueFrom:

 configMapKeyRef:

 name: app-config

 key: APP_ENV

Configuring ConfigMap - Alauda Container Platform

Understanding Secrets

Usage Characteristics

Supported Types

Usage Methods

Creating an Opaque type Secret

Creating a Docker registry type Secret

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console

How to Use a Secret in a Pod

As Environment Variables

As Mounted Files (Volume)

Follow-up Actions

Operations

In Kubernetes (k8s), a Secret is a fundamental object designed to store and manage sensitive

information, such as passwords, OAuth tokens, SSH keys, TLS certificates, and API keys. Its

Configuring Secrets

TOC

Understanding Secrets

Menu ON THIS PAGE

Configuring Secrets - Alauda Container Platform

primary purpose is to prevent sensitive data from being directly embedded in Pod definitions

or container images, thereby enhancing security and portability.

Secrets are similar to ConfigMaps but are specifically intended for confidential data. They are

typically base64-encoded for storage and can be consumed by pods in various ways,

including being mounted as volumes or exposed as environment variables.

Enhanced Security: Compared to plaintext configuration maps (Kubernetes ConfigMap),

Secrets offer better security by storing sensitive information using Base64 encoding. This

mechanism, combined with Kubernetes' ability to control access, significantly reduces the

risk of data exposure.

Flexibility and Management: Using Secrets provides a more secure and flexible approach

than hardcoding sensitive information directly into Pod definition files or container images.

This separation simplifies the management and modification of sensitive data without

requiring changes to application code or container images.

Kubernetes supports various types of Secrets, each tailored for specific use cases. The

platform typically supports the following types:

Opaque: A general-purpose Secret type used to store arbitrary key-value pairs of sensitive

data, such as passwords or API keys.

TLS: Specifically designed to store TLS (Transport Layer Security) protocol certificate and

private key information, commonly used for HTTPS communication and secure ingress.

SSH Key: Used to store SSH private keys, often for secure access to Git repositories or

other SSH-enabled services.

SSH Authentication (kubernetes.io/ssh-auth): Stores authentication information for data

transmitted over the SSH protocol.

Username/Password (kubernetes.io/basic-auth): Used to store basic authentication

credentials (username and password).

Usage Characteristics

Supported Types

Configuring Secrets - Alauda Container Platform

Image Pull Secret (kubernetes.io/dockerconfigjson): Stores the JSON authentication

string required for pulling container images from private image repositories (Docker

Registry).

Secrets can be consumed by applications within pods through different methods:

As Environment Variables: Sensitive data from a Secret can be injected directly into a

container's environment variables.

As Mounted Files (Volume): Secrets can be mounted as files within a pod's volume,

allowing applications to read sensitive data from a specified file path.

Note: Pod instances in workloads can only reference Secrets within the same namespace.

For advanced usage and YAML configurations, refer to the Kubernetes official documentation

.

YAML

You can decode them like:

Usage Methods

↗

Creating an Opaque type Secret

kubectl create secret generic my-secret \

 --from-literal=username=admin \

 --from-literal=password=Pa$$w0rd

apiVersion: v1

kind: Secret

metadata:

 name: my-secret

type: Opaque

data:

 username: YWRtaW4= # base64 of "admin"

 password: UGEkJHcwcmQ= # base64 of "Pa$$w0rd"

Configuring Secrets - Alauda Container Platform

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

YAML

K8s automatically converts your username, password, email, and server information into the

Docker standard login format:

This JSON is then base64 encoded and used as the data field value of the Secret.

Creating a Docker registry type Secret

echo YWRtaW4= | base64 --decode # output: admin

kubectl create secret docker-registry my-docker-creds \

 --docker-username=myuser \

 --docker-password=mypass \

 --docker-server=https://index.docker.io/v1/ \

 --docker-email=my@example.com

apiVersion: v1

kind: Secret

metadata:

 name: my-docker-creds

type: kubernetes.io/dockerconfigjson

data:

 .dockerconfigjson:

eyJhdXRocyI6eyJodHRwczovL2luZGV4LmRvY2tlci5pby92MS8iOnsidXNlcm5hbWUiOiJteXVzZXIiLCJwYXNzd29yZ

{

 "auths": {

 "https://index.docker.io/v1/": {

 "username": "myuser",

 "password": "mypass",

 "email": "my@example.com",

 "auth": "bXl1c2VyOm15cGFzcw==" # base64(username:password)

 }

 }

}

Configuring Secrets - Alauda Container Platform

Use it in a Pod:

Use Case: Store SSH private keys (e.g., for Git access).

Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

imagePullSecrets:

 - name: my-docker-creds

apiVersion: v1

kind: Secret

metadata:

 name: basic-auth-secret

type: kubernetes.io/basic-auth

stringData:

 username: myuser

 password: mypass

apiVersion: v1

kind: Secret

metadata:

 name: ssh-key-secret

type: kubernetes.io/ssh-auth

stringData:

 ssh-privatekey: |

 -----BEGIN OPENSSH PRIVATE KEY-----

 ...

 -----END OPENSSH PRIVATE KEY-----

Configuring Secrets - Alauda Container Platform

Use Case: TLS certs (used by Ingress, webhooks, etc.)

YAML

1. Go to Container Platform.

2. In the left navigation bar, click Configuration > Secrets.

3. Click Create Secret.

4. Configure the parameters.

Note: In the form view, sensitive data such as the input username and password will

automatically be encoded in Base64 format before being stored in the Secret. The

converted data can be previewed in the YAML view.

5. Click Create.

Creating a Secret by using the web console

How to Use a Secret in a Pod

kubectl create secret tls tls-secret \

--cert=path/to/tls.crt \

--key=path/to/tls.key

apiVersion: v1

kind: Secret

metadata:

 name: tls-secret

type: kubernetes.io/tls

data:

 tls.crt: <base64>

 tls.key: <base64>

Configuring Secrets - Alauda Container Platform

From the secret named my-secret , take the value with the key username and assign it to the

environment variable DB_USERNAME .

When creating workloads for native applications in the same namespace, you can reference

the Secrets that have already been created.

You can click the (⋮) on the right side of the list page or click Actions in the upper right corner

of the details page to update or delete the Secret as needed.

As Environment Variables

As Mounted Files (Volume)

Follow-up Actions

Operations

env:

 - name: DB_USERNAME

 valueFrom:

 secretKeyRef:

 name: my-secret

 key: username

volumes:

 - name: secret-volume

 secret:

 secretName: my-secret

volumeMounts:

 - name: secret-volume

 mountPath: "/etc/secret"

Configuring Secrets - Alauda Container Platform

Operation Description

Update

After adding or updating a Secret, workloads that have referenced this

Secret (or its configuration items) via environment variables need to have

their Pods rebuilt for the new configuration to take effect.

Delete

After deleting a Secret, workloads that have referenced this Secret (or

its configuration items) via environment variables may be impacted due

to the inability to find the reference source when rebuilding Pods.

Please do not delete the Secrets automatically generated by the

platform, as this may prevent the platform from functioning properly.

For example: Secrets of type service-account-token that contain

authentication information for namespace resources and Secrets in

system namespaces (such as kube-system).

Configuring Secrets - Alauda Container Platform

Application Observability

Monitoring Dashboards

Prerequisites

Namespace-Level Monitoring Dashboards

Workload-Level Monitoring

Logs
Procedure

Events
Procedure

Event records interpretation

Menu

Application Observability - Alauda Container Platform

Supports viewing resource monitoring data for workload components on the platform for

the past 7 days (with configurable monitoring data retention period). Includes statistics for

applications, workloads, pods, and trends/rankings of CPU/memory usage.

Supports Namespace-Level monitoring.

Supported Workload-Level Monitoring: Applications, Deployments, DaemonSets,

StatefulSets, and Pods

Prerequisites

Namespace-Level Monitoring Dashboards

Procedure

Creating Namespace-Level Monitoring Dashboard

Workload-Level Monitoring

Default Monitoring Dashboard

Procedure

Metric interpretation

Custom Monitoring Dashboard

Installation of Monitoring Plugins

Monitoring Dashboards

TOC

Prerequisites

Menu ON THIS PAGE

Monitoring Dashboards - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

1. Container Platform, click Observe > Dashboards.

2. View monitoring data under the namespace. Three dashboards are provided: Applications

Overview, Workloads Overview, and Pods Overview.

3. Switch between dashboards to monitor target Overview.

1. Administrator, create a dedicated monitoring dashboard by referring to Creating

Monitoring Dashboard to create a dedicated monitoring dashboard.

2. Configure the following labels to display the Namespace-Level Monitoring dashboard on

the Container Platform:

cpaas.io/dashboard.folder: container-platform

cpaas.io/dashboard.tag.overview: "true"

This procedure demonstrates how to view pod monitoring through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.

2. Click a Deployment name from the list.

3. Navigate to the Monitoring tab to view default monitoring metrics.

Namespace-Level Monitoring Dashboards

Procedure

Creating Namespace-Level Monitoring Dashboard

Workload-Level Monitoring

Default Monitoring Dashboard

Procedure

Monitoring Dashboards - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#create_dashboard
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#create_dashboard

Monitoring

Resource
Metric Granularity Technical Definition

CPU Utilization/Usage

Utilization = Usage/Limit (limits)

Assess container limit configuration.

High utilization indicates insufficient

limits.

Usage represents actual resource

consumption.

Memory Utilization/Usage

Utilization = Usage/Limit (limits)

Evaluation method same as CPU. High

rate may cause component instability.

Network

Traffic

Inflow Rate/Outflow

Rate

Network traffic (bytes/sec) flowing

into/out of pods.

Network

Packet

Receiving

Rate/Transmit Rate

Network packets (count/sec)

received/sent by pods.

Disk Rate Read/Write
Read/write throughput (bytes/sec) of

mounted volumes per workload.

Disk IOPS Read/Write

Input/Output Operations Per Second

(IOPS) of mounted volumes per

workload.

4. Click the Toggle Icon to switch to custom dashboards. Refer to Add Panel in Custom

Dashboard to create dedicated Workload-Level monitoring dashboard.

INFO

Hover over chart curves to view per-pod metrics and PromQL expressions at specific timestamps. If

exceeding 15 pods, only top 15 entries sorted in descending order are displayed.

Metric interpretation

Custom Monitoring Dashboard

Monitoring Dashboards - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html

Monitoring Dashboards - Alauda Container Platform

Aggregate container runtime logs with visual query capabilities. When applications, workloads,

or other resources exhibit abnormal behavior, log analysis helps diagnose root causes.

Procedure

This procedure demonstrates how to view container runtime logs through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.

2. Click a Deployment name from the list.

3. Navigate to the Logs tab to view detailed records.

Operation Description

Pod/Container
Switch between Pods and Containers using the dropdown

selector to view the corresponding logs.

Previous

Logs

View logs from terminated containers (available when container

restartCount > 0).

Logs

TOC

Procedure

Menu ON THIS PAGE

Logs - Alauda Container Platform

Operation Description

Lines Configure display log buffer size: 1k/10k/100k lines.

Wrap Line Toggle line wrapping for long log entries (enabled by default).

Find Full-text search with highlight matching and Enter-to-navigate.

Raw
Unprocessed log streams directly captured from container runtime

interfaces (CRI) without formatting, filtering, or truncation.

Export Download raw logs.

Full Screen Click truncated line to view full content in modal dialog.

WARNING

Truncation Handling: Log entries exceeding 2000 characters will be truncated with an ellipsis

...

Trimmed portions cannot be matched by the page's find function.

Click the ellipsis ... marker in truncated lines to view full content in a modal dialog.

Copy Reliability: Avoid direct copying from rendered log viewer when seeing truncation

markers (...) or ANSI color codes. Always use Export, Raw function for complete logs.

Retention Policy: Live logs follow Kubernetes log rotation configuration. For historical analysis,

use Logs under Observe.

Logs - Alauda Container Platform

http://localhost:4173/container_platform/observability/log/functions/log.html

Event information generated by Kubernetes resource state changes and operational status

updates, with integrated visual query interface.When applications, workloads, or other

resources encounter exceptions, real-time event analysis helps troubleshoot root causes.

Procedure

Event records interpretation

This procedure demonstrates how to view container runtime evens through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.

2. Click a Deployment name from the list.

3. Navigate to the Events tab to view detailed records.

Events

TOC

Procedure

Event records interpretation

Menu ON THIS PAGE

Events - Alauda Container Platform

Resource event records: Below the event summary panel, all matching events within the

specified time range are listed. Click event cards to view complete event details. Each card

displays:

Resource Type: Kubernetes resource type represented by icon abbreviations:

P = Pod

RS = ReplicaSet

D = Deployment

SVC = Service

Resource Name: Target resource named.

Event Reason: Kubernetes-reported reason (e.g., FailedScheduling).

Event Level: Event severity.

Normal : Informational

Warning : Requires immediate attention

Time: Last Occurrence time, Occurrence Count.

INFO

Kubernetes allows administrators to configure event retention periods through the Event TTL

controller with a default retention period of 1 hour. Expired events are automatically purged by the

system. For comprehensive historical records, access the All Events.

Events - Alauda Container Platform

http://localhost:4173/container_platform/observability/event/event.html

How To

Setting Scheduled Task Trigger Rules

Time Conversion

Writing Crontab Expressions

Menu

How To - Alauda Container Platform

The scheduled task trigger rules support the input of Crontab expressions.

Time Conversion

Writing Crontab Expressions

Time conversion rule: Local time - time zone offset = UTC

Taking Beijing time to UTC time as an example:

Beijing is in the East Eight Time Zone, with a time difference of 8 hours between Beijing time

and UTC. The time conversion rule is:

Beijing Time - 8 = UTC

Example 1: Beijing time 9:42 converts to UTC time: 42 09 - 00 08 = 42 01, which means the

UTC time is 1:42 AM.

Example 2: Beijing time 4:32 AM converts to UTC time: 32 04 - 00 08 = -68 03. If the result is

negative, it indicates the previous day, requiring another conversion: -68 03 + 00 24 = 32 20,

which means the UTC time is 8:32 PM of the previous day.

Setting Scheduled Task Trigger Rules

TOC

Time Conversion

Menu ON THIS PAGE

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Basic format and value range of Crontab: minute hour day month weekday , with the

corresponding value ranges as shown in the table below:

Minute Hour Day Month Weekday

[0-59] [0-23] [1-31] [1-12] or [JAN-DEC] [0-6] or [SUN-SAT]

The special characters allowed in the minute hour day month weekday fields include:

, : Value list separator, used to specify multiple values. For example: 1,2,5,7,8,9 .

- : User-defined value range. For example: 2-4 , which represents 2, 3, 4.

* : Represents the entire time period. For example, when used for minutes, it means every

minute.

/ : Used to specify the increment of values. For example: n/m indicates starting from n,

increasing by m each time.

Conversion tool reference

Common Examples:

Input 30 18 25 12 * indicates a task triggers at 18:30:00 on December 25th .

Input 30 18 25 * 6 indicates a task triggers at 18:30:00 every Saturday .

Input 30 18 * * 6 indicates a task triggers at 18:30:00 on Saturdays .

Input * 18 * * * indicates a task triggers every minute starting from 18:00:00 (including

18:00:00).

Input 0 18 1,10,22 * * indicates a task triggers at 18:00:00 on the 1st, 10th, and 22nd of

every month .

Input 0,30 18-23 * * * indicates a task triggers at 00 minutes and 30 minutes of each hour

between 18:00 and 23:00 daily .

Input * */1 * * * indicates a task triggers every minute.

Writing Crontab Expressions

↗

Setting Scheduled Task Trigger Rules - Alauda Container Platform

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/

Input * 2-7/1 * * * indicates a task triggers every minute between 2 AM and 7 AM daily.

Input 0 11 4 * mon-wed indicates a task triggers at 11:00 AM on the 4th of every month and

on every Monday to Wednesday .

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Images

Overview of images

Overview of images

Understanding containers and images

Images

Image registry

Image repository

Image tags

Image IDs

Containers

How To

Creating images
Learning container best practices

Including metadata in images

Menu

Images - Alauda Container Platform

Managing images
Image pull policy overview

Allowing pods to reference images from other secured registries

Creating a pull secret

Using a pull secret in a workload

Images - Alauda Container Platform

Understanding containers and images

Images

Image registry

Image repository

Image tags

Image IDs

Containers

Containers and images are important concepts to understand when you set out to create and

manage containerized software. An image holds a set of software that is ready to run, while a

container is a running instance of a container image. Those different versions are represented

by different tags on the same image name.

Containers in Alauda Container Platform are based on OCI- or Docker-formatted container

images. An image is a binary that includes all of the requirements for running a single

container, as well as metadata describing its needs and capabilities.

Overview of images

TOC

Understanding containers and images

Images

Menu ON THIS PAGE

Overview of images - Alauda Container Platform

You can think of it as a packaging technology. Containers have access only to resources

defined in the image unless granted additional access at creation time. By deploying the same

image in multiple containers across multiple hosts and load balancing between them, Alauda

Container Platform can provide redundancy and horizontal scaling for a service packaged into

an image.

You can use the nerdctl or docker CLI directly to build images, but Alauda Container

Platform also supplies builder images that assist with creating new images by adding your

code or configuration to existing images.

Because applications develop over time, a single image name can actually refer to many

different versions of the same image. Each different image is referred to uniquely by its hash,

a long hexadecimal number such as fd44297e2ddb050ec4f…, which is usually shortened to

12 characters, such as fd44297e2ddb.

An image registry is a content server that can store and serve container images. For example:

Docker Hub

Quay.io Container Registry

Alauda Container Platform Registry

A registry contains a collection of one or more image repositories, which contain one or more

tagged images. Alauda Container Platform can supply its own image registry for managing

custom container images.

An image repository is a collection of related container images and tags identifying them. For

example, the Alauda Container Platform Jenkins images are in the repository:

Image registry

↗

↗

Image repository

docker.io/alauda/jenkins-2-centos7

Overview of images - Alauda Container Platform

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://quay.io/
https://quay.io/
https://quay.io/

An image tag is a label applied to a container image in a repository that distinguishes a

specific image from other images in an image stream. Typically, the tag represents a version

number of some sort. For example, here :v3 .11.59-2 is the tag:

You can add additional tags to an image. For example, an image might be assigned the tags

:v3 .11.59-2 and :latest .

An image ID is a SHA (Secure Hash Algorithm) code that can be used to pull an image. A SHA

image ID cannot change. A specific SHA identifier always references the exact same

container image content. For example:

The basic units of Alauda Container Platform applications are called containers. Linux

container technologies are lightweight mechanisms for isolating running processes so that

they are limited to interacting with only their designated resources. The word container is

defined as a specific running or paused instance of a container image.

Many application instances can be running in containers on a single host without visibility into

each others' processes, files, network, and so on. Typically, each container provides a single

service, often called a micro-service, such as a web server or a database, though containers

can be used for arbitrary workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. The

Docker project developed a convenient management interface for Linux containers on a host.

Image tags

Image IDs

Containers

docker.io/alauda/jenkins-2-centos7:v3.11.59-2

docker.io/alauda/jenkins-2-centos7@sha256:ab312bda324

Overview of images - Alauda Container Platform

More recently, the Open Container Initiative has developed open standards for container

formats and container runtimes. Alauda Container Platform and Kubernetes add the ability to

orchestrate OCI- and Docker-formatted containers across multi-host installations.

Though you do not directly interact with container runtimes when using Alauda Container

Platform, understanding their capabilities and terminology is important for understanding their

role in Alauda Container Platform and how your applications function inside of containers.

↗

Overview of images - Alauda Container Platform

https://github.com/opencontainers/
https://github.com/opencontainers/
https://github.com/opencontainers/

How To

Creating images

Learning container best practices

Including metadata in images

Managing images
Image pull policy overview

Allowing pods to reference images from other secured registries

Creating a pull secret

Using a pull secret in a workload

Menu

How To - Alauda Container Platform

Learn how to create your own container images, based on pre-built images that are ready to

help you. The process includes learning best practices for writing images, defining metadata

for images, testing images, and using a custom builder workflow to create images to use with

Alauda Container Platform Registry. After you create an image, you can push it to the Alauda
Container Platform Registry.

Learning container best practices

General container image guidelines

Including metadata in images

Defining image metadata

When creating container images to run on Alauda Container Platform there are a number of

best practices to consider as an image author to ensure a good experience for consumers of

those images. Because images are intended to be immutable and used as-is, the following

guidelines help ensure that your images are highly consumable and easy to use on Alauda

Container Platform.

Creating images

TOC

Learning container best practices

General container image guidelines

Menu ON THIS PAGE

Creating images - Alauda Container Platform

The following guidelines apply when creating a container image in general, and are

independent of whether the images are used on Alauda Container Platform.

Reuse images

Wherever possible, base your image on an appropriate upstream image using the FROM

statement. This ensures your image can easily pick up security fixes from an upstream image

when it is updated, rather than you having to update your dependencies directly.

In addition, use tags in the FROM instruction, for example, alpine:3.20 , to make it clear to

users exactly which version of an image your image is based on. Using a tag other than latest

ensures your image is not subjected to breaking changes that might go into the latest version

of an upstream image.

Maintain compatibility within tags

When tagging your own images, try to maintain backwards compatibility within a tag. For

example, if you provide an image named image and it currently includes version 1.0 , you

might provide a tag of image:v1 . When you update the image, as long as it continues to be

compatible with the original image, you can continue to tag the new image image:v1 , and

downstream consumers of this tag are able to get updates without being broken.

If you later release an incompatible update, then switch to a new tag, for example image:v2 .

This allows downstream consumers to move up to the new version at will, but not be

inadvertently broken by the new incompatible image. Any downstream consumer using

image:latest takes on the risk of any incompatible changes being introduced.

Avoid multiple processes

Do not start multiple services, such as a database and SSHD , inside one container. This is not

necessary because containers are lightweight and can be easily linked together for

orchestrating multiple processes. Alauda Container Platform allows you to easily colocate and

co-manage related images by grouping them into a single pod.

This colocation ensures the containers share a network namespace and storage for

communication. Updates are also less disruptive as each image can be updated less

frequently and independently. Signal handling flows are also clearer with a single process as

you do not have to manage routing signals to spawned processes.

Use exec in wrapper scripts

Creating images - Alauda Container Platform

Many images use wrapper scripts to do some setup before starting a process for the software

being run. If your image uses such a script, that script uses exec so that the script's process

is replaced by your software. If you do not use exec , then signals sent by your container

runtime go to your wrapper script instead of your software's process. This is not what you

want.

If you have a wrapper script that starts a process for some server. You start your container, for

example, using docker run -i , which runs the wrapper script, which in turn starts your

process. If you want to close your container with CTRL+C . If your wrapper script used exec to

start the server process, docker sends SIGINT to the server process, and everything works

as you expect. If you did not use exec in your wrapper script, docker sends SIGINT to the

process for the wrapper script and your process keeps running like nothing happened.

Also note that your process runs as PID 1 when running in a container. This means that if

your main process terminates, the entire container is stopped, canceling any child processes

you launched from your PID 1 process.

Clean temporary files

Remove all temporary files you create during the build process. This also includes any files

added with the ADD command. For example, run the yum clean command after performing

yum install operations.

You can prevent the yum cache from ending up in an image layer by creating your RUN

statement as follows:

Note that if you instead write:

Then the first yum invocation leaves extra files in that layer, and these files cannot be

removed when the yum clean operation is run later. The extra files are not visible in the final

image, but they are present in the underlying layers.

The current container build process does not allow a command run in a later layer to shrink

the space used by the image when something was removed in an earlier layer. However, this

RUN yum -y install mypackage && yum -y install myotherpackage && yum clean all -y

RUN yum -y install mypackage

RUN yum -y install myotherpackage && yum clean all -y

Creating images - Alauda Container Platform

may change in the future. This means that if you perform an rm command in a later layer,

although the files are hidden it does not reduce the overall size of the image to be

downloaded. Therefore, as with the yum clean example, it is best to remove files in the same

command that created them, where possible, so they do not end up written to a layer.

In addition, performing multiple commands in a single RUN statement reduces the number of

layers in your image, which improves download and extraction time.

Place instructions in the proper order

The container builder reads the Dockerfile and runs the instructions from top to bottom.

Every instruction that is successfully executed creates a layer which can be reused the next

time this or another image is built. It is very important to place instructions that rarely change

at the top of your Dockerfile . Doing so ensures the next builds of the same image are very

fast because the cache is not invalidated by upper layer changes.

For example, if you are working on a Dockerfile that contains an ADD command to install a

file you are iterating on, and a RUN command to yum install a package, it is best to put the

ADD command last:

This way each time you edit myfile and rerun docker build , the system reuses the cached

layer for the yum command and only generates the new layer for the ADD operation.

If instead you wrote the Dockerfile as:

Then each time you changed myfile and reran docker build , the ADD operation would

invalidate the RUN layer cache, so the yum operation must be rerun as well.

Mark important ports

FROM foo

RUN yum -y install mypackage && yum clean all -y

ADD myfile /test/myfile

FROM foo

ADD myfile /test/myfile

RUN yum -y install mypackage && yum clean all -y

Creating images - Alauda Container Platform

The EXPOSE instruction makes a port in the container available to the host system and other

containers. While it is possible to specify that a port should be exposed with a docker run

invocation, using the EXPOSE instruction in a Dockerfile makes it easier for both humans and

software to use your image by explicitly declaring the ports your software needs to run:

Exposed ports show up under docker ps associated with containers created from your

image.

Exposed ports are present in the metadata for your image returned by docker inspect .

Exposed ports are linked when you link one container to another.

Set environment variables

It is good practice to set environment variables with the ENV instruction. One example is to

set the version of your project. This makes it easy for people to find the version without

looking at the Dockerfile . Another example is advertising a path on the system that could be

used by another process, such as JAVA_HOME .

Avoid default passwords

Avoid setting default passwords. Many people extend the image and forget to remove or

change the default password. This can lead to security issues if a user in production is

assigned a well-known password. Passwords are configurable using an environment variable

instead.

If you do choose to set a default password, ensure that an appropriate warning message is

displayed when the container is started. The message should inform the user of the value of

the default password and explain how to change it, such as what environment variable to set.

Avoid sshd

It is best to avoid running sshd in your image. You can use the docker exec command to

access containers that are running on the local host. Alternatively, you can use the docker

exec command to access containers that are running on the Alauda Container Platform

cluster. Installing and running sshd in your image opens up additional vectors for attack and

requirements for security patching.

Use volumes for persistent data

Images use a volume for persistent data. This way Alauda Container Platform mounts the

network storage to the node running the container, and if the container moves to a new node

Creating images - Alauda Container Platform

the storage is reattached to that node. By using the volume for all persistent storage needs,

the content is preserved even if the container is restarted or moved. If your image writes data

to arbitrary locations within the container, that content could not be preserved.

All data that needs to be preserved even after the container is destroyed must be written to a

volume. Container engines support a readonly flag for containers, which can be used to

strictly enforce good practices about not writing data to ephemeral storage in a container.

Designing your image around that capability now makes it easier to take advantage of it later.

Explicitly defining volumes in your Dockerfile makes it easy for consumers of the image to

understand what volumes they must define when running your image.

See the Kubernetes documentation for more information on how volumes are used in

Alauda Container Platform.

Note:
Even with persistent volumes, each instance of your image has its own volume, and the

filesystem is not shared between instances. This means the volume cannot be used to

share state in a cluster.

Defining image metadata helps Alauda Container Platform better consume your container

images, allowing Alauda Container Platform to create a better experience for developers using

your image. For example, you can add metadata to provide helpful descriptions of your image,

or offer suggestions on other images that may also be needed.

This topic only defines the metadata needed by the current set of use cases. Additional

metadata or use cases may be added in the future.

You can use the LABEL instruction in a Dockerfile to define image metadata. Labels are

similar to environment variables in that they are key value pairs attached to an image or a

container. Labels are different from environment variable in that they are not visible to the

running application and they can also be used for fast look-up of images and containers.

↗

Including metadata in images

Defining image metadata

Creating images - Alauda Container Platform

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

See the Docker documentation for more information on the LABEL instruction.

The label names are typically namespaced. The namespace is set accordingly to reflect the

project that is going to pick up the labels and use them. For Kubernetes the namespace is

io.k8s.

See the Docker custom metadata documentation for details about the format.

↗

↗

Creating images - Alauda Container Platform

https://docs.docker.com/reference/dockerfile/#label
https://docs.docker.com/reference/dockerfile/#label
https://docs.docker.com/reference/dockerfile/#label
https://docs.docker.com/engine/userguide/labels-custom-metadata
https://docs.docker.com/engine/userguide/labels-custom-metadata
https://docs.docker.com/engine/userguide/labels-custom-metadata

With Alauda Container Platform you can interact with images, depending on where the

registries of the images are located, any authentication requirements around those registries,

and how you want your builds and deployments to behave.

Each container in a pod has a container image. After you have created an image and pushed

it to a registry, you can then refer to it in the pod.

Image pull policy overview

Allowing pods to reference images from other secured registries

Creating a pull secret

Using a pull secret in a workload

When Alauda Container Platform creates containers, it uses the container imagePullPolicy to

determine if the image should be pulled prior to starting the container. There are three

possible values for imagePullPolicy :

Table imagePullPolicy values:

Managing images

Image pull policy

TOC

Image pull policy overview

Menu ON THIS PAGE

Managing images - Alauda Container Platform

Value Description

Always Always pull the image.

IfNotPresent Only pull the image if it does not already exist on the node.

Never Never pull the image.

If a container imagePullPolicy parameter is not specified, Alauda Container Platform sets it

based on the image tag:

1. If the tag is latest, Alauda Container Platform defaults imagePullPolicy to Always.

2. Otherwise, Alauda Container Platform defaults imagePullPolicy to IfNotPresent.

If you are using the Alauda Container Platform image registry, then your pod service account

should already have the correct permissions and no additional action should be required.

However, for other scenarios, such as referencing images across Alauda Container Platform

projects or from secured registries, additional configuration steps are required.

To pull a secured container from other private or secured registries, you must create a pull

secret from your container client credentials, such as Docker , and add it to your service

account.

Docker use a configuration file to store authentication details to log in to secured or insecure

registry:

By default, Docker uses $HOME/.docker/config.json.

These files store your authentication information if you have previously logged in to a secured

or insecure registry.

Using image pull secrets

Allowing pods to reference images from other
secured registries

Managing images - Alauda Container Platform

You can obtain the image pull secret to pull an image from a private container image registry

or repository. You can refer to Pull an Image from a Private Registry .

You can use a pull secret to allow workloads to pull images from a private registry with one of

the following methods:

By linking the secret to a ServiceAccount , which automatically applies the secret to all pods

using that service account.

By defining imagePullSecrets in the pod specification, which is useful for environments like

GitOps or ArgoCD.

You can use a secret for pulling images for pods by adding the secret to your service account.

Note that the name of the service account should match the name of the service account that

pod uses.

Example output:

Instead of linking the secret to a service account, you can alternatively reference it directly in

your pod or workload definition. This is useful for GitOps workflows such as ArgoCD. For

example:

Creating a pull secret

↗

Using a pull secret in a workload

apiVersion: v1

imagePullSecrets:

- name: default-dockercfg-123456

- name: <pull_secret_name>

kind: ServiceAccount

metadata:

 name: default

 namespace: default

secrets:

- name: <pull_secret_name>

Managing images - Alauda Container Platform

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Example pod specification:

Example ArgoCD workflow:

apiVersion: v1

kind: Pod

metadata:

 name: <secure_pod_name>

spec:

 containers:

 - name: <container_name>

 image: your.registry.io/my-private-image

 imagePullSecrets:

 - name: <pull_secret_name>

apiVersion: argoproj.io/v1alpha1

kind: Workflow

metadata:

 generateName: <example_workflow>

spec:

 entrypoint: <main_task>

 imagePullSecrets:

 - name: <pull_secret_name>

Managing images - Alauda Container Platform

Registry

Introduction

Introduction

Principles and namespace isolation

Authentication and authorization

Advantages

Application Scenarios

Install

Install Via YAML

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Updating/Uninstalling Alauda Container Platform Registry

Install Via Web UI

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Updating/Uninstalling Alauda Container Platform Registry

Menu

Registry - Alauda Container Platform

How To

Common CLI Command Operations
Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account

Pulling Images

Pushing Images

Using Alauda Container Platform Registry in Kubernetes Clusters

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Best Practices

Verification Checklist

Troubleshooting

Registry - Alauda Container Platform

Building, storing and managing container images is a core part of the cloud-native application

development process. Alauda Container Platform(ACP) provides a high-performance, highly-

available, built-in container image repository service designed to provide users with a secure

and convenient image storage and management experience, greatly simplifying application

development, continuous integration/continuous deployment (CI/CD) and application

deployment processes within the platform. CD) and application deployment processes within

the platform.

Deeply integrated into the platform architecture, Alauda Container Platform Registry provides

tighter platform collaboration, simplified configuration, and greater internal access efficiency

than an external, independently deployed image repository.

Principles and namespace isolation

Authentication and authorization

Authentication

Authorization

Advantages

Application Scenarios

Introduction

TOC

Principles and namespace isolation

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Alauda Container Platform's built-in image repository, as one of the core components of the

platform, runs inside the cluster in a highly-available manner and utilizes the persistent

storage capabilities provided by the platform to ensure that the image data is secure and

reliable.

One of its core design concepts is logical isolation and management based on Namespace.

Within the Registry, image repositories are organized by namespace. This means that each

namespace can be considered as a separate “zone” for images belonging to that namespace,

and images between different namespaces are isolated by default, unless explicitly

authorized.

The authentication and authorization mechanism of Alauda Container Platform Registry is

deeply integrated with ACP's platform-level authentication and authorization system, enabling

access control as granular as the namespace:

Users or automated processes (e.g., CI/CD pipelines on the platform, automated build tasks,

etc.) do not need to maintain a separate set of account passwords for the Registry. They are

authenticated through the platform's standard authentication mechanisms (e.g., using

platform-provided API tokens, integrated enterprise identity systems, etc.). When accessing

Alauda Container Platform Registry through the CLI or other tools, it is common to utilize

existing platform login sessions or ServiceAccount tokens for transparent authentication.

Authorization control is implemented at the namespace level. Pull or Push permissions for an

image repository in Alauda Container Platform Registry depend on the platform role and

permissions that the user or ServiceAccount has in the corresponding namespace.

Typically, the owner or developer role of a namespace is automatically granted Push and

Pull permissions to image repositories under that namespace.

Authentication and authorization

Authentication

Authorization

Introduction - Alauda Container Platform

Users in other namespaces or users who wish to pull images across namespaces

need to be explicitly granted the appropriate permissions by the administrator of the target

namespace (e.g., bind a role that allows pulling of images via RBAC) before they can

access images within that namespace.

This namespace-based authorization mechanism ensures isolation of images between

namespaces, improving security and avoiding unauthorized access and modification.

Core advantages of Alauda Container Platform Registry:

Ready-to-Use: Rapidly deploy a private image registry without complex configurations.

Flexible Access: Supports both intra-cluster and external access modes.

Security Assurance: Provides RBAC authorization and image scanning capabilities.

High Availability: Ensures service continuity through replication mechanisms.

Production-Grade: Validated in enterprise environments with SLA guarantees.

Lightweight Deployment: Implement streamlined registry solutions in low-traffic

environments to accelerate application delivery.

Edge Computing: Enable autonomous management for edge clusters with dedicated

registries.

Resource Optimization: Demonstrate full workflow capabilities through integrated Source

to Image (S2I) solutions when underutilizing infrastructure.

Advantages

Application Scenarios

Introduction - Alauda Container Platform

Install

Install Via YAML

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Updating/Uninstalling Alauda Container Platform Registry

Install Via Web UI

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Updating/Uninstalling Alauda Container Platform Registry

Menu

Install - Alauda Container Platform

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Procedure

Configuration Reference

Mandatory Fields

Verification

Updating/Uninstalling Alauda Container Platform Registry

Update

Uninstall

Recommended for:

Advanced users with Kubernetes expertise who prefer a manual approach.

Production-grade deployments requiring enterprise storage (NAS, AWS S3, Ceph, etc.).

Environments needing fine-grained control over TLS, ingress.

Full YAML customization for advanced configurations.

Install Via YAML

TOC

When to Use This Method?

Menu ON THIS PAGE

Install Via YAML - Alauda Container Platform

Install the Alauda Container Platform Registry cluster plugin to a target cluster.

Access to the target Kubernetes cluster with kubectl configured.

Cluster admin permissions to create cluster-scoped resources.

Obtain a registered domain (e.g., registry.yourcompany.com) Create a Domain

Provide valid NAS storage (e.g., NFS, GlusterFS, etc.).

(Optional) Provide valid S3 storage (e.g., AWS S3, Ceph, etc.). If no existing S3 storage is

available, deploy a MinIO (Built-in S3) instance in the cluster Deploy MinIO.

1. Create a YAML configuration file named registry-plugin.yaml with the following template:

Prerequisites

Installing Alauda Container Platform Registry via
YAML

Procedure

Install Via YAML - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/create_domain.html
http://localhost:4173/container_platform/storage/storagesystem_minio/installation.html

apiVersion: cluster.alauda.io/v1alpha1

kind: ClusterPluginInstance

metadata:

 annotations:

 cpaas.io/display-name: internal-docker-registry

 labels:

 create-by: cluster-transformer

 manage-delete-by: cluster-transformer

 manage-update-by: cluster-transformer

 name: internal-docker-registry

spec:

 config:

 access:

 address: ""

 enabled: false

 fake:

 replicas: 2

 global:

 expose: false

 isIPv6: false

 replicas: 2

 oidc:

 ldapID: ""

 resources:

 limits:

 cpu: 500m

 memory: 512Mi

 requests:

 cpu: 250m

 memory: 256Mi

 ingress:

 enabled: true

 hosts:

 - name: <YOUR-DOMAIN> # [REQUIRED] Customize domain

 tlsCert: <NAMESPACE>/<TLS-SECRET> # [REQUIRED] Namespace/SecretName

 ingressClassName: "<INGRESS-CLASS-NAME>" # [REQUIRED] IngressClassName

 insecure: false

 persistence:

 accessMode: ReadWriteMany

 nodes: ""

 path: <YOUR-HOSTPATH> # [REQUIRED] Local path for LocalVolume

 size: <STORAGE-SIZE> # [REQUIRED] Storage size (e.g., 10Gi)

 storageClass: <STORAGE-CLASS-NAME> # [REQUIRED] StorageClass name

Install Via YAML - Alauda Container Platform

2. Customize the following fields according to your environment:

3. How to create a secret for S3 credentials:

 type: StorageClass

 s3storage:

 bucket: <S3-BUCKET-NAME> # [REQUIRED] S3 bucket name

 enabled: false # Set false for local storage

 env:

 REGISTRY_STORAGE_S3_SKIPVERIFY: false # Set true for self-signed certs

 region: <S3-REGION> # S3 region

 regionEndpoint: <S3-ENDPOINT> # S3 endpoint

 secretName: <S3-CREDENTIALS-SECRET> # S3 credentials Secret

 service:

 nodePort: ""

 type: ClusterIP

 pluginName: internal-docker-registry

spec:

 config:

 global:

 oidc:

 ldapID: "<LDAP-ID>" # LDAP ID

 ingress:

 hosts:

 - name: "<YOUR-DOMAIN>" # e.g., registry.your-company.com

 tlsCert: "<NAMESPACE>/<TLS-SECRET>" # e.g., cpaas-system/tls-secret

 ingressClassName: "<INGRESS-CLASS-NAME>" # e.g., cluster-alb-1

 persistence:

 size: "<STORAGE-SIZE>" # e.g., 10Gi

 storageClass: "<STORAGE-CLASS-NAME>" # e.g., cpaas-system-storage

 s3storage:

 bucket: "<S3-BUCKET-NAME>" # e.g., prod-registry

 region: "<S3-REGION>" # e.g., us-west-1

 regionEndpoint: "<S3-ENDPOINT>" # e.g., https://s3.amazonaws.com

 secretName: "<S3-CREDENTIALS-SECRET>" # Secret containing

AWS_ACCESS_KEY_ID/AWS_SECRET_ACCESS_KEY

 env:

 REGISTRY_STORAGE_S3_SKIPVERIFY: "true" # Set "true" for self-signed certs

Install Via YAML - Alauda Container Platform

Replace <S3-CREDENTIALS-SECRET> with the name of your S3 credentials secret.

4. Apply the configuration to your cluster:

Parameter Description Example Value

spec.config.global.oidc.ldapID
LDAP ID for OIDC

authentication
ldap-test

spec.config.ingress.hosts[0].name
Custom domain for

registry access
registry.yourcompany.com

spec.config.ingress.hosts[0].tlsCert

TLS certificate

secret reference

(namespace/secret-

name)

cpaas-system/registry-

tls

spec.config.ingress.ingressClassName
Ingress class name

for the registry
cluster-alb-1

spec.config.persistence.size
Storage size for the

registry
10Gi

spec.config.persistence.storageClass
StorageClass name

for the registry
nfs-storage-sc

Configuration Reference

Mandatory Fields

kubectl create secret generic <S3-CREDENTIALS-SECRET> \

 --from-literal=access-key-id=<YOUR-S3-ACCESS-KEY-ID> \

 --from-literal=secret-access-key=<YOUR-S3-SECRET-ACCESS-KEY> \

 -n cpaas-system

kubectl apply -f registry-plugin.yaml

Install Via YAML - Alauda Container Platform

Parameter Description Example Value

spec.config.s3storage.bucket
S3 bucket name for

image storage
prod-image-store

spec.config.s3storage.region
AWS region for S3

storage
us-west-1

spec.config.s3storage.regionEndpoint
S3 service endpoint

URL
https://s3.amazonaws.com

spec.config.s3storage.secretName
Secret containing

S3 credentials
s3-access-keys

1. Check plugin:

2. Verify registry pods:

Execute the following command on the global cluster and update the values in the resource

according to the parameter descriptions provided above to complete the update:

Verification

Updating/Uninstalling Alauda Container Platform
Registry

Update

kubectl get clusterplugininstances internal-docker-registry -o yaml

kubectl get pods -n cpaas-system -l app=internal-docker-registry

Install Via YAML - Alauda Container Platform

Execute the following command on the global cluster:

Uninstall

<CLUSTER-NAME> is the cluster where the plugin is installed

kubectl edit -n cpaas-system \

 $(kubectl get moduleinfo -n cpaas-system -l cpaas.io/cluster-name=<CLUSTER-

NAME>,cpaas.io/module-name=internal-docker-registry -o name)

<CLUSTER-NAME> is the cluster where the plugin is installed

kubectl get moduleinfo -n cpaas-system -l cpaas.io/cluster-name=<CLUSTER-

NAME>,cpaas.io/module-name=internal-docker-registry -o name | xargs kubectl delete -n

cpaas-system

Install Via YAML - Alauda Container Platform

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Procedure

Verification

Updating/Uninstalling Alauda Container Platform Registry

Recommended for:

First-time users who prefer a guided, visual interface.

Quick proof-of-concept setups in non-production environments.

Teams with limited Kubernetes expertise seeking a simplified deployment process.

Scenarios requiring minimal customization (e.g., default storage configurations).

Basic networking setups without specific ingress rules.

StorageClass configurations for high availability.

Not Recommended for:

Production environments requiring advanced storage(S3 storage) configurations.

Install Via Web UI

TOC

When to Use This Method?

Menu ON THIS PAGE

Install Via Web UI - Alauda Container Platform

Networking setups needing specific ingress rules.

Install the Alauda Container Platform Registry cluster plugin to a target cluster using the

Cluster Plugin mechanism.

1. Log in and navigate to the Administrator page.

2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Registry cluster plugin, click Install, then proceed

to the installation page.

4. Configure parameters according to the following specifications and click Install to complete

the deployment.

The parameter descriptions are as follows:

Parameter Description

Expose Service

Once enabled, administrators can manage the image repository

externally using the access address. This poses significant

security risks and should be enabled with extreme caution.

Enable IPv6
Enable this option when the cluster uses IPv6 single-stack

networking.

NodePort
When Expose Service is enabled, configure NodePort to allow

external access to the Registry via this port.

Prerequisites

Installing Alauda Container Platform Registry
cluster plugin using the web console

Procedure

Install Via Web UI - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html

Parameter Description

Storage Type
Select a storage type. Supported types: LocalVolume and

StorageClass.

Nodes
Select a node to run the Registry service for image storage and

distribution. (Available only when Storage Type is LocalVolume)

StorageClass

Select a StorageClass. When replicas exceed 1, select storage

with RWX (ReadWriteMany) capability (e.g., File Storage) to

ensure high availability. (Available only when Storage Type is

StorageClass)

Storage Size Storage capacity allocated to the Registry (Unit: Gi).

Replicas

Configure the number of replicas for the Registry Pod:

LocalVolume: Default is 1 (fixed)

StorageClass: Default is 3 (adjustable)

Resource

Requirements

Define CPU and Memory resource requests and limits for the

Registry Pod.

1. Navigate to Marketplace > Cluster Plugins and confirm the plugin status shows Installed.

2. Click the plugin name to view its details.

3. Copy the Registry Address and use the Docker client to push/pull images.

You can update or uninstall the Alauda Container Platform Registry plugin from either the

list page or details page.

Verification

Updating/Uninstalling Alauda Container Platform
Registry

Install Via Web UI - Alauda Container Platform

How To

Common CLI Command Operations

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account

Pulling Images

Pushing Images

Using Alauda Container Platform Registry in Kubernetes Clusters
Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Best Practices

Verification Checklist

Troubleshooting

Menu

How To - Alauda Container Platform

The Alauda Container Platform provides command line tools for users to interact with the

Alauda Container Platform Registry. The following are some examples of common operations

and commands:

Let's assume that Alauda Container Platform Registry for the cluster has a service address of

registry.cluster.local and the namespace you are currently working on is my-ns.

Contact technical services to acquire the kubectl-acp plugin and ensure it is properly

installed in your environment.

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account

Pulling Images

Pushing Images

Log in to the cluster's Registry by logging in to the ACP.

Common CLI Command Operations

TOC

Logging in Registry

kubectl acp login <ACP-endpoint>

Menu ON THIS PAGE

Common CLI Command Operations - Alauda Container Platform

Add namespace pull permission for a user.

Add namespace push permissions to a user.

Add namespace pull permission for a service account.

Add namespace push permission for a service account.

Pulls an image from the registry to inside the cluster (e.g., for Pod deployment).

Add namespace permissions for users

Add namespace permissions for a service
account

Pulling Images

kubectl create rolebinding <binding-name> --clusterrole=system:image-puller --user=

<username> -n <namespace>

kubectl create rolebinding <binding-name> --clusterrole=system:image-pusher --user=

<username> -n <namespace>

kubectl create rolebinding <binding-name> --clusterrole=system:image-puller --

serviceaccount=<namespace>:<serviceaccount-name> -n <namespace>

kubectl create rolebinding <binding-name> --clusterrole=system:image-pusher --

serviceaccount=<namespace>:<serviceaccount-name> -n <namespace>

Common CLI Command Operations - Alauda Container Platform

This command verifies your identity and pull permissions in the target namespace, and then

pulls the image from the Registry.

Pushes locally built images or images pulled from elsewhere to a specific namespace in the

registry.

You need to first tag (tag) the local image with the address and namespace format of the

target Registry using a standard container command line tool such as docker.

Pushes an image from a remote image repository to a specific namespace in the Alauda

Container Platform Registry.

This command verifies your identity and push permissions within the my-ns namespace, and

then uploads the locally tagged image to Registry.

Pushing Images

Pull the image named my-app, labeled latest, from the Registry of the current namespace

(my-ns)

kubectl acp pull registry.cluster.local/my-ns/my-app:latest

Pull images from other namespaces (e.g. shared-ns) (requires permission to pull from

the shared-ns namespace)

kubectl acp pull registry.cluster.local/shared-ns/base-image:latest

Tag it with the target address:

docker tag my-app:latest registry.cluster.local/my-ns/my-app:v1

Use the kubectl command to push it to the Registry for the current namespace (my-ns)

kubectl acp push registry.cluster.local/my-ns/my-app:v1

If your remote image repository has an image remote.registry.io/demo/my-app:latest

Use the kubectl command to push it to the namespace(my-ns) of the registry

kubectl acp push remote.registry.io/demo/my-app:latest registry.cluster.local/my-ns/my-

app:latest

Common CLI Command Operations - Alauda Container Platform

The Alauda Container Platform (ACP) Registry provides secure container image management

for Kubernetes workloads.

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Example Role Binding

Best Practices

Verification Checklist

Troubleshooting

Internal Address Recommended: For images stored in the cluster's registry, always

prioritize using the internal service address internal-docker-registry.cpaas-system.svc

when deploying within the cluster. This ensures optimal network performance and avoids

unnecessary external routing.

External Address Usage: The external ingress domain (e.g. registry.cluster.local) is

primarily intended for:

Using Alauda Container Platform Registry
in Kubernetes Clusters

TOC

Registry Access Guidelines

Menu ON THIS PAGE

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Image pushes/pulls from outside the cluster (e.g., developer machines, CI/CD systems)

Cluster-external operations requiring registry access

1. Create an application named my-app in the my-ns namespace.

2. Store the application image in the registry at internal-docker-registry.cpaas-system.svc/my-

ns/my-app:v1 .

3. The default ServiceAccount in each namespace is automatically configured with an

imagePullSecret for accessing images from internal-docker-registry.cpaas-system.svc .

Example Deployment:

Deploy Sample Application

Cross-Namespace Access

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-app

 namespace: my-ns

spec:

 replicas: 3

 selector:

 matchLabels:

 app: my-app

 template:

 metadata:

 labels:

 app: my-app

 spec:

 containers:

 - name: main-container

 image: internal-docker-registry.cpaas-system.svc/my-ns/my-app:v1

 ports:

 - containerPort: 8080

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

To allow users from my-ns to pull images from shared-ns , the administrator of shared-ns can

create a role binding to grant the necessary permissions.

Registry Usage: Always use internal-docker-registry.cpaas-system.svc for deployments to

ensure security and performance.

Namespace Isolation: Leverage namespace isolation for better security and management

of images.

Use namespace-based image paths: internal-docker-registry.cpaas-

system.svc/<namespace>/<image>:<tag> .

Access Control: Use role bindings to manage cross-namespace access for users and

service accounts.

1. Validate image accessibility for the default ServiceAccount in my-ns :

2. Validate image accessibility for a user in my-ns :

Example Role Binding

Best Practices

Verification Checklist

Access images from shared namespace (requires permissions)

kubectl create rolebinding cross-ns-pull \

 --clusterrole=system:image-puller \

 --serviceaccount=my-ns:default \

 -n shared-ns

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --

as=system:serviceaccount:my-ns:default

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Image Pull Errors: Check the imagePullSecrets in the pod spec and ensure they are

correctly configured.

Permission Denied: Ensure the user or ServiceAccount has the necessary role bindings in

the target namespace.

Network Issues: Verify network policies and service configurations to ensure connectivity

to the internal registry.

DNS Failures: Check the content of /etc/hosts file on the node, ensure DNS resolution

for the internal-docker-registry.cpaas-system.svc is correctly configured.

Verify node's /etc/hosts configuration to ensure correct DNS resolution of internal-

docker-registry.cpaas-system.svc

Example showing registry service mapping (ClusterIP of internal-docker-registry

service):

How to get internal-docker-registry current ClusterIP:

Troubleshooting

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --as=<username>

/etc/hosts

127.0.0.1 localhost localhost.localdomain

10.4.216.11 internal-docker-registry.cpaas-system internal-docker-registry.cpaas-

system.svc internal-docker-registry.cpaas-system.svc.cluster.local # cpaas-

generated-node-resolver

kubectl get svc -n cpaas-system internal-docker-registry -o

jsonpath='{.spec.clusterIP}'

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Source to Image

Overview

Introduction

Source to Image Concept

Core Features

Core Benefits

Application scenarios

Usage Limitations

Architecture

Release Notes

Alauda Container Platform Builds Release Notes

Supported Versions

v1.1 Release Notes

Lifecycle Policy

Install

Menu

Source to Image - Alauda Container Platform

Installing Alauda Container Platform Builds
Prerequisites

Procedure

Upgrade

Upgrading Alauda Container Platform Builds

Prerequisites

Procedure

Guides

Managing applications created from Code

Key Features

Advantages

Prerequisites

Procedure

Related operations

How To

Creating an application from Code
Prerequisites

Procedure

Source to Image - Alauda Container Platform

Source to Image - Alauda Container Platform

Overview

Introduction

Source to Image Concept

Core Features

Core Benefits

Application scenarios

Usage Limitations

Architecture

Release Notes

Alauda Container Platform Builds Release Notes

Supported Versions

v1.1 Release Notes

Lifecycle Policy

Menu

Overview - Alauda Container Platform

Alauda Container Platform Builds is a cloud-native container tool provided by Alauda

Container Platform that integrates Source to Image (S2I) capabilities with automated

pipelines. It accelerates enterprise cloud-native journeys by enabling fully automated CI/CD

pipelines that support multiple programming languages, including Java, Go, Python, and

Node.js. Additionally, Alauda Container Platform Builds offers visual release management and

seamless integration with Kubernetes-native tools like Helm and GitOps, ensuring efficient

application lifecycle management from development to production.

Source to Image Concept

Core Features

Core Benefits

Application scenarios

Usage Limitations

Source to Image (S2I) is a tool and workflow for building reproducible container images from

source code. It injects the application's source code into a predefined builder image and

automatically completes steps such as compilation and packaging, ultimately generating a

runnable container image. This allows developers to focus more on business code

development without worrying about the details of containerization.

Introduction

TOC

Source to Image Concept

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Alauda Container Platform Builds facilitates a full-stack, cloud-native workflow from code to

application, enabling multi-language builds and visual release management. It leverages

Kubernetes-native capabilities to convert source code into runnable container images,

ensuring seamless integration into a comprehensive cloud-native platform.

Multi-language Builds: Supports building applications in various programming languages

such as Java, Go, Python, and Node.js, accommodating diverse development needs.

Visual Interface: Provides an intuitive interface that allows you to easily create, configure,

and manage build tasks without deep technical knowledge.

Full Lifecycle Management: Covers the entire lifecycle from code commit to application

deployment, automating build, deployment, and operational management.

Deep Integration: Seamlessly integrates with your Container Platform product, providing a

seamless development experience.

High Extensibility: Supports custom plugins and extensions to meet your specific needs.

Accelerated Development: Streamlines the build process, speeding up application

delivery.

Enhanced Flexibility: Supports building in multiple programming languages.

Improved Efficiency: Automates build and deployment processes, reducing manual

intervention.

Increased Reliability: Provides detailed build logs and visual monitoring for easy

troubleshooting.

The main application scenarios for S2I are as follows:

Web applications

Core Features

Core Benefits

Application scenarios

Introduction - Alauda Container Platform

S2I supports various programming languages, such as Java, Go, Python, and Node.js. By

leveraging the Alauda Container Platform application management capabilities, it allows for

rapid building and deployment of web applications simply by entering the code repository

URL.

CI/CD

S2I integrates seamlessly with DevOps pipelines, leveraging Kubernetes-native tools like

Helm and GitOps to automate the image building and deployment processes. This enables

continuous integration and continuous deployment of applications.

The current version only supports Java, Go, Python, and Node.js languages.

WARNING

Prerequisites: Alauda DevOps Pipelines operator is now available in the cluster OperatorHub.

Usage Limitations

↗

Introduction - Alauda Container Platform

https://docs.alauda.io/alauda-devops-pipelines
https://docs.alauda.io/alauda-devops-pipelines
https://docs.alauda.io/alauda-devops-pipelines

Source to Image (S2I) capability is implemented through the Alauda Container Platform

Builds operator, enabling automated container image builds from Git repository source code

and subsequent pushes to a designated image registry. The core components include:

Alauda Container Platform Builds operator: Manages the end-to-end build lifecycle and

orchestrates Tekton pipelines.

Tekton pipelines: Executes S2I workflows via Kubernetes-native TaskRun resources.

Architecture

Menu

Architecture - Alauda Container Platform

Alauda Container Platform Builds Release Notes

Supported Versions

v1.1 Release Notes

v1.1.0

The release notes for the Alauda Container Platform Builds operator describe new features

and enhancements, deprecated features, and known issues.

INFO

The Alauda Container Platform Builds operator is provided as an installable component, with a

distinct release cycle from the core Alauda Container Platform. The Alauda Container Platform

Builds operator Lifecycle Policy outlines release compatibility.

Release Notes

TOC

Alauda Container Platform Builds Release Notes

Supported Versions

Menu ON THIS PAGE

Release Notes - Alauda Container Platform

Version
Alauda Container Platform

Version

Alauda DevOps Pipelines

Version

v1.1.0 v4.1 v4.1

1. Security Vulnerability Remediation.

2. Independently Releasable.

v1.1 Release Notes

v1.1.0

Release Notes - Alauda Container Platform

Below is the lifecycle schedule for released versions of the Alauda Container Platform Builds

Operator:

Version Release Date End of Life

v1.1.0 2025-08-15 2027-08-15

Lifecycle Policy

Version Lifecycle Timeline

Menu

Lifecycle Policy - Alauda Container Platform

Install

Installing Alauda Container Platform Builds

Prerequisites

Procedure

Menu

Install - Alauda Container Platform

Prerequisites

Procedure

Install the Alauda Container Platform Builds Operator

Install the Shipyard instance

Verification

Alauda Container Platform Builds is a container tool offered by Alauda Container Platform

that integrates building (capable of Source to Image) and create application.

1. Download the latest version package of Alauda Container Platform Builds that matches

your platform. If the Alauda DevOps Pipelines operator has not been installed on the

Kubernetes cluster, it is recommended to download it together.

2. Utilize the violet CLI tool to upload Alauda Container Platform Builds and Alauda

DevOps Pipelines packages to your target cluster. For detailed instructions on using

violet , please refer to the CLI.

Installing Alauda Container Platform Builds

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Installing Alauda Container Platform Builds - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

1. Log in, and navigate to the Administrator page.

2. Click Marketplace > OperatorHub.

3. Find the Alauda Container Platform Builds operator, click Install, and enter the Install

page.

Configuration Parameters:

Parameter Recommended Configuration

Channel Alpha : The default Channel is set to alpha.

Version Please select the latest version.

Installation

Mode

Cluster : A single Operator is shared across all namespaces in the

cluster for instance creation and management, resulting in lower

resource usage.

Namespace
Recommended : It is recommended to use the shipyard-operator

namespace; it will be created automatically if it does not exist.

Upgrade

Strategy

Please select the Manual .

Manual : When a new version is available in the OperatorHub

the Upgrade action will not be executed automatically.

4. On the Install page, select default configuration, click Install, and complete the installation

of the Alauda Container Platform Builds Operator.

1. Click on Marketplace > OperatorHub.

2. Find the installed Alauda Container Platform Builds operator, navigate to All Instances.

3. Click Create Instance button, and click Shipyard card in the resource area.

Install the Alauda Container Platform Builds Operator

Install the Shipyard instance

Installing Alauda Container Platform Builds - Alauda Container Platform

4. On the parameter configuration page for the instance, you may use the default

configuration unless there are specific requirements.

5. Click Create.

After the instance is successfully created, wait approximately 20 minutes, then navigate to

Container Platform > Applications > Applications and click Create.

You should see the entry for Create from Code. At this time, the installation of Alauda

Container Platform Builds is successful, and you can start your S2I journey with the

Creating an application from Code.

Verification

Installing Alauda Container Platform Builds - Alauda Container Platform

Upgrade

Upgrading Alauda Container Platform Builds

Prerequisites

Procedure

Menu

Upgrade - Alauda Container Platform

Prerequisites

Procedure

Upgrading the Alauda Container Platform Builds Operator

Alauda Container Platform Builds is a container tool offered by Alauda Container Platform

that integrates building (capable of Source to Image) and create application.

1. Download the new version package of Alauda Container Platform Builds that matches

your platform.

2. Utilize the violet CLI tool to upload Alauda Container Platform Builds and Alauda

DevOps Pipelines packages to your target cluster. For detailed instructions on using

violet , please refer to the CLI.

Upgrading Alauda Container Platform
Builds

TOC

Prerequisites

Procedure

Upgrading the Alauda Container Platform Builds Operator

Menu ON THIS PAGE

Upgrading Alauda Container Platform Builds - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

INFO

If you are upgrading from version v4.0 and earlier, first migrate the Alauda DevOps Tekton v3 to

Alauda DevOps Pipelines .

1. Log in, and navigate to the Administrator page.

2. Click Marketplace > OperatorHub.

3. In the navigation bar, select the cluster where the operator is installed.

4. Find the Alauda Container Platform Builds operator and open its Details page.

5. Click Confirm to start the upgrade, and wait until the operator finishes upgrading.

↗

Upgrading Alauda Container Platform Builds - Alauda Container Platform

https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html
https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html
https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html
https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html

Guides

Managing applications created from Code

Key Features

Advantages

Prerequisites

Procedure

Related operations

Menu

Guides - Alauda Container Platform

Key Features

Advantages

Prerequisites

Procedure

Related operations

Build

Input the code repository URL to trigger the S2I process, which converts the source code

into a image and publishes it as an application.

When the source code is updated, initiate the Rebuild action via the visual interface to

update the application version with a single click.

Simplifies the process of creating and upgrading applications from code.

Lowers the barrier for developers, eliminating the need to understand the details of

containerization.

Managing applications created from Code

TOC

Key Features

Advantages

Menu ON THIS PAGE

Managing applications created from Code - Alauda Container Platform

Provides a visual construction process and operational management, facilitating problem

localization, analysis, and troubleshooting.

Installing Alauda Container Platform Builds is completed.

Access to a image repository is required; if unavailable, contact the Administrator to

Installing Alauda Container Platform Registry

1. Container Platform, navigate to Application > Application.

2. Click Create.

3. Select the Create from Code.

4. Refer to the parameter descriptions below to complete the configuration.

Region Parameter Description

Code

Repository

Type

Platform Integrated: Choose a code repository

that is integrated with the platform and already

allocated for the current project; the platform

supports GitLab, GitHub, and Bitbucket.

Input: Use a code repository URL that is not

integrated with the platform.

Integrated

Project

Name

The name of the integration tool project assigned

or associated with the current project by the

Administrator.

Prerequisites

Procedure

Managing applications created from Code - Alauda Container Platform

Repository

Address

Select or input the address of the code repository

that stores the source code.

Version

Identifier

Supports creating applications based on branches,

tags, or commits in the code repository. Among

them:

When the version identifier is a branch, only the

latest commit under the selected branch is

supported for creating applications.

When the version identifier is a tag or commit,

the latest tag or commit in the code repository is

selected by default. However, you can also

choose other versions as needed.

Context dir
Optional directory for the source code, used as a

context directory for build.

Secret
When using an input code repository, you can add

an authentication secret as needed.

Builder

Image

An image that includes specific programming

language runtime environments, dependency

libraries, and S2I scripts. Its main purpose is to

convert source code into runnable application

images.

The supported builder images, include: Golang,

Java, Node.js, and Python.

Managing applications created from Code - Alauda Container Platform

Version

Select the runtime environment version that is

compatible with your source code to ensure

smooth application execution.

Build Build Type
Currently, only the Build method is supported for

constructing application images. This method

simplifies and automates the complex image

building process, allowing developers to focus

solely on code development. The general process

is as follows:

1. After installed Alauda Container Platform Builds

and creating the Shipyard instance, the system

automatically generates cluster-level resources,

such as ClusterBuildStrategy, and defines a

standardized build process. This process

includes detailed build steps and necessary

build parameters, thereby enabling Source-to-

Image (S2I) builds. For detailed information,

refer to: Installing Alauda Container Platform

Builds

2. Create Build type resources based on the

above strategies and the information provided

in the form. These resources specify build

strategies, build parameters, source code

repositories, output image repositories, and

other relevant information.

3. Create BuildRun type resources to initiate

specific build instances, which coordinate the

entire build process.

4. After completing the BuildRun creation, the

system will automatically generate the

corresponding TaskRun resource instance. This

Managing applications created from Code - Alauda Container Platform

TaskRun instance triggers the Tekton pipeline

build and creates a Pod to execute the build

process. The Pod is responsible for the actual

build work, which includes: Pulling the source

code from the code repository.

Calling the specified builder image.

Executing the build process.

Image URL
After the build is complete, specify the target

image repository address for the application.

Application -

Fill in the application configuration as needed. For

specific details, refer to the parameter descriptions

in the Creating applications from Image

documentation.

Network -

Target Port: The actual port that the application

inside the container listens on. When external

access is enabled, all matching traffic will be

forwarded to this port to provide external

services.

Other Parameters: Please refer to the

parameter descriptions in the CreatingIngress

documentation.

Label

Annotations
-

Fill in the relevant labels and annotations as

needed.

Managing applications created from Code - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

5. After filling in the parameters, click on Create.

6. You can view the corresponding deployment on the Details page.

After the application has been created, the corresponding information can be viewed on the

details page.

Parameter Description

Build
Click the link to view the specific build (Build) and build task (BuildRun)

resource information and YAML.

Start

Build

When the build fails or the source code changes, you can click this

button to re-execute the build task.

Related operations

Build

Managing applications created from Code - Alauda Container Platform

How To

Creating an application from Code

Prerequisites

Procedure

Menu

How To - Alauda Container Platform

Using the powerful capabilities of Alauda Container Platform Builds installation to achieve

the entire process from Java source code to create an application, and ultimately enable

the application to run efficiently in a containerized manner on Kubernetes.

Prerequisites

Procedure

Before using this functionality, ensure that:

Installing Alauda Container Platform Builds

There is an accessible image repository on the platform. If not, please contact the

Administrator to Installing ACP Registry

1. Container Platform, click Applications > Applications.

2. Click Create.

Creating an application from Code

TOC

Prerequisites

Procedure

Menu ON THIS PAGE

Creating an application from Code - Alauda Container Platform

3. Select the Create from Code.

4. Complete the configuration according to the parameters below:

Parameter Recommended Configuration

Code Repository

Type: Input

Repository URL: https://github.com/alauda/spring-boot-hello-

world

Build Method Build

Image

Repository
Contact the Administrator.

Application

Application: spring-boot-hello-world

Name: spring-boot-hello-world

Resource Limits: Use the default value.

Network Target Port: 8080

5. After filling in the parameters, click Create.

6. You can check the corresponding application status on the Details page.

Creating an application from Code - Alauda Container Platform

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

Node Isolation Strategy

Introduction

Introduction
Advantages

Application Scenarios

Architecture

Architecture

Concepts

Core Concepts

Node Isolation

Menu

Node Isolation Strategy - Alauda Container Platform

Guides

Create Node Isolation Strategy
Create Node Isolation Strategy

Delete Node Isolation Strategy

Permissions

Permissions

Node Isolation Strategy - Alauda Container Platform

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

Advantages

Application Scenarios

Conveniently allocate nodes to projects in an exclusive or shared manner, preventing

resource contention between projects.

Node Isolation Strategy is suitable for scenarios where enhanced resource isolation between

projects is required, and where there is a desire to prevent other projects' components from

occupying nodes, which could lead to resource constraints or inability to meet performance

requirements.

Introduction

TOC

Advantages

Application Scenarios

Menu ON THIS PAGE

Introduction - Alauda Container Platform

Node Isolation Strategy is implemented based on the Container Platform Cluster Core

component, providing the capability of node isolation between projects by allocating nodes on

each workload cluster. When containers are created in a project, they are forcibly scheduled

to the nodes allocated to that specific project.

Architecture

Menu

Architecture - Alauda Container Platform

Concepts

Core Concepts

Node Isolation

Menu

Concepts - Alauda Container Platform

Node Isolation

Node Isolation refers to isolating nodes in a cluster to prevent containers from different

projects from simultaneously using the same node, thereby avoiding resource contention and

performance degradation.

Core Concepts

TOC

Node Isolation

Menu ON THIS PAGE

Core Concepts - Alauda Container Platform

Guides

Create Node Isolation Strategy

Create Node Isolation Strategy

Delete Node Isolation Strategy

Menu

Guides - Alauda Container Platform

Create a node isolation policy for the current cluster, allowing specified projects to have

exclusive access to the nodes of grouped resources within the cluster, thereby restricting the

runnable nodes for Pods under the project, achieving physical resource isolation between

projects.

Create Node Isolation Strategy

Delete Node Isolation Strategy

1. In the left navigation bar, click on Security > Node Isolation Strategy.

2. Click on Create Node Isolation Strategy.

3. Refer to the instructions below to configure the relevant parameters.

Parameter Description

Project

Exclusivity

Whether to enable or disable the switch for the nodes contained in

the project isolation policy configured in the strategy; click to toggle

on or off, default is on.

When the switch is on, only Pods under the specified project in the

policy can run on the nodes included in the policy; when off, Pods

Create Node Isolation Strategy

TOC

Create Node Isolation Strategy

Menu ON THIS PAGE

Create Node Isolation Strategy - Alauda Container Platform

Parameter Description

under other projects in the current cluster can also run on the nodes

included in the policy apart from the specified project.

Project

The project that is configured to use the nodes in the policy.

Click the Project dropdown selection box, and check the checkbox

before the project name to select multiple projects.

Note:

A project can only have one node isolation policy set; if a project

has already been assigned a node isolation policy, it cannot be

selected;

Supports entering keywords in the dropdown selection box to filter

and select projects.

Node

The IP addresses of the compute nodes allocated for use by the

project in the policy.

Click the Node dropdown selection box, and check the checkbox

before the node name to select multiple nodes.

Note:

A node can belong to only one isolation policy; if a node already

belongs to another isolation policy, it cannot be selected;

Supports entering keywords in the dropdown selection box to filter

and select nodes.

4. Click Create.

Note:

After the policy is created, existing Pods in the project that do not comply with the

current policy will be scheduled to the nodes included in the current policy after they are

rebuilt;

When Project Exclusivity is on, currently existing Pods on the nodes will not be

automatically evicted; manual scheduling is required if eviction is needed.

Delete Node Isolation Strategy

Create Node Isolation Strategy - Alauda Container Platform

Note: After the node isolation policy is deleted, the project will no longer be restricted to run

on specific nodes, and the nodes will no longer be exclusively used by the project.

1. In the left navigation bar, click on Security > Node Isolation Strategy.

2. Locate the node isolation policy, click ⋮ > Delete.

Create Node Isolation Strategy - Alauda Container Platform

Function Action
Platform

Administrator

Platform

auditors

Project

Manager

Namespace

Administrator

nodegroups

acp-

nodegroups

View ✓ ✓ ✓ ✓

Create ✓ ✕ ✕ ✕

Update ✓ ✕ ✕ ✕

Delete ✓ ✕ ✕ ✕

Permissions

Menu

Permissions - Alauda Container Platform

Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist in a namespace when importing it?

When importing a namespace, if the namespace contains multiple ResourceQuota resources,

the platform will select the smallest value for each quota item among all ResourceQuotas and

merge them, ultimately creating a single ResourceQuota named default .

Example:

The namespace to-import to be imported contains the following resourcequota resources:

FAQ

TOC

Why shouldn't multiple ResourceQuotas exist in a
namespace when importing it?

Menu ON THIS PAGE

FAQ - Alauda Container Platform

After importing the to-import namespace, the following default ResourceQuota will be

created in that namespace:

For each ResourceQuota, the quotas of resources is the minimum value between a and b .

apiVersion: v1

kind: ResourceQuota

metadata:

 name: a

 namespace: to-import

spec:

 hard:

 requests.cpu: "1"

 requests.memory: "500Mi"

 limits.cpu: "3"

 limits.memory: "1Gi"

apiVersion: v1

kind: ResourceQuota

metadata:

 name: b

 namespace: to-import

spec:

 hard:

 requests.cpu: "2"

 requests.memory: "300Mi"

 limits.cpu: "2"

 limits.memory: "2Gi"

apiVersion: v1

kind: ResourceQuota

metadata:

 name: default

 namespace: to-import

spec:

 hard:

 requests.cpu: "1"

 requests.memory: "300Mi"

 limits.cpu: "2"

 limits.memory: "1Gi"

FAQ - Alauda Container Platform

When multiple ResourceQuotas exist in a namespace, Kubernetes validates each

ResourceQuota independently. Therefore, after importing a namespace, it is recommended to

delete all ResourceQuotas except for the default one. This helps avoid complications in

quota calculations due to multiple ResourceQuotas, which can easily lead to errors.

When importing a namespace, if the namespace contains multiple LimitRange resources, the

platform cannot merge them into a single LimitRange. Since Kubernetes independently

validates each LimitRange when multiple exist, and the behavior of which LimitRange's

default values Kubernetes selects is unpredictable.

If the namespace only contains a single LimitRange, the platform will created a LimitRange

named default with the values from that LimitRange.

Therefore, before importing a namespace, only a single LimitRange should exist in the

namespace. And after the namespace is imported it is recommended to delete the

LimitRanges except for the one named default to avoid unpredictable behavior caused by

multiple LimitRanges.

Why shouldn't multiple LimitRanges exist in a
namespace when importing it?

FAQ - Alauda Container Platform

	Developer
	Overview
	TOC
	Namespace Management
	Application Lifecycle Management
	Application Creation Patterns
	Application Operations
	Application Observability

	Kubernetes Workload Management

	Quick Start
	Creating a simple application via image
	TOC
	Introduction
	Use Cases
	Time Commitment

	Important Notes
	Prerequisites
	Workflow Overview
	Procedure
	Create namespace
	Configure Image Repository
	Method 1: Integrated Registry via Toolchain
	Method 2: External Registry Services

	Create application via Deployment
	Expose Service via NodePort
	Validate Application Accessibility

	Building Applications
	Build application architecture
	TOC
	Introduction to build application
	Core components
	Archon
	Metis
	Captain controller manager
	Icarus

	Concepts
	Application Types
	Custom Applications
	TOC
	UnderStanding Custom Applications
	Core Capabilities
	Design Value

	Custom Application CRD Architecture Design
	Application CRD Define
	ApplicationHistory Define

	Workload Types
	Understanding Parameters
	TOC
	Overview
	Core Concepts
	What are Parameters?
	Relationship with Docker

	Use Cases and Scenarios
	1. Application Configuration
	2. Environment-Specific Deployment
	3. Database Connection Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Parameter Examples
	Web Server with Custom Configuration
	Application with Multiple Parameters

	Best Practices
	1. Parameter Design Principles
	2. Security Considerations
	3. Configuration Management

	Troubleshooting Common Issues
	1. Parameter Not Recognized
	2. Parameter Override Not Working
	3. Debugging Parameter Issues

	Advanced Usage Patterns
	1. Conditional Parameters with Init Containers
	2. Parameter Templating with Helm

	Understanding Environment Variables
	TOC
	Overview
	Core Concepts
	What are Environment Variables?
	Environment Variable Sources in Kubernetes
	Environment Variable Precedence

	Use Cases and Scenarios
	1. Application Configuration
	2. Database Configuration
	3. Dynamic Runtime Information
	4. Environment-Specific Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Environment Variable Examples
	Microservices with Service Discovery
	Multi-Container Pod with Shared Configuration

	Best Practices
	1. Security Best Practices
	2. Configuration Organization
	3. Environment Variable Naming
	4. Default Values and Validation

	Understanding Startup Commands
	TOC
	Overview
	Core Concepts
	What are Startup Commands?
	Relationship with Docker and Parameters
	Command vs Args Interaction

	Use Cases and Scenarios
	1. Custom Application Startup
	2. Debugging and Troubleshooting
	3. Initialization Scripts
	4. Multi-Purpose Images

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create job
	Complex Startup Command Examples
	Multi-Step Initialization
	Conditional Startup Logic

	Best Practices
	1. Signal Handling and Graceful Shutdown
	2. Error Handling and Logging
	3. Security Considerations
	4. Resource Management

	Advanced Usage Patterns
	1. Init Containers with Custom Commands
	2. Sidecar Containers with Different Commands
	3. Job Patterns with Custom Commands

	Resource Unit Description
	Namespaces
	Creating Namespaces
	TOC
	Understanding namespaces
	Creating namespaces by using web console
	Creating namespace by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Importing Namespaces
	TOC
	Overview
	Use Cases
	Prerequisites
	Procedure

	Resource Quota
	TOC
	Understanding Resource Requests & Limits
	Quotas
	Resource Quotas
	YAML file example
	Create resouce quota by using CLI

	Storage Quotas

	Hardware accelerator Resources Quotas
	Other Quotas

	Limit Range
	TOC
	Understanding Limit Range
	Create Limit Range by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Pod Security Admission
	TOC
	Security Modes
	Security Standards
	Configuration
	Namespace Labels
	Exemptions

	UID/GID Assignment
	TOC
	Enable UID/GID Assignment
	Verify UID/GID Assignment
	The UID/GID Range
	Verify the Pod UID/GID

	Overcommit Ratio
	TOC
	UnderStanding Namespace Resource Overcommit Ratio
	CRD Define
	Creating overcommit ratio by using CLI
	Creating/Updating Overcommit Ratio by using web console
	Precautions
	Procedure

	Managing Namespace Members
	TOC
	Importing Members
	Constraints and Limitations
	Prerequisites
	Procedure

	Adding Members
	Procedure

	Removing Members
	Procedure

	Updating Namespaces
	TOC
	Updating Quotas
	Updating a Resource Quota by using web console
	Updating a Resource Quota by using CLI

	Updating Container LimitRanges
	Updating a LimitRange by using web console
	Updating a LimitRange by using CLI

	Updating Pod Security Admission
	Updating a Pod Security Admission by using web console
	Updating a Pod Security Admission by using CLI

	Deleting/Removing Namespaces
	TOC
	Deleting Namespaces
	Removing Namespaces

	Creating Applications
	Creating applications from Image
	TOC
	Prerequisites
	Procedure 1 - Workloads
	Workload 1 - Configure Basic Info
	Workload 2 - Configure Pod
	Workload 3 - Configure Containers

	Procedure 2 - Services
	Procedure 3 - Ingress
	Application Management Operations
	Reference Information
	Storage Volume Mounting Instructions
	Health Check Parameters
	Common Parameters
	Protocol-Specific Parameters

	Creating applications from Chart
	TOC
	Precautions
	Prerequisites
	Procedure
	Status Analysis Reference

	Creating applications from YAML
	TOC
	Precautions
	Prerequisites
	Procedure

	Creating applications from Code
	TOC
	Prerequisites
	Procedure

	Creating applications from Operator Backed
	TOC
	UnderStanding Operator Backed Application
	Core Capabilities
	Operator Backed Application CRD

	Creating a Operator Backed Application by using web console
	Troubleshooting

	Creating applications by using CLI
	TOC
	Prerequisites
	Procedure
	Example
	YAML
	kubectl commands

	Reference

	Operation and Maintaining Applications
	Application Rollout
	Installing Alauda Container Platform Argo Rollouts
	TOC
	Prerequisites
	Installing Alauda Container Platform Argo Rollouts
	Procedure

	Application Blue Green Deployment
	Benefits of Blue Green Deployments
	Blue Green Deployment with Argo Rollouts
	TOC
	Prerequisites
	Procedure
	Creating the Deployment
	Creating the Blue Service
	Verify the Blue Deployment
	Verify Traffic Routing to Blue
	Creating the Rollout
	Verify the Rollouts
	Preparing Green Deployment
	Promoting the Rollout to Green

	Application Canary Deployment
	Benefits of Canary Deployments
	Canary Deployments with Argo Rollouts
	TOC
	Prerequisites
	Procedure
	Creating the Deployment
	Creating the Stable Service
	Creating the Canary Service
	Creating the Gateway
	DNS Configuration
	Creating the HTTPRoute
	Accessing the Stable service
	Creating the Rollout
	Verify the Rollouts
	Preparing Canary Deployment
	Promoting the Rollout
	Aborting the Rollout (Optional)

	Status Description
	TOC
	Applications

	Deployment
	KEDA(Kubernetes Event-driven Autoscaling)
	KEDA Overview
	TOC
	Introduction
	Advantages
	How KEDA works
	KEDA Custom Resource Definitions (CRDs)

	Installing KEDA
	TOC
	Prerequisites
	Installing via Command Line
	Installing KEDA Operator
	Creating the KedaController instance

	Installing via Web Console
	Installing KEDA Operator
	Creating the KedaController instance

	Verification
	Additional Scenarios
	Integrating ACP Log Collector

	Uninstalling KEDA Operator
	Removing the KedaController instance
	Uninstalling KEDA Operator via CLI
	Uninstalling KEDA Operator via Web Console

	How To
	Integrating ACP Monitoring with Prometheus Plugin
	TOC
	Prerequisites
	Procedure
	Verification

	Other KEDA scalers
	Pausing Autoscaling in KEDA
	TOC
	Procedure
	Immediate Pause with Current Replicas
	Pause After Scaling to a Specific Replica Count
	Behavior When Both Annotations are Set
	Unpausing Autoscaling

	Scaling to Zero
	Verification

	Configuring HPA
	TOC
	Understanding Horizontal Pod Autoscalers
	How Does the HPA Work?
	Supported Metrics

	Prerequisites
	Creating a Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console
	Using Custom Metrics for HPA
	Requirements
	Traditional (Core Metrics) HPA
	Custom Metrics HPA
	Trigger Condition Definition
	Custom Metrics HPA Compatibility
	Updates in autoscaling/v2beta2

	Calculation Rules

	Starting and Stopping Applications
	TOC
	Starting the Application
	Stopping the Application

	Configuring VerticalPodAutoscaler (VPA)
	TOC
	Understanding VerticalPodAutoscalers
	How Does the VPA Work?
	Supported Features

	Prerequisites
	Installing the Vertical Pod Autoscaler Plugin

	Creating a VerticalPodAutoscaler
	Using the CLI
	Using the Web Console
	Advanced VPA Configuration
	Update Policy Options
	Container Policy Options

	Follow-Up Actions

	Configuring CronHPA
	TOC
	Understanding Cron Horizontal Pod Autoscalers
	How Does the CronHPA Work?

	Prerequisites
	Creating a Cron Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console

	Schedule Rule Explanation

	Updating Applications
	TOC
	Importing Resources
	Removing/Batch Removing Resources

	Exporting Applications
	TOC
	Exporting Helm Charts
	Procedure
	Follow-Up Actions

	Exporting YAML to Local
	Steps
	Method 1
	Method 2

	Follow-Up Actions

	Exporting YAML to Code Repository (Alpha)
	Precautions
	Steps
	Follow-Up Actions

	Updating and deleting Chart Applications
	TOC
	Important Notes
	Prerequisites
	Status Analysis Description

	Version Management for Applications
	TOC
	Creating a Version Snapshot
	Procedure

	Rolling Back to a Historical Version
	Procedure

	Deleting Applications
	Handling Out of Resource Errors
	TOC
	Overview
	Configuring Eviction Policies
	Creating Eviction Policies in Node Configuration
	Eviction Signals
	Eviction Thresholds
	Hard Eviction Thresholds
	Default Hard Eviction Thresholds

	Soft Eviction Thresholds

	Configuring Allocatable Resources for Scheduling
	Preventing Node Condition Oscillation
	Reclaiming Node-level Resources
	Pod Eviction
	Quality of Service and Out of Memory Killer
	Scheduler and Out of Resource Conditions
	Example Scenario
	Recommended Practices
	Daemon Sets and Out of Resource Handling

	Health Checks
	TOC
	Understanding Health Checks
	Probe Types
	HTTP GET Action
	exec Action
	TCP Socket Action

	Best Practices

	YAML file example
	Health Checks configuration parameters by using web console
	Common parameters
	Protocol specific parameters

	Troubleshooting probe failures
	Check pod events
	View container logs
	Test probe endpoint manually
	Review probe configuration
	Check application code
	Resource constraints
	Network issues

	Workloads
	Deployments
	TOC
	Understanding Deployments
	Creating Deployments
	Creating a Deployment by using CLI
	Prerequisites
	YAML file example
	Creating a Deployment via YAML

	Creating a Deployment by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Reference Information
	Storage Volume Mounting instructions

	Heath Checks

	Managing Deployments
	Managing a Deployment by using CLI
	Viewing a Deployment
	Updating a Deployment
	Scaling a Deployment
	Rolling Back a Deployment
	Deleting a Deployment

	Managing a Deployment by using web console
	Viewing a Deployment
	Updating a Deployment
	Deleting a Deployment

	Troubleshooting by using CLI
	Check Deployment status
	Check ReplicaSet status
	Check Pod status
	View Logs
	Enter Pod for debugging
	Check Health configuration
	Check Resource Limits

	DaemonSets
	TOC
	Understanding DaemonSets
	Creating DaemonSets
	Creating a DaemonSet by using CLI
	Prerequisites
	YAML file example
	Creating a DaemonSet via YAML

	Creating a DaemonSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create

	Managing DaemonSets
	Managing a DaemonSet by using CLI
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	Managing a DaemonSet by using web console
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	StatefulSets
	TOC
	Understanding StatefulSets
	Creating StatefulSets
	Creating a StatefulSet by using CLI
	Prerequisites
	YAML file example
	Creating a StatefulSet via YAML

	Creating a StatefulSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create
	Heath Checks

	Managing StatefulSets
	Managing a StatefulSet by using CLI
	Viewing a StatefulSet
	Scaling a StatefulSet
	Updating a StatefulSet (Rolling Update)
	Deleting a StatefulSet

	Managing a StatefulSet by using web console
	Viewing a StatefulSet
	Updating a StatefulSet
	Deleting a StatefulSet

	CronJobs
	TOC
	Understanding CronJobs
	Creating CronJobs
	Creating a CronJob by using CLI
	Prerequisites
	YAML file example
	Creating a CronJobs via YAML

	Creating CronJobs by using web console
	Prerequisites
	Procedure - Configure basic info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Create

	Execute Immediately
	Locate the CronJob resource
	Initiate ad-hoc execution
	Verify Job details:
	Monitor execution status

	Deleting CronJobs
	Deleting CronJobs by using web console
	Deleting CronJobs by using CLI

	Jobs
	TOC
	Understanding Jobs
	YAML file example
	Execution Overview

	Pods
	TOC
	Understanding Pods
	YAML file example
	Managing a Pod by using CLI
	Viewing a Pod
	Viewing a Pod Logs
	Executing Commands in a Pod
	Port Forwarding to a Pod
	Deleting a Pod

	Managing a Pod by using web console
	Viewing a Pod
	Procedure
	Pod Parameters

	Deleting a Pod
	Use Cases
	Procedure

	Containers
	TOC
	Understanding Containers
	Understanding Ephemeral Containers
	Implementation Principle: Leveraging Ephemeral Containers
	Debugging Ephemeral Containers by using CLI
	Debugging Ephemeral Containers by using web console

	Interacting with Containers
	Interacting with Containers by using CLI
	Exec
	Transfer Files

	Interacting with Containers by using web console
	Entering the Container through Applications
	Entering the Container through the Pod

	Working with Helm charts
	TOC
	1. Understanding Helm
	1.1. Key features
	1.2. Catalog
	Terminology Definitions

	1.3 Understanding HelmRequest
	Differences Between HelmRequest and Helm
	HelmRequest and Application Integration
	Deployment Workflow
	Component Definitions

	2 Deploying Helm Charts as Applications via CLI
	2.1 Workflow Overview
	2.2 Preparing the Chart
	2.3 Packaging the Chart
	2.4 Obtaining an API Token
	2.5 Creating a Chart Repository
	2.6 Uploading the Chart
	2.7 Uploading Related Images
	2.8 Deploying the Application
	2.9 Updating the Application
	2.10 Uninstalling the Application
	2.11 Deleting the Chart Repository

	3. Deploying Helm Charts as Applications via UI
	3.1 Workflow Overview
	3.2 Prerequisites
	3.3 Adding Templates to Manageable Repositories
	3.4 Deleting Specific Versions of Templates
	Steps to Operate

	Configurations
	Configuring ConfigMap
	TOC
	Understanding Config Maps
	Config Map Restrictions
	Example ConfigMap
	Creating a ConfigMap by using the web console
	Creating a ConfigMap by using the CLI
	Operations
	View, Edit and Delete by using the CLI
	Ways to Use a ConfigMap in a Pod
	As Environment Variables
	As Files in a Volume
	As Individual Environment Variables

	ConfigMap vs Secret

	Configuring Secrets
	TOC
	Understanding Secrets
	Usage Characteristics
	Supported Types
	Usage Methods

	Creating an Opaque type Secret
	Creating a Docker registry type Secret
	Creating a Basic Auth type Secret
	Creating a SSH-Auth type Secret
	Creating a TLS type Secret
	Creating a Secret by using the web console
	How to Use a Secret in a Pod
	As Environment Variables
	As Mounted Files (Volume)

	Follow-up Actions
	Operations

	Application Observability
	Monitoring Dashboards
	TOC
	Prerequisites
	Namespace-Level Monitoring Dashboards
	Procedure
	Creating Namespace-Level Monitoring Dashboard

	Workload-Level Monitoring
	Default Monitoring Dashboard
	Procedure
	Metric interpretation

	Custom Monitoring Dashboard

	Logs
	TOC
	Procedure

	Events
	TOC
	Procedure
	Event records interpretation

	How To
	Setting Scheduled Task Trigger Rules
	TOC
	Time Conversion
	Writing Crontab Expressions

	Images
	Overview of images
	TOC
	Understanding containers and images
	Images
	Image registry
	Image repository
	Image tags
	Image IDs
	Containers

	How To
	Creating images
	TOC
	Learning container best practices
	General container image guidelines

	Including metadata in images
	Defining image metadata

	Managing images
	Image pull policy
	TOC
	Image pull policy overview

	Using image pull secrets
	Allowing pods to reference images from other secured registries
	Creating a pull secret
	Using a pull secret in a workload

	Registry
	Introduction
	TOC
	Principles and namespace isolation
	Authentication and authorization
	Authentication
	Authorization

	Advantages
	Application Scenarios

	Install
	Install Via YAML
	TOC
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry via YAML
	Procedure
	Configuration Reference
	Mandatory Fields

	Verification

	Updating/Uninstalling Alauda Container Platform Registry
	Update
	Uninstall

	Install Via Web UI
	TOC
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry cluster plugin using the web console
	Procedure
	Verification

	Updating/Uninstalling Alauda Container Platform Registry

	How To
	Common CLI Command Operations
	TOC
	Logging in Registry
	Add namespace permissions for users
	Add namespace permissions for a service account
	Pulling Images
	Pushing Images

	Using Alauda Container Platform Registry in Kubernetes Clusters
	TOC
	Registry Access Guidelines
	Deploy Sample Application
	Cross-Namespace Access
	Example Role Binding

	Best Practices
	Verification Checklist
	Troubleshooting

	Source to Image
	Overview
	Introduction
	TOC
	Source to Image Concept
	Core Features
	Core Benefits
	Application scenarios
	Usage Limitations

	Architecture
	Release Notes
	TOC
	Alauda Container Platform Builds Release Notes
	Supported Versions
	v1.1 Release Notes
	v1.1.0

	Lifecycle Policy
	Version Lifecycle Timeline
	Install
	Installing Alauda Container Platform Builds
	TOC
	Prerequisites
	Procedure
	Install the Alauda Container Platform Builds Operator
	Install the Shipyard instance
	Verification

	Upgrade
	Upgrading Alauda Container Platform Builds
	TOC
	Prerequisites
	Procedure
	Upgrading the Alauda Container Platform Builds Operator

	Guides
	Managing applications created from Code
	TOC
	Key Features
	Advantages
	Prerequisites
	Procedure
	Related operations
	Build

	How To
	Creating an application from Code
	TOC
	Prerequisites
	Procedure

	Node Isolation Strategy
	Introduction
	TOC
	Advantages
	Application Scenarios

	Architecture
	Concepts
	Core Concepts
	TOC
	Node Isolation

	Guides
	Create Node Isolation Strategy
	TOC
	Create Node Isolation Strategy
	Delete Node Isolation Strategy

	Permissions
	FAQ
	TOC
	Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?
	Why shouldn't multiple LimitRanges exist in a namespace when importing it?

