Developer - Alauda Container Platform

Menu

Developer

Overview

Overview
Namespace Management
Application Lifecycle Management

Kubernetes Workload Management

Quick Start

Creating a simple application via image
Introduction

Important Notes

Prerequisites

Workflow Overview

Procedure

Building Applications

Developer - Alauda Container Platform

Build application architecture
Introduction to build application

Core components

Concepts

Namespaces

Creating Applications

Operation and Maintaining Applications

Workloads

Working with Helm charts
1. Understanding Helm
2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via Ul

Configurations

Developer - Alauda Container Platform

Application Observability

How To

Images

Overview of images
Understanding containers and images
Images

Image registry

Image repository

Image tags

Image IDs

Containers

How To

Registry

Developer - Alauda Container Platform

Introduction

Principles and namespace isolation
Authentication and authorization
Advantages

Application Scenarios

Install

How To

Source to Image

Overview

Install

Upgrade

Guides

Developer - Alauda Container Platform

How To

Node Isolation Strategy

Introduction
Advantages

Application Scenarios

Architecture

Concepts

Guides

Permissions

FAQ

Developer - Alauda Container Platform

FAQ
Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist in a namespace when importing it?

Overview - Alauda Container Platform

Menu ON THIS PAGE >

Overview

Alauda Container Platform provides a unified interface to create, edit, delete, and manage
cloud-native applications through both a web console and CLI (Command-Line Interface).

Applications can be deployed across multiple namespaces with RBAC policies.

TOC

Namespace Management
Application Lifecycle Management
Application Creation Patterns

Application Operations
Application Observability

Kubernetes Workload Management

Namespace Management

Namespaces provide logical isolation for Kubernetes resources. Key operations include:

o Creating Namespaces: Define resource quotas and pod security admission policies.

o Importing Namespaces: Importing existing Kubernetes namespaces into Alauda Container

Platform provides full platform capabilities parity with natively created namespaces.

Application Lifecycle Management

Overview - Alauda Container Platform

Alauda Container Platform supports end-to-end lifecycle management including:

Application Creation Patterns

In Alauda Container Platform, applications can be created in multiple ways. Here are some

common methods:

o Create from Images: Create custom applications using pre-built container images. This
method supports creating complete application that include Deployments , Services ,

ConfigMaps , and other Kubernetes resources.

o Create from Catalog: Alauda Container Platform provides application catalogs, allowing
users to select predefined application templates (Helm Charts or Operator Backed) for

creation.

¢ Create from YAML: By importing a YAML file, create a custom application with all included

resources in one step.

¢ Create from Code: Build images via Source to Image (S2I).

Application Operations

o Updating Applications: Update an application's image version, environment variables, and

other configurations, or import existing Kubernetes resources for centralized management.

o Exporting Applications: Export applications in YAML, Kustomize, or Helm Chart formats,

then import them to create new application instances in other namespaces or clusters.

« \ersion Management: Support automatically or manually creating application versions, and

in case of issues, one-click rollback to a specific version is available for quick recovery.

+ Deleting Applications: Delete an application, it simultaneously deletes the application itself
and all of its directly contained Kubernetes resources. Additionally, this action severs any
association the application might have had with other Kubernetes resources that were not

directly part of its definition.

Application Observability

For continuous operation management, the platform provides logs, events, monitoring, etc.

Overview - Alauda Container Platform

¢ Logs: Supports viewing real-time logs from the currently running Pod, and also provides

logs from previous container restarts.
e Events: Supports viewing event information for all resources within a namespace.

¢ Monitoring Dashboards: Provides namespace-level monitoring dashboards, including
dedicated views for Applications, Workloads, and Pods, and also support customizing

monitoring dashboards to suit specific operational requirements.

Kubernetes Workload Management

Support for core workload types:

Deployments: Manage stateless applications with rolling updates.

StatefulSets: Run stateful apps with stable network IDs.

DaemonSets: Deploy node-level services (e.g., log collectors).

CronJobs: Schedule batch jobs with retry policies.

Quick Start - Alauda Container Platform

Menu

Quick Start

Creating a simple application via image
Introduction

Important Notes

Prerequisites

Workflow Overview

Procedure

Creating a simple application via image - Alauda Container Platform

Menu ON THIS PAGE >

Creating a simple application via image

This technical guide demonstrates how to efficiently create, manage, and access
containerized applications in Alauda Container Platform using Kubernetes-native

methodologies.

TOC

Introduction
Use Cases
Time Commitment
Important Notes
Prerequisites
Workflow Overview
Procedure
Create namespace
Configure Image Repository
Method 1: Integrated Registry via Toolchain
Method 2: External Registry Services
Create application via Deployment
Expose Service via NodePort

Validate Application Accessibility

Introduction

Creating a simple application via image - Alauda Container Platform

Use Cases

» New users seeking to understand fundamental application creation workflows on
Kubernetes platforms

e Practical exercise demonstrating core platform capabilities including:

Project/Namespace orchestration

Deployment creation

Service exposure patterns

Application accessibility verification

Time Commitment

Estimated completion time: 10-15 minutes

Important Notes

¢ This technical guide focuses on essential parameters - refer to comprehensive
documentation for advanced configurations

¢ Required permissions:

¢ Project/Namespace creation
e Image repository integration

o Workload deployment

Prerequisites

¢ Basic understanding of Kubernetes architecture and Alauda Container Platform platform
concepts

¢ Pre-configured project following platform establishment procedures

Creating a simple application via image - Alauda Container Platform

Workflow Overview

No. Operation

1 Create Namespace

2 Configure Image Repository

3 Create application via Deployment

4 Expose Service via NodePort

5 Validate Application Accessibility
Procedure

Create namespace

Description

Establish resource isolation boundary
Set up container image sources
Create Deployment workload
Configure NodePort service

Test endpoint connectivity

Namespaces provide logical isolation for resource grouping and quota management.

Prerequisites

¢ Permissions to create, update, and delete namespaces(e.g., Administrator or Project

Administrator roles)

o Kkubectl configured with cluster access

Creation Process

1. Log in, and navigate to Project Management > Namespaces

2. Select Create Namespace

3. Configure essential parameters:

** Parameter ** Description

Cluster Target cluster from project-associated clusters

Creating a simple application via image - Alauda Container Platform
** Parameter ** Description

Namespace Unique identifier (auto-prefixed with project name)

4. Complete creation with default resource constraints

Configure Image Repository

Alauda Container Platform supports multiple image sourcing strategies:

Method 1: Integrated Registry via Toolchain
1. Access Administrator > Toolchain > Integration

2. Initiate new integration:

Parameter Requirement
Name Unique integration identifier
API Endpoint Registry service URL (HTTP/HTTPS)

Secret Pre-existing or newly created credential
3. Allocate registry to target platform project

Method 2: External Registry Services

¢ Use publicly accessible registry URLs (e.g., Docker Hub)

e Example: index.docker.io/library/nginx:latest

Verification Requirement

o Cluster network must have egress access to registry endpoints

Create application via Deployment

Deployments provide declarative updates for Pod replicasets.

Creating a simple application via image - Alauda Container Platform

Creation Process
1. From Container Platform view:
» Use namespace selector to choose target isolation boundary

2. Navigate to Workloads > Deployments
3. Click Create Deployment

4. Specify image source:

o Select integrated registry or

¢ Input external image URL (e.g., index.docker.io/library/nginx:latest)
5. Configure workload identity and launch
Management Operations

* Monitor replica status
* View events and logs
¢ Inspect YAML manifests

e Analyze resource metrics, alerts

Expose Service via NodePort

Services enable network accessibility to Pod groups.
Creation Process
1. Navigate to Networking > Services

2. Click Create Service with parameters:

Parameter Value
Type NodePort
Selector Target Deployment name

Port Mapping Service Port: Container Port (e.g., 8080:80)

Creating a simple application via image - Alauda Container Platform

3. Confirm creation.
Critical

e Cluster-visible virtual IP

* NodePort allocation range (30000-32767)

Internal routes enable service discovery for workloads by providing a unified IP address or

host port for access.
1. Click on Network > Service.
2. Click on Create Service.

3. Configure the Details based on the parameters below, keeping other parameters at their

defaults.
Parameter Description

Name Enter the name of the Service.

Type NodePort

Workload _
Select the Deployment created previously.

Name
Service Port: The port number exposed by the Service within the
cluster, i.e., Port, e.g., 8080 .

Port

Container Port: The target port number (or name) mapped by the

service port, i.e., targetPort, e.g., 80 .

4. Click on Create. At this point, the Service is successfully created.

Validate Application Accessibility

Verification Method

1. Obtain exposed endpoint components:

* Node IP: Worker node public address

Creating a simple application via image - Alauda Container Platform
» NodePort: Allocated external port
2. Construct access URL: http://<Node_IP>:<NodePort>

3. Expected result: Nginx welcome page

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Building Applications - Alauda Container Platform

Menu

Building Applications

Build application architecture

Build application architecture
Introduction to build application

Core components

Concepts

Application Types

Custom Applications
UnderStanding Custom Applications

Custom Application CRD Architecture Design

Workload Types

Building Applications - Alauda Container Platform

Understanding Parameters
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage
Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Understanding Environment Variables
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Understanding Startup Commands
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Advanced Usage Patterns

Resource Unit Description

Building Applications - Alauda Container Platform

Namespaces

Creating Namespaces
Understanding namespaces
Creating namespaces by using web console

Creating namespace by using CLI

Importing Namespaces
Overview

Use Cases

Prerequisites

Procedure

Resource Quota
Understanding Resource Requests & Limits
Quotas

Hardware accelerator Resources Quotas

Limit Range
Understanding Limit Range

Create Limit Range by using CLI

Building Applications - Alauda Container Platform

Pod Security Admission
Security Modes
Security Standards

Configuration

UID/GID Assignment
Enable UID/GID Assignment

Verify UID/GID Assignment

Overcommit Ratio

UnderStanding Namespace Resource Overcommit Ratio
CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Managing Namespace Members
Importing Members
Adding Members

Removing Members

Updating Namespaces
Updating Quotas
Updating Container LimitRanges

Updating Pod Security Admission

Building Applications - Alauda Container Platform

Deleting/Removing Namespaces
Deleting Namespaces

Removing Namespaces

Creating Applications

Creating applications from Image
Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Creating applications from Chart
Precautions

Prerequisites

Procedure

Status Analysis Reference

Creating applications from YAML

Precautions
Prerequisites

Procedure

Building Applications - Alauda Container Platform

Creating applications from Code
Prerequisites

Procedure

Creating applications from Operator Backed
UnderStanding Operator Backed Application
Creating a Operator Backed Application by using web console

Troubleshooting

Creating applications by using CLI
Prerequisites

Procedure

Example

Reference

Operation and Maintaining Applications

Application Rollout

Status Description

Applications

KEDA(Kubernetes Event-driven Autoscaling)

Building Applications - Alauda Container Platform

Configuring HPA

Understanding Horizontal Pod Autoscalers
Prerequisites

Creating a Horizontal Pod Autoscaler

Calculation Rules

Starting and Stopping Applications
Starting the Application

Stopping the Application

Configuring VerticalPodAutoscaler (VPA)
Understanding VerticalPodAutoscalers

Prerequisites

Creating a VerticalPodAutoscaler

Follow-Up Actions

Configuring CronHPA

Understanding Cron Horizontal Pod Autoscalers
Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Schedule Rule Explanation

Updating Applications
Importing Resources

Removing/Batch Removing Resources

Building Applications - Alauda Container Platform

Exporting Applications
Exporting Helm Charts
Exporting YAML to Local

Exporting YAML to Code Repository (Alpha)

Updating and deleting Chart Applications
Important Notes
Prerequisites

Status Analysis Description

Version Management for Applications
Creating a Version Snapshot

Rolling Back to a Historical Version

Deleting Applications

Building Applications - Alauda Container Platform

Handling Out of Resource Errors
Overview

Configuring Eviction Policies

Creating Eviction Policies in Node Configuration
Eviction Signals

Eviction Thresholds

Configuring Allocatable Resources for Scheduling
Preventing Node Condition Oscillation
Reclaiming Node-level Resources

Pod Eviction

Quality of Service and Out of Memory Killer
Scheduler and Out of Resource Conditions
Example Scenario

Recommended Practices

Health Checks

Understanding Health Checks

YAML file example

Health Checks configuration parameters by using web console

Troubleshooting probe failures

Workloads

Deployments
Understanding Deployments
Creating Deployments
Managing Deployments

Troubleshooting by using CLI

Building Applications - Alauda Container Platform

DaemonSets
Understanding DaemonSets
Creating DaemonSets

Managing DaemonSets

StatefulSets
Understanding StatefulSets
Creating StatefulSets

Managing StatefulSets

CronJobs
Understanding CronJobs
Creating CronJobs
Execute Immediately

Deleting CronJobs

Jobs
Understanding Jobs
YAML file example

Execution Overview

Pods

Understanding Pods

YAML file example

Managing a Pod by using CLI

Managing a Pod by using web console

Building Applications - Alauda Container Platform

Containers
Understanding Containers
Understanding Ephemeral Containers

Interacting with Containers

Working with Helm charts

Working with Helm charts
1. Understanding Helm
2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via Ul

Configurations

Configuring ConfigMap

Understanding Config Maps

Config Map Restrictions

Example ConfigMap

Creating a ConfigMap by using the web console
Creating a ConfigMap by using the CLI
Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

ConfigMap vs Secret

Building Applications - Alauda Container Platform

Configuring Secrets

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret
Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console
How to Use a Secret in a Pod

Follow-up Actions

Operations

Application Observability

Monitoring Dashboards
Prerequisites
Namespace-Level Monitoring Dashboards

Workload-Level Monitoring

Logs

Procedure

Events
Procedure

Event records interpretation

Building Applications - Alauda Container Platform

How To

Setting Scheduled Task Trigger Rules
Time Conversion

Writing Crontab Expressions

Build application architecture - Alauda Container Platform

Menu ON THIS PAGE >

Build application architecture

TOC

Introduction to build application
Core components

Archon

Metis

Captain controller manager

Icarus

Introduction to build application

Alauda Container Platform is a platform for developing and running containerized applications.
It is designed to allow applications and the data centers that support them to expand from just

a few machines and applications to thousands of machines that serve millions of clients.

Built on Kubernetes, Alauda Container Platform leverages the same robust technology that
powers large-scale telecommunications, streaming video, gaming, banking, and other critical
applications. This foundation enables you to extend your containerized applications across

hybrid environments - from on-premise infrastructure to multi-cloud deployments.

Core components

Build application architecture - Alauda Container Platform

Archon

Provides advanced APIs for application and resource management operations. As a control
plane component, Archon exclusively runs on the global cluster, serving as the central
management interface for cluster-wide operations. Its API layer enables declarative
configuration of applications, namespaces, and infrastructure resources across the entire

platform.

Metis

Functions as the multi-purpose controller within business clusters , delivering critical cluster-

level operations:
« Webhook management: Implements admission webhooks for resource validation,
including resources ratio enforcement and resource labeling policies and so on.

¢ Status synchronization: Maintains consistency across distributed components through:

e Helm chart application status reconciliation
e Project quota synchronization

o Application status updates (writing to application.status fields)

Captain controller manager

Serves as the Helm chart application lifecycle management controller operating exclusively
on the global cluster . Its responsibilities include:

+ Chart installation: Orchestrating deployment of Helm chart across clusters

+ Version management: Handling seamless upgrades and rollbacks of Helm chart releases
+ Uninstallation: Complete removal of Helm chart application and associated resources

+ Release tracking: Maintaining state and history of all deployed Helm chart releases

Icarus

Provides the centralized web-based management interface for Container Platform . As the

presentation layer component, Icarus :

Build application architecture - Alauda Container Platform
» Delivers comprehensive dashboard visualizations for cluster health monitoring
¢ Enables GUI-based application deployment and management workflows

+ Implements Kubernetes RBAC-based multi-tenant management:

¢ Distinguishes tenant accounts through namespace isolation
e Manages resource access permissions per tenant
¢ Provides tenant-specific view isolation

e Exclusively runs on the global cluster , serving as the unified control point for multi-cluster

operations

Concepts - Alauda Container Platform

Menu

Concepts

Application Types

Custom Applications
UnderStanding Custom Applications

Custom Application CRD Architecture Design

Workload Types

Understanding Parameters
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage
Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Concepts - Alauda Container Platform

Understanding Environment Variables
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Understanding Startup Commands
Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage

Best Practices

Advanced Usage Patterns

Resource Unit Description

Application Types - Alauda Container Platform

Menu

Application Types

In the platform's Container Platform > Applications, the following types of applications can

be created:

Custom Application: A Custom Application represents a complete business application
composed of one or more interconnected computing components (such as Workloads like
Deployments or StatefulSets), internal networking configurations (Services), and other
native Kubernetes resources. This type of application offers flexible creation methods,
supporting direct Ul editing, YAML orchestration, and templated deployments, making it
suitable for development, testing, and production environments. To learn more about this
application type, refer to Custom Application. Different types of native applications can be

created in the following ways:

o Create from Image: Quickly create applications using existing container images.
e Create from YAML: Create applications using YAML configuration files.

o Create from Code: Create applications using source code.

Helm Chart Application: A Helm Chart Application allows you to deploy and manage
applications packaged as Helm Charts. Helm Charts are bundles of pre-configured
Kubernetes resources that can be deployed as a single unit, simplifying the installation and
management of complex applications. To learn more about this application type, refer to

Helm Chart Application

Operator Backed Application: An Operator-Backed Application leverages the power of
Kubernetes Operators to automate the lifecycle management of complex applications. By
deploying an application backed by an Operator, you benefit from automated deployment,
scaling, upgrades, and maintenance, as the Operator acts as an intelligent controller
tailored to the specific application. To learn more about this application type, refer to

Operator Backed Application.

Custom Applications - Alauda Container Platform

Menu ON THIS PAGE >

Custom Applications

TOC

UnderStanding Custom Applications
Core Capabilities
Design Value

Custom Application CRD Architecture Design
Application CRD Define

ApplicationHistory Define

UnderStanding Custom Applications

A Custom Application is an application paradigm built on native Kubernetes resources (e.g.,
Deployment, Service, ConfigMap), strictly adhering to Kubernetes declarative APl design
principles. Users can define and deploy applications through standard YAML files or direct
Kubernetes API calls, enabling fine-grained control over the application lifecycle. These are
created from sources such as Images, code, and YAML are classified as custom application in
Alauda Container Platform. Its design core lies in balancing flexibility and standardization,

ideal for scenarios requiring deeply customized management.

Core Capabilities

1. Declarative API-Driven Management

Custom Applications - Alauda Container Platform

Aggregates distributed resources (e.g., Deployment, Service, Ingress) into a logical

application unit through Application CRD, enabling atomic operations.

. Application-Level Abstraction & State Aggregation

Masks low-level resource details (e.g., Pod replica status). Developers can monitor overall
application health (e.g., ready endpoint ratio, version consistency) directly via the

Application resource.

Supports cross-component dependency declarations (e.g., database service must start

before application service) to ensure resource initialization order and coordination.
. Full Lifecycle Governance

Version Control: Tracks historical configurations, enabling one-click rollback to any stable

state.

Dependency Resolution: Automatically identifies and manages version compatibility

between components (e.g., matching Service API versions with Ingress controllers).

. Enhanced Observability

Aggregates status metrics of all associated resources (e.g., Deployment available replicas,

Service traffic load), providing a global view through a unified Dashboard.

Design Value

Dimension Value Proposition

Encapsulates scattered resources (e.g., Deployment, Service)

Complexity . . . : : iy :

into a single logical entity, reducing cognitive and operational
Management

overhead.

Unifies application description standards via Application CRD,
Standardization eliminating management entropy caused by YAML

fragmentation.

Ecosystem Compatibility Seamlessly integrates with native
Ecosystem .

o toolchains (e.g., kubectl, Kubernetes Dashboard) and supports

Compatibility

Helm Chart extensions.

Custom Applications - Alauda Container Platform

Dimension Value Proposition

Implements declarative delivery through GitOps pipelines (e.g.,

DevOps Efficiency . .
Argo CD), accelerating CI/CD automation.

Custom Application CRD Architecture Design

The Custom Application module defines two core CRD resources, forming atomic abstraction

units for application management:

Dimension Value Proposition

Describes metadata and component topology of logical
Application application units, aggregating resources like

Deployment/Service into a single entity.

Records all application lifecycle operations
o) (create/update/rollback/delete) as versioned snapshots, tightly
ApplicationHistory) o
coupled with the Application CRD to enable end-to-end change

traceability.

Application CRD Define

The Application CRD uses the spec.componentKinds field to declare Kubernetes resource

types (e.g., Deployment, Service), enabling cross-resource lifecycle management.

Custom Applications - Alauda Container Platform

apiVersion: apiextensions.k8s.io/v1betal
kind: CustomResourceDefinition
metadata:
name: applications.app.k8s.io
spec:
group: app.k8s.io
names:
kind: Application
listKind: Applicationlist
plural: applications
singular: application
scope: Namespaced
subresources:
status: {}
validation:
openAPIV3Schema:
properties:

apiVersion:

description: 'APIVersion defines the versioned schema of this representation

of an object. Servers should convert recognized schemas to the latest

internal value, and may reject unrecognized values. More info:
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
architecture/api-conventions.md#resources’

type: string
kind:
description: 'Kind is a string value representing the REST resource this
object represents. Servers may infer this from the endpoint the client
submits requests to. Cannot be updated. In CamelCase. More info:
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
architecture/api-conventions.md#types-kinds'
type: string
metadata:
description: 'Metadata is a object value representing the metadata of the
kubernetes resource.

More info:
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
architecture/api-conventions.md#metadata’

type: object
Spec:
properties:
assemblyPhase:
description: |

The installer can set this field to indicate that the application's

Custom Applications - Alauda Container Platform

components
are still being deployed ("Pending") or all are deployed already
("Succeeded"). When the
application cannot be successfully assembled, the installer can set this
field to "Failed".'
type: string
componentKinds:
description: |
This array of GroupKinds is used to indicate the types of resources that
the
application is composed of. As an example an Application that has a
service and a deployment

n n

would set this field to [{"group":"core","kind": "Service"},
{"group":"apps", "kind":"Deployment"}]
items:
description: 'The item of the GroupKinds, with a structure like \"
{"group":"core","kind": "Service"}\"'
type: object
type: array
descriptor:
properties:
description:
description: 'A short, human readable textual description of the
Application.’
type: string
icons:
description: 'A list of icons for an application. Icon information
includes the source, size, and mime type.'
items:
properties:
size:
description: 'The size of the icon.'
type: string
src:
description: 'The source of the icon.'
type: string
type:
description: 'The mime type of the icon.'
type: string
required:
- src
type: object
type: array

keywords:

Custom Applications - Alauda Container Platform

description: 'A list of keywords that identify the application.'
items:
type: string
type: array
links:
description: 'Links are a list of descriptive URLs intended to be used
to surface additional documentation, dashboards, etc.'
items:
properties:
description:
description: 'The description of the link.'
type: string
url:
description: 'The url of the link.'
type: string
type: object
type: array
maintainers:
description: 'A list of the maintainers of the Application. Each
maintainer has a
name, email, and URL. This field is meant for the distributors of the
Application
to indicate their identity and contact information.'
items:
properties:
email:
description: 'The email of the maintainer.'
type: string
name:
description: 'The name of the maintainer.'
type: string
url:
description: 'The url to contact the maintainer.'
type: string
type: object
type: array
notes:
description: 'Notes contain human readable snippets intended as a quick
start
for the users of the Application. They may be plain text or
CommonMark markdown. '
type: string
owners:

items:

Custom Applications - Alauda Container Platform

properties:
email:
description: 'The email of the owner.'
type: string
name:
description: 'The name of the owner.'
type: string
url:
description: 'The url to contact the owner.'
type: string
type: object

type: array
type:
description: 'The type of the application (e.g. WordPress, MySQL,
Cassandra).
You can have many applications of different names in the same
namespace.

of application.’

They type field is used to indicate that they are all the same type

type: string

version:

description: 'A version indicator for the application (e.g. 5.7 for

MySQL version 5.7).'

type: string

type:
info:

object

description: 'Info contains human readable key-value pairs for the

Application.'
items:

properties:

name:

description: 'The name of the information.'

type: string

type:

description: 'The type of the information.'

type: string

value:

description: 'The value of the information.'

type: string

valueFrom:

description: 'The value reference from other resource.'
properties:
configMapKeyRef:
description: 'The config map key reference.'

Custom Applications - Alauda Container Platform

properties:
key:
type: string
type: object
ingressRef:
description: 'The ingress reference.'
properties:
host:
description: 'The host of the ingress reference.'
type: string
path:
description: 'The path of the ingress reference.'
type: string
type: object
secretKeyRef:
description: 'The secret key reference.'
properties:
key:
type: string
type: object
serviceRef:
description: 'The service reference.'
properties:
path:
description: 'The path of the service reference.'
type: string
port:
description: 'The port of the service reference.'
format: int32
type: integer
type: object
type:
type: string
type: object
type: object
type: array
selector:
description: 'The selector is used to match resources that belong to the
Application.
ATl of the applications resources should have labels such that they match
this selector.
Users should use the app.kubernetes.io/name label on all components of
the Application
and set the selector to match this label. For instance.

Custom Applications - Alauda Container Platform

{"matchLabels": [{"app.kubernetes.io/name": "my-cool-app"}]} should be
used as the selector
for an Application named "my-cool-app", and each component should contain
a label that matches.'
type: object
type: object
status:
description: 'The status summarizes the current state of the object.'
properties:
observedGeneration:
description: 'The observedGeneration is the generation most recently
observed by the component
responsible for acting upon changes to the desired state of the
resource.’
format: int64
type: integer
type: object
version: vilbetal
versions:
- name: vlbetal
served: true

storage: true

ApplicationHistory Define

The ApplicationHistory CRD captures all lifecycle operations (e.g., creation, update, rollback)
as version-controlled snapshots and is tightly integrated with the Application CRD to deliver

end-to-end audit trails.

Custom Applications - Alauda Container Platform

apiVersion: apiextensions.k8s.io/v1betal
kind: CustomResourceDefinition
metadata:
name: applicationhistories.app.k8s.1io
spec:
group: app.k8s.io
names:
kind: ApplicationHistory
listKind: ApplicationHistorylist
plural: applicationhistories
singular: applicationhistory
scope: Namespaced
validation:
openAPIV3Schema:
properties:

apiVersion:

description: 'APIVersion defines the versioned schema of this representation

of an object. Servers should convert recognized schemas to the latest

internal value, and may reject unrecognized values. More info:
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
architecture/api-conventions.md#resources’

type: string
kind:
description: 'Kind is a string value representing the REST resource this
object represents. Servers may infer this from the endpoint the client
submits requests to. Cannot be updated. In CamelCase. More info:
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
architecture/api-conventions.md#types-kinds'
type: string
metadata:
description: 'Metadata is a object value representing the metadata of the
kubernetes resource.

More info:
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-
architecture/api-conventions.md#metadata’

type: object
spec:
properties:
change(ause:
description: 'The change cause of the application to generate the
ApplicationHistory."
type: string
creationTimestamp:

Custom Applications - Alauda Container Platform

description: 'The creation timestamp of the application history.'
format: date-time
type: string
resourceDiffs:
description: 'The resource differences between the current and last version
of application. It contains 3 types of diff: ‘create’,
‘delete’ and ‘update‘. The item of the diff compose of the kind and name
of the diff resource object.'
properties:
Create:
items:
properties:
kind:
description: 'The kind of the created resource.'
type: string
name:
description: 'The name of the created resource.'
type: string
type: object
type: array
delete:
items:
properties:
kind:
description: 'The kind of the deleted resource.’
type: string
name:
description: 'The name of the deleted resource.’
type: string
type: object
type: array
update:
items:
properties:
kind:
description: 'The kind of the updated resource.'
type: string
name:
description: 'The name of the updated resource.'
type: string
type: object
type: array
type: object

revision:

Custom Applications - Alauda Container Platform

description: |
The revision number of the application history. It's an integer that will
be incremented on
every change of the application.'
type: integer
user:
description: 'The user name who triggered the change of the application.’
type: string
yaml:
description: |
The YAML string of the snapshot of the application and it's components.
type: string
type: object
status:
description: 'The status summarizes the current state of the object.'
properties:
observedGeneration:
description: 'The observedGeneration is the generation most recently
observed by the component
responsible for acting upon changes to the desired state of the
resource. '
format: int64
type: integer
type: object
type: object
version: vibetal
versions:
- name: vlbetal
served: true

storage: true

Custom Applications - Alauda Container Platform

Workload Types - Alauda Container Platform

Menu

Workload Types

In addition to creating cloud-native applications via the Applications module, workloads can

also be directly created in Container Platform > Workloads:

Deployment: The most commonly used workload controller for deploying stateless
applications. It ensures a specified number of Pod replicas are running, supporting rolling

updates and rollbacks, ideal for stateless services like web servers and APIs.

DaemonSet: Ensures a Pod runs on every node (or specific nodes) in the cluster. Pods are
automatically created when nodes join and removed when nodes leave. Ideal for node-

level tasks such as logging agents and monitoring daemons.

StatefulSet: A workload controller for managing stateful applications. It provides stable
network identities (hostname) and persistent storage for each Pod, ensuring data
consistency even during rescheduling. Suitable for databases, distributed caches, and

other stateful services.

CronJob: Manages time-based Jobs using cron expressions. The system automatically
creates Jobs at scheduled intervals, ideal for periodic tasks like backups, report generation,

and cleanup jobs.

Job: A workload for running finite tasks. It creates one or more Pods and ensures a
specified number of successful completions before terminating. Suitable for batch

processing, data migrations, and other one-time operations.

In addition to creating workloads via the web console, Kubernetes also supports direct

management of lower-level resources via CLI tools::

Pod: The smallest deployable unit in Kubernetes. A Pod can contain one or more tightly
coupled containers sharing storage, network, and lifecycle. Pods are typically managed by

higher-level controllers (e.g., Deployments).

Container: A standardized unit encapsulating application code and dependencies, ensuring
consistent execution across environments. Containers run within Pods and share the Pod's

resources.

Workload Types - Alauda Container Platform

Understanding Parameters - Alauda Container Platform

Menu

Understanding Parameters

TOC

Overview
Core Concepts

What are Parameters?

Relationship with Docker
Use Cases and Scenarios

1. Application Configuration

2. Environment-Specific Deployment

3. Database Connection Configuration
CLI Examples and Practical Usage

Using kubectl run

Using kubectl create

Complex Parameter Examples

Web Server with Custom Configuration
Application with Multiple Parameters

Best Practices

1. Parameter Design Principles

2. Security Considerations

3. Configuration Management
Troubleshooting Common Issues

1. Parameter Not Recognized

2. Parameter Override Not Working

3. Debugging Parameter Issues

ON THIS PAGE >

Understanding Parameters - Alauda Container Platform

Advanced Usage Patterns
1. Conditional Parameters with Init Containers

2. Parameter Templating with Helm

Overview

Parameters in Kubernetes refer to command-line arguments passed to containers at runtime.
They correspond to the args field in Kubernetes Pod specifications and override the default
CMD arguments defined in container images. Parameters provide a flexible way to configure
application behavior without rebuilding images.

Core Concepts

What are Parameters?

Parameters are runtime arguments that:

Override the default CMD instruction in Docker images

Are passed to the container's main process as command-line arguments

Allow dynamic configuration of application behavior

Enable reuse of the same image with different configurations

Relationship with Docker

In Docker terminology:

« ENTRYPOINT: Defines the executable (maps to Kubernetes command)
o CMD: Provides default arguments (maps to Kubernetes args)

+ Parameters: Override CMD arguments while preserving ENTRYPOINT

Understanding Parameters - Alauda Container Platform

FROM nginx:alpine
ENTRYPOINT ["nginx"]
CMD ["-g", "daemon off;"]

apiVersion: v1
kind: Pod
Sspec:
containers:
- name: nginx
image: nginx:alpine

args: ["-g", "daemon off;", "-c", "/custom/nginx.conf"]

Use Cases and Scenarios

1. Application Configuration

Pass configuration options to applications:

apiVersion: apps/v1
kind: Deployment
metadata:

name: web-server

spec:
template:
spec:
containers:
- name: app

image: myapp:latest
args:

- "--port=8080"

- "--log-level=info"

- "--config=/etc/app/config.yaml"

2. Environment-Specific Deployment

Understanding Parameters - Alauda Container Platform

Different parameters for different environments:

args: ["--debug", "--reload", "--port=3000"]

n

args: ["--optimize", "--port=80", "--workers=4"]

3. Database Connection Configuration

apiVersion: v1
kind: Pod
spec:

containers:

- name: db-client
image: postgres:13
args:

- "psql”
- "_h"

- "postgres.example.com"

- "5432"

= OJ°

- "myuser"
- g

- "mydb"

CLI Examples and Practical Usage

Using kubectl run

Understanding Parameters - Alauda Container Platform

kubectl run nginx --image=nginx:alpine --restart=Never -- -g "daemon off;" -c

"/custom/nginx.conf"

kubectl run myapp --image=myapp:latest --restart=Never -- --port=8080 --log-level=debug

kubectl run debug --image=ubuntu:20.04 --restart=Never -it -- /bin/bash

Using kubectl create

kubectl create deployment web --image=nginx:alpine --dry-run=client -o yaml >

deployment.yaml

kubectl apply -f deployment.yaml

Complex Parameter Examples

Web Server with Custom Configuration

Understanding Parameters - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-custom

spec:
replicas: 3
selector:
matchLabels:
app: nginx-custom
template:
metadata:
labels:
app: nginx-custom
spec:
containers:
- name: nginx

image: nginx:1.271-alpine
args:
-9
- "daemon off;"
= M=
- "/etc/nginx/custom.conf"
ports:
- containerPort: 80
volumeMounts:
- name: config
mountPath: /etc/nginx/custom.conf
subPath: nginx.conf
volumes:
- name: config
configMap:
name: nginx-config

Application with Multiple Parameters

Understanding Parameters - Alauda Container Platform

apiVersion: v1
kind: Pod
metadata:
name: myapp
Sspec:
containers:
- name: app
image: mycompany/myapp:v1.2.3
args:
- "--server-port=8080"
- "--database-url=postgresql://db:5432/mydb"
- "--log-level=info"
- "--metrics-enabled=true"
- "--cache-size=256MB"

- "--worker-threads=4"

Best Practices

1. Parameter Design Principles

Use meaningful parameter names: --port=8080 instead of -p 8080

Provide sensible defaults: Ensure applications work without parameters

Document all parameters: Include help text and examples

Validate input: Check parameter values and provide error messages

2. Security Considerations

Understanding Parameters - Alauda Container Platform

X
args: ["--api-key=secret123", "--password=mypass"]
env:
- name: API _KEY
valueFrom:
secretKeyRef:

name: app-secrets
key: api-key

args: ["--config-from-env"]

3. Configuration Management

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
args:
- "--config=/etc/config/app.yaml"
- "--log-level=info"
volumeMounts:
- name: config
mountPath: /etc/config
volumes:
- name: config
configMap:

name: app-config

Troubleshooting Common Issues

1. Parameter Not Recognized

Understanding Parameters - Alauda Container Platform

kubectl logs pod-name

2. Parameter Override Not Working

X

command: ["myapp", "--port=8080"]
args: ["--log-level=debug"]

args: ["--port=8080", "--log-level=debug"]

3. Debugging Parameter Issues

kubectl run debug --image=myapp:latest -it --rm --restart=Never -- /bin/sh

/app/myapp --port=8080 --log-level=debug

Advanced Usage Patterns

1. Conditional Parameters with Init Containers

Understanding Parameters - Alauda Container Platform

apiVersion: v1

kind: Pod
spec:
initContainers:

- name: config-generator

image: busybox

command: ['sh', '-c']

args:

- |
if ["$ENVIRONMENT" = "production"]; then

echo "--optimize --workers=8" > /shared/args

else

n

echo "--debug --reload" > /shared/args
fi
volumeMounts:
- name: shared
mountPath: /shared
containers:
- name: app
image: myapp:latest
command: ['sh', '-c']
args: ['exec myapp $(cat /shared/args)']
volumeMounts:
- name: shared
mountPath: /shared
volumes:
- name: shared

emptyDir: {}

2. Parameter Templating with Helm

Understanding Parameters - Alauda Container Platform

app:
parameters:
port: 8080
loglLevel: info

workers: 4

apiVersion: apps/v1
kind: Deployment
spec:
template:
spec:
containers:
- name: app
image: myapp:latest
args:
- "--port={{ .Values.app.parameters.port }}"
- "--log-level={{ .Values.app.parameters.loglLevel }}"

- "--workers={{ .Values.app.parameters.workers }}"

Parameters provide a powerful mechanism for configuring containerized applications in
Kubernetes. By understanding how to properly use parameters, you can create flexible,
reusable, and maintainable deployments that adapt to different environments and

requirements.

Understanding Environment Variables - Alauda Container Platform

Menu

ON THIS PAGE >

Understanding Environment Variables

TOC

Overview
Core Concepts
What are Environment Variables?
Environment Variable Sources in Kubernetes
Environment Variable Precedence
Use Cases and Scenarios
1. Application Configuration
2. Database Configuration
3. Dynamic Runtime Information
4. Environment-Specific Configuration
CLI Examples and Practical Usage
Using kubectl run
Using kubectl create
Complex Environment Variable Examples
Microservices with Service Discovery
Multi-Container Pod with Shared Configuration
Best Practices
1. Security Best Practices
2. Configuration Organization
3. Environment Variable Naming

4. Default Values and Validation

Understanding Environment Variables - Alauda Container Platform

Overview

Environment variables in Kubernetes are key-value pairs that provide configuration data to
containers at runtime. They offer a flexible and secure way to inject configuration information,

secrets, and runtime parameters into your applications without modifying container images or
application code.

Core Concepts

What are Environment Variables?

Environment variables are:

» Key-value pairs available to processes running inside containers
¢ Runtime configuration mechanism that doesn't require image rebuilds
e Standard way to pass configuration data to applications

o Accessible through standard operating system APIs in any programming language

Environment Variable Sources in Kubernetes

Kubernetes supports multiple sources for environment variables:

Source Type Description Use Case
Static Values Direct key-value pairs Simple configuration
] Reference to ConfigMap N _ _
ConfigMap Non-sensitive configuration
keys
Sensitive data (passwords,
Secret Reference to Secret keys

tokens)

Field Reference Pod/Container metadata Dynamic runtime information

Understanding Environment Variables - Alauda Container Platform

Source Type Description

Resource .
Resource requests/limits
Reference

Environment Variable Precedence

Environment variables override configuration in this order:

1. Kubernetes env (highest priority)
2. Referenced ConfigMaps/Secrets
3. Dockerfile ENV instructions

4. Application default values (lowest priority)

Use Cases and Scenarios

1. Application Configuration

Basic application settings:

apiVersion: v1
kind: Pod
spec:

containers:

- name: web-app

image: myapp:latest

env:
- name: PORT
value: "8080"

- name: LOG_LEVEL
value: "info"

- name: ENVIRONMENT
value: "production"”

- name: MAX_CONNECTIONS
value: "100"

Use Case

Resource-aware configuration

Understanding Environment Variables - Alauda Container Platform

2. Database Configuration

Database connection settings using ConfigMaps and Secrets:

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1
kind: ConfigMap
metadata:
name: db-config
data:
DB_HOST: "postgres.example.com'
DB_PORT: "5432"
DB_NAME: "myapp"
DB_POOL_SIZE: "10"

apiVersion: v1

kind: Secret

metadata:
name: db-secret

type: Opaque

data:
DB_USER: bX11c2Vy
DB_PASSWORD: bX1wYXNzd29yZA==

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest

env.

- name: DB_HOST
valueFrom:
configMapKeyRef:
name: db-config
key: DB_HOST
- name: DB_PORT
valueFrom:
configMapKeyRef:
name: db-config
key: DB_PORT
- name: DB_NAME
valueFrom:
configMapKeyRef:
name: db-config

Understanding Environment Variables - Alauda Container Platform

key: DB_NAME

- name: DB_USER
valueFrom:
secretKeyRef:
name: db-secret
key: DB_USER
- name: DB_PASSWORD
valueFrom:
secretKeyRef:
name: db-secret
key: DB_PASSWORD

3. Dynamic Runtime Information

Access Pod and Node metadata:

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest

env.

- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName

- name: CPU_REQUEST
valueFrom:
resourceFieldRef:
resource: requests.cpu
- name: MEMORY_LIMIT
valueFrom:
resourceFieldRef:

resource: limits.memory

4. Environment-Specific Configuration

Different configurations for different environments:

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1
kind: ConfigMap
metadata:
name: app-config-dev
data:
DEBUG: "true"
LOG_LEVEL: "debug"
CACHE_TTL: "60"
RATE_LIMIT: "1000"

apiVersion: v1
kind: ConfigMap
metadata:
name: app-config-prod
data:
DEBUG: "false"
LOG_LEVEL: "warn"
CACHE_TTL: "3600"
RATE_LIMIT: "100"

apiVersion: apps/v1
kind: Deployment
metadata:
name: myapp
spec:
template:
spec:
containers:
- name: app
image: myapp:latest
envFrom:
- configMapRef:
name: app-config-prod

CLI Examples and Practical Usage

Understanding Environment Variables - Alauda Container Platform

Using kubectl run

kubectl run myapp --image=nginx --env="PORT=8080" --env="DEBUG=true"

kubectl run webapp --image=myapp:latest \
--env="DATABASE_URL=postgresql://localhost:5432/mydb" \
--env="REDIS_URL=redis://localhost:6379" \
--env="L0G_LEVEL=info"

kubectl run debug --image=ubuntu:20.04 -it --rm \
--env="TEST_VAR=hello" \
--env="ANOTHER_VAR=wor1d" \
-- /bin/bash

Using kubectl create

kubectl create configmap app-config \
--from-literal=DATABASE_HOST=postgres.example.com \
--from-literal=DATABASE_PORT=5432 \
--from-literal=CACHE_SIZE=256MB

echo "DEBUG=true" > app.env
echo "LOG_LEVEL=debug" >> app.env

kubectl create configmap app-env --from-env-file=app.env

kubectl create secret generic db-secret \
--from-literal=username=myuser \

--from-literal=password=mypassword

Complex Environment Variable Examples

Microservices with Service Discovery

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1

kind: ConfigMap

metadata:
name: service-config

data:
USER_SERVICE_URL: "http://user-service:8080"
ORDER_SERVICE_URL: "http://order-service:8080"
PAYMENT_SERVICE_URL: "http://payment-service:8080"
NOTIFICATION_SERVICE_URL: "http://notification-service:8080"

apiVersion: apps/v1
kind: Deployment
metadata:
name: api-gateway
spec:
template:
spec:
containers:
- name: gateway

image: api-gateway:latest

env:
- name: PORT
value: "8080"

- name: ENVIRONMENT
value: "production”
envFrom:
- configMapRef:
name: service-config
- secretRef:

name: api-keys

Multi-Container Pod with Shared Configuration

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1
kind: Pod
metadata:
name: multi-container-app
spec:

containers:

- name: app
image: myapp:latest
env:
- name: ROLE
value: "primary"
- name: SHARED_SECRET
valueFrom:
secretKeyRef:
name: shared-secret
key: token
envFrom:
- configMapRef:

name: shared-config

- name: sidecar
image: sidecar:latest
env:
- name: ROLE
value: "sidecar"
- name: MAIN_APP_URL
value: "http://localhost:8080"
- name: SHARED SECRET
valueFrom:
secretKeyRef:
name: shared-secret
key: token
envFrom:
- configMapRef:

name: shared-config

Best Practices

Understanding Environment Variables - Alauda Container Platform

1. Security Best Practices

apiVersion: v1
kind: Secret
metadata:
name: app-secrets
type: Opaque
data:
api-key: <baseb4-encoded-value>

database-password: <baseb64-encoded-value>

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
env:
- name: API _KEY
valueFrom:
secretKeyRef:
name: app-secrets
key: api-key

X

2. Configuration Organization

Understanding Environment Variables - Alauda Container Platform

apiVersion: v1
kind: ConfigMap
metadata:
name: database-config
data:
DB_HOST: "postgres.example.com'
DB_PORT: "5432"
DB_POOL_SIZE: "10"

apiVersion: v1
kind: ConfigMap
metadata:
name: cache-config
data:
REDIS_HOST: "redis.example.com"
REDIS_PORT: "6379"
CACHE_TTL: "3600"

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
envFrom:
- configMapRef:
name: database-config
- configMapRef:

name: cache-config

3. Environment Variable Naming

Understanding Environment Variables - Alauda Container Platform

env:
- name: DATABASE_HOST
value: "postgres.example.com"
- name: DATABASE_PORT
value: "5432"
- name: LOG_LEVEL
value: "info"
- name: FEATURE_FLAG_NEW_UI

value: "true"

X

4. Default Values and Validation

apiVersion: v1

kind: Pod

spec:
containers:
- name: app

image: myapp:latest

env:
- name: PORT
value: "8080"

- name: LOG_LEVEL
value: "info"

- name: TIMEOUT_SECONDS
value: "30"

- name: MAX_RETRIES

value: "3"

Understanding Startup Commands - Alauda Container Platform

Menu

Understanding Startup Commands

TOC

Overview
Core Concepts
What are Startup Commands?
Relationship with Docker and Parameters
Command vs Args Interaction
Use Cases and Scenarios
1. Custom Application Startup
2. Debugging and Troubleshooting
3. Initialization Scripts
4. Multi-Purpose Images
CLI Examples and Practical Usage
Using kubectl run
Using kubectl create job
Complex Startup Command Examples
Multi-Step Initialization
Conditional Startup Logic

Best Practices

1. Signal Handling and Graceful Shutdown

2. Error Handling and Logging
3. Security Considerations
4. Resource Management

Advanced Usage Patterns

ON THIS PAGE >

Understanding Startup Commands - Alauda Container Platform

1. Init Containers with Custom Commands
2. Sidecar Containers with Different Commands

3. Job Patterns with Custom Commands

Overview

Startup commands in Kubernetes define the primary executable that runs when a container
starts. They correspond to the command field in Kubernetes Pod specifications and override
the default ENTRYPOINT instruction defined in container images. Startup commands provide

complete control over what process runs inside your containers.

Core Concepts

What are Startup Commands?

Startup commands are:

The primary executable that runs when a container starts

Override the ENTRYPOINT instruction in Docker images

Define the main process (PID 1) inside the container

Work in conjunction with parameters (args) to form the complete command line

Relationship with Docker and Parameters

Understanding the relationship between Docker instructions and Kubernetes fields:

Docker Kubernetes Purpose
ENTRYPOINT command Defines the executable

CMD args Provides default arguments

Understanding Startup Commands - Alauda Container Platform

FROM ubuntu:20.04
ENTRYPOINT ["/usr/bin/myapp"]
(MD ["--config=/etc/default.conf"]

apiVersion: v1
kind: Pod
Sspec:
containers:
- name: myapp
image: myapp:latest

command: ["/usr/bin/myapp"]

args: ["--config=/etc/custom.conf", "--debug"]

Command vs Args Interaction

Scenario Docker Image

ENTRYPOINT +

Default

CMD
Override args ENTRYPOINT +
only CMD
Override ENTRYPOINT +
command only CMD

ENTRYPOINT +
CMD

Override both

Use Cases and Scenarios

Kubernetes

Spec

(none)

args: ["new-

args"]

command: ["new-

cmd"]

command: ["new-
cmd"]
args: ["new-

args"]

Resulting

Command

ENTRYPOINT +
CMD

ENTRYPOINT +

new-args

new-cmd

new-cmd + new-args

Understanding Startup Commands - Alauda Container Platform

1. Custom Application Startup

Run different applications using the same base image:

apiVersion: v1
kind: Pod
metadata:
name: web-server
spec:
containers:
- name: nginx
image: ubuntu:20.04
command: ["/usr/sbin/nginx"]

args: ["-g", "daemon off;", "-c", "/etc/nginx/nginx.conf"]

2. Debugging and Troubleshooting

Override the default command to start a shell for debugging:

apiVersion: v1
kind: Pod
metadata:
name: debug-pod
spec:
containers:
- name: debug
image: myapp:latest
command: ["/bin/bash"]
args: ["-c", "sleep 3600"]

3. Initialization Scripts

Run custom initialization before starting the main application:

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
command: ["/bin/sh"]

args:

echo "Initializing application..."
/scripts/init.sh

echo "Starting main application..."

exec /usr/bin/myapp --config=/etc/app.conf

4. Multi-Purpose Images

Use the same image for different purposes:

Understanding Startup Commands - Alauda Container Platform

apiVersion: apps/v1

kind: Deployment

metadata:
name: web
spec:
template:
spec:
containers:
- name: web

image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["server", "--port=8080"]

apiVersion: apps/v1
kind: Deployment
metadata:
name: worker
spec:
template:
spec:
containers:
- name: worker
image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["worker", "--queue=tasks"]

apiVersion: batch/v1
kind: Job
metadata:
name: migrate
spec:
template:
spec:
containers:
- name: migrate
image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["migrate", "--up"]

Understanding Startup Commands - Alauda Container Platform

restartPolicy: Never

CLI Examples and Practical Usage

Using kubectl run

kubectl run debug --image=nginx:alpine --command -- /bin/sh -c "sleep 3600"
kubectl run -it debug --image=ubuntu:20.04 --restart=Never --command -- /bin/bash

kubectl run myapp --image=myapp:latest --command -- /usr/local/bin/start.sh --

config=/etc/app.conf

kubectl run task --image=busybox --restart=Never --command -- /bin/sh -c "echo 'Task

completed"'"

Using kubectl create job

kubectl create job backup --image=postgres:13 --dry-run=client -o yaml -- pg_dump -h
db.example.com mydb > backup.yaml

kubectl apply -f backup.yaml

Complex Startup Command Examples

Multi-Step Initialization

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1
kind: Pod
metadata:
name: complex-init
spec:
containers:
- name: app
image: myapp:latest
command: ["/bin/bash"]

args:

set -e
1l

echo "Step 1: Checking dependencies...'

/scripts/check-deps.sh

echo "Step 2: Setting up configuration..."

/scripts/setup-config.sh

echo "Step 3: Running database migrations..."

/scripts/migrate.sh

echo "Step 4: Starting application..."
exec /usr/bin/myapp --config=/etc/app/config.yaml
volumeMounts:
- name: scripts
mountPath: /scripts
- name: config
mountPath: /etc/app
volumes:
- name: scripts
configMap:
name: init-scripts
defaultMode: 0755
- name: config
configMap:

name: app-config

Conditional Startup Logic

Understanding Startup Commands - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:

name: conditional-app

spec:
template:
spec:
containers:
- name: app

image: myapp:latest
command: ["/bin/sh"]

args:

if ["$APP_MODE" = "worker"]; then
exec /usr/bin/myapp worker --queue=$QUEUE_NAME
elif ["$APP_MODE" = "scheduler"]; then
exec /usr/bin/myapp scheduler --interval=60
else
exec /usr/bin/myapp server --port=8080
fi
env:
- name: APP_MODE
value: "server"
- name: QUEUE_NAME

value: "default"

Best Practices

1. Sighal Handling and Graceful Shutdown

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1
kind: Pod
Spec:
containers:
- name: app
image: myapp:latest
command: ["/bin/bash"]

args:

Trap SIGTERM for graceful shutdown
trap 'echo "Received SIGTERM, shutting down gracefully..."; kill -TERM $PID; wait
$PID" TERM

Start the main application in background
/usr/bin/myapp --config=/etc/app.conf &

PID=§!

Wait for the process
wait $PID

2. Error Handling and Logging

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1
kind: Pod
Spec:
containers:
- name: app
image: myapp:latest
command: ["/bin/bash"]

args:

set -euo pipefail # Exit on error, undefined vars, pipe failures

log() {
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $*" >&2

log "Starting application initialization..."

if ! /scripts/health-check.sh; then
log "ERROR: Health check failed"
exit 1

fi

log "Starting main application..."

exec /usr/bin/myapp --config=/etc/app.conf

3. Security Considerations

Understanding Startup Commands - Alauda Container Platform

apiVersion: v1
kind: Pod
spec:
securityContext:
runAsNonRoot: true
runAsUser: 1000
runAsGroup: 1000
containers:
- name: app
image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["--config=/etc/app.conf"]
securityContext:
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop:
- ALL

4. Resource Management

apiVersion: v1
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["--config=/etc/app.conf"]
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"

Understanding Startup Commands - Alauda Container Platform

Advanced Usage Patterns

1. Init Containers with Custom Commands

apiVersion: v1
kind: Pod
spec:
initContainers:
- name: setup
image: busybox
command: ["/bin/sh"]

args:

echo "Setting up shared data..."
mkdir -p /shared/data
echo "Setup complete" > /shared/data/status
volumeMounts:
- name: shared-data
mountPath: /shared
containers:
- name: app
image: myapp:latest
command: ["/bin/sh"]

args:

while [! -f /shared/data/status]; do
echo "Waiting for setup to complete..."
sleep 1
done
echo "Starting application..."
exec /usr/bin/myapp
volumeMounts:
- name: shared-data
mountPath: /shared
volumes:
- name: shared-data

emptyDir: {}

Understanding Startup Commands - Alauda Container Platform

2. Sidecar Containers with Different Commands

apiVersion: v1
kind: Pod
spec:

containers:

- name: app
image: myapp:latest
command: ["/usr/bin/myapp"]

args: ["--config=/etc/app.conf"]

- name: log-shipper
image: fluent/fluent-bit:latest
command: ["/fluent-bit/bin/fluent-bit"]
args: ["--config=/fluent-bit/etc/fluent-bit.conf"]

- name: metrics
image: prom/node-exporter:latest
command: ["/bin/node_exporter"]

args: ["--path.rootfs=/host"]

3. Job Patterns with Custom Commands

Understanding Startup Commands - Alauda Container Platform

apiVersion: batch/v1
kind: Job
metadata:
name: database-backup
spec:
template:
spec:
containers:
- name: backup
image: postgres:13
command: ["/bin/bash"]

args:

set -e

echo "Starting backup at $(date)"

pg_dump -h $DB_HOST -U $DB_USER $DB_NAME > /backup/dump-$(date +%Y%m%d-
.sql

echo "Backup completed at $(date)"

o
o
o
=
o
w
~

env:
- name: DB_HOST
value: "postgres.example.com"
- name: DB_USER
value: "backup_user"
- name: DB_NAME
value: "myapp"
volumeMounts:
- name: backup-storage
mountPath: /backup
restartPolicy: Never
volumes:
- name: backup-storage
persistentVolumeClaim:

claimName: backup-pvc

Startup commands provide complete control over container execution in Kubernetes. By
understanding how to properly configure and use startup commands, you can create flexible,

maintainable, and robust containerized applications that meet your specific requirements.

Resource Unit Description - Alauda Container Platform

Menu

Resource Unit Description

CPU: Optional units are: core, m (millicore). Where 1 core = 1000 m.

e Memory: Optional units are: Mi (1 MiB = 2720 bytes), Gi (1 GiB = 2”30 bytes). Where 1 Gi
= 1024 Mi.

 Virtual GPU (optional): This parameter is only effective when there are GPU resources
under the cluster. The number of virtual GPU cores; 100 virtual cores equal 1 physical GPU

core. It supports positive integers.

» Video Memory (optional): This parameter is only effective when there are GPU resources
under the cluster. Virtual GPU video memory; 1 unit of video memory equals 256 Mi. It

supports positive integers.

Namespaces - Alauda Container Platform

Menu

Namespaces

Creating Namespaces
Understanding namespaces
Creating namespaces by using web console

Creating namespace by using CLI

Importing Namespaces
Overview

Use Cases

Prerequisites

Procedure

Resource Quota
Understanding Resource Requests & Limits
Quotas

Hardware accelerator Resources Quotas

Limit Range
Understanding Limit Range

Create Limit Range by using CLI

Namespaces - Alauda Container Platform

Pod Security Admission
Security Modes
Security Standards

Configuration

UID/GID Assignment
Enable UID/GID Assignment

Verify UID/GID Assignment

Overcommit Ratio

UnderStanding Namespace Resource Overcommit Ratio
CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console

Managing Namespace Members
Importing Members
Adding Members

Removing Members

Updating Namespaces
Updating Quotas
Updating Container LimitRanges

Updating Pod Security Admission

Namespaces - Alauda Container Platform

Deleting/Removing Namespaces
Deleting Namespaces

Removing Namespaces

Creating Namespaces - Alauda Container Platform

Menu ON THIS PAGE >

Creating Namespaces

TOC

Understanding namespaces
Creating namespaces by using web console
Creating namespace by using CLI

YAML file examples

Create via YAML file

Create via command line directly

Understanding hamespaces

Refer to the official Kubernetes documentation: Namespaces -~

In Kubernetes, namespaces provide a mechanism for isolating groups of resources within a
single cluster. Names of resources need to be unique within a namespace, but not across
namespaces. Namespace-based scoping is applicable only for namespaced objects (e.g.
Deployments, Services, etc.) and not for cluster-wide objects (e.g. StorageClass, Nodes,

PersistentVolumes, etc.).

Creating nhamespaces by using web console

https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/

Creating Namespaces - Alauda Container Platform

Within the cluster associated with the project, create a new namespace aligned with the
project's available resource quotas. The new namespace operates within the resource
guotas allocated to the project (e.g., CPU, memory), and all resources in the namespace

must reside within the associated cluster.

. In the Project Management view, click on the Project Name for which you want to create
a namespace.

. In the left navigation bar, click on Namespaces > Namespaces.
. Click on Create Namespace.

. Configure Basic Information.

Parameter Description
Cluster Select the cluster linked to the project to host the namespace.

The namespace name must include a mandatory prefix, which is the
Namespace

project name.

. (Optional) Configure Resource Quota.

Every time a resource limit (limits) for computational or storage resources is specified for a
container within the namespace, or each time a new Pod or PVC is added, it will consume

the quota set here.
NOTICE:

e The namespace's resource quota is inherited from the project's allocated quota in the
cluster. The maximum allowable quota for a resource type cannot exceed the remaining
available quota of the project. If any resource's available quota reaches 0, namespace

creation will be blocked. Contact your platform administrator for quota adjustments.
¢ GPU Quota Configuration Requirements:

¢ GPU quotas (VGPU or pGPU) can only be configured if GPU resources are

provisioned in the cluster.

+ When using vGPU, memory quotas can also be set.

Creating Namespaces - Alauda Container Platform

GPU Unit Definitions:

¢ VGPU Units: 100 virtual GPU units (vGPU) = 1 physical GPU core (pGPU).

¢ Note: pGPU units are counted in whole numbers only (e.g., 1 pGPU = 1 core = 100
VvGPU).

¢ Memory Units:

e 1 memory unit = 256 MiIB.

¢ 1 GiB =4 memory units (1024 MiB = 4 x 256 MiB).

o Default Quota Behavior:

e If no quota is specified for a resource type, the default is unbounded.

¢ This means the namespace can consume all available resources of that type

allocated to the project without explicit limits.

Quota Parameter Description

Value
Category Quota Type and Description
Unit
Storage Gi The total requested storage
Resource capacity of all Persistent
Quota All Volume Claims (PVCSs) in this
namespace cannot exceed this
value.
Storage Class The total requested storage

capacity of all Persistent
Volume Claims (PVCs)
associated with the selected
StorageClass in this
namespace cannot exceed this

value.

Note: Please allocate

Creating Namespaces - Alauda Container Platform

Value
Category Quota Type and Description
Unit
StorageClass to the project
that the namespace belongs to
in advance.
Obtained from the
configuration
dictionary This category will not be
Extended (ConfigMap); please displayed if there is no
Resources refer to Extended corresponding configuration
Resources Quotas dictionary.
description for
details.
To avoid problems of resource
duplication, the following
values are not allowed as
guota types:
Enter custom quotas; ° ||m|tscpu
for specific input .
Other e limits.memory
Quot rules, please refer to -
uotas
Other Quota e requests.cpu
description. e requests.memory
e pods
e Cpu
e memory

6. (Optional) Configure Container Limit Range; please refer to Limit Range for more details.

7. (Optional) Configure Pod Security Admission; please refer to Pod Security Admission for

specific details.

8. (Optional) In the More Configuration area, add labels and annotations for the current

namespace.

Creating Namespaces - Alauda Container Platform

Tip: You can define the attributes of the namespace through labels or supplement the
namespace with additional information through annotations; both can be used to filter and

sort namespaces.

9. Click on Create.

Creating namespace by using CLI

YAML file examples

example-namespace.yamil

apiVersion: v1
kind: Namespace
metadata:
name: example
labels:

pod-security.kubernetes.io/audit: baseline

pod-security.kubernetes.io/enforce: baseline

pod-security.kubernetes.io/warn: baseline

example-resourcequota.yaml

apiVersion: v1
kind: ResourceQuota
metadata:
name: example-resourcequota
namespace: example
spec:
hard:
limits.cpu: '20'
limits.memory: 20Gi
pods: '500'
requests.cpu: '2'

requests.memory: 2Gi

Creating Namespaces - Alauda Container Platform

example-limitrange.yaml

apiVersion: v1
kind: LimitRange
metadata:
name: example-limitrange
namespace: example
spec:
limits:
- default:
cpu: 100m
memory: 100Mi
defaultRequest:
cpu: 50m
memory: 50Mi
max:
cpu: 1000m
memory: 1000Mi

type: Container

Create via YAML file

kubectl apply -f example-namespace.yaml
kubectl apply -f example-resourcequota.yaml

kubectl apply -f example-limitrange.yaml

Create via command line directly

kubectl create namespace example

kubectl create resourcequota example-resourcequota --namespace=example --
hard=1imits.cpu=20,limits.memory=20Gi, pods=500

kubectl create limitrange example-limitrange --namespace=example --
default="cpu=100m,memory=100Mi" --default-request="cpu=50m,memory=50Mi" --
max="cpu=1000m, memory=1000Mi"

Importing Namespaces - Alauda Container Platform

= Menu ON THIS PAGE >

Importing Namespaces

TOC

Overview
Use Cases
Prerequisites

Procedure

Overview

Namespace Lifecycle Management Capabilities:

o Cross-Cluster Namespace Import: Importing Namespaces into a Project centralizes their
management across all Kubernetes Clusters provisioned by the platform. This provides
administrators with unified resource governance and monitoring capabilities across

distributed environments.
Namespace Disassociation:

¢ The Disassociate Namespace feature enables you to unlink a Namespace from its current

Project, resetting its association for subsequent reassignment or cleanup.

¢ Importing a Namespace into a Project grants it capabilities equivalent to those of natively
created Namespaces on the platform. This includes inherited Project-level Policies (e.qg.,

Resource Quotas), unified monitoring, and centralized governance controls.

Importing Namespaces - Alauda Container Platform

Important Notes:

+ A Namespace can only be associated with one Project at any given time.

» If a Namespace is already linked to a Project, it cannot be imported into or reassigned to

another Project without first disassociating it from its original Project.

Use Cases

Common use cases for Namespace management include:

¢ Upon connecting a new Kubernetes cluster to the platform, you can utilize the Import
Namespace feature to associate its existing Kubernetes Namespaces with a Project.
Simply select the target Project and Cluster to initiate the import. This action grants the
project governance over these namespace, encompassing Resource Quotas,

monitoring, and policy enforcement.

Create/Import

Clusters

Whether to
associate with
existing projects

Create Project Add Cluster

l

Create / Import
Namespace

+ A namespace that has been disassociated from one project can be seamlessly re-

associated with another project via the Import Namespace feature for continued

centralized governance.

+ Namespaces not currently managed by any project (e.g., those created via cluster-level
scripts) must be linked to a target project using the Import Namespace feature to enable

platform-level governance, including visibility and centralized management.

Importing Namespaces - Alauda Container Platform

Prerequisites

e The Namespace is not currently managed by any existing Project within the platform.

+ Namespaces can only be imported into a Project that is already associated with their target
Kubernetes Cluster. If no such Project exists, you must first provision a Project linked to
that Cluster.

Procedure

1. Project Management, click on the Project name where the namespace is to be imported.
2. Navigate to Namespaces > Namespaces.

3. Click on the Dropdown button next to Create Namespace, then select Import

Namespace.
4. Refer to the Creating Namespaces documentation for parameter configuration details.

5. Click Import.

Resource Quota - Alauda Container Platform

Menu ON THIS PAGE >

Resource Quota

Refer to the official Kubernetes documentation: Resource Quotas ~

TOC

Understanding Resource Requests & Limits
Quotas
Resource Quotas
YAML file example
Create resouce quota by using CLI
Storage Quotas
Hardware accelerator Resources Quotas

Other Quotas

Understanding Resource Requests & Limits

Used to restrict resources available to a specific namespace. The total resource usage by all
Pods in the namespace (excluding those in a Terminating state) must not exceed the quota.

Resource Requests: Define the minimum resources (e.g., CPU, memory) required by a
container, guiding the Kubernetes Scheduler to place the Pod on a node with sufficient

capacity.

Resource Limits: Define the maximum resources a container can consume, preventing

resource exhaustion and ensuring cluster stability.

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/

Resource Quota - Alauda Container Platform

Quotas

Resource Quotas

If a resource is marked as Unlimited , no explicit quota is enforced, but usage cannot

exceed the cluster's available capacity.

Resource Quotas track the cumulative resource consumption (e.g., container limits, new

Pods, or PVCs) within a namespace.

Supported Quota Types

Field Description

Total requested resources for all Pods in the namespace:

Resource Requests e CPU

e Memory

Total limit resources for all Pods in the namespace:

Resource Limits CPU
e Memory
Number of Pods Maximum number of Pods allowed in the namespace.
Note:

* Namespace quotas are derived from the project's allocated cluster resources. If any

resource's available quota is 0, namespace creation will fail. Contact the administrator.

o Unlimited implies the namespace can consume the project's remaining cluster resources

for that resource type.

YAML file example

Resource Quota - Alauda Container Platform

apiVersion: v1
kind: ResourceQuota
metadata:
name: example-resourcequota
namespace: <example>
Sspec:
hard:
limits.cpu: "20"
limits.memory: 20Gi
pods: "500"
requests.cpu: "2"

requests.memory: 2Gi

Create resouce quota by using CLI

Create via YAML file

kubectl apply -f example-resourcequota.yaml

Create via command line directly

kubectl create resourcequota example-resourcequota --namespace=<example> --

hard=1imits.cpu=20,limits.memory=20Gi, pods=500

Storage Quotas

Quota Type:

« All: Total PVC storage capacity in the namespace.

+ Storage Class: Total PVC storage capacity for a specific storage class.

Note: Ensure the storage class is pre-assigned to the project containing the namespace.

Hardware accelerator Resources Quotas

Resource Quota - Alauda Container Platform

When Alauda Build of Hami or NVIDIA GPU Device Plugin installed, you will be able to use

extended resources quotas about hardware accelerator.

Refer to Alauda Build of Hami and Alauda Build of NVIDIA GPU Device Plugin.

Other Quotas

The format for custom quota names must comply with the following specifications:

 If the custom quota name does not contain a slash (/): It must start and end with a letter or
number, and can contain letters, numbers, hyphens (-), underscores (), or periods (.),

forming a qualified name with a maximum length of 63 characters.

 If the custom quota name contains a slash (/): The name is divided into two parts: prefix
and name, in the form of: prefix/name. The prefix must be a valid DNS subdomain, while

the name must comply with the rules for a qualified name.
¢ DNS Subdomain:
e Label: Must start and end with lowercase letters or numbers, may contain hyphens (-),

but cannot be exclusively composed of hyphens, with a maximum length of 63

characters.

o Subdomain: Extends the rules of the label, allowing multiple labels to be connected by

periods (.) to form a subdomain, with a maximum length of 253 characters.

http://localhost:4173/container_platform/hardware_accelerator/hami.html
http://localhost:4173/container_platform/hardware_accelerator/pgpu.html

Limit Range - Alauda Container Platform

Menu ON THIS PAGE >

Limit Range

TOC

Understanding Limit Range
Create Limit Range by using CLI
YAML file examples
Create via YAML file

Create via command line directly

Understanding Limit Range

Refer to the official Kubernetes documentation: Limit Ranges -~

Using Kubernetes LimitRange as an admission controller is resource limitations at the
container or Pod level. It sets default request values, limit values, and maximum values for
containers or Pods created after the LimitRange is created or updated, while continuously
monitoring container usage to ensure that no resources exceed the defined maximum values

within the namespace.

The resource request of a container is the ratio between resource limits and cluster
overcommitment. Resource request values serve as a reference and criterion for the
scheduler when scheduling containers. The scheduler will check the available resources for
each node (total resources - sum of resource requests of containers within Pods scheduled
on the node). If the total resource requests of the new Pod container exceed the remaining

available resources of the node, that Pod will not be scheduled on that node.

https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/

Limit Range - Alauda Container Platform

LimitRange is an admission controller:

« It applies default request and limit values for all Containers that do not set compute

resource requirements.

« It tracks usage to ensure it does not exceed resource maximum and ratio defined in any

LimitRange present in the namespace.

Includes the following configurations

Resource Field

o Default Request
CPU e Limit

e Max

o Default Request
Memory e Limit

e Max

Create Limit Range by using CLI

YAML file examples

Limit Range - Alauda Container Platform

apiVersion: v1
kind: LimitRange
metadata:
name: example-limitrange
namespace: example
spec:
limits:
- default:
cpu: 100m
memory: 100Mi
defaultRequest:
cpu: 50m
memory: 50Mi
max:
cpu: 1000m
memory: 1000Mi

type: Container

Create via YAML file

kubectl apply -f example-limitrange.yaml

Create via command line directly

kubectl create limitrange example-limitrange --namespace=example --
default="cpu=100m, memory=100Mi" --default-request="cpu=50m,memory=50Mi" --
max="cpu=1000m, memory=1000Mi"

Pod Security Admission - Alauda Container Platform

= Menu ON THIS PAGE >

Pod Security Admission

Refer to the official Kubernetes documentation: Pod Security Admission ~

Pod Security Admission (PSA) is a Kubernetes admission controller that enforces security

policies at the namespace level by validating Pod specifications against predefined standards.

TOC

Security Modes

Security Standards

Configuration
Namespace Labels

Exemptions

Security Modes

PSA defines three modes to control how policy violations are handled:

Mode Behavior Use Case

¢ Denies creation/modification of non- Production environments requiring
Enforce

compliant Pods. strict security enforcement.

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/

Pod Security Admission - Alauda Container Platform

Mode Behavior

Allows Pod creation but logs

Audit o _ _
violations in audit logs.
Allows Pod creation but returns
Warn _ _ o
client warnings for violations.
Key Notes:

Use Case

Monitoring and analyzing security
incidents without blocking

workloads.

Testing environments or transitional

phases for policy adjustments.

+ Enforce acts on Pods only (e.g., rejects Pods but allows non-Pod resources like

Deployments).

« Audit and Warn apply to both Pods and their controllers (e.g., Deployments).

Security Standards

PSA defines three security standards to restrict Pod privileges:

Standard Description

Unrestricted access. Suitable
Privileged for trusted workloads (e.g.,

system components).

] Minimal restrictions to prevent
Baseline o _
known privilege escalations.

] Strictest policy enforcing
Restricted) _
security best practices.

Configuration

Key Restrictions

No validation of securityContext
fields.

Blocks hostNetwork , hostPID ,
privileged containers, and unrestricted

hostPath volumes.

Requires:
- runAsNonRoot: true
- seccompProfile.type: RuntimeDefault

- Dropped Linux capabilities.

Pod Security Admission - Alauda Container Platform

Namespace Labels

Apply labels to namespaces to define PSA policies.

YAML file example

apiVersion: v1
kind: Namespace
metadata:
name: example-namespace
labels:
pod-security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/audit: baseline

pod-security.kubernetes.io/warn: baseline

CLI command

kubectl label namespace <namespace-name> \
pod-security.kubernetes.io/enforce=baseline \
pod-security.kubernetes.io/audit=restricted \

--overwrite

kubectl get namespace <namespace-name> --show-labels

Exemptions

Exempt specific users, namespaces, or runtime classes from PSA checks.

Example Configuration:

apiVersion: pod-security.admission.config.k8s.io/v1
kind: PodSecurityConfiguration
exemptions:

usernames: ['admin']

runtimeClasses: ['nvidia']

namespaces: ['kube-system']

UID/GID Assignment - Alauda Container Platform

Menu ON THIS PAGE >

UID/GID Assignment

In Kubernetes, each Pod runs with a specific User ID (UID) and Group ID (GID) to ensure
security and proper access control. By default, Pods may run as the root user (UID 0), which
can pose security risks. To enhance security, it's recommended to assign non-root UIDs and
GIDs to Pods.

ACP allows to auto assign a namespace with specific UID and GID ranges to ensure that all

Pods within the namespace run with the designated user and group IDs.

TOC

Enable UID/GID Assignment
Verify UID/GID Assignment
The UID/GID Range

Verify the Pod UID/GID

Enable UID/GID Assignment

To enable UID/GID assignment for a namespace, follow these steps:

1. Enter Project Management.
2. In the left navigation bar, click Namespace.
3. Click on the target namespace.

4. Click Actions > Upate Pod Security Policy.

UID/GID Assignment - Alauda Container Platform
5. Change the Enforce option value to Restricted, click Update.

6. Click edit icon next to Labels, add a label with key security.cpaas.io/enabled and value

true , click Update. (To disable, remove this label or set the value to false .)

7. Click Save.

Verify UID/GID Assighment

The UID/GID Range

In the namespace details page, you can view the assigned UID and GID ranges in the

Annotations.

The security.cpaas.ioluid-range annotation specifies the range of UID/GIDs that can be
assigned to Pods in the namespace, e.g. security.cpaas.ioluid-range=1000002000-
1000011999, means the uid/gid range is between 1000002000 to 1000011999.

Verify the Pod UID/GID

If the pod does not specify runAsUser and fsGroup inthe securityContext , the platform will

automatically assign the first value from the assigned uid range.

1. Create a Pod in the namespace with the following YAML configuration:

apiVersion: v1
kind: Pod
metadata:
name: uid-gid-test-pod
spec:
containers:
- name: test-container
image: busybox
command: ["sleep", "3600"]

2. After the Pod is created, get the Pod yaml to check the assigned UID and GID:

UID/GID Assignment - Alauda Container Platform

kubectl get pod uid-gid-test-pod -n <namespace-name> -0 yaml

the Pod YAML will show the assigned UID and GID in the securityContext section:

apiVersion: v1
kind: Pod
metadata:

name: uid-gid-test-pod

spec:

containers:

- name: test-container
image: busybox
command: ["sleep", "3600"]
securityContext:

runAsUser: 1000000
securityContext:
fsGroup: 1000000

If the pod specifies runAsUser and fsGroup in the securityContext, the platform will validate if

the specified UID/GID are within the assigned range. If they are not, the Pod creation will fail.

1. Create a Pod in the namespace with the following YAML configuration:

apiVersion: v1
kind: Pod
metadata:
name: uid-gid-test-pod-invalid
spec:
containers:
- name: test-container
image: busybox
command: ["sleep", "3600"]
securityContext:
runAsUser: 2000000
securityContext:
fsGroup: 2000000

2. After applying the YAML, the Pod creation will fail with an error message indicating that the

specified UID/GID are outside the assigned range.

Overcommit Ratio - Alauda Container Platform

Menu ON THIS PAGE >

Overcommit Ratio

TOC

UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console
Precautions

Procedure

UnderStanding Namespace Resource
Overcommit Ratio
Alauda Container Platform allows you to set a resource overcommit ratio (CPU and memory)

per namespace. This manages the relationship between container limits (maximum usage)

and requests (guaranteed minimum) within that namespace, optimizing resource utilization.

By configuring this ratio, you ensure user-defined container limits and requests remain within

reasonable bounds, improving overall cluster resource efficiency.
Key Concepts

o Limits: The maximum resource a container can use. Exceeding limits can lead to throttling

(CPU) or termination (memory).

Overcommit Ratio - Alauda Container Platform

¢ Requests: The guaranteed minimum resource a container needs. Kubernetes schedules

containers based on these requests.

« Overcommit Ratio: Limits / Requests. This setting defines the acceptable range for this
ratio within the namespace, balancing resource guarantees and preventing over-

consumption.

Core Capabilities

+ Enhance resource density and application stability within the namespace by setting an

appropriate overcommit ratio to manage the balance between resource limits and requests.
Example

Assuming the namespace overcommit ratio is set to 2, when creating an application and

specifies a CPU limit of 4c, the corresponding CPU request value is calculated as:

CPU Request = CPU Limit / Overcommit ratio. Thus, the CPU request becomes 4c /2 = 2c.

CRD Define

apiVersion: resource.alauda.io/v1
kind: NamespaceResourceRatio
metadata:

namespace: example

name: example-namespace-overcommit
spec:

cpu: 3
memory: 4
status:

clusterCPU: 2

clusterMemory: 3

Creating overcommit ratio by using CLI

Overcommit Ratio - Alauda Container Platform

kubectl apply -f example-namespace-overcommit.yaml

Creating/Updating Overcommit Ratio by using

web console

Allows adjusting the overcommit ratio for a namespace to manage the ratio between
resource limits and requests. This ensures container's resource allocations remain within

defined bounds, improving cluster resource utilization.

Precautions

If the cluster uses node virtualization (e.g., virtual nodes), disable oversubscription at the

cluster/namespace level before configuring it for virtual machines.

Procedure

1. Enter the Project Management and navigation to Namespaces > Namespace List.
2. Click the target Namespace name.
3. Click Actions > Update Overcommit.

4. Select the appropriate overcommit ratio configuration method to set the CPU or memory

overcommit ratio for the namespace.

Parameter Description

Namespace inherits the cluster's oversubscription ratio.

Example: If cluster CPU/memory ratio is 4, namespace

Inherit from defaults to 4.

Cluster

Container requests = limit / cluster ratio.

If no limit is set, use the namespace's default container quota.

Overcommit Ratio - Alauda Container Platform

Parameter Description

e Set a namespace-specific ratio (integer > 1).

o Example: Cluster ratio = 4, namespace ratio = 2 - requests =
limit / 2.

Custom

o Leave empty to disable oversubscription for the namespace.

5. Click Update.

Note: Changes apply only to newly created Pods. Existing Pods retain their original requests
until rebuilt.

Managing Namespace Members - Alauda Container Platform

Menu ON THIS PAGE >

Managing Namespace Members

TOC

Importing Members
Constraints and Limitations
Prerequisites
Procedure

Adding Members
Procedure

Removing Members

Procedure

Importing Members

The platform supports bulk importing members into a namespace and assigning roles such as
Namespace Administrator or Developer to grant corresponding permissions.

Constraints and Limitations

+ Members can only be imported into the namespace from the Project Members of the

namespace's project.

¢ The platform does not support importing default system-created admin users or the active

user.

Managing Namespace Members - Alauda Container Platform

Prerequisites

To import users as namespace members, they must first be added to the namespace's
project.

Procedure

1. Project Management, click on Project Name where the members to be imported are

located.
2. Navigation to Namespaces > Namespaces.
3. Click on Namespace Name of the members to be imported.
4. In the Namespace Members tab, click Import Members.

5. Follow the procedures below to import all or some users from the list into the namespace.

TIP

You can select a user group using the dropdown box at the top right of the dialog and perform a
fuzzy search by entering the username in the username search box.
o Import all users in the list as namespace members and assign roles to users in bulk.

1. Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign.
2. Click Import All.
e Import one or more users from the list as namespace members.

1. Click the checkbox in front of the username/display name to select one or more

users.

2. Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign to the selected users.

3. Click Import.

Managing Namespace Members - Alauda Container Platform

Adding Members

When the platform has added an OICD type IDP, OIDC users can be added as namespace
members.

You can add valid OIDC accounts that meet the input requirements as namespace roles and
assign the corresponding namespace roles to the user.

Note: When adding members, the system does not verify the validity of the accounts. Please

ensure that the accounts you add are valid; otherwise, these accounts will not be able to log in
to the platform successfully.

Valid OIDC accounts include: Valid accounts in the OIDC identity authentication service
configured via IDP for the platform, including those that have successfully logged in to the
platform and those that have not logged in to the platform.

Prerequisites

The platform has added an OICD type IDP.

Procedure

1. Project Management, click on Project Name where the member to be added is located.
2. Navigation to Namespaces > Namespaces.

3. Click on Namespace Name of the member to be added.

4. In the Namespace Members tab, click Add Member.

5. In the Username input box, enter a username for an existing third-party platform account

supported by the platform.

Note: Please confirm that the entered username corresponds to an existing account on the
third-party platform; otherwise, that account will not be able to log in to this platform

successfully.

6. In the Role dropdown, select the role name to configure for this user.

Managing Namespace Members - Alauda Container Platform

7. Click Add. After a successful addition, you can view the member in the namespace
member list. At the same time, in the user list (Platform Management > User
Management), you can view that user. Before the user successfully logs in or is
synchronized to this platform, the source will be -, and it can be deleted; when the
account successfully logs in or synchronizes to the platform, the platform will record the

account's source information and display it in the user list.

Removing Members

Remove specified namespace members and delete their associated roles to revoke their
namespace permissions.

Procedure

1. Project Management, click on Project Name where the member to be removed is located.
2. Navigation to Namespaces > Namespaces.
3. Click on Namespace Name of the member to be removed.

4. In the Namespace Members tab, click : on the right side of the record of the member to be

removed > Remove.

5. Click Remove.

Updating Namespaces - Alauda Container Platform

Menu ON THIS PAGE >

Updating Namespaces

TOC

Updating Quotas
Updating a Resource Quota by using web console
Updating a Resource Quota by using CLI
Updating Container LimitRanges
Updating a LimitRange by using web console
Updating a LimitRange by using CLI
Updating Pod Security Admission
Updating a Pod Security Admission by using web console

Updating a Pod Security Admission by using CLI

Updating Quotas

Resource Quota

Updating a Resource Quota by using web console

1. Project Management, and navigate to Namespaces > Namespace List in the left sidebar.
2. Click the target namespace name.

3. Click Actions > Update Quota.

Updating Namespaces - Alauda Container Platform

4. Adjust resource quotas (CPU, Memory, Pods, etc.) and click Update.

Updating a Resource Quota by using CLI

Resource Quota YAML file example

kubectl edit resourcequota <quota-name> -n <namespace-name>

kubectl get resourcequota <quota-name> -n <namespace-name> -0 yaml

Updating Container LimitRanges

Limit Range

Updating a LimitRange by using web console

1. Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.
2. Click the target namespace name.
3. Click Actions > Update Container LimitRange.

4. Adjust container limit range (defaultRequest , default , max) and click Update.

Updating a LimitRange by using CLI

Limit Range YAML file example

Updating Namespaces - Alauda Container Platform

kubectl edit limitrange <limitrange-name> -n <namespace-name>

kubectl get limitrange <limitrange-name> -n <namespace-name> -0 yaml

Updating Pod Security Admission

Pod Security Admission

Updating a Pod Security Admission by using web console

1. Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.
2. Click the target namespace name.
3. Click Actions > Update Pod Security Admission.

4. Adjust security standard (enforce , audit , warn) and click Update.

Updating a Pod Security Admission by using CLI

Update Pod Security Admission CLI command

Deleting/Removing Namespaces - Alauda Container Platform

Menu ON THIS PAGE >

Deleting/Removing Namespaces

You can either delete a namespace permanently or remove it from the current project.

TOC

Deleting Namespaces

Removing Namespaces

Deleting Namespaces

Delete Namespace: Permanently deletes a namespace and all resources within it (e.g.,
Pods, Services, ConfigMaps). This action cannot be undone and releases allocated resource
quotas.

kubectl delete namespace <namespace-name>

Removing Namespaces

Remove Namespace: Removing a namespace from the current project without deleting its
resources. The namespace remains in the cluster and can be imported into other projects via

Import Namespace.

Deleting/Removing Namespaces - Alauda Container Platform

NOTE

e This feature is exclusive to the Alauda Container Platform.

» Kubernetes does not natively support “removing" namespaces from projects.

kubectl label namespace <namespace-name> cpaas.io/project- --overwrite

Creating Applications - Alauda Container Platform

Menu

Creating Applications

Creating applications from Image
Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Creating applications from Chart
Precautions

Prerequisites

Procedure

Status Analysis Reference

Creating applications from YAML
Precautions
Prerequisites

Procedure

Creating Applications - Alauda Container Platform

Creating applications from Code
Prerequisites

Procedure

Creating applications from Operator Backed
UnderStanding Operator Backed Application
Creating a Operator Backed Application by using web console

Troubleshooting

Creating applications by using CLI
Prerequisites

Procedure

Example

Reference

Creating applications from Image - Alauda Container Platform

Menu ON THIS PAGE >

Creating applications from Image

TOC

Prerequisites
Procedure 1 - Workloads
Workload 1 - Configure Basic Info
Workload 2 - Configure Pod
Workload 3 - Configure Containers
Procedure 2 - Services
Procedure 3 - Ingress
Application Management Operations
Reference Information
Storage Volume Mounting Instructions
Health Check Parameters
Common Parameters

Protocol-Specific Parameters

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

Creating applications from Image - Alauda Container Platform

+ For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

o Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure 1 - Workloads

1. Container Platform, navigate to Applications > Applications in the left sidebar.
2. Click Create.
3. Choose Create from Image as the creation approach.

4. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

6. Refer to the following instructions to configure the related parameters.

Workload 1 - Configure Basic Info

In the Workload > Basic Info section, configure declarative parameters for workloads

Parameters Description
Model Select a workload as needed:

+ Deployment: For detailed parameter descriptions, please refer

to Creating Deployment.

Parameters

Replicas

More > Update
Strategy

Creating applications from Image - Alauda Container Platform

Description

« DaemonSet: For detailed parameter descriptions, please refer

to Creating DaemonSet.

» StatefulSet: For detailed parameter descriptions, please refer

to Creating StatefulSet.

Defines the desired number of Pod replicas in the Deployment

(default: 1). Adjust based on workload requirements.

Configures the rollingUpdate strategy for zero-downtime
deployments:

Max surge (maxSurge):

¢ Maximum number of Pods that can exceed the desired replica
count during an update.

¢ Accepts absolute values (e.g., 2) or percentages (e.g., 20%).

e Percentage calculation: ceil(current_replicas x percentage) .

o Example: 4.1 - 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

e Maximum number of Pods that can be temporarily unavailable
during an update.

o Percentage values cannot exceed 100% .

¢ Percentage calculation: floor(current_replicas x percentage) .

e Example: 4.9 -~ 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1, maxUnavailable=1 if not explicitly

set.

2. Non-running Pods (e.g., in Pending / CrashLoopBackOff states)

are considered unavailable.

3. Simultaneous constraints:

e maxSurge and maxUnavailable cannot both be 0 or 0% .

Creating applications from Image - Alauda Container Platform

Parameters Description

« If percentage values resolve to 0 for both parameters,

Kubernetes forces maxUnavailable=1 to ensure update progress.

Example:

For a Deployment with 10 replicas:

e maxSurge=2 — Total Pods during update: 10 + 2 = 12 .
e maxUnavailable=3 — Minimum available Pods: 10 - 3 = 7 .

¢ This ensures availability while allowing controlled rollout.

Workload 2 - Configure Pod

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper
Node Affinity Rules are configured for Pod scheduling.

1. Pod section, configure container runtime parameters and lifecycle management:

Parameters Description

Mount persistent volumes to containers. Supported volume types

include PVC, ConfigMap , Secret , emptyDir , hostPath , and so

Volumes
on. For implementation details, see Storage Volume Mounting
Instructions.
Required only when pulling images from third-party registries
Image (via manual image URL input).
Credential Note: Images from the platform's integrated registry
automatically inherit associated secrets.
Duration (default: 30s) allowed for a Pod to complete graceful
shutdown after receiving termination signal.
More > Close - During this period, the Pod completes inflight requests and
Grace Period releases resources.

- Setting 0 forces immediate deletion (SIGKILL), which may

cause request interruptions.

Creating applications from Image - Alauda Container Platform

2. Node Affinity Rules

Parameters

More >
Node

Selector

More >
Affinity

Description

Constrain Pods to nodes with specific labels (e.g., kubernetes.io/os:
Linux).

Node Selector: acp.cpaas.io/node-group-share-mode:Share x

Define fine-grained scheduling rules based on existing Pods.

Pod Affinity Types:
+ Inter-Pod Affinity: Schedule new Pods to nodes hosting specific
Pods (same topology domain).

¢ Inter-Pod Anti-affinity: Prevent co-location of new Pods with

specific Pods.

Enforcement Modes:

¢ RequiredDuringSchedulinglgnoredDuringExecution: Pods are

scheduled only if rules are satisfied.

o PreferredDuringSchedulinglgnoredDuringExecution: Prioritize

nodes meeting rules, but allow exceptions.

Configuration Fields:

o topologyKey : Node label defining topology domains (default:

kubernetes.io/hostname).

o labelSelector : Filters target Pods using label queries.

3. Network Configuration

e Kube-OVN

Creating applications from Image - Alauda Container Platform

Parameters Description
Enforce QoS for Pod network traffic:

Bandwidth o Egress rate limit: Maximum outbound traffic rate (e.g.,

e Ingress rate limit: Maximum inbound traffic rate.

Assign IPs from a predefined subnet pool. If unspecified, uses

Subnet

the namespace's default subnet.

Bind persistent IP addresses to Pods:
Static IP e Multiple Pods across Deployments can claim the same IP,
Address but only one Pod can use it concurrently.

e Critical: Number of static IPs must = Pod replica count.

e Calico
Parameters Description
Assign fixed IPs with strict uniqueness:

Static IP Address e Each IP can be bound to only one Pod in the cluster.

¢ Critical: Static IP count must = Pod replica count.

Workload 3 - Configure Containers

1. Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource Requests

. ¢ Requests: Minimum CPU/memory required for container
& Limits

operation.

¢ Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.

Parameters

Extended

Resources

Volume Mount

Creating applications from Image - Alauda Container Platform

Description
Namespace overcommit ratio:
¢ Without overcommit ratio:
If namespace resource quotas exist: Container

requests/limits inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

e With overcommit ratio:
Requests auto-calculated as Limits / Overcommit ratio

(immutable).
Constraints:

* Request < Limit < Namespace quota maximum.

+ Overcommit ratio changes require pod recreation to take

effect.
e Overcommit ratio disables manual request configuration.

 No namespace quotas — no container resource

constraints.

Configure cluster-available extended resources (e.g., VGPU,
pGPU).

Persistent storage configuration. See Storage Volume
Mounting Instructions.
Operations:

o Existing pod volumes: Click Add

¢ No pod volumes: Click Add & Mount
Parameters:

e mountPath : Container filesystem path (e.g., /data)

e subPath : Relative file/directory path within volume.

For ConfigMap / Secret : Select specific key

e readOnly : Mount as read-only (default: read-write)

Creating applications from Image - Alauda Container Platform

Parameters Description

See Kubernetes Volumes .

Expose container ports.
Example: Expose TCP port 6379 with name redis .
Fields:

Port e protocol : TCP/UDP
e Port : Exposed port (e.g., 6379)

e name : DNS-compliant identifier (e.g., redis)

Override default ENTRYPOINT/CMD:
Example 1: Execute top -b
_ Command: ["top"' ll_bll]
Startup Commands
- OR Command: ["top"] , Args: ["-b"]
& Arguments
Example 2: Output $MESSAGE :
/bin/sh -c "while true; do echo $(MESSAGE); sleep 10; done"

See Defining Commands .

o Static values: Direct key-value pairs

More > e Dynamic values: Reference ConfigMap/Secret keys, pod
Environment fields (fieldRef), resource metrics (resourceFieldRef)
Variables

Note: Env variables override image/configuration file

settings.
More > Referenced Inject entire ConfigMap/Secret as env variables. Supported
ConfigMap Secret types: Opaque , kubernetes.io/basic-auth .

¢ Liveness Probe: Detect container health (restart if

failing)
More > Health

+ Readiness Probe: Detect service availability (remove
Checks

from endpoints if failing)

See Health Check Parameters.

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Creating applications from Image - Alauda Container Platform

Parameters Description

Configure log paths:
- Default: Collect stdout
- File patterns: e.g., /var/log/*.log

Requirements:

More > Log File Storage driver overlay2 : Supported by default

e devicemapper : Manually mount EmptyDir to log directory

» Windows nodes: Ensure parent directory is mounted
(e.g., c:/a for c:/a/b/c/*.1l0g)

More > Exclude Log Exclude specific logs from collection (e.g.,

File /var/log/aaa.log).

Execute commands before container termination.
More > Execute Example: echo "stop"

before Stopping Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2. Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

1. Start before app containers (sequential execution).
2. Release resources after completion.

3. Deletion allowed when:

¢ Pod has >1 app container AND =1 init container.

» Not allowed for single-app-container pods.

3. Click Create.

Procedure 2 - Services

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Parameters

Service

Creating applications from Image - Alauda Container Platform

Description

Kubernetes Service, expose an application running in your cluster
behind a single outward-facing endpoint, even when the workload is
split across multiple backends.. For specific parameter explanations,

please refer to Creating Services.

Note The default name prefix for the internal routing created under the
application is the name of the compute component. If the compute
component type (deployment mode) is StatefulSet, it is advisable not to
change the default name of the internal routing (the name of the
workload); otherwise, it may lead to accessibility issues for the

workload.

Procedure 3 - Ingress

Parameters

Ingress

7. Click Create.

Description

Kubernetes Ingress, make your HTTP (or HTTPS) network service
available using a protocol-aware configuration mechanism, that
understands web concepts like URIs, hostnames, paths, and more. The
Ingress concept lets you map traffic to different backends based on
rules you define via the Kubernetes API. For detailed parameter

descriptions, please refer to Creating Ingresses.

Note: The Service used when creating Ingress under the application
must be resources created under the current application. However,
ensure that the Service is associated with the workload under the
application; otherwise, service discovery and access for workload will

fail.

Application Management Operations

http://localhost:4173/container_platform/configure/networking/functions/configure_service.html
http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

Creating applications from Image - Alauda Container Platform

To modify application configurations, use one of the following methods:

1. Click the vertical ellipsis (:) on the right side of the application list.

2. Select Actions from the upper-right corner of the application details page.

Operation Description

+ Update: Modifies only the target workload using its defined update
strategy (Deployment strategy shown as example). Preserves existing

replica count and rollout configuration.

¢ Force Update: Triggers full application rollout using each component's
update strategy.

1. Use cases:

e Batch configuration changes requiring immediate cluster-wide
propagation (e.g., ConfigMap/Secret updates referenced as

environment variables).

o Coordinated component restarts for critical security.

2. Warning Caution:

Update « May cause temporary service degradation during mass restarts.

e Not recommended for production environments without business

continuity validation.
¢ Network Implications:

 Ingress Rule Deletion: External access remains available via
LB_IP:NodePort if:
1) LoadBalancer Service uses default ports.
2) Surviving routing rules reference application components.

Full external access termination requires Service deletion.

o Service Deletion: Irreversible loss of network connectivity to
application components. Associated Ingress rules become non-

functional despite API object persistence.

Creating applications from Image - Alauda Container Platform

Operation Description

e Cascading Deletion:
1. Removes all child resources including Deployments, Services, and
Ingress rules.
2. Persistent Volume Claims (PVCs) follow retention policy defined in

StorageClass
Delete
¢ Pre-deletion Checklist:

1. Verify no active traffic through associated Services.
2. Confirm data backup completion for stateful components.
3. Check dependent resource relationships using kubectl describe

ownerReferences .

Reference Information

Storage Volume Mounting Instructions

Type Purpose

Binds an existing PVC to request persistent storage.

Persistent
Volume Claim Note: Only bound PVCs (with associated PV) are selectable.
Unbound PVCs will cause pod creation failures.
Mounts full/partial ConfigMap data as files:
o Full ConfigMap: Creates files named after keys under mount
ConfigMap

path

e Subpath selection: Mount specific key (e.g., my.cnf)

http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Type

Secret

Ephemeral

Volumes

Empty Directory

Host Path

Creating applications from Image - Alauda Container Platform
Purpose

Mounts full/partial Secret data as files:

o Full Secret: Creates files named after keys under mount path

e Subpath selection: Mount specific key (e.g., tls.crt)

Cluster-provisioned temporary volume with features:

e Dynamic provisioning
» Lifecycle tied to pod

e Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Ephemeral storage sharing between containers in same pod:
- Created on node when pod starts

- Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage.

See EmptyDir

Mounts host machine directory (must start with / , e.g.,

/volumepath).

Health Check Parameters

Common Parameters

Parameters

Initial Delay

Period

Timeout

Description
Grace period (seconds) before starting probes. Default: 300 .
Probe interval (1-120s). Default: 60 .

Probe timeout duration (1-300s). Default: 30 .

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Creating applications from Image - Alauda Container Platform
Parameters Description
Success Threshold Minimum consecutive successes to mark healthy. Default: 0 .

Maximum consecutive failures to trigger action:
Failure Threshold - 0 : Disables failure-based actions

- Default: 5 failures — container restart.

Protocol-Specific Parameters

Applicable o
Parameter Description
Protocols
Protocol HTTP/HTTPS Health check protocol
Port HTTP/HTTPS/TCP Target container port for probing.
Path HTTP/HTTPS Endpoint path (e.g., /healthz).
HTTP _
HTTP/HTTPS Custom headers (Add key-value pairs).
Headers
Container-executable check command (e.g.,
sh -c "curl -I localhost:8080 | grep OK").
Command EXEC

Note: Escape special characters and test

command viability.

Creating applications from Chart - Alauda Container Platform

Menu ON THIS PAGE >

Creating applications from Chart

Based on Helm Chart represents a native application deployment pattern. A Helm Chart is a
collection of files that define Kubernetes resources, designed to package applications and
facilitate application distribution with version control capabilities. This enables seamless

environment transitions, such as migrations from development to production environments.

TOC

Precautions
Prerequisites
Procedure

Status Analysis Reference

Precautions

When a cluster contains both Linux and Windows nodes, explicit node selection MUST be

configured to prevent scheduling conflicts. Example:

spec:
spec:
nodeSelector:

kubernetes.io/os: linux

Creating applications from Chart - Alauda Container Platform

Prerequisites

If the template is from a application and references relevant resources (e.g., secret
dictionaries), ensure the to-be-referenced resources already exist in the current namespace

before application deployment.

Procedure

1. Container Platform, navigate to Applications > Applications in the left sidebar.
2. Click Create.
3. Choose Create from Catalog as the creation approach.

4. Select a Chart and configure parameters, pick a Chart and configure the required
parameters, such as resources.requests , resources.limits , and other parameters that are

closely related to the chart.
5. Click Create.

The web console will redirect you to the Application > [Native Applications] details page.
The process will take some time, so please be patient. In case of operation failure, follow the
interface prompts to complete the operation.

Status Analysis Reference

Click on Application Name to display detailed status analysis of the Chart in the details

information.
Type Reason
Initialized Indicates the status of Chart template download.

o True: It indicates that the Chart template has been successfully

downloaded.

Creating applications from Chart - Alauda Container Platform
Type Reason

» False: It indicates that the Chart template download has failed; you can

check the specific failure reason in the message column.

e C(hartloadFailed : Chart template download failed.

o InitializeFailed : There was an exception in the initialization

process before the Chart was downloaded.

Indicates the status of user permissions, dependencies, and other
validations for the Chart template.

e True: It indicates that all validation checks have passed.

o False: It indicates that there are validation checks that have not

passed; you can check the specific failure reason in the message
column.

Validated
o DependenciesCheckFailed : Chart dependency check failed.

e PermissionCheckFailed : The current user lacks permission to perform

operations on certain resources.

o C(onsistentNamespaceCheckFailed : When deploying applications
through templates in native applications, the Chart contains

resources that require cross-namespace deployment.

Indicates the deployment status of the Chart template.

e True: It indicates that the Chart template has been successfully

deployed.
Synced

o False: It indicates that the Chart template deployment has failed; the
reason column shows ChartSyncFailed , and you can check the specific

failure reason in the message column.

WARNING

« If the template references cross - namespace resources, contact the Administrator for help with

creation. Afterward, you can normally Updating and deleting Chart Applications on web console.

Creating applications from Chart - Alauda Container Platform

« If the template references cluster - level resources (e.g., StorageClasses), it's recommended to

contact the Administrator for assistance with creation.

Creating applications from YAML - Alauda Container Platform

Menu ON THIS PAGE >

Creating applications from YAML

If you are proficient in YAML syntax and prefer to define configurations outside of forms or pre-
defined templates, you can choose the one-click YAML creation method. This approach offers
more flexible configuration of basic information and resources for your cloud-native

application.

TOC

Precautions
Prerequisites

Procedure

Precautions

When both Linux and Windows nodes exist in the cluster, to prevent scheduling the

application on incompatible nodes, you must configure node selection. For example:

spec:
spec:
nodeSelector:

kubernetes.io/os: linux

Prerequisites

Creating applications from YAML - Alauda Container Platform

Ensure the images defined in the YAML can be pulled within the current cluster. You can verify
this using the docker pull command.

Procedure

1. Container Platform, and navigate to Application > Applications.
2. Click Create.

3. Select the Create from YAML.

4. Complete the configuration and click Create.

5. The corresponding Deployment can be viewed on the Details page.

Creating applications from YAML - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:
name: webapp
labels:
app: webapp
env: prod
spec:
replicas: 3
selector:
matchLabels:
app: webapp
template:
metadata:

labels:
app: webapp
tier: frontend

spec:

containers:

- name: webapp
image: nginx:1.25-alpine
ports:

- containerPort: 80

resources:
requests:
cpu: "100m"
memory: "128Mi"
limits:
cpu: "250m"

memory: "256Mi"

apiVersion: v1
kind: Service
metadata:

name: webapp-service

spec:
selector:
app: webapp
ports:

- protocol: TCP
port: 80

Creating applications from YAML - Alauda Container Platform

targetPort: 80
type: ClusterIP

Creating applications from Code - Alauda Container Platform

Menu ON THIS PAGE >

Creating applications from Code

Creating application from code is implemented using Source to Image(S2l) technology. S2I is
an automated framework for building container images directly from source code. This
approach standardizes and automates the application build process, allowing developers to

focus on source code development without worrying about containerization details.

TOC

Prerequisites

Procedure

Prerequisites

o Complete the installation of Alauda Container Platform Builds

Procedure

1. Container Platform, and navigate to Application > Applications.
2. Click Create.

3. Select the Create from Code.

Creating applications from Code - Alauda Container Platform

4. For detailed parameter descriptions, please refer to Managing applications created from

Code
5. After completing the parameter input, click Create.

6. The corresponding deployment can be viewed on the Detail Information page.

Creating applications from Operator Backed - Alauda Container Platform

= Menu ON THIS PAGE >

Creating applications from Operator
Backed

TOC

UnderStanding Operator Backed Application
Core Capabilities
Operator Backed Application CRD
Creating a Operator Backed Application by using web console

Troubleshooting

UnderStanding Operator Backed Application

An Operator is an extension mechanism built upon Kubernetes Custom Controllers and
Custom Resource Definitions (CRDs), designed to automate the complete lifecycle
management of complex applications. Within Alauda Container Platform, an Operator Backed
Application refers to an application instance provisioned through pre-integrated or user-
defined Operators, with its operational workflows managed by the Operator Lifecycle Manager
(OLM). This encompasses critical processes such as installation, upgrades, dependency
resolution, and access control.

Core Capabilities

1. Automation of Complex Operations: Operators overcome the inherent limitations of

native Kubernetes resources (e.g., Deployment, StatefulSet) to address the complexities of

Creating applications from Operator Backed - Alauda Container Platform

managing stateful applications, including distributed coordination, persistent storage, and
versioned rolling updates. Example: Operator-encoded logic enables autonomous

operations for database cluster failover, cross-node data consistency, and backup recovery.

. Declarative, State-Driven Architecture: Operators utilize YAML-based declarative APIs to
define desired application states (e.g., spec.replicas: 5). Operators continuously reconcile
the actual state with the declared state, providing self-healing capabilities. Deep integration

with GitOps tools (e.g., Argo CD) ensures consistent environment configurations.
. Intelligent Lifecycle Management:

¢ Rolling Updates & Rollback: OLM's Subscription object subscribes to update channels
(e.g., stable, alpha), triggering automated version iterations for both Operators and their

managed applications.

¢ Dependency Resolution: Operators dynamically identify runtime dependencies (e.g.,

specific storage drivers, CNI plugins) to ensure successful deployment.

. Standardized Ecosystem Integration: OLM standardizes Operator packaging (Bundle)
and distribution channels, enabling one-click deployment of production-grade applications
(e.g., Etcd) from OperatorHub or private registries. Enterprise Enhancements: Alauda
Container Platform extends RBAC policies and multi-cluster distribution capabilities to meet

enterprise compliance requirements.

Operator Backed Application CRD

This Operator is designed and implemented by fully embracing open-source community

standards and solutions. Its Custom Resource Definition (CRD) design thoughtfully

incorporates established best practices and architectural patterns prevalent within the

Kubernetes ecosystem. CRD design reference materials:

1. CatalogSource “: Defines the source of Operator packages available to the cluster, such

as OperatorHub or custom Operator repositories.

2. ClusterServiceVersion (CSV) 7: The core metadata definition for an Operator, containing its

name, version, provided APIs, required permissions, installation strategy, and detailed

lifecycle management information.

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-catalogsources.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-catalogsources.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-catalogsources.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-clusterserviceversions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-clusterserviceversions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-clusterserviceversions.crd.yaml

Creating applications from Operator Backed - Alauda Container Platform

3. InstallPlan 7: The actual execution plan for installing an Operator, automatically generated
by OLM based on the Subscription and CSV, detailing the specific steps to create the

Operator and its dependent resources.

4. OperatorGroup ~: Defines a set of target namespaces where an Operator will provide its
services and reconcile resources, while also limiting the scope of the Operator's RBAC

permissions.

5. Subscription 7: Used to declare the specific Operator that a user wants to install and track
in the cluster, including the Operator's name, target channel (e.g., stable, alpha), and
update strategy. OLM uses the Subscription to create and manage the Operator's

installation and upgrades.

Creating a Operator Backed Application by using

web console

1. Container Platform, navigate to Applications > Applications in the left sidebar.
2. Click Create.
3. Choose Create from Catalog as the creation approach.

4. Select an Operator-Backed Instance and Configure Custom Resource Parameters.
Select an Operator-managed application instance and configure its Custom Resource (CR)

specifications in the CR manifest, including:

e spec.resources.limits (container-level resource constraints).

e spec.resourceQuota (Operator-defined quota policies). Other CR-specific parameters

such as spec.replicas , spec.storage.className , etc.
5. Click Create.

The web console will navigate to Applications > Operator Backed Apps page.

INFO

https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-installplans.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-installplans.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-installplans.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-operatorgroups.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-operatorgroups.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-operatorgroups.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-subscriptions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-subscriptions.crd.yaml
https://github.com/operator-framework/operator-lifecycle-manager/blob/master/deploy/chart/crds/0000_50_olm_00-subscriptions.crd.yaml

Creating applications from Operator Backed - Alauda Container Platform

Note: The Kubernetes resource creation process requires asynchronous reconciliation. Completion
may take several minutes depending on cluster conditions.

Troubleshooting

If resource creation fails:

1. Inspect controller reconciliation errors:

kubectl get events --field-selector involvedObject.kind=<Your-Custom-Resource> --sort-

by=.metadata.creationTimestamp
2. Verify API resource availability:
kubectl api-resources | grep <Your-Resource-Type>

3. Retry creation after verifying CRD/Operator readiness:

kubectl apply -f your-resource-manifest.yaml

Creating applications by using CLI - Alauda Container Platform

Menu ON THIS PAGE >

Creating applications by using CLI

kubectl is the primary command-line interface (CLI) for interacting with Kubernetes clusters.
It functions as a client for the Kubernetes API Server - a RESTful HTTP API that serves as the
control plane's programmatic interface. All Kubernetes operations are exposed through API
endpoints, and kubectl essentially translates CLI commands into corresponding API requests

to manage cluster resources and application workloads (Deployments, StatefulSets, etc.).

The CLI tools facilitates application deployment by intelligently interpreting input artifacts
(images, or Chart, etc.) and generating corresponding Kubernetes API objects. The generated
resources vary based on input types:

+ Image: Directly creates Deployment.

e Chart: Instantiates all objects defined in the Helm Chart.

TOC

Prerequisites
Procedure
Example

YAML

kubectl commands

Reference

Prerequisites

Creating applications by using CLI - Alauda Container Platform

The Alauda Container Platform Web Terminal plugin is installed, and the web-cli switch is
enabled.

Procedure

1. Contianer Platform, click the terminal icon in the lower-right corner.
2. Wait for session initialization (1-3 sec).

3. Execute kubectl commands in the interactive shell:

kubectl get pods -n ${CURRENT_NAMESPACE}

4. View real-time command output

Example

YAML

Creating applications by using CLI - Alauda Container Platform

apiVersion: app.k8s.io/vlbetal
kind: Application
metadata:

name: webapp

spec:
componentKinds:
- group: apps
kind: Deployment
- group: ""

kind: Service

descriptor: {}

apiVersion: apps/v1
kind: Deployment
metadata:
name: webapp
labels:
app: webapp
env: prod
spec:
replicas: 3
selector:
matchLabels:
app: webapp
template:
metadata:
labels:
app: webapp
tier: frontend
spec:
containers:
- name: webapp
image: nginx:1.25-alpine
ports:
- containerPort: 80
resources:
requests:
cpu: "100m"
memory: "128Mi"
limits:

cpu: "250m"

Creating applications by using CLI - Alauda Container Platform

memory: "256Mi"

apiVersion: v1
kind: Service
metadata:

name: webapp-service
spec:

selector:

app: webapp

ports:

- protocol: TCP
port: 80
targetPort: 80

type: ClusterIP

kubectl commands

kubectl apply -f webapp.yaml -n {CURRENT_NAMESPACE}
kubectl apply -f webapp-deployment.yaml -n {CURRENT_NAMESPACE}
kubectl apply -f webapp-service.yaml -n {CURRENT_NAMESPACE}

Reference

¢ Conceptual Guide: kubectl Overview ~
+ Syntax Reference: kubectl Cheat Sheet ~

¢ Command Manual: kubectl Commands ~

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Operation and Maintaining Applications - Alauda Container Platform

Menu

Operation and Maintaining Applications

Application Rollout

Installing Alauda Container Platform Argo Rollouts
Prerequisites

Installing Alauda Container Platform Argo Rollouts

Application Blue Green Deployment
Prerequisites

Procedure

Application Canary Deployment
Prerequisites

Procedure

Status Description

Status Description

Applications

Operation and Maintaining Applications - Alauda Container Platform

KEDA(Kubernetes Event-driven Autoscaling)

KEDA Overview
Introduction
Advantages

How KEDA works

Installing KEDA
Prerequisites

Installing via Command Line
Installing via Web Console
Verification

Additional Scenarios

Uninstalling KEDA Operator

How To

Configuring HPA

Configuring HPA

Understanding Horizontal Pod Autoscalers
Prerequisites

Creating a Horizontal Pod Autoscaler

Calculation Rules

Operation and Maintaining Applications - Alauda Container Platform

Starting and Stopping Applications

Starting and Stopping Applications

Starting the Application

Stopping the Application

Configuring VerticalPodAutoscaler (VPA)

Configuring VerticalPodAutoscaler (VPA)
Understanding VerticalPodAutoscalers

Prerequisites

Creating a VerticalPodAutoscaler

Follow-Up Actions

Configuring CronHPA

Configuring CronHPA

Understanding Cron Horizontal Pod Autoscalers
Prerequisites

Creating a Cron Horizontal Pod Autoscaler

Schedule Rule Explanation

Updating Applications

Operation and Maintaining Applications - Alauda Container Platform

Updating Applications
Importing Resources

Removing/Batch Removing Resources

Exporting Applications

Exporting Applications
Exporting Helm Charts
Exporting YAML to Local

Exporting YAML to Code Repository (Alpha)

Updating and deleting Chart Applications

Updating and deleting Chart Applications

Important Notes
Prerequisites

Status Analysis Description

Version Management for Applications

Version Management for Applications
Creating a Version Snapshot

Rolling Back to a Historical Version

Operation and Maintaining Applications - Alauda Container Platform

Deleting Applications

Deleting Applications

Handling Out of Resource Errors

Handling Out of Resource Errors
Overview

Configuring Eviction Policies

Creating Eviction Policies in Node Configuration
Eviction Signals

Eviction Thresholds

Configuring Allocatable Resources for Scheduling
Preventing Node Condition Oscillation
Reclaiming Node-level Resources

Pod Eviction

Quality of Service and Out of Memory Killer
Scheduler and Out of Resource Conditions
Example Scenario

Recommended Practices

Health Checks

Operation and Maintaining Applications - Alauda Container Platform

Health Checks

Understanding Health Checks

YAML file example

Health Checks configuration parameters by using web console

Troubleshooting probe failures

Application Rollout - Alauda Container Platform

Menu

Application Rollout

Installing Alauda Container Platform Argo Rollouts
Prerequisites

Installing Alauda Container Platform Argo Rollouts

Application Blue Green Deployment
Prerequisites

Procedure

Application Canary Deployment
Prerequisites

Procedure

Installing Alauda Container Platform Argo Rollouts - Alauda Container Platform

= Menu ON THIS PAGE >

Installing Alauda Container Platform Argo
Rollouts

TOC

Prerequisites
Installing Alauda Container Platform Argo Rollouts

Procedure

Prerequisites

1. Download the Alauda Container Platform Argo Rollouts cluster plugin installation

package corresponding to your platform architecture.
2. Upload the installation package using the Upload Packages mechanism.

3. Install the installation package to the cluster using the cluster plugins mechanism.

INFO

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help

Document on the right to get instructions on how to publish the cluster plugin to cluster. For more
details, please refer to CLI.

http://localhost:4173/container_platform/ui/cli_tools/index.html

Installing Alauda Container Platform Argo Rollouts - Alauda Container Platform

Installing Alauda Container Platform Argo

Rollouts

Procedure

2. Click Marketplace > Cluster Plugins to enter the Cluster Plugins list page.

3. Find the Alauda Container Platform Argo Rollouts cluster plugin, click Install, and

navigate to the Install Alauda Container Platform Argo Rollouts Plugin page.

4. Simply click Install to complete the Alauda Container Platform Argo Rollouts cluster

plugin installation.

Application Blue Green Deployment - Alauda Container Platform

Menu ON THIS PAGE >

Application Blue Green Deployment

In the modern world of software development, deploying new versions of applications is a
crucial part of the development cycle. However, rolling out updates to production
environments can be a risky proposition, as even small issues can result in significant
downtime and lost revenue. Blue-Green Deployments are a deployment strategy that
mitigates this risk by ensuring that new versions of applications can be deployed with zero
downtime.

A Blue-Green Deployment is a deployment strategy where two identical environments, the
“blue” environment and the “green” environment, are set up. The blue environment is the
production environment, where the live version of the application is currently running, and the
green environment is the non-production environment, where new versions of the application
are deployed.

When a new version of the application is ready to be deployed, it is deployed to the green
environment. Once the new version is deployed and tested, traffic is switched to the green
environment, making it the new production environment. The blue environment then becomes

the non-production environment, where future versions of the application can be deployed.

Benefits of Blue Green Deployments

o Zero Downtime: Blue-Green Deployments allow new versions of applications to be
deployed with zero downtime, as traffic is switched from the blue environment to the green

environment seamlessly.

o Easy Rollback: If a new version of the application has issues, rolling back to the previous

version is easy, as the blue environment is still available.

e Reduced Risk: By using Blue-Green Deployments, the risk of deploying new versions of
applications is reduced significantly. This is because the new version can be deployed and
tested in the green environment before traffic is switched over from the blue environment.

This allows for thorough testing and reduces the chance of issues arising in production.

Application Blue Green Deployment - Alauda Container Platform

¢ Increased Reliability: By using Blue-Green Deployments, the reliability of the application is
increased. This is because the blue environment is always available, and any issues with

the green environment can be quickly identified and resolved without affecting users.

» Flexibility: Blue-Green Deployments provide flexibility in the deployment process. Multiple
versions of an application can be deployed side-by-side, allowing for easy testing and

experimentation.

Blue Green Deployment with Argo Rollouts

Argo Rollouts is a Kubernetes controller and set of CRDs which provide advanced
deployment capabilities such as blue-green, canary, canary analysis, experimentation, and

progressive delivery features to Kubernetes.

Argo Rollouts (optionally) integrates with ingress controllers and service meshes, leveraging
their traffic shaping abilities to gradually shift traffic to the new version during an update.
Additionally, Rollouts can query and interpret metrics from various providers to verify key KPIs

and drive automated promotion or rollback during an update.

With Argo Rollouts, you can automate blue green deployments on Alauda Container Platform
(ACP) clusters. The typical process includes:
1. Defining Rollout resources to manage different application versions.

2. Configuring Kubernetes services to route traffic between blue (current) and green (new)

environments.
3. Deploying the new version to the green environment.
4. Verifying and testing the new version.

5. Promoting the green environment to production by switching traffic.

This approach minimizes downtime and enables controlled, safe deployments.

Key Concepts:

¢ Rollout: A custom resource definition (CRD) in Kubernetes that replaces standard
Deployment resources, enabling advanced deployment control such as blue-green,

canary deployment.

Application Blue Green Deployment - Alauda Container Platform

TOC

Prerequisites

Procedure
Creating the Deployment
Creating the Blue Service
Verify the Blue Deployment
Verify Traffic Routing to Blue
Creating the Rollout
Verify the Rollouts
Preparing Green Deployment

Promoting the Rollout to Green

Prerequisites

1. ACP (Alauda Container Platform).

2. Kubernetes Cluster managed by ACP.
3. Argo Rollouts installed in the cluster.
4. Argo Rollouts kubectl plugin.

5. A project to create a namespace in it.

6. A namespace in the cluster where the application will be deployed.

Procedure

1) Creating the Deployment

Start by defining the "blue" version of your application. This is the current version that
users will access. Create a Kubernetes deployment with the appropriate number of

Application Blue Green Deployment - Alauda Container Platform

replicas, container image version (e.g., hello:1.23.1), and proper labels such as

app=web .

Use the following YAML.:

apiVersion: apps/v1
kind: Deployment
metadata:
name: web
spec:
replicas: 2
selector:
matchLabels:
app: web
template:
metadata:
labels:
app: web
spec:
containers:
- name: web
image: hello:1.23.1
ports:

- containerPort: 80

Explanation of YAML fields:

e apiVersion : The version of the Kubernetes API used to create the resource.
e kind : Specifies that this is a Deployment resource.
e metadata.name : The name of the deployment.

e spec.replicas : Number of desired pod replicas.

spec.selector.matchLabels : Defines how the Deployment finds which pods to

manage.

template.metadata. labels : Labels applied to pods, used by Services to select them.
e spec.containers : The containers to run in each pod.

containers.name : Name of the container.

e containers.image : Docker image to run.

Application Blue Green Deployment - Alauda Container Platform

e containers.ports.containerPort : Port exposed by the container.

Apply the configuration using kubectl :

kubectl apply -f deployment.yaml

This sets up the production environment.

Alternative, you could use helm chart to create the deployments and services.

Creating the Blue Service

Create a Kubernetes Service that exposes the blue deployment. This service will
forward traffic to the blue pods based on matching labels. Initially, the service selector

targets pods labeled with app=web .

apiVersion: v1
kind: Service
metadata:
name: web
spec:
selector:
app: web
ports:
- protocol: TCP
port: 80
targetPort: 80

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the Service.
e kind : Specifies this resource is a Service.

e metadata.name : Name of the Service.

e spec.selector : Identifies pods to route traffic to, based on labels.

e ports.protocol : The protocol used (TCP).

e ports.port : Port exposed by the Service.

e ports.targetPort : The port on the container to which the traffic is directed.

Application Blue Green Deployment - Alauda Container Platform

Apply it using:
kubectl apply -f web-service.yaml

This allows external access to the blue deployment.

Verify the Blue Deployment

Confirm that the blue deployment is running correctly by listing the pods:

kubectl get pods -1 app=web

Check that all expected replicas (2) are in the Running state. This ensures the

application is ready to serve traffic.

Verify Traffic Routing to Blue

Ensure that the web service is correctly forwarding traffic to the blue deployment. Use
this command:

kubectl describe service web | grep Endpoints

The output should list the IP addresses of the blue pods. These are the endpoints
receiving traffic.

Creating the Rollout

Next, creating the Rollout resource from Argo Rollouts with BlueGreen strategy.

Application Blue Green Deployment - Alauda Container Platform

apiVersion: argoproj.io/vlalphal
kind: Rollout
metadata:
name: rollout-bluegreen
spec:
replicas: 2
revisionHistorylLimit: 2
selector:
matchLabels:
app: web
workloadRef:
apiVersion: apps/vi
kind: Deployment
name: web
scaleDown: onsuccess
strategy:
blueGreen:
activeService: web

autoPromotionEnabled: false

Explanation of YAML fields:

e spec.selector : Label selector for pods. Existing ReplicaSets whose pods are
selected by this will be the ones affected by this rollout. It must match the pod

template's labels.

o workloadRef : Specify the workload reference and scale down strategy to apply the

rollouts.

e scaleDown : Specifies if the workload (Deployment) is scaled down after migrating

to Rollout. The possible options are:

e "never": the Deployment is not scaled down.
e "onsuccess": the Deployment is scaled down after the Rollout becomes healthy.

e "progressively": as the Rollout is scaled up the Deployment is scaled down. If

the Rollout fails the Deployment will be scaled back up.
e strategy : The rollout strategy, support BlueGreen and Canary strategy.

e DblueGreen : The BlueGreen rollout strategy definition.

Application Blue Green Deployment - Alauda Container Platform

e activeService : Specifies the service to update with the new template hash at

time of promotion. This field is mandatory for the blueGreen update strategy.

e autoPromotionEnabled : autoPromotionEnabled disables automated promotion of
the new stack by pausing the rollout immediately before the promotion. If
omitted, the default behavior is to promote the new stack as soon as the
ReplicaSet are completely ready/available. Rollouts can be resumed using:

kubectl argo rollouts promote ROLLOUT

Apply it with:
kubectl apply -f rollout.yaml

This sets up the rollouts for the deployment with BlueGreen strategy.

Verify the Rollouts

After the Rollout was created, the Argo Rollouts will create a new ReplicaSet with
same template of the deployment. While the pods of new ReplicaSet is healthy, the
deployment is scaled down to O.

Use the following command to ensure the pods are running properly:

Application Blue Green Deployment - Alauda Container Platform

kubectl argo rollouts get rollout rollout-bluegreen

Name: rollout-bluegreen
Namespace: default
Status: v Healthy
Strategy: BlueGreen
Images: hello:1.23.1 (stable, active)
Replicas:
Desired: 2
Current: 2
Updated: 2
Ready: 2
Available: 2
NAME KIND STATUS AGE INFO
C rollout-bluegreen Rollout v Healthy 95s
L——4# revision:1
L——@ rollout-bluegreen-595d4567cc ReplicaSet ¢ Healthy 18s
stable,active
——10 rollout-bluegreen-595d4567cc-mc769 Pod ¢ Running 8s
ready:1/1
——7 rollout-bluegreen-595d4567cc-zdc5x Pod ¢ Running 8s
ready:1/1

The service web will forward traffic to the pods created by rollouts. Use this command:
kubectl describe service web | grep Endpoints

Preparing Green Deployment

Next, prepare the new version of the application as the green deployment. Update the

deployment web with the new image version (e.g., hello:1.23.2).

Application Blue Green Deployment - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:
name: web
spec:
replicas: 2
selector:
matchLabels:
app: web
template:
metadata:
labels:
app: web
spec:
containers:
- name: web
image: hello:1.23.2
ports:

- containerPort: 80

Explanation of YAML fields:

« |dentical to the original deployment, with the exception of:

e containers.image : Updated to new image version.

Apply it with:

kubectl apply -f deployment.yaml

This sets up the new application version for testing.

The rollouts will create a new Replicaset to manage the green pods, and the traffic still

forward to the blue pods. Use the following command to verify:

Application Blue Green Deployment - Alauda Container Platform

kubectl argo rollouts get rollout rollout-bluegreen

Name: rollout-bluegreen
Namespace: default
Status: I Paused
Message: BlueGreenPause
Strategy: BlueGreen
Images: hello:1.23.1 (stable, active)
hello:1.23.2
Replicas:
Desired: 2
Current: 4
Updated: 2
Ready: 2
Available: 2
NAME KIND STATUS AGE INFO
C rollout-bluegreen Rollout I Paused 14m
—+# revision:2
| L——m rollout-bluegreen-776b688d57 ReplicaSet « Healthy 24s
\ ——1C1 rollout-bluegreen-776b688d57-kxr66 Pod v Running 23s
ready:1/1
\ L——[7 rollout-bluegreen-776b688d57-vv7t7 Pod v Running 23s
ready:1/1
——+# revision:1
L——m@ rollout-bluegreen-595d4567cc ReplicaSet ¢ Healthy 12m
stable,active
——1C0 rollout-bluegreen-595d4567cc-mc769 Pod ¢ Running 12m
ready:1/1
L——J rollout-bluegreen-595d4567cc-zdc5x Pod ¢ Running 12m
ready:1/1

Currently, there are 4 pods running, with blue and green version. And the active service

is the blue version, the rollout process is paused.

If you use helm chart to deploy the application, use helm tool to upgrade the application

to the green version.

Promoting the Rollout to Green

When the green version is ready, promote the rollout to switch traffic to the green pods.

Use the following command:

Application Blue Green Deployment - Alauda Container Platform

kubectl argo rollouts promote rollout-bluegreen

To Verify if the rollout is completed:

kubectl argo rollouts get rollout rollout-bluegreen

Name: rollout-bluegreen
Namespace: default
Status: v Healthy
Strategy: BlueGreen
Images: hello:1.23.2 (stable, active)
Replicas:

Desired: 2

Current: 2

Updated: 2

Ready: 2

Available: 2
NAME KIND STATUS AGE
INFO
C rollout-bluegreen Rollout v Healthy 3h2m
F—+# revision:?2
| L—@ rollout-bluegreen-776b688d57 ReplicaSet ¢ Healthy 168m
stable,active
| ——1C0] rollout-bluegreen-776b688d57-kxr66 Pod v Running 168m
ready:1/1
| ——[7] rollout-bluegreen-776b688d57-vv7t7 Pod v Running 168m
ready:1/1
L——4# revision:1

L——@ rollout-bluegreen-595d4567cc ReplicaSet -« ScaledDown 3h1m
——10J rollout-bluegreen-595d4567cc-mc769 Pod o Terminating 3h
ready:1/1
L——7 rollout-bluegreen-595d4567cc-zdc5x Pod o Terminating 3h

ready:1/1

If the active Images is updated to hello:1.23.2 , and the blue ReplicaSet is scaled down
to 0, that means the rollout is completed.

Application Canary Deployment - Alauda Container Platform

Menu ON THIS PAGE >

Application Canary Deployment

Canary Deployment is a progressive release strategy where a new application version is
gradually introduced to a small subset of users or traffic. This incremental rollout allows teams
to monitor system behavior, collect metrics, and ensure stability before a full-scale

deployment. The approach significantly reduces risk, especially in production environments.

Argo Rollouts is a Kubernetes-native progressive delivery controller that facilitates advanced
deployment strategies. It extends Kubernetes capabilities by offering features like Canary,
Blue-Green Deployments, Analysis Runs, Experimentation, and Automated Rollbacks. It
integrates with observability stacks for metric-based health checks and provides CLI and

dashboard-based control over application delivery.

Key Concepts:

¢ Rollout: A custom resource definition (CRD) in Kubernetes that replaces standard
Deployment resources, enabling advanced deployment control such as blue-green,

canary deployment.

e Canary Steps: A series of incremental traffic shifting actions, such as directing 25%,

then 50% of traffic to the new version.

o Pause Steps: Introduce wait intervals for manual or automatic validation before

progressing to the next canary step.

Benefits of Canary Deployments

« Risk mitigation: By deploying changes to a small subset of servers initially, you can find

issues and address them before the full rollout, minimizing the impact on users.

¢ Incremental rollouts: This approach allows gradual exposure to new features, which helps

you effectively monitor performance and user feedback.

+ Real-time feedback: Canary deployments provide immediate insights into the performance

and stability of new releases under real-world conditions.

Application Canary Deployment - Alauda Container Platform

* Flexibility: You can adjust the deployment process based on performance metrics. This

allows for a dynamic rollout that you can pause or roll back as needed.

+ Cost-effectiveness: Unlike blue/green deployments, canary deployments don't require a

separate environment, making them more resource-efficient.

Canary Deployments with Argo Rollouts

Argo Rollouts supports canary deployment strategy to rollout a deployment, and control the
traffic through Gateway API Plugin. In ACP, you could use ALB to act as a Gateway API
Provider to implement the traffic control for Argo Rollouts.

TOC

Prerequisites

Procedure
Creating the Deployment
Creating the Stable Service
Creating the Canary Service
Creating the Gateway
DNS Configuration
Creating the HTTPRoute
Accessing the Stable service
Creating the Rollout
Verify the Rollouts
Preparing Canary Deployment
Promoting the Rollout

Aborting the Rollout (Optional)

Application Canary Deployment - Alauda Container Platform

Prerequisites

1. Argo Rollouts with Gateway API plugin installed in the cluster.
2. Argo Rollouts kubectl plugin (Install from here 7).

3. A project to create a namespace in it.

4. ALB deployed in the cluster and allocated to the project.

5. A namespace in the cluster where the application will be deployed.

Procedure

1) Creating the Deployment

Start by defining the "stable" version of your application. This is the current version that
users will access. Create a Kubernetes deployment with the appropriate number of
replicas, container image version (e.g., hello:1.23.1), and proper labels such as

app=web .

Use the following YAML.:

https://argoproj.github.io/argo-rollouts/installation/#kubectl-plugin-installation
https://argoproj.github.io/argo-rollouts/installation/#kubectl-plugin-installation
https://argoproj.github.io/argo-rollouts/installation/#kubectl-plugin-installation

Application Canary Deployment - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:
name: web
spec:
replicas: 2
selector:
matchLabels:
app: web
template:
metadata:
labels:
app: web
spec:
containers:
- name: web
image: hello:1.23.1
ports:

- containerPort: 80

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the resource.

kind : Specifies that this is a Deployment resource.

metadata.name : The name of the deployment.

e spec.replicas : Number of desired pod replicas.

spec.selector.matchLabels : Defines how the Deployment finds which pods to

manage.

template.metadata.labels : Labels applied to pods, used by Services to select them.
e spec.containers : The containers to run in each pod.

e containers.name : Name of the container.

e containers.image : Docker image to run.

e containers.ports.containerPort : Port exposed by the container.

Apply the configuration using kubectl :

Application Canary Deployment - Alauda Container Platform

kubectl apply -f deployment.yaml

This sets up the production environment.

Alternative, you could use helm chart to create the deployments and services.

Creating the Stable Service

Create a Kubernetes Service that exposes the stable deployment. This service will
forward traffic to the pods of stable version based on matching labels. Initially, the

service selector targets pods labeled with app=web .

apiVersion: v1
kind: Service
metadata:
name: web-stable
spec:
selector:
app: web
ports:
- protocol: TCP
port: 80
targetPort: 80

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the Service.
e kind : Specifies this resource is a Service.

o metadata.name : Name of the Service.

e spec.selector : ldentifies pods to route traffic to, based on labels.

e ports.protocol : The protocol used (TCP).

e ports.port : Port exposed by the Service.

e ports.targetPort : The port on the container to which the traffic is directed.

Apply it using:

Application Canary Deployment - Alauda Container Platform

kubectl apply -f web-stable-service.yaml

This allows external access to the stable deployment.

Creating the Canary Service

Create a Kubernetes Service that exposes the canary deployment. This service will
forward traffic to the pods of canary version based on matching labels. Initially, the

service selector targets pods labeled with app=web .

apiVersion: v1
kind: Service
metadata:
name: web-canary
spec:
selector:
app: web
ports:
- protocol: TCP
port: 80
targetPort: 80

Explanation of YAML fields:

apiVersion : The version of the Kubernetes API used to create the Service.
e kind : Specifies this resource is a Service.

e metadata.name : Name of the Service.

e spec.selector : Identifies pods to route traffic to, based on labels.

e ports.protocol : The protocol used (TCP).

e ports.port : Port exposed by the Service.

e ports.targetPort : The port on the container to which the traffic is directed.

Apply it using:

kubectl apply -f web-canary-service.yaml

Application Canary Deployment - Alauda Container Platform

This allows external access to the canary deployment.

Creating the Gateway

Use example.com as the domain to access the service, create the gateway to expose the
service with the domain:

apiVersion: gateway.networking.k8s.io/v1
kind: Gateway
metadata:
name: default
spec:
gatewayClassName: exclusive-gateway
listeners:
- allowedRoutes:
namespaces:
from: All
name: gateway-metric
port: 11782
protocol: TCP
- allowedRoutes:
namespaces:
from: All
hostname: example.com
name: web
port: 80
protocol: HTTP

Use the command:

kubectl apply -f gateway.yaml

The gateway will be allocated an external IP address, get the IP address from the

status.addresses of type IPAddress inthe gateway resource.

Application Canary Deployment - Alauda Container Platform

apiVersion: gateway.networking.k8s.io/v1
kind: Gateway
metadata:

name: default

status:
addresses:
- type: IPAddress
value: 192.168.134.30

5/ DNS Configuration

Configure the domain in your dns server to resolve the domain to the IP address of the

gateway. Verify the dns resolve with the command:

nslookup example.com
Server: 192.168.16.19
Address: 192.168.16.19#53

Non-authoritative answer:
Name: example.com
Address: 192.168.134.30

It should return the address of the gateway.

6 Creating the HTTPRoute

Application Canary Deployment - Alauda Container Platform

apiVersion: gateway.networking.k8s.io/v1
kind: HTTPRoute
metadata:
name: web
spec:
hostnames:
- example.com
parentRefs:
- group: gateway.networking.k8s.io
kind: Gateway
name: default
namespace: default
sectionName: web
rules:
- backendRefs:
- group: ""
kind: Service
name: web-canary
namespace: default
port: 80
weight: 0
- group: ""
kind: Service
name: web-stable
namespace: default
port: 80
weight: 100
matches:
- path:
type: PathPrefix

value: /

Use the command:

kubectl apply -f httproute.yaml

7) Accessing the Stable service

Outside the cluster, use the command to access the service from the domain:

Application Canary Deployment - Alauda Container Platform

curl http://example.com

Or you can access http://example.com in the browser.

Creating the Rollout

Next, creating the Rollout resource from Argo Rollouts with Canary strategy.

apiVersion: argoproj.io/vlalphal
kind: Rollout
metadata:
name: rollout-canary
spec:
minReadySeconds: 30
replicas: 2
revisionHistorylLimit: 3
selector:
matchLabels:
app: web
strategy:
canary:
canaryService: web-canary
maxSurge: 25%
maxUnavailable: 0

stableService: web-stable

steps:

- setlleight: 50

- pause: {}

- setlleight: 100

trafficRouting:
plugins:

argoproj-labs/gatewayAPI:
httpRoute: web
namespace: default
workloadRef:
apiVersion: apps/v1
kind: Deployment
name: web

scaleDown: onsuccess

Application Canary Deployment - Alauda Container Platform

Explanation of YAML fields:

e spec.selector : Label selector for pods. Existing ReplicaSets whose pods are

selected by this will be the ones affected by this rollout. It must match the pod
template's labels.

o workloadRef : Specify the workload reference and scale down strategy to apply the
rollouts.

e scaleDown : Specifies if the workload (Deployment) is scaled down after migrating to
Rollout. The possible options are:
e "never": the Deployment is not scaled down.
e "onsuccess": the Deployment is scaled down after the Rollout becomes healthy.

o "progressively": as the Rollout is scaled up the Deployment is scaled down. If the
Rollout fails the Deployment will be scaled back up.

o strategy : The rollout strategy, support BlueGreen and Canary Strategy.

e canary : The Canary rollout strategy definition.
e canaryService : Reference to a service which the controller will update to select
canary pods. Required for traffic routing.

o stableService : Reference to a service which the controller will update to select

stable pods. Required for traffic routing.

o steps : Steps define sequence of steps to take during an update of the canary.

Skipped upon initial deploy of a rollout.

e setlleight : Sets the ratio of canary ReplicaSet.

e pause : Pauses the rollout indefinitely or for a time. Supported units: s, m, h.

{} means indefinitely.

e plugin : executes the configured plugin, here we configure it with the

gatewayAPI plugin.

Apply it with:

kubectl apply -f rollout.yaml

Application Canary Deployment - Alauda Container Platform

This sets up the rollouts for the deployment with Canary strategy. It will set weight to 50
initially, and wait for the promoting. The 50% of the traffic will forward to the canary
service. After promoting the rollout, the weight will be set to 100, and 100% of the traffic
will forward to the canary service. Finally, the canary service will become the stable

service.

9 Verify the Rollouts

After the Rollout was created, the Argo Rollouts will create a new ReplicaSet with
same template of the deployment. While the pods of new ReplicaSet is healthy, the

deployment is scaled down to O.

Use the following command to ensure the pods are running properly:

kubectl argo rollouts get rollout rollout-canary

Name: rollout-canary

Namespace: default

Status: v Healthy

Strategy: Canary

Step: 9/9

SetWeight: 100

ActualWeight: 100

Images: hello:1.23.1 (stable)

Replicas:

Desired: 2

Current: 2

Updated: 2

Ready: 2

Available: 2

NAME KIND STATUS AGE INFO

C rollout-canary Rollout v Healthy 32s

L——+# revision:1

L—@ rollout-canary-5c9d79697b ReplicaSet « Healthy 32s stable

——-C01 rollout-canary-5c9d79697b-fh78d Pod ¢ Running 32s ready:1/1
L——7 rollout-canary-5c9d79697b-rrbtj Pod ¢ Running 32s ready:1/1

10/ Preparing Canary Deployment

Application Canary Deployment - Alauda Container Platform

Next, prepare the new version of the application as the green deployment. Update the

deployment web with the new image version (e.g., hello:1.23.2). Use the command:

kubectl patch deployment web -p '{"spec":{"template":{"spec":{"containers":
[{"name":"web","image":"hello:1.23.2"}1}}}}'

This sets up the new application version for testing.

The rollouts will create a new Replicaset to manage the canary pods, and the 50% traffic
will forward to the canary pods. Use the following command to verify:

kubectl argo rollouts get rollout rollout-canary

Name: rollout-canary
Namespace: default
Status: I Paused
Message: CanaryPauseStep
Strategy: Canary
Step: 1/3
SetWeight: 50
ActualWeight: 50
Images: hello:1.23.1 (stable)
hello:1.23.2 (canary)
Replicas:
Desired: 2
Current: 3
Updated: 1
Ready: 3
Available: 3
NAME KIND STATUS AGE INFO
C rollout-canary Rollout I Paused 95s
F——r+# revision:2
| L——m rollout-canary-5898765588 ReplicaSet « Healthy 46s canary
\ ——[7 rollout-canary-5898765588-1s5jk Pod v Running 45s
ready:1/1
L——4# revision:1
L—@ rollout-canary-5c9d79697b ReplicaSet ¢ Healthy 95s stable
10 rollout-canary-5c9d79697b-fk269 Pod ¢ Running 94s ready:1/1

L——] rollout-canary-5c9d79697b-wkmcn Pod ¢ Running 94s ready:1/1

11

Application Canary Deployment - Alauda Container Platform

Currently, there are 3 pods running, with stable and canary version. And the weight is
50, 50% of the traffic will forward to the canary service. The rollout process is paused to

wait for the promoting.

If you use helm chart to deploy the application, use helm tool to upgrade the application

to the canary version.

Accessing http://example.com , the 50% traffic will forward to the canary service. You

should have different response from the URL.

Promoting the Rollout

When the canary version is tested ok, you could promote the rollout to switch all traffic to

the canary pods. Use the following command:

kubectl argo rollouts promote rollout-canary

To Verify if the rollout is completed:

12

Application Canary Deployment - Alauda Container Platform

kubectl argo rollouts get rollout rollout-canary

Name: rollout-canary
Namespace: default
Status: v Healthy
Strategy: Canary
Step: 3/3
SetWeight: 100
ActuallWleight: 100
Images: hello:1.23.2 (stable)
Replicas:
Desired: 2
Current: 2
Updated: 2
Ready: 2
Available: 2
NAME KIND STATUS AGE INFO
C rollout-canary Rollout v Healthy 8m42s
——+# revision:2
| L——m rollout-canary-5898765588 ReplicaSet « Healthy 7m53s
stable
\ ——0J rollout-canary-5898765588-1s5jk Pod v Running 7m52s
ready:1/1
\ '——] rollout-canary-5898765588-dkfwg Pod v Running 68s
ready:1/1
L——4# revision:1
L—@ rollout-canary-5c9d79697b ReplicaSet < ScaledDown 8m42s

10 rollout-canary-5c9d79697b-fk269 Pod
ready:1/1

L——[7 rollout-canary-5c9d79697b-wkmcn Pod
ready:1/1

< Terminating 8m41s

< Terminating 8mé41s

If the stable Images is updated to hello:1.23.2 , and the ReplicaSet of revision 1 is

scaled down to 0, that means the rollout is completed.

Accessing http://example.com , the 100% traffic will forward to the canary service.

Aborting the Rollout (Optional)

If you found the canary version has some problems during rollout process, you can

abort the process to switch all traffic to the stable service. Use the command:

Application Canary Deployment - Alauda Container Platform

kubectl argo rollouts abort rollout-canary

To verify the results:

kubectl argo rollouts get rollout rollout-canary

Name:
Namespace:
Status:
Message:
Strategy:
Step:
SetWeight:

ActualWeight:

Images:
Replicas:
Desired:
Current:
Updated:
Ready:
Available:

NAME

C rollout-canary

rollout-demo
default
Degraded
RolloutAborted: Rollout aborted update to revision 3
Canary
0/3
0
0
hello:1.23.1 (stable)

N NS NN

KIND
Rollout

STATUS AGE INFO
Degraded 18m

1t revision:3

| ——m rollout-canary-5c9d79697b

ReplicaSet < ScaledDown 18m

canary,delay:passed

L——+# revision:2

L——@ rollout-canary-5898765588

stable

——-10J rollout-canary-5898765588-1s5jk Pod

ready:1/1

L——[7 rollout-canary-5898765588-dkfwg Pod

ready:1/1

ReplicaSet « Healthy 17m

v’ Running 17m

v’ Running 10m

Accessing http://example.com , the 100% traffic will forward to the stable service.

Status Description - Alauda Container Platform

Menu ON THIS PAGE >

Status Description

TOC

Applications

Applications

The status of native applications and their corresponding meanings are as follows. The

numbers following the status indicate the number of computing components.

Status Meaning
Running All computing components are in normal operation.

)) Some computing components are running, while others
Partially Running . . :
ave stopped.

Stopped All computing components have stopped.

Processing At least one computing component is in a pending state.
No Computing There are no computing components under the
Components application.

Failed Deployment has failed.

Note: Similarly, the numbers in the computing component status indicate the number of

container groups.

Status Description - Alauda Container Platform

Deployment

Running: All Pods are in normal operation.

Processing: There are Pods that are not in a running state.

Stopped: All Pods have stopped.

Failed: Deployment has failed.

KEDA(Kubernetes Event-driven Autoscaling) - Alauda Container Platform

Menu

KEDA(Kubernetes Event-driven
Autoscaling)

KEDA Overview

KEDA Overview
Introduction
Advantages

How KEDA works

Installing KEDA

Installing KEDA
Prerequisites

Installing via Command Line
Installing via Web Console
Verification

Additional Scenarios

Uninstalling KEDA Operator

How To

KEDA(Kubernetes Event-driven Autoscaling) - Alauda Container Platform

Integrating ACP Monitoring with Prometheus Plugin
Prerequisites
Procedure

Verification

Pausing Autoscaling in KEDA
Procedure
Scaling to Zero

Verification

KEDA Overview - Alauda Container Platform

Menu ON THIS PAGE >

KEDA Overview

TOC

Introduction
Advantages
How KEDA works

KEDA Custom Resource Definitions (CRDS)

Introduction

KEDA is a Kubernetes-based Event Driven Autoscaler. Home Page 7. With KEDA, you can
drive the scaling of any container in Kubernetes based on the number of events needing to be
processed.

KEDA is a single-purpose and lightweight component that can be added into any Kubernetes
cluster. KEDA works alongside standard Kubernetes components like the Horizontal Pod
Autoscaler 7 and can extend functionality without overwriting or duplication. With KEDA, you
can explicitly map the apps you want to use event-driven scale, with other apps continuing to
function. This makes KEDA a flexible and safe option to run alongside any number of any

other Kubernetes applications or frameworks.

See the official documentation for more details: Keda Documentation ~

Advantages

https://keda.sh/
https://keda.sh/
https://keda.sh/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://keda.sh/docs/2.17/
https://keda.sh/docs/2.17/
https://keda.sh/docs/2.17/

KEDA Overview - Alauda Container Platform

Core advantages of KEDA:

Autoscaling Made Simple: Bring rich scaling to every workload in your Kubernetes

cluster.
» Event-driven: Intelligently scale your event-driven application.

¢ Built-in Scalers: Catalog of 70+ built-in scalers for various cloud platforms, databases,

messaging systems, telemetry systems, CI/CD, and more.

+ Multiple Workload Types: Support for variety of workload types such as deployments,

jobs & custom resources with Iscale sub-resource.

* Reduce environmental impact: Build sustainable platforms by optimizing workload

scheduling and scale-to-zero.
o Extensible: Bring-your-own or use community-maintained scalers.
e Vendor-Agnostic: Support for triggers across variety of cloud providers & products.

¢ Azure Functions Support: Run and scale your Azure Functions on Kubernetes in

production workloads.

How KEDA works

KEDA monitors external event sources and adjusts your app's resources based on the

demand. Its main components work together to make this possible:

1. KEDA Operator keeps track of event sources and changes the number of app instances

up or down, depending on the demand.

2. Metrics Server provides external metrics to Kubernetes' HPA so it can make scaling

decisions.

3. Scalers connect to event sources like message queues or databases, pulling data on

current usage or load.

4. *Custom Resource Definitions (CRDs)**define how your apps should scale based on

triggers like queue length or API request rates.

In simple terms, KEDA listens to what's happening outside Kubernetes, fetches the data it

needs, and scales your apps accordingly. It's efficient and integrates well with Kubernetes to

handle scaling dynamically.

KEDA Overview - Alauda Container Platform

KEDA Custom Resource Definitions (CRDs)

KEDA uses Custom Resource Definitions (CRDs) to manage scaling behavior:

¢ ScaledObject: Links your app (like a Deployment or StatefulSet) to an external event

source, defining how scaling works.
¢ ScaledJob: Handles batch processing tasks by scaling Jobs based on external metrics.

+ TriggerAuthentication: Provides secure ways to access event sources, supporting

methods like environment variables or cloud-specific credentials.

These CRDs give you control over scaling while keeping your apps secure and responsive to
demand.

ScaledObject Example:

The following example targets CPU utilization of entire pod. If the pod has multiple containers,
it will be sum of all the containers in it.

kind: ScaledObject
metadata:
name: cpu-scaledobject
namespace: <your-namespace>
spec:
scaleTargetRef:
name: <your-deployment>
triggers:
- type: cpu
metricType: Utilization
metadata:

value: "50"

Installing KEDA - Alauda Container Platform

Menu ON THIS PAGE >

Installing KEDA

TOC

Prerequisites
Installing via Command Line

Installing KEDA Operator

Creating the KedaController instance
Installing via Web Console

Installing KEDA Operator

Creating the KedaController instance
Verification
Additional Scenarios

Integrating ACP Log Collector
Uninstalling KEDA Operator

Removing the KedaController instance

Uninstalling KEDA Operator via CLI

Uninstalling KEDA Operator via Web Console

Prerequisites

KEDA is a tool that helps Kubernetes scale applications based on real-world events. With
KEDA, you can adjust the size of your containers automatically, depending on the workload—
like the number of messages in a queue or incoming requests.

Installing KEDA - Alauda Container Platform

1. Download the KEDA installation package from Alauda Cloud.

2. Upload the installation package using the Upload Packages mechanism.

INFO

Upload Packages: Administrator > Marketplace > Upload Packages page. Click Help
Document on the right to get instructions on how to publish the operator to cluster. For more

details, please refer to CLI.

Installing via Command Line

Installing KEDA Operator

Create namespace for KEDA operator if it does not exist:

kubectl apply -f - <<EOF
apiVersion: v1
kind: Namespace
metadata:

name: "keda"
EOF

Run the following command to install KEDA Operator in your target cluster:

http://localhost:4173/container_platform/ui/cli_tools/index.html

Installing KEDA - Alauda Container Platform

kubectl apply -f - <<EOF
apiVersion: operators.coreos.com/vialphal
kind: Subscription
metadata:
annotations:
cpaas.io/target-namespaces: ""
labels:
catalog: platform
name: keda
namespace: keda
spec:
channel: stable
installPlanApproval: Automatic
name: keda
source: custom
sourceNamespace: cpaas-system
startingCSV: keda.v2.17.2
EOF

Configuration Parameters:

Parameter Recommended Configuration

metadata.name keda : The Subscription name is set to keda.
metadata.namespace keda : The Subscription namespace is set to keda.
spec.channel stable : The default Channel is set to stable.

] Automatic : The Upgrade action will be executed
spec.installPlanApproval _
automatically.

spec.name keda : The operator package name, must be keda.

custom : The catalog source of keda operator, must be
spec.source
custom.

cpaas-system : The namespace of catalog source, must
spec.sourceNamespace
be cpaas-system.

spec.startingCSV keda.v2.17.2 : The starting CSV name of keda operator.

Installing KEDA - Alauda Container Platform

Creating the KedaController instance

Create KedaController resource named keda in namespace keda:

kubectl apply -f - <<EOF
apiVersion: keda.sh/vlalphal
kind: KedaController
metadata:
name: keda
namespace: keda
spec:
admissionWebhooks:
logEncoder: console
loglLevel: info
metricsServer:
logLevel: "0"
operator:
logEncoder: console
loglLevel: info
serviceAccount: null
watchNamespace: ""
EOF

Installing via Web Console

Installing KEDA Operator

1. Log in, and navigate to the Administrator page.
2. Click Marketplace > OperatorHub.

3. Find the KEDA operator, click Install, and enter the Install page.

Configuration Parameters:

Parameter Recommended Configuration

Channel stable : The default Channel is set to stable.

Installing KEDA - Alauda Container Platform
Parameter Recommended Configuration
Version Please select the latest version.

Cluster : A single Operator is shared across all namespaces in the

Installation _ _ o
Mod cluster for instance creation and management, resulting in lower
ode
resource usage.
Installation _ _ o _
] Recommended : It will be created automatically if it does not exist.
Location
Please select the Auto .
Upgrade
Strategy o the Upgrade action will be executed automatically.

4. On the Install page, select default configuration, click Install, and complete the installation
of the KEDA Operator.

Creating the KedaController instance

1. Click on Marketplace > OperatorHub.
2. Find the installed KEDA operator, navigate to All Instances.
3. Click Create Instance button, and click KedaController card in the resource area.

4. On the parameter configuration page for the instance, you may use the default

configuration unless there are specific requirements.

5. Click Create.

Verification

After the instance is successfully created, wait approximately 20 minutes, then checking if the

KEDA components is already running with the command:

Installing KEDA - Alauda Container Platform

kubectl get pods -n keda

Additional Scenarios

Integrating ACP Log Collector

+ Ensure ACP Log Collector Plugin is installed in target cluster. Refer to ACP Log Collector

Plugin Install.
+ Enable the Platform logging switch when installing the ACP Log Collector Plugin.

« Use the following command to add label to the keda namespace:

kubectl label namespace keda cpaas.io/product=Container-Platform --overwrite

Uninstalling KEDA Operator
Removing the KedaController instance

kubectl delete kedacontroller keda -n keda

Uninstalling KEDA Operator via CLI

kubectl delete subscription keda -n keda

Uninstalling KEDA Operator via Web Console

To uninstall KEDA Operator, click on Marketplace > OperatorHub, select installed operator
KEDA, and click Uninstall.

http://localhost:4173/container_platform/observability/log/install_log.html#install-acp-log-collector-plugin
http://localhost:4173/container_platform/observability/log/install_log.html#install-acp-log-collector-plugin

How To - Alauda Container Platform

Menu

How To

Integrating ACP Monitoring with Prometheus Plugin
Prerequisites
Procedure

Verification

Pausing Autoscaling in KEDA

Procedure
Scaling to Zero

Verification

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

Menu ON THIS PAGE >

Integrating ACP Monitoring with
Prometheus Plugin

This guide outlines how to configure integration with the ACP Monitoring with

Prometheus Plugin to enable application autoscaling based on Prometheus metrics.

TOC

Prerequisites
Procedure

Verification

Prerequisites

Before using this functionality, ensure that:

¢ Installing ACP Monitoring with Prometheus Plugin

+ Retrieve the Prometheus endpoint URL and secretName for the current Kubernetes cluster:

PrometheusEndpoint=$(kubectl get feature monitoring -o

jsonpath="{.spec.accessInfo.database.address}")

¢ Retrieve the Prometheus secret for the current Kubernetes cluster:

http://localhost:4173/container_platform/observability/monitor/install_monitor.html#install-the-acp-monitoring-with-prometheus-plugin

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

PrometheusSecret=$(kubectl get feature monitoring -o

jsonpath="{.spec.accessInfo.database.basicAuth.secretName}")

¢ Create a deployment named <your-deployment> in the <your-namespace> namespace.

Procedure

+ Configure Prometheus Authentication Secret in keda Namespace.

Steps to Copy Secret from cpaas-system to keda Namespace

PrometheusUsername=$(kubectl get secret $PrometheusSecret -n cpaas-system -o
jsonpath="{.data.username}' | base64 -d)
PrometheusPassword=$(kubectl get secret $PrometheusSecret -n cpaas-system -o
jsonpath="{.data.password}"' | base64 -d)

kubectl create secret generic $PrometheusSecret \
-n keda \
--from-literal=username=$PrometheusUsername \

--from-literal=password=$PrometheusPassword

¢ Configure KEDA Authentication for Prometheus Access Using

ClusterTriggerAuthentication.

To configure authentication credentials for KEDA to access Prometheus, define a
ClusterTriggerAuthentication resource that references the Secret containing the username

and password. Below is an example configuration:

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

kubectl apply -f - <<EOF
apiVersion: keda.sh/vlalpha
kind: ClusterTriggerAuthentication
metadata:
name: cluster-prometheus-auth
spec:
secretTargetRef:
- key: username
name: $PrometheusSecret
parameter: username
- key: password
name: $PrometheusSecret

parameter: password
EOF

« Configure Autoscaling for Kubernetes Deployments Using Prometheus Metrics with
ScaledObiject.

To scale a Kubernetes Deployment based on Prometheus metrics, define a ScaledObject

resource referencing the configured ClusterTriggerAuthentication. Below is an example

configuration:

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

kubectl apply -f - <<EOF
apiVersion: keda.sh/vlalphal
kind: ScaledObject
metadata:

name: prometheus-scaledobject

namespace: <your-namespace>

spec:

cooldownPeriod: 300 # Time in seconds to wait before scaling down
maxReplicaCount: 5 # Maximum number of replicas
minReplicaCount: 1 # Minimum replicas (note: HPA may enforce a minimum of 1)
pollingInterval: 30 # Interval (seconds) to poll Prometheus metrics
scaleTargetRef:

name: <your-deployment> # Name of the target Kubernetes Deployment
triggers:

- authenticationRef:

kind: ClusterTriggerAuthentication

name: cluster-prometheus-auth # Reference to the ClusterTriggerAuthentication

metadata:
authModes: basic # Authentication method (basic auth in this case)
query:
sum(container_memory_working_set_bytes{container!="POD",container!="",namespace="<your-

namespace>",pod="<your-deployment-name>.*"})
queryParameters: timeout=10s # Optional query parameters
serverAddress: $PrometheusEndpoint

threshold: "1024000" # Threshold value for scaling

unsafeSsl: "true" # Skip SSL certificate validation (not recommended for
production)
type: prometheus # Trigger type

EOF

Verification

To verify that the ScaledObject has scaled the deployment, you can check the number of

replicas of the target deployment:

kubectl get deployment <your-deployment> -n <your-namespace>

Or you can use the following command to check the number of pods:

Integrating ACP Monitoring with Prometheus Plugin - Alauda Container Platform

kubectl get pods -n <your-namespace> -1 <your-deployment-label-key>=<your-deployment-
label-value>

The number of replicas should increase or decrease based on the metrics specified in the
ScaledObject. If the deployment is scaled correctly, you should see the number of pods have
changed to maxReplicaCount value.

Other KEDA scalers

KEDA scalers can both detect if a deployment should be activated or deactivated, and feed
custom metrics for a specific event source.

KEDA supports a wide range of additional scalers. For more details, see the official
documentation: KEDA Scalers .

https://keda.sh/docs/2.17/scalers/
https://keda.sh/docs/2.17/scalers/
https://keda.sh/docs/2.17/scalers/

Pausing Autoscaling in KEDA - Alauda Container Platform

= Menu ON THIS PAGE >

Pausing Autoscaling in KEDA

KEDA allows you to pause autoscaling of workloads temporarily, which is useful for:

¢ Cluster maintenance.

¢ Avoiding resource starvation by scaling down non-critical workloads.

TOC

Procedure
Immediate Pause with Current Replicas
Pause After Scaling to a Specific Replica Count
Behavior When Both Annotations are Set
Unpausing Autoscaling

Scaling to Zero

Verification

Procedure

Immediate Pause with Current Replicas

Add the following annotation to your ScaledObject definition to pause scaling without
changing the current replica count:

Pausing Autoscaling in KEDA - Alauda Container Platform

metadata:
annotations:

autoscaling.keda.sh/paused: "true"

Pause After Scaling to a Specific Replica Count

Use this annotation to scale the workload to a specific number of replicas and then pause:

metadata:
annotations:

autoscaling.keda.sh/paused-replicas: "<number>"

Behavior When Both Annotations are Set

If both paused and paused-replicas are specified:

+ KEDA scales the workload to the value defined in paused-replicas.

¢ Autoscaling is paused afterward.

Unpausing Autoscaling

To resume autoscaling:

* Remove both paused and paused-replicas annotations from the ScaledObject.

 If only paused: "true" was used, set it to false:

metadata:
annotations:

autoscaling.keda.sh/paused: "false"

Scaling to Zero

Example ScaledObject Configuration:

Pausing Autoscaling in KEDA - Alauda Container Platform

apiVersion: keda.sh/vlalphal

kind: ScaledObject

metadata:
name: example-scaledobject
namespace: <your-namespace>
annotations:

autoscaling.keda.sh/paused-replicas: "0"

Verification

To verify that the ScaledObject has scaled to zero, you can check the number of replicas of
the target deployment:

kubectl get deployment <your-deployment> -n <your-namespace>
Or you can check the number of pods in the target deployment:

kubectl get pods -n <your-namespace> -1 <your-deployment-label-key>=<your-deployment-
label-value>

The number of pods should be zero, indicating that the deployment has scaled to zero.

Configuring HPA - Alauda Container Platform

Menu ON THIS PAGE >

Configuring HPA

HPA (Horizontal Pod Autoscaler) automatically scales the number of pods up or down based
on preset policies and metrics, enabling applications to handle sudden spikes in business load

while optimizing resource utilization during low-traffic periods.

TOC

Understanding Horizontal Pod Autoscalers
How Does the HPA Work?
Supported Metrics

Prerequisites

Creating a Horizontal Pod Autoscaler
Using the CLI
Using the Web Console
Using Custom Metrics for HPA

Requirements

Traditional (Core Metrics) HPA
Custom Metrics HPA

Trigger Condition Definition
Custom Metrics HPA Compatibility
Updates in autoscaling/v2beta2

Calculation Rules

Configuring HPA - Alauda Container Platform

Understanding Horizontal Pod Autoscalers

You can create a horizontal pod autoscaler to specify the minimum and maximum number of
pods you want to run, as well as the CPU utilization or memory utilization your pods should

target.

After you create a horizontal pod autoscaler, the platform begins to query the CPU and/or
memory resource metrics on the pods. When these metrics are available, the horizontal pod
autoscaler computes the ratio of the current metric utilization with the desired metric
utilization, and scales up or down accordingly. The query and scaling occurs at a regular

interval, but can take one to two minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication
controller. For deployment configurations, scaling corresponds directly to the replica count of
the deployment configuration. Note that autoscaling applies only to the latest deployment in

the Complete phase.

The platform automatically accounts for resources and prevents unnecessary autoscaling
during resource spikes, such as during start up. Pods in the unready state have 0 CPU usage
when scaling up and the autoscaler ignores the pods when scaling down. Pods without known
metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows
for more stability during the HPA decision. To use this feature, you must configure readiness

checks to determine if a new pod is ready for use.

How Does the HPA Work?

The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets
you create and manage a group of load-balanced nodes. The HPA automatically increases or
decreases the number of pods when a given CPU or memory threshold is crossed.

The HPA works as a control loop with a default of 15 seconds for the sync period. During this
period, the controller manager queries the CPU, memory utilization, or both, against what is
defined in the configuration for the HPA. The controller manager obtains the utilization metrics
from the resource metrics API for per-pod resource metrics like CPU or memory, for each pod
that is targeted by the HPA.

If a utilization value target is set, the controller calculates the utilization value as a percentage

of the equivalent resource request on the containers in each pod. The controller then takes

Configuring HPA - Alauda Container Platform

the average of utilization across all targeted pods and produces a ratio that is used to scale
the number of desired replicas.

Supported Metrics

The following metrics are supported by horizontal pod autoscalers:

Metric Description

Number of CPU cores used. Can be used to calculate a
CPU Utilization

percentage of the pod's requested CPU.

o Amount of memory used. Can be used to calculate a
Memory Utilization
percentage of the pod's requested memory.

Network Inbound Amount of network traffic coming into the pod, measured in
Traffic KiB/s.

Network Outbound Amount of network traffic going out from the pod, measured in
Traffic KiB/s.

Storage Read

] Amount of data read from storage, measured in KiB/s.
Traffic

Storage Write

] Amount of data written to storage, measured in KiB/s.
Traffic

Important. For memory-based autoscaling, memory usage must increase and decrease

proportionally to the replica count. On average:

¢ An increase in replica count must lead to an overall decrease in memory (working set)

usage per-pod.
o Adecrease in replica count must lead to an overall increase in per-pod memory usage.

» Use the platform to check the memory behavior of your application and ensure that your

application meets these requirements before using memory-based autoscaling.

Prerequisites

Configuring HPA - Alauda Container Platform

Please ensure that the monitoring components are deployed in the current cluster and are
functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform (Z) > Platform Health Status..

Creating a Horizontal Pod Autoscaler

Using the CLI

You can create a horizontal pod autoscaler using the command line interface by defining a
YAML file and using the kubectl create command. The following example shows autoscaling
for a Deployment object. The initial deployment requires 3 pods. The HPA object increases the

minimum to 5. If CPU usage on the pods reaches 75%, the pods increase to 7:

1. Create a YAML file named hpa.yaml with the following content:

apiVersion: autoscaling/v2)
kind: HorizontalPodAutoscaler e
metadata:
name: hpa—demoo
namespace: default
spec:
maxReplicas: 7)
minReplicas: 30
scaleTargetRef:
apiVersion: apps/v1 0
kind: Deployment o
name: deployment—demo@
targetCPUUtilizationPercentage: 75 0

1. Use the autoscaling/v2 API.

2. The name of the HPA resource.

3. The name of the deployment to scale.

4. The maximum number of replicas to scale up to.
5. The minimum number of replicas to maintain.

6. Specify the API version of the object to scale.

Configuring HPA - Alauda Container Platform
7. Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.
8. The target resource to which the HPA applies.

9. The target CPU utilization percentage that triggers scaling.

2. Apply the YAML file to create the HPA:
kubectl create -f hpa.yaml
Example output:
horizontalpodautoscaler.autoscaling/hpa-demo created

3. After you create the HPA, you can view the new state of the deployment by running the

following command:
kubectl get deployment deployment-demo
Example output:

NAME READY UP-TO-DATE AVAILABLE AGE
deployment-demo 5/5 5 5 3m

4. You can also check the status of your HPA:
kubectl get hpa hpa-demo

Example output:

NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE
hpa-demo Deployment/deployment-demo 0%/75% 3 7 3 2m

Using the Web Console

1. Enter Container Platform.

Configuring HPA - Alauda Container Platform

2. In the left navigation bar, click Workloads > Deployments.
3. Click on Deployment Name.
4. Scroll down to the Elastic Scaling area and click on Update on the right.

5. Select Horizontal Scaling and complete the policy configuration.

Parameter Description

After a deployment is successfully created, you need to evaluate the
Minimum Pod Count corresponding to known and regular business
volume changes, as well as the Maximum Pod Count that can be
supported by the namespace quota under high business pressure.
Pod Count _ o _

The maximum or minimum pod counts can be changed after setting,
and it is recommended to first derive a more accurate value through
performance testing and to continuously adjust during usage to meet

business needs.

List the Metrics that are sensitive to business changes and their
Target Thresholds to trigger scale-up or scale-down actions.
For example, if you set CPU Utilization = 60%, once the CPU
] utilization deviates from 60%, the platform will start to automatically
Trigger
i adjust the number of pods based on the current deployment's

Policy insufficient or excessive resource allocation.
Note: Metric types include built-in metrics and custom metrics.
Custom metrics only apply to deployments in native applications,

and you must first add custom metrics .

For businesses with specific scaling rate requirements, you can
Scale gradually adapt to changes in business volume by specifying Scale-
Up/Down Up Step or Scale-Down Step.
Step For the scale-down step, you can customize the Stability Window,
(Alpha) which defaults to 300 seconds, meaning that you must wait 300

seconds before executing scale-down actions.

6. Click Update.

Configuring HPA - Alauda Container Platform

Using Custom Metrics for HPA

Custom metrics HPA extends the original HorizontalPodAutoscaler by supporting additional
metrics beyond CPU and memory utilization.

Requirements

kube-controller-manager: horizontal-pod-autoscaler-use-rest-clients=true

Pre-installed metrics-server

Prometheus

custom-metrics-api

Traditional (Core Metrics) HPA

Traditional HPA supports CPU utilization and memory metrics to dynamically adjust the

number of Pod instances, as shown in the example below:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: nginx-app-nginx
namespace: test-namespace
spec:
maxReplicas: 1
minReplicas: 1
scaleTargetRef:
apiVersion: apps/vi
kind: Deployment
name: nginx-app-nginx

targetCPUUtilizationPercentage: 50

In this YAML, scaleTargetRef specifies the workload object for scaling, and

targetCPUUtilizationPercentage specifies the CPU utilization trigger metric.

Custom Metrics HPA

To use custom metrics, you need to install prometheus-operator and custom-metrics-api. After

installation, custom-metrics-api provides a large number of custom metric resources:

Configuring HPA - Alauda Container Platform

"kind": "APIResourcelist",
"apiVersion": "v1",
"groupVersion": "custom.metrics.k8s.io/v1betal",

"resources": [

{
"name": "namespaces/go_memstats_heap_sys_bytes",
"singularName": "",
"namespaced”: false,
"kind": "MetricValuelist",
"verbs": ["get"]

s

{
"name": "jobs.batch/go_memstats_last_gc_time_seconds”,
"singularName": "",
"namespaced": true,
"kind": "MetricValuelist",
"verbs": ["get"]

b

{
"name": "pods/go_memstats_frees",
"singularName": "",
"namespaced": true,
"kind": "MetricValuelist",
"verbs": ["get"]

}

These resources are all sub-resources under MetricValueList. You can create rules through
Prometheus to create or maintain sub-resources. The HPA YAML format for custom metrics
differs from traditional HPA:

Configuring HPA - Alauda Container Platform

apiVersion: autoscaling/v2betal
kind: HorizontalPodAutoscaler
metadata:
name: demo
spec:
scaleTargetRef:
apiVersion: extensions/vibetal
kind: Deployment
name: demo
minReplicas: 2
maxReplicas: 10
metrics:
- type: Pods
pods:
metricName: metric-demo

targetAverageValue: 10

In this example, scaleTargetRef specifies the workload.

Trigger Condition Definition

e metrics is an array type, supporting multiple metrics

e metric type can be: Object (describing k8s resources), Pods (describing metrics for each
Pod), Resources (built-in k8s metrics: CPU, memory), or External (typically metrics external

to the cluster)

« If the custom metric is not provided by Prometheus, you need to create a new metric

through a series of operations such as creating rules in Prometheus

The main structure of a metric is as follows:

Configuring HPA - Alauda Container Platform

{
"describedObject": { # Described object (Pod)
"kind": "Pod",
"namespace": "monitoring",
"name": "nginx-788f78d959-fd6n9",
"apiVersion": "/v1"
}
"metricName": "metric-demo",
"timestamp": "2020-02-5T04:26:01Z",
"value": "50"
}

This metric data is collected and updated by Prometheus.

Custom Metrics HPA Compatibility

Custom metrics HPA YAML is actually compatible with the original core metrics (CPU). Here's
how to write it:

apiVersion: autoscaling/v2betal
kind: HorizontalPodAutoscaler
metadata:
name: nginx
spec:
scaleTargetRef:
apiVersion: extensions/vilbetal
kind: Deployment
name: nginx
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
targetAverageUtilization: 80
- type: Resource
resource:
name: memory
targetAverageValue: 200Mi

Configuring HPA - Alauda Container Platform
e targetAverageValue is the average value obtained for each Pod

e targetAverageUtilization is the utilization calculated from the direct value

The algorithm reference is:

replicas = ceil(sum(CurrentPodsCPUUtilization) / Target)

Updates in autoscaling/v2beta2

autoscaling/v2beta2 supports memory utilization:

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
name: nginx
namespace: default
spec:
minReplicas: 1
maxReplicas: 3
metrics:
- resource:
name: cpu
target:
averageUtilization: 70
type: Utilization
type: Resource
- resource:
name: memory
target:
averageUtilization:
type: Utilization
type: Resource
scaleTargetRef:
apiVersion: apps/vi
kind: Deployment

name: nginx

Changes: targetAverageUtilization and targetAverageValue have been changedto target
and converted to a combination of xxxValue and type :

Configuring HPA - Alauda Container Platform

e xxxValue : AverageValue (average value), AverageUltilization (average utilization), Value

(direct value)

e type : Utilization (utilization), AverageValue (average value)

Notes:

o For CPU Utilization and Memory Utilization metrics, auto-scaling will only be triggered

when the actual value fluctuates outside the range of £10% of the target threshold.

e Scale-down may impact ongoing business operations; please proceed with caution.

Calculation Rules

When business metrics change, the platform will automatically calculate the target pod count
that matches the business volume according to the following rules and adjust accordingly. If
the business metrics continue to fluctuate, the value will be adjusted to the set Minimum Pod

Count or Maximum Pod Count.

¢ Single Policy Target Pod Count: ceil[(sum(actual metric values)/metric threshold)] . This
means that the sum of the actual metric values of all pods divided by the metric threshold,
rounded up to the smallest integer that is greater than or equal to the result. For example: If
there are currently 3 pods with CPU utilizations of 80%, 80%, and 90%, and the set CPU
utilization threshold is 60%. According to the formula, the number of pods will be
automatically adjusted to: ceil[(80%+80%+90%)/60%] = ceil 4.1 = 5 pods.

Note:

« If the calculated target pod count exceeds the set Maximum Pod Count (for example
4), the platform will only scale up to 4 pods. If after changing the maximum pod count
the metrics remain persistently high, you may need to use alternate scaling methods,

such as increasing the namespace pod quota or adding hardware resources.

o |f the calculated target pod count (in the previous example 5) is less than the pod count
adjusted according to the Scale-Up Step (for example 10), the platform will only scale

up to 5 pods.

Configuring HPA - Alauda Container Platform

« Multiple Policy Target Pod Count: Take the maximum value among the results of each

policy calculation.

Starting and Stopping Applications - Alauda Container Platform

Menu

Starting and Stopping Applications

TOC

Starting the Application

Stopping the Application

Starting the Application

1. Access the Container Platform.
2. In the left navigation bar, click Application > Applications.
3. Click on the application name.

4. Click Start.

Stopping the Application

1. Access the Container Platform.
2. In the left navigation bar, click Application > Applications.
3. Click on the application name.

4. Click Stop.

ON THIS PAGE >

Starting and Stopping Applications - Alauda Container Platform

5. Read the prompt message, and after confirming that everything is correct, click Stop.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Menu ON THIS PAGE >

Configuring VerticalPodAutoscaler (VPA)

For both stateless and stateful applications, VerticalPodAutoscaler (VPA) automatically
recommends and optionally applies more appropriate CPU and memory resource limits based
on your business needs, ensuring that pods have sufficient resources while improving cluster
resource utilization.

TOC

Understanding VerticalPodAutoscalers
How Does the VPA Work?
Supported Features

Prerequisites
Installing the Vertical Pod Autoscaler Plugin

Creating a VerticalPodAutoscaler
Using the CLI
Using the Web Console
Advanced VPA Configuration

Update Policy Options
Container Policy Options

Follow-Up Actions

Understanding VerticalPodAutoscalers

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

You can create a VerticalPodAutoscaler to recommend or automatically update the CPU and

memory resource requests and limits for your pods based on their historical usage patterns.

After you create a VerticalPodAutoscaler, the platform begins to monitor the CPU and memory
resource usage of the pods. When sufficient data is available, the VerticalPodAutoscaler
calculates recommended resource values based on the observed usage patterns. Depending
on the configured update mode, VPA can either automatically apply these recommendations

or simply make them available for manual application.

The VPA works by analyzing the resource usage of your pods over time and making
recommendations based on this analysis. It can help ensure that your pods have the
resources they need without over-provisioning, which can lead to more efficient resource

utilization across your cluster.

How Does the VPA Work?

The VerticalPodAutoscaler (VPA) extends the concept of pod resource optimization. The VPA
monitors the resource usage of your pods and provides recommendations for CPU and

memory requests based on the observed usage patterns.

The VPA works by continuously monitoring the resource usage of your pods and updating its
recommendations as new data becomes available. The VPA can operate in the following

modes:

o Off: VPA only provides recommendations without automatically applying them.

+ Manual Adjustment: You can manually adjust resource configurations based on VPA

recommendations.

Important: Elastic scaling can achieve horizontal or vertical scaling of Pods. When
sufficient resources are available, elastic scaling can bring good results, but when cluster
resources are insufficient, it may cause Pods to be in a Pending state. Therefore, please
ensure that the cluster has sufficient resources or reasonable quotas, or you can configure

alerts to monitor scaling conditions.

Supported Features

The VerticalPodAutoscaler provides resource recommendations based on historical usage

patterns, allowing you to optimize your pod's CPU and memory configurations.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Important: When manually applying VPA recommendations, pod recreation will occur,
which can cause temporary disruption to your application. Consider applying

recommendations during maintenance windows for production workloads.

Prerequisites

* Please ensure that the monitoring components are deployed in the current cluster and are
functioning properly. You can check the deployment and health status of the monitoring
components by clicking on the top right corner of the platform

(@ > Platform Health Status..

o The Alauda Container Platform Vertical Pod Autoscaler cluster plugin must be installed in

your cluster.

Installing the Vertical Pod Autoscaler Plugin

Before using VPA, you need to install the Vertical Pod Autoscaler cluster plugin:
1. Log in and navigate to the Administrators page.
2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Vertical Pod Autoscaler cluster plugin, click Install,

then proceed to the installation page.

Creating a VerticalPodAutoscaler

Using the CLI

You can create a VerticalPodAutoscaler using the command line interface by defining a YAML
file and using the kubectl create command. The following example shows vertical pod

autoscaling for a Deployment object:

1. Create a YAML file named vpa.yaml with the following content:

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

apiVersion: autoscaling.k8s.io/v1 o
kind: VerticalPodAutoscaler o
metadata:
name: my-deployment-vpa e
namespace: default
spec:
targetRef:
apiVersion: apps/v1 o
kind: Deployment e
name: my-deployment e
updatePolicy:
updateMode: 'Off' 0
resourcePolicy: @
containerPolicies:
- containerName: '*' 0

mode: 'Auto’ @

. Use the autoscaling.k8s.io/v1 API.
. The name of the VPA

. Specify the target workload object. VPA uses the workload's selector to find pods that
need resource adjustment. Supported workload types include DaemonSet, Deployment,

ReplicaSet, StatefulSet, ReplicationController, Job, and CronJob.

. Specify the API version of the object to scale.

. Specify the type of object.

. The target resource to which the VPA applies

. Update policy that defines how VPA applies recommendations. The updateMode can be:

o Auto: Automatically sets resource requests when creating pods and updates current
pods to recommended resource requests. Currently equivalent to "Recreate". This

mode may cause application downtime. Once in-place pod resource updates are

supported, "Auto” mode will adopt this update mechanism.

* Recreate: Automatically sets resource requests when creating pods and evicts
current pods to update to recommended resource requests. Will not use in-place

updates.

« Initial: Only sets resource requests when creating pods, no modifications afterward.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

« Off: Does not automatically modify pod resource requests, only provides

recommendations in the VPA object.

8. Resource policy that can set specific strategies for different containers. For example,
setting a container's mode to "Auto" means it will calculate recommendations for that

container, while "Off" means it won't calculate recommendations.
9. Apply policy to all containers in the pod.

10. Set the mode to Auto or Off. Auto means recommendations will be generated for this

container, Off means no recommendations will be generated.

2. Apply the YAML file to create the VPA:

kubectl create -f vpa.yaml

Example output:

verticalpodautoscaler.autoscaling.k8s.io/my-deployment-vpa created

3. After you create the VPA, you can view the recommendations by running the following

command:

kubectl describe vpa my-deployment-vpa

Example output (partial):

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Status:
Recommendation:
Container Recommendations:
Container Name: my-container

Lower Bound:

Cpu: 100m

Memory: 262144k
Target:

Cpu: 200m

Memory: 524288k
Upper Bound:

Cpu: 300m

Memory: 786432k

Using the Web Console

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling area and click Update on the right.

5. Select Vertical Scaling and configure the scaling rules.

Parameter Description
Scaling Currently supports Manual Scaling mode, which provides
Mode recommended resource configurations by analyzing past resource

usage. You can manually adjust according to the recommended
values. Adjustments will cause pods to be recreated and restarted, so
please choose an appropriate time to avoid impacting running
applications.

Typically, after pods have been running for more than 8 days, the
recommended values will become accurate.

Note that when cluster resources are insufficient, scaling may cause

Pods to be in a Pending state. Please ensure that the cluster has

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Parameter Description

sufficient resources or reasonable quotas, or configure alerts to

monitor scaling conditions.

Defaults to the first container of the workload. You can choose to
Target
] enable resource limit recommendations for one or more containers as
Container
needed.

6. Click Update.

Advanced VPA Configuration

Update Policy Options

updateMode: "0ff" - VPA only provides recommendations without automatically applying

them. You can manually apply these recommendations as needed.

updateMode: "Auto" - Automatically sets resource requests when creating pods and

updates current pods to recommended values. Currently equivalent to "Recreate".

updateMode: "Recreate" - Automatically sets resource requests when creating pods and

evicts current pods to update to recommended values.

updateMode: "Initial" - Only sets resource requests when creating pods, no modifications

afterward.

minReplicas: <number> - Minimum number of replicas. Ensures this minimum number of

pods remain available when the Updater evicts pods. Must be greater than O.

Container Policy Options

e containerName: "*" - Apply policy to all containers in the pod.
o mode: "Auto" - Automatically generate recommendations for the container.

e mode: "0ff" - Do not generate recommendations for the container.
Notes:

* VPA recommendations are based on historical usage data, so it may take several days of

pod operation before recommendations become accurate.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

« Pod recreation will occur when VPA recommendations are applied in Auto mode, which can

cause temporary disruption to your application.

Follow-Up Actions

After configuring VPA, the recommended values for CPU and memory resource limits of the
target container can be viewed in the Elastic Scaling area. In the Containers area, select the
target container tab and click the icon on the right side of Resource Limits to update the

resource limits according to the recommended values.

Configuring CronHPA - Alauda Container Platform

Menu ON THIS PAGE >

Configuring CronHPA

For stateless applications with periodic fluctuations in business usage, CronHPA (Cron
Horizontal Pod Autoscaler) supports adjusting the number of pods based on the time policies

you set, allowing you to optimize resource usage according to predictable business patterns.

TOC

Understanding Cron Horizontal Pod Autoscalers
How Does the CronHPA Work?

Prerequisites

Creating a Cron Horizontal Pod Autoscaler
Using the CLI
Using the Web Console

Schedule Rule Explanation

Understanding Cron Horizontal Pod Autoscalers

You can create a cron horizontal pod autoscaler to specify the number of pods you want to run
at specific times according to a schedule, allowing you to prepare for predictable traffic

patterns or reduce resource usage during off-peak hours.

After you create a cron horizontal pod autoscaler, the platform begins to monitor the schedule
and automatically adjusts the number of pods at the specified times. This time-based scaling
occurs independently of resource utilization metrics, making it ideal for applications with

known usage patterns.

Configuring CronHPA - Alauda Container Platform

The CronHPA works by defining one or more schedule rules, each specifying a time (using
crontab format) and a target number of replicas. When a scheduled time is reached, the
CronHPA adjusts the pod count to match the specified target, regardless of the current

resource utilization.

How Does the CronHPA Work?

The cron horizontal pod autoscaler (CronHPA) extends the concept of pod auto-scaling with
time-based controls. The CronHPA lets you define specific times when the number of pods
should change, allowing you to prepare for predictable traffic patterns or reduce resource

usage during off-peak hours.

The CronHPA works by continuously checking the current time against the defined schedules.
When a scheduled time is reached, the controller adjusts the number of pods to match the
target replica count specified for that schedule. If multiple schedules trigger at the same time,

the platform will use the rule with higher priority (the one defined earlier in the configuration).

Prerequisites

Please ensure that the monitoring components are deployed in the current cluster and are
functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform (?) > Platform Health Status..

Creating a Cron Horizontal Pod Autoscaler

Using the CLI

You can create a cron horizontal pod autoscaler using the command line interface by defining
a YAML file and using the kubectl create command. The following example shows scheduled

scaling for a Deployment object:

1. Create a YAML file named cronhpa.yaml with the following content:

Configuring CronHPA - Alauda Container Platform

apiVersion: tkestack.io/v1 ()
kind: CronHPA @)
metadata:
name: my-deployment-cronhpa e
namespace: default
spec:
scaleTargetRef:
apiVersion: apps/v1 e
kind: Deployment 0
name: my-deployment 0
crons:
- schedule: '0 @ * * *' 0
targetReplicas: 0 6
- schedule: '0 8 * * 1-5' @)
targetReplicas: 3@
- schedule: '0 18 * * 1-5' @)
targetReplicas: 1@

1. Use the tkestack.io/v1l API.

2. The name of the CronHPA resource.

3. The name of the deployment to scale.

4. Specify the API version of the object to scale.

5. Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.
6. The target resource to which the CronHPA applies.

7. The cron schedule in standard crontab format (minute hour day month weekday).

8. The target number of replicas to scale to when the schedule is triggered.
This example configures the deployment to:

e Scale down to O replicas at midnight every day
e Scale up to 3 replicas at 8:00 AM on weekdays (Monday-Friday)

e Scale down to 1 replica at 6:00 PM on weekdays

2. Apply the YAML file to create the CronHPA:

kubectl create -f cronhpa.yaml

Configuring CronHPA - Alauda Container Platform
Using the Web Console

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling section and click Update on the right.

5. Select Scheduled Scaling, and configure the scaling rules. When the type is Custom, you
must provide a Crontab expression for the trigger condition, formatted as minute hour day

month week . For detailed introduction, please refer to Writing Crontab Expressions.

6. Click Update.

Schedule Rule Explanation

* Scaling Rules:

Type * Trigger Condition * Target Replicas
o_| Time v Sunday x v 01:00 ® 1 S)
9—| Customize v (02**2 2 ©)]
e—| Customize v 02**2 3 S
@ Add

1. Indicates that starting from 01:00 AM every Monday, only 1 pod will be retained.
2. Indicates that starting from 02:00 AM every Tuesday, only 2 pods will be retained.

3. Indicates that starting from 02:00 AM every Tuesday, only 3 pods will be retained.

Important Notes:

o When multiple rules have the same trigger time (Examples 2 and 3), the platform will

execute automatic scaling based only on the rule that is higher in priority (Example 2).

e CronHPA operates independently of HPA. If both are configured for the same workload,

they may conflict with each other. Consider your scaling strategy carefully.

Configuring CronHPA - Alauda Container Platform

The schedule uses the crontab format (minute hour day month week) and follows the same

rules as Kubernetes CronJobs.
Time is based on the cluster's timezone setting.

For workloads with critical availability requirements, ensure that your scheduled scaling

doesn't unexpectedly reduce capacity during high-traffic periods.

Updating Applications - Alauda Container Platform

Menu ON THIS PAGE >

Updating Applications
Custom Applications greatly facilitate the unified management of workloads, networks,

storage, and configurations, but not all resources belong to the application.

* Resources added during the application creation process, or added through application
updates, are by default associated with the application and do not require additional

importing.

* Resources created outside the application do not belong to the application and cannot be
found in the application's details. However, as long as the resource definitions meet
business requirements, the business can operate normally. In this case, it is recommended

that you import the resources into the application for unified management.
+ Image Management

¢ Rollout new container images with tag/patch version control

o Configure imagePullPolicy (Always/IfNotPresent/Never)
* Runtime Configuration

» Modify environment variables via ConfigMaps/Secrets

e Update resource requests/limits (CPU/Memory)
¢ Resource Orchestration

¢ Import existing Kubernetes resources (Deployments/Services/Ingresses)

e Synchronize configurations across hamespaces using kubectl apply -f

Resources imported into the application can benefit from the following features:

Feature Description

Version When creating a version snapshot for the application, a snapshot will

Snapshot also be generated for the resources within the application.

Feature

Deleted with
Application

Easier to Find

TOC

Importing Resources

Updating Applications - Alauda Container Platform

Description

« If the application is rolled back, the resources will also roll back to

the state in the snapshot.

e If a specific version of the application is distributed, the platform
will automatically create the resources recorded in the snapshot

upon redeploying the application.

If an application is no longer needed, deleting the application will
automatically remove all resources associated with the application,

including computing components, internal routes, and inbound rules.

In the application detail information, you can quickly view the
resources associated with the application.

For example: External traffic can access Deployment D through
Service S, which belongs to Application A, but the corresponding
access address can only be quickly found in the application details if

Service S also belongs to Application A.

Removing/Batch Removing Resources

Importing Resources

Batch import related resources under the namespace where the application resides; a

resource can belong to only one application.

1. Enter Container Platform.

Updating Applications - Alauda Container Platform

2. In the left navigation bar, click Application Management > Native Applications.
3. Click on Application Name.

4. Click Actions > Manage Resources.

5. In the Resource Type at the bottom, select the type of resources to be imported.

Note: Common resource types include Deployment, DaemonSet, StatefulSet, Job,
CronJob, Service, Ingress, PVC, ConfigMap, Secret, and HorizontalPodAutoscaler, which
are displayed at the top; other resources are arranged in alphabetical order, and you can

quickly query specific resource types by searching keywords.
6. In the Resources section, select the resources to be imported.

Attention: For Job type resources, only tasks created through YAML are supported for

import.

7. Click Import Resources.

Removing/Batch Removing Resources

Removing / batch removing resources from an application only disassociates the

application from the resources and does not delete the resources.

If there are interconnections between resources under an application, removing any resource
from the application will not change the associations between the resources. For example,
even if Service S is removed from Application A, external traffic can still access Deployment D

through Service S.

1. Enter Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.
3. Click on Application Name.

4. Click Actions > Manage Resources.

Updating Applications - Alauda Container Platform

5. Click Remove on the right side of a resource to remove it; or select multiple resources at

once, and click Remove at the top of the table to batch remove resources.

Exporting Applications - Alauda Container Platform

Menu ON THIS PAGE >

Exporting Applications

To standardize the export process of applications between development, testing, and
production environments, and to facilitate the rapid migration of business to new
environments, you can export native applications as application templates (Charts) or export
simplified YAML files that can be used directly for deployment. This allows the native
application to run in different environments or namespaces. You can also export YAML files to
a code repository to deploy applications across clusters quickly using GitOps functionality.

TOC

Exporting Helm Charts
Procedure
Follow-Up Actions
Exporting YAML to Local
Steps
Method 1
Method 2
Follow-Up Actions
Exporting YAML to Code Repository (Alpha)
Precautions
Steps

Follow-Up Actions

Exporting Helm Charts

Exporting Applications - Alauda Container Platform

Procedure

1. Access the Container Platform.
2. In the left navigation bar, click on Application Management > Native Applications.
3. Click on the application name of the type Custom Application .

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Choose one export method as needed and refer to the following instructions to configure

the relevant information.
o Exporting Helm Charts to a template repository with management permissions

Note: The template repository is added by the platform administrator. Please contact the
platform administrator to obtain a valid template repository of type Chart or OCI Chart

with Management permissions.

Parameter Description

Select Template Repository to directly sync the template to a
Target template repository of type Chart or OCI Chart with
Location Management permissions. The project owner assigned to this

Template Repository can directly use the template.

When the selected template repository type is OCI Chart, you
need to select or manually input the directory for storing the
Template Helm Chart.
Directory Note: When manually entering a new template directory, the
platform will create this directory in the template repository, but

there is a risk of the creation failing.

The version number of the application template.
] The format should be v<Major>.<Minor>.<Patch> . The default
Version _ o _
value is the current application version or the current snapshot

version.

Parameter

Icon

Description

README

NOTES

Exporting Applications - Alauda Container Platform
Description

Supports JPG, PNG, and GIF image formats, with a file size of

no more than 500KB. Suggested dimensions are 80*60 pixels.

The description will be displayed in the list of application

templates within the application directory.

Description file. Supports editing in Markdown format and will be

displayed on the details page of the application template.

Template help file. Supports standard plaintext editing; after the
deployment template is completed, it will be displayed on the

template application details page.

o Exporting Helm Charts to local for manual upload to the template repository: Select

Local as the target location and choose Helm Chart as the file format to generate a

Helm Chart package which will be downloaded locally for offline transmission.

6. Click Export.

Follow-Up Actions

o If you export the Helm Chart to local, you will need to add the template to a template

repository with management permissions.

+ Regardless of the export method chosen, you can refer to Creating Native Applications -

Template Method to create a Template Application type of native application in a non-

current namespace.

Exporting YAML to Local

Steps

Method 1

Exporting Applications - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on application name.

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Select Local as the target location and YAML as the file format, at which point you can

export a simplified YAML file that can be deployed directly in other environments.

6. Click Export.

Method 2

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on application name.

4. Click on the YAML tab, configure settings as needed, and preview the YAML file.

Type Description

By default, Preview Simplified YAML is not selected, displaying the

YAML file with the managedFields fields hidden. You can preview it

and export directly; you may also uncheck Hide managedFields
Full YAML fields to export the full YAML file.

Note: Full YAML is primarily used for operations and troubleshooting

and cannot be used to quickly create native applications on the

platform.

. o Check Preview Simplified YAML, at which point you can preview
Simplified

and export a simplified YAML file that can be deployed directly in
YAML

other environments.

5. Click Export.

Exporting Applications - Alauda Container Platform

Follow-Up Actions

After exporting the simplified YAML, you can refer to Creating Native Applications - YAML
Method to create a Custom Application type of native application in a non-current
namespace.

Exporting YAML to Code Repository (Alpha)

Precautions

« Only platform administrators and project administrators can directly export native

application YAML files to the code repository.

e Template Applications do not support exporting Kustomize formatted application
configuration files or directly exporting YAML files to the code repository; you can first
detach from the template and convert it to a Custom Application .

Steps

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on the application name of type Custom .

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Choose one export method as needed and refer to the following instructions to configure

the relevant information.

e Exporting YAML to a code repository:

Exporting Applications - Alauda Container Platform

Parameter Description

Select Code Repository to directly sync the YAML file to the

Target I . . :
] specified Git code repository. The project owner assigned to
Location _] _ _
this Code Repository can directly use the YAML file.
Integration The name of the integration tool project assigned or associated
Project Name with your project by the platform administrator.
Repository The repository address assigned for your use under the
Address integrated tool project.
« Existing Branch: Export the application YAML to the
selected branch.
* New Branch: Create a new branch based on the selected
Branch/Tag/ICommit ID and export the application YAML to
Export the new branch.
Method o If Submit PR (Pull Request) is checked, the platform will
create a new branch and submit a Pull Request.
o If Automatically delete source branch after merging
PR is checked, the source branch will be automatically
deleted after you merge the PR in the Git code repository.
The specific location where the file should be saved in the code
File Path repository; you can also input a file path, and the platform will
create a new path in the code repository based on the input.
Commit Fill in commit information to identify the content of this
Message submission.
Preview the YAML file to be submitted and compare differences
Preview with the existing YAML in the code repository, displayed with

color differentiation.

o Exporting Kustomize-type files to local for manual upload to the code repository: Select

Local as the target location and choose Kustomize as the file format to export the

Exporting Applications - Alauda Container Platform

Kustomize-type application configuration file locally. This file supports differentiated

configurations and is suitable for cross-cluster application deployments.

6. Click Export.

Follow-Up Actions

After exporting the YAML to a Git code repository, you can refer to Creating GitOps
Applications to create a Custom Application type of GitOps application across clusters.

http://localhost:4173/container_platform/gitops/functions/create_argocd_application/create_application_via_platform.html
http://localhost:4173/container_platform/gitops/functions/create_argocd_application/create_application_via_platform.html

Updating and deleting Chart Applications - Alauda Container Platform

Menu ON THIS PAGE >

Updating and deleting Chart Applications

Due to overlapping functionality between the current template applications and native
applications, and the enhanced operational capabilities available under native applications,
independent management of template applications will no longer be offered in future versions.
Please upgrade your currently successfully deployed template applications to native

applications as soon as possible.

TOC

Important Notes
Prerequisites

Status Analysis Description

Important Notes

This feature is going to be discontinued. Please upgrade your currently successfully

deployed template applications to native applications as soon as possible.

Prerequisites

Please contact the platform administrator to enable template application-related features.

Updating and deleting Chart Applications - Alauda Container Platform

Status Analysis Description

Click on Template Application Name to display detailed deployment status analysis of the
Chart in the detail information.

Type Reason
Indicates the state of the Chart template download.

o When the status is True, it indicates that the Chart template download
was successful.

¢ When the status is False, it indicates that the Chart template download

Initialized has failed, and the reason for failure can be viewed in the message
column.

¢ ChartLoadFailed: Chart template download failed.

« InitializeFailed: An exception occurred during initialization before
downloading the Chart.

Indicates the state of user permissions and dependencies verification for
the Chart template.

¢ When the status is True, it indicates that all validation checks have
passed.

¢ When the status is False, it indicates that there are validation checks
that have failed, and the reason for failure can be viewed in the

¢ PermissionCheckFailed: The current user lacks permissions for

certain resource operations.

+ ConsistentNamespaceCheckFailed: When deploying the template
application as a native application, the Chart contains resources that

require cross-namespace deployment.

Synced Indicates the state of the Chart template deployment.

Updating and deleting Chart Applications - Alauda Container Platform

Type Reason

e When the status is True, it indicates that the Chart template deployment
was successful.

e When the status is False, it indicates that the Chart template
deployment has failed, with the reason displayed as ChartSyncFailed,
and the specific reason for failure can be viewed in the message

column.

Version Management for Applications - Alauda Container Platform

= Menu ON THIS PAGE >

Version Management for Applications

After updating the application through the platform interface, a historical version record is
automatically generated. For application updates triggered by non-interface operations, such

as updating the application via API calls, you can manually create a version snapshot to
record the changes.

Note: When the number of version snapshot entries exceeds 6, the platform retains only the
latest 6 entries and automatically deletes the others, prioritizing the removal of the oldest

version snapshot entries.

TOC

Creating a Version Snapshot
Procedure
Rolling Back to a Historical Version

Procedure

Creating a Version Snapshot

Procedure

1. Access Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.

Version Management for Applications - Alauda Container Platform

3. Click on Application Name.
4. In the Version Snapshot tab, click Create Version Snapshot.
5. Configure the information and click Confirm.

Note: You can also Distribute the Application, which allows you to distribute the version
snapshot of the application as a Chart, facilitating the rapid deployment of the same

application across multiple clusters and namespaces on the platform.

Rolling Back to a Historical Version

Roll back the current application's configuration to a historical version.

Procedure

1. Access Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.
3. Click on Application Name.

4. In the Historical Versions tab, click on Version Number.

5. Click : > Roll Back to This Version.

6. Click Roll Back.

Deleting Applications - Alauda Container Platform

Menu

Deleting Applications

Delete an application, it simultaneously deletes the application itself and all of its directly
contained Kubernetes resources. Additionally, this action severs any association the
application might have had with other Kubernetes resources that were not directly part of its

definition.

Handling Out of Resource Errors - Alauda Container Platform

Menu ON THIS PAGE >

Handling Out of Resource Errors

TOC

Overview
Configuring Eviction Policies
Creating Eviction Policies in Node Configuration
Eviction Signals
Eviction Thresholds

Hard Eviction Thresholds

Default Hard Eviction Thresholds

Soft Eviction Thresholds
Configuring Allocatable Resources for Scheduling
Preventing Node Condition Oscillation
Reclaiming Node-level Resources
Pod Eviction
Quality of Service and Out of Memory Killer
Scheduler and Out of Resource Conditions
Example Scenario
Recommended Practices

Daemon Sets and Out of Resource Handling

Overview

Handling Out of Resource Errors - Alauda Container Platform

This guide describes how to prevent Alauda Container Platform nodes from running out of
memory (OOM) or disk space. Stable node operation is critical, especially for non-
compressible resources like memory and disk. Resource exhaustion can lead to node

instability.

Administrators can configure eviction policies to monitor nodes and reclaim resources before
stability is compromised.

This document covers how Alauda Container Platform handles out-of-resource scenarios,
including resource reclamation, pod eviction, pod scheduling, and the Out of Memory Killer.

Example configurations and best practices are also provided.

NOTE

If swap memory is enabled on a node, memory pressure cannot be detected. Disable swap to
enable memory-based evictions.

Configuring Eviction Policies

Eviction policies allow nodes to terminate pods when resources are low, reclaiming needed
resources. Policies combine eviction signals and threshold values, set in the node

configuration or via command line. Evictions can be:

o Hard: Immediate action when a threshold is exceeded.

o Soft: Grace period before action is taken.

Properly configured eviction policies help nodes proactively prevent resource exhaustion.

NOTE

When a pod is evicted, all containers in the pod are terminated, and the PodPhase transitions to
Failed.

For disk pressure, nodes monitor both nodefs (root filesystem) and imagefs (container image
storage).

Handling Out of Resource Errors - Alauda Container Platform

+ nodefs/rootfs: Used for local disk volumes, logs, and other storage (e.g.,
/var/lib/kubelet).

* imagefs: Used by the container runtime for images and writable layers (e.qg.,
/var/lib/docker/overlay2 for Docker overlay2 driver, /var/lib/containers/storage for CRI-
0).

NOTE

Without local storage isolation (ephemeral storage) or XFS quota (volumeConfig), pod disk usage
cannot be limited.

Creating Eviction Policies in Node Configuration

To set eviction thresholds, edit the node configuration map under eviction-hard or eviction-
soft .

Hard Eviction Example:

kubeletArguments:
eviction-hard: 0
- memory.available<100Mi 0
- nodefs.available<10%
- nodefs.inodesFree<5%
- imagefs.available<15%

- imagefs.inodesFree<10%

1. The type of eviction: use eviction-hard for hard eviction thresholds.

2. Each eviction threshold is defined as <eviction_signal><operator><quantity> , such as

memory.available<500Mi oOr nodefs.available<10%

NOTE

Use percentage values for inodesFree . Other parameters accept percentages or numeric values.

Soft Eviction Example:

Handling Out of Resource Errors - Alauda Container Platform

kubeletArguments:
eviction-soft: ()
- memory.available<100Mi Q
- nodefs.available<10%
- nodefs.inodesFree<5%
- imagefs.available<15%
- imagefs.inodesFree<10%
eviction-soft-grace-period: 9
- memory.available=1m30s
- nodefs.available=1m30s
- nodefs.inodesFree=1m30s
- imagefs.available=1m30s

- imagefs.inodesFree=1m30s

1. The type of eviction: use eviction-soft for soft eviction thresholds.

2. Each eviction threshold is defined as <eviction_signal><operator><quantity> , such as

memory.available<500Mi or nodefs.available<10%

3. The grace period for the soft eviction. Leave the default values for optimal performance.

Restart the kubelet service for changes to take effect:

$ systemctl restart kubelet

Eviction Signals

Nodes can trigger evictions based on the following signals:

Node Condition Eviction Signal Description
MemoryPressure memory.available Available memory below threshold
DiskPressure . Node root filesystem space below
nodefs.available
threshold
nodefs.inodesFree Free inodes below threshold

imagefs.available Image filesystem space below threshold

Handling Out of Resource Errors - Alauda Container Platform

imagefs.inodesFree Free inodes in imagefs below threshold

e inodesFree must be specified as a percentage.
¢ Memory calculations exclude reclaimable inactive file memory.

e Donotuse free -m in containers.
Nodes monitor these filesystems every 10 seconds. Dedicated filesystems for volumes/logs

are not monitored.

NOTE

Before evicting pods due to disk pressure, nodes perform container and image garbage collection.

Eviction Thresholds

Eviction thresholds trigger resource reclamation. When a threshold is met, the node reports a

pressure condition, preventing new pods from being scheduled until resources are reclaimed.

¢ Hard thresholds: Immediate action.

» Soft thresholds: Action after a grace period.

Thresholds are configured as:

<eviction_signal><operator><quantity>

Example:

e memory.available<1Gi

e memory.available<10%

Nodes evaluate thresholds every 10 seconds.

Hard Eviction Thresholds

Handling Out of Resource Errors - Alauda Container Platform

No grace period; immediate action is taken.

Example:

kubeletArguments:
eviction-hard:
- memory.available<500Mi
- nodefs.available<500Mi
- nodefs.inodesFree<5%
- imagefs.available<100Mi

- imagefs.inodesFree<10%

Default Hard Eviction Thresholds

kubeletArguments:
eviction-hard:
- memory.available<100Mi
- nodefs.available<10%
- nodefs.inodesFree<5%

- imagefs.available<15%

Soft Eviction Thresholds

Soft thresholds require a grace period. Optionally, set a maximum pod termination grace

period (eviction-max-pod-grace-period).

Example:

Handling Out of Resource Errors - Alauda Container Platform

kubeletArguments:
eviction-soft:
- memory.available<500Mi
- nodefs.available<500Mi
- nodefs.inodesFree<5%
- imagefs.available<100Mi
- imagefs.inodesFree<10%
eviction-soft-grace-period:
- memory.available=1m30s
- nodefs.available=1m30s
- nodefs.inodesFree=1m30s
- imagefs.available=1m30s

- imagefs.inodesFree=1m30s

Configuring Allocatable Resources for
Scheduling

Control how much node resource is available for scheduling by setting system-reserved for
system daemons. Evictions occur only if pods exceed their requested resources.

+ Capacity: Total resource on the node.

+ Allocatable: Resource available for scheduling.

Example:

kubeletArguments:
eviction-hard:
- "memory.available<500Mi"
system-reserved:
- "memory=1.5Gi"

Determine appropriate values using the node summary API.

Restart the kubelet for changes:

$ systemctl restart kubelet

Handling Out of Resource Errors - Alauda Container Platform

Preventing Node Condition Oscillation

To avoid oscillation above/below soft eviction thresholds, set eviction-pressure-transition-

period :

Example:

kubeletArguments:
eviction-pressure-transition-period:

- 5m

Default is 5 minutes. Restart services for changes.

Reclaiming Node-level Resources

When eviction criteria are met, nodes reclaim resources before evicting user pods.

¢ With imagefs:

e If nodefs threshold is met: Delete dead pods/containers.

o If imagefs threshold is met: Delete unused images.

e Without imagefs:

e If nodefs threshold is met: Delete dead pods/containers, then unused images.

Pod Eviction

If a threshold and grace period are met, pods are evicted until the signal is below the
threshold.

Pods are ranked for eviction by quality of service (QoS) and resource consumption.

Handling Out of Resource Errors - Alauda Container Platform
QoS Level Description
Guaranteed Highest resource consumers evicted first.
Burstable Highest resource consumers relative to request evicted first.

BestEffort Highest resource consumers evicted first.

Guaranteed pods are only evicted if system daemons exceed reserved resources or only

guaranteed pods remain.

Disk is a best-effort resource; pods are evicted one at a time to reclaim disk space, ranked by

QoS and disk usage.

Quality of Service and Out of Memory Killer

If a system OOM event occurs before memory can be reclaimed, the OOM Kkiller responds.

OOM scores are set based on QoS:

QoS Level oom_score_adj Value
Guaranteed -998

min(max(2, 1000 - (1000 * memoryRequestBytes) /
Burstable _ _
machineMemoryCapacityBytes), 999)

BestEffort 1000

OOM killer ends the container with the highest score. Containers with lowest QoS and highest
memory usage are ended first. Containers may be restarted per node policy.

Scheduler and Out of Resource Conditions

Scheduler considers node conditions when placing pods.

Handling Out of Resource Errors - Alauda Container Platform
Node Condition Scheduler Behavior
MemoryPressure BestEffort pods not scheduled.

DiskPressure No additional pods scheduled.

Example Scenario

Operator wants:

¢ Node with 10Gi memory.
o Reserve 10% for system daemons.

« Evict pods at 95% utilization.
Calculation:

e capacity = 10Gi
e system-reserved = 1Gi

e allocatable = 9Gi

To trigger eviction below 10% available memory for 30s, or immediately below 5%:

e system-reserved = 2Gi

e allocatable = 8Gi

Configuration:

kubeletArguments:
system-reserved:
- "memory=2Gi"
eviction-hard:
- "memory.available<.5Gi"
eviction-soft:
- "memory.available<1Gi"
eviction-soft-grace-period:

- "memory.available=30s"

Handling Out of Resource Errors - Alauda Container Platform

This prevents immediate memory pressure and eviction after scheduling.

Recommended Practices

Daemon Sets and Out of Resource Handling

Pods created by daemon sets are immediately recreated if evicted. Daemon sets should avoid
best-effort pods and use guaranteed QoS to reduce eviction risk.

Health Checks - Alauda Container Platform

Menu ON THIS PAGE >

Health Checks

TOC

Understanding Health Checks
Probe Types
HTTP GET Action
exec Action
TCP Socket Action
Best Practices
YAML file example
Health Checks configuration parameters by using web console
Common parameters
Protocol specific parameters
Troubleshooting probe failures
Check pod events
View container logs
Test probe endpoint manually
Review probe configuration
Check application code
Resource constraints

Network issues

Understanding Health Checks

Health Checks - Alauda Container Platform

Refer to the official Kubernetes documentation:

¢ Liveness, Readiness, and Startup Probes ~

e Configure Liveness, Readiness and Startup Probes ~

In Kubernetes, health checks, also known as probes, are a critical mechanism to ensure
the high availability and resilience of your applications. Kubernetes uses these probes to
determine the health and readiness of your Pods, allowing the system to take appropriate
actions, such as restarting containers or routing traffic. Without proper health checks,
Kubernetes cannot reliably manage your application's lifecycle, potentially leading to

service degradation or outages.

Kubernetes offers three types of probes:

e livenessProbe : Detects if the container is still running. If a liveness probe fails, Kubernetes

will terminate the Pod and restart it according to its restart policy.

o readinessProbe : Detects if the container is ready to serve traffic. If a readiness probe fails,
the Endpoint Controller removes the Pod from the Service's Endpoint list until the probe

succeeds.

e startupProbe : Specifically checks if the application has successfully started. Liveness and
readiness probes will not execute until the startup probe succeeds. This is very useful for

applications with long startup times.

Properly configuring these probes is essential for building robust and self-healing applications

on Kubernetes.

Probe Types

Kubernetes supports three mechanisms for implementing probes:

HTTP GET Action

Executes an HTTP GET request against the Pod's IP address on a specified port and path.

The probe is considered successful if the response code is between 200 and 399.

+ Use Cases: Web servers, REST APIs, or any application exposing an HTTP endpoint.

https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Health Checks - Alauda Container Platform

 Example:

livenessProbe:
httpGet:

path: /healthz
port: 8080

initialDelaySeconds: 15
periodSeconds: 20

exec Action

Executes a specified command inside the container. The probe is successful if the
command exits with status code 0.

o Use Cases: Applications without HTTP endpoints, checking internal application state, or
performing complex health checks that require specific tools.

« Example:

readinessProbe:
exec:
command:
- cat
- /tmp/healthy
initialDelaySeconds: 5
periodSeconds: 5

TCP Socket Action

Attempts to open a TCP socket on the container's IP address and a specified port. The
probe is successful if the TCP connection can be established.

¢ Use Cases: Databases, message queues, or any application that communicates over a
TCP port but might not have an HTTP endpoint.

 Example:

Health Checks - Alauda Container Platform

startupProbe:
tcpSocket:
port: 3306
initialDelaySeconds: 5
periodSeconds: 10
failureThreshold: 30

Best Practices

¢ Liveness vs. Readiness:

e Liveness: If your application is unresponsive, it's better to restart it. If it fails, Kubernetes

will restart it.

» Readiness: If your application is temporarily unable to serve traffic (e.g., connecting to a
database), but might recover without a restart, use a Readiness Probe. This prevents

traffic from being routed to an unhealthy instance.

« Startup Probes for Slow Applications: Use Startup Probes for applications that take a
significant amount of time to initialize. This prevents premature restarts due to Liveness

Probe failures or traffic routing issues due to Readiness Probe failures during startup.

+ Lightweight Probes: Ensure your probe endpoints are lightweight and perform quickly.
They should not involve heavy computation or external dependencies (like database calls)

that could make the probe itself unreliable.

+ Meaningful Checks: Probe checks should genuinely reflect the health and readiness of
your application, not just whether the process is running. For example, for a web server,

check if it can serve a basic page, not just if the port is open.

¢ Adjust initialDelaySeconds: Set initialDelaySeconds appropriately to give your

application enough time to start before the first probe.

+ Tune periodSeconds and failureThreshold: Balance the need for quick detection of
failures with avoiding false positives. Too frequent probes or too low a failureThreshold can

lead to unnecessary restarts or unready states.

* Logs for Debugging: Ensure your application logs clear messages related to health check

endpoint calls and internal state to aid in debugging probe failures.

« Combine Probes: Often, all three probes (Liveness, Readiness, Startup) are used

together to manage application lifecycle effectively.

Health Checks - Alauda Container Platform

YAML file example

spec:
template:
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
startupProbe:
httpGet:
path: /startup-check
port: 8080
initialDelaySeconds: @
periodSeconds: 5
failureThreshold: 60
livenessProbe:
httpGet:
path: /healthz
port: 8080
initialDelaySeconds: 5
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

Health Checks configuration parameters by using

web console

Health Checks - Alauda Container Platform

Common parameters

Parameters Description

initialDelaySeconds : Grace period (seconds) before starting

Initial Delay

probes. Default: 300 .
Period periodSeconds : Probe interval (1-120s). Default: 60 .
Timeout timeoutSeconds : Probe timeout duration (1-300s). Default: 30 .
Success successThreshold : Minimum consecutive successes to mark
Threshold healthy. Default: 0 .

failureThreshold : Maximum consecutive failures to trigger action:
Failure

- 0 : Disables failure-based actions
Threshold

- Default: 5 failures — container restart.

Protocol specific parameters

Applicable o
Parameter Description
Protocols
Protocol HTTP/HTTPS Health check protocol
Port HTTP/HTTPS/TCP Target container port for probing.
Path HTTP/HTTPS Endpoint path (e.g., /healthz).
HTTP _
HTTP/HTTPS Custom headers (Add key-value pairs).
Headers
Container-executable check command (e.g.,
sh -c "curl -I localhost:8080 | grep OK").
Command EXEC

Note: Escape special characters and test

command viability.

Health Checks - Alauda Container Platform

Troubleshooting probe failures

When a Pod's status indicates issues related to probes, here's how to troubleshoot:

Check pod events

kubectl describe pod <pod-name>

Look for events related to LivenessProbe failed, ReadinessProbe failed, or StartupProbe
failed. These events often provide specific error messages (e.g., connection refused, HTTP

500 error, command exit code).

View container logs

kubectl logs <pod-name> -c <container-name>

Examine application logs to see if there are errors or warnings around the time the probe

failed. Your application might be logging why its health endpoint isn't responding correctly.

Test probe endpoint manually

o HTTP: If possible, kubectl exec -it <pod-name> -- curl <probe-path>:<probe-port> or wget

from within the container to see the actual response.

+ Exec: Run the probe command manually: kubectl exec -it <pod-name> -- <command-from-

probe> and check its exit code and output.

e TCP: Use nc (netcat) or telnet from another Pod in the same network or from the host if
allowed, to test TCP connectivity: kubectl exec -it <another-pod> -- nc -vz <pod-ip> <probe-

port> .

Review probe configuration

* Double-check the probe parameters (path, port, command, delays, thresholds) in your

Deployment/Pod YAML. A common mistake is an incorrect port or path.

Health Checks - Alauda Container Platform

Check application code

e Ensure your application's health check endpoint is correctly implemented and truly reflects
the application's readiness/liveness. Sometimes, the endpoint might return success even

when the application itself is broken.

Resource constraints

e Insufficient CPU or memory resources could cause your application to become
unresponsive, leading to probe failures. Check Pod resource usage (kubectl top pod <pod-

name>) and consider adjusting resources limits/requests.

Network issues

¢ Inrare cases, network policies or CNI issues might prevent probes from reaching the

container. Verify network connectivity within the cluster.

Menu

Workloads

Deployments
Understanding Deployments
Creating Deployments
Managing Deployments

Troubleshooting by using CLI

DaemonSets
Understanding DaemonSets
Creating DaemonSets

Managing DaemonSets

StatefulSets
Understanding StatefulSets
Creating StatefulSets

Managing StatefulSets

CronJobs
Understanding CronJobs
Creating CronJobs
Execute Immediately

Deleting CronJobs

Workloads - Alauda Container Platform

Workloads - Alauda Container Platform

Jobs
Understanding Jobs
YAML file example

Execution Overview

Pods

Understanding Pods

YAML file example

Managing a Pod by using CLI

Managing a Pod by using web console

Containers
Understanding Containers
Understanding Ephemeral Containers

Interacting with Containers

Deployments - Alauda Container Platform

Menu

Deployments

TOC

Understanding Deployments
Creating Deployments
Creating a Deployment by using CLI
Prerequisites
YAML file example
Creating a Deployment via YAML
Creating a Deployment by using web console
Prerequisites
Procedure - Configure Basic Info
Procedure - Configure Pod
Procedure - Configure Containers
Reference Information
Heath Checks
Managing Deployments
Managing a Deployment by using CLI
Viewing a Deployment
Updating a Deployment
Scaling a Deployment
Rolling Back a Deployment
Deleting a Deployment
Managing a Deployment by using web console

Viewing a Deployment

ON THIS PAGE >

Deployments - Alauda Container Platform

Updating a Deployment
Deleting a Deployment
Troubleshooting by using CLI
Check Deployment status
Check ReplicaSet status
Check Pod status
View Logs
Enter Pod for debugging
Check Health configuration

Check Resource Limits

Understanding Deployments

Refer to the official Kubernetes documentation: Deployments

Deployment is a Kubernetes higher-level workload resource used to declaratively manage
and update Pod replicas for your applications. It provides a robust and flexible way to
define how your application should run, including how many replicas to maintain and how to
safely perform rolling updates.

A Deployment is an object in the Kubernetes API that manages Pods and ReplicaSets. When
you create a Deployment, Kubernetes automatically creates a ReplicaSet, which is then
responsible for maintaining the specified number of Pod replicas.

By using Deployments, you can:
¢ Declarative Management: Define the desired state of your application, and Kubernetes

automatically ensures the cluster's actual state matches the desired state.

¢ Version Control and Rollback: Track each revision of a Deployment and easily roll back to a

previous stable version if issues arise.

e Zero-Downtime Updates: Gradually update your application using a rolling update strategy

without service interruption.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Deployments - Alauda Container Platform

¢ Self-Healing: Deployments automatically replace Pod instances if they crash, are
terminated, or are removed from a node, ensuring the specified number of Pods are always

available.
How it works:

1. You define the desired state of your application through a Deployment (e.g., which image to

use, how many replicas to run).
2. The Deployment creates a ReplicaSet to ensure the specified number of Pods are running.
3. The ReplicaSet creates and manages the actual Pod instances.

4. When you update a Deployment (e.g., change the image version), the Deployment creates
a new ReplicaSet and gradually replaces the old Pods with new ones according to the
predefined rolling update strategy until all new Pods are running, then it removes the old

ReplicaSet.

Creating Deployments

Creating a Deployment by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

Deployments - Alauda Container Platform

apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80

resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 200m

memory: 256Mi

Creating a Deployment via YAML

kubectl apply -f example-deployment.yaml

kubectl get deployment nginx-deployment
kubectl get pod -1 app=nginx

Creating a Deployment by using web console

Deployments - Alauda Container Platform

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

o For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

 Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure - Configure Basic Info
1. Container Platform, navigate to Workloads > Deployments in the left sidebar.
2. Click on Create Deployment.

3. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

4. In the Basic Info section, configure declarative parameters for Deployment workloads:

Parameters Description

Defines the desired number of Pod replicas in the Deployment

Replicas . .

(default: 1). Adjust based on workload requirements.
More > Update Configures the rollingUpdate strategy for zero-downtime
Strategy deployments:

Max surge (maxSurge):

Parameters

Deployments - Alauda Container Platform

Description

e Maximum number of Pods that can exceed the desired

replica count during an update.

e Accepts absolute values (e.g., 2) or percentages (e.g.,
20%).

o Percentage calculation: ceil(current_replicas x percentage) .

e Example: 4.1 - 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

e Maximum number of Pods that can be temporarily
unavailable during an update.

e Percentage values cannot exceed 100% .

o Percentage calculation: floor(current_replicas x

percentage) .
o Example: 4.9 - 4 when calculated from 10 replicas.
Notes:
1. Default values: maxSurge=1, maxUnavailable=1 if not explicitly
set.
2. Non-running Pods (e.g., in Pending / CrashLoopBackOff
states) are considered unavailable.
3. Simultaneous constraints:

e maxSurge and maxUnavailable cannot both be 0 or 0% .

 If percentage values resolve to @ for both parameters,
Kubernetes forces maxUnavailable=1 to ensure update

progress.

Example:

For a Deployment with 10 replicas:

e maxSurge=2 - Total Pods during update: 10 + 2 = 12 .
e maxUnavailable=3 - Minimum available Pods: 10 - 3 = 7 .

e This ensures availability while allowing controlled rollout.

Deployments - Alauda Container Platform

Procedure - Configure Pod

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1. Pod section, configure container runtime parameters and lifecycle management:

Parameters Description

Mount persistent volumes to containers. Supported volume types
Volumes include PVC, ConfigMap , Secret , emptyDir , hostPath , and so on.

For implementation details, see Volume Mounting Guide.

Required only when pulling images from third-party registries (via

manual image URL input).

Pull Secret
Note: Secret for authentication when pulling image from a secured
registry.
Duration (default: 30s) allowed for a Pod to complete graceful
shutdown after receiving termination signal.
Close Grace - During this period, the Pod completes inflight requests and
Period releases resources.

- Setting 0 forces immediate deletion (SIGKILL), which may

cause request interruptions.

2. Node Affinity Rules

Parameters Description

Constrain Pods to nodes with specific labels (e.g. kubernetes.io/os:

More >
linux).
Node)
Selector Node Selector: acp.cpaas.io/node-group-share-mode:Share x v
More > Define fine-grained scheduling rules based on existing.
Affinity Affinity Types:

e Pod Affinity: Schedule new Pods to nodes hosting specific

Pods(same topology domain).

Deployments - Alauda Container Platform

Parameters Description

» Pod Anti-affinity: Prevent co-location of new Pods with specific
Pods.

Enforcement Modes:

e requiredDuringSchedulingIgnoredDuringExecution : Pods are
scheduled only if rules are satisfied.

o preferredDuringSchedulingIgnoredDuringExecution : Prioritize nodes
meeting rules, but allow exceptions.

Configuration Fields:

e topologyKey : Node label defining topology domains
(default: kubernetes.io/hostname).

o labelSelector : Filters target Pods using label queries.

3. Network Configuration

e Kube-OVN

Parameters Description

Enforce QoS for Pod network traffic:
Bandwidth » Egress rate limit: Maximum outbound traffic rate (e.g.,
Limits 10Mbps).

¢ Ingress rate limit: Maximum inbound traffic rate.

Assign IPs from a predefined subnet pool. If unspecified, uses
Subnet

the namespace's default subnet.

Bind persistent IP addresses to Pods:
Static IP e Multiple Pods across Deployments can claim the same IP,
Address but only one Pod can use it concurrently.

o Critical: Number of static IPs must = Pod replica count.

Deployments - Alauda Container Platform

e Calico
Parameters Description
Assign fixed IPs with strict uniqueness:
Static IP Address e Each IP can be bound to only one Pod in the cluster.

¢ Critical: Static IP count must = Pod replica count.

Procedure - Configure Containers

1. Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource Requests

. ¢ Requests: Minimum CPU/memory required for container
& Limits

operation.
¢ Limits: Maximum CPU/memory allowed during container
execution. For unit definitions, see Resource Units.

Namespace overcommit ratio:

e Without overcommit ratio:
If namespace resource quotas exist: Container
requests/limits inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

e With overcommit ratio:
Requests auto-calculated as Limits / Overcommit ratio

(immutable).
Constraints:

¢ Request < Limit < Namespace quota maximum.

o Overcommit ratio changes require pod recreation to take

effect.

e Overcommit ratio disables manual request configuration.

Deployments - Alauda Container Platform

Parameters Description

+ NO namespace quotas - no container resource

constraints.

Extended Configure cluster-available extended resources (e.g., vVGPU,
Resources pGPU).

Persistent storage configuration. See Storage Volume
Mounting Instructions.

Operations:

¢ Existing pod volumes: Click Add

¢ No pod volumes: Click Add & Mount

Volume Mounts Parameters:

e mountPath : Container filesystem path (e.g., /data)

e subPath : Relative file/directory path within volume.

For ConfigMap / Secret : Select specific key

e readOnly : Mount as read-only (default: read-write)

See Kubernetes Volumes .

Expose container ports.
Example: Expose TCP port 6379 with name redis .
Fields:

Ports e protocol : TCP/UDP
e Port : Exposed port (e.g., 6379)

e name : DNS-compliant identifier (e.g., redis)

Startup Commands Override default ENTRYPOINT/CMD:
& Arguments Example 1: Execute top -b
- Command: ["top", "-b"]
- OR Command: ["top"] ,Args: ["-b"]
Example 2: Output $MESSAGE :

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

Parameters

More >
Environment

Variables

More > Referenced

ConfigMaps

More > Health
Checks

More > Log Files

More > Exclude Log

Files

More > Execute

before Stopping

Deployments - Alauda Container Platform

Description

/bin/sh -c "while true; do echo $(MESSAGE); sleep 10; done"

See Defining Commands .

o Static values: Direct key-value pairs
¢ Dynamic values: Reference ConfigMap/Secret keys, pod

fields (fieldRef), resource metrics (resourceFieldRef)

Note: Env variables override image/configuration file

settings.

Inject entire ConfigMap/Secret as env variables. Supported

Secret types: Opaque , kubernetes.io/basic-auth .

* Liveness Probe: Detect container health (restart if

failing)
+ Readiness Probe: Detect service availability (remove
from endpoints if failing)

See Health Check Parameters.

Configure log paths:
- Default: Collect stdout
- File patterns: e.g., /var/log/*.log

Requirements:
e Storage driver overlay2 : Supported by default

e devicemapper : Manually mount EmptyDir to log directory

* Windows nodes: Ensure parent directory is mounted
(e.g., c:/a for c:/a/b/c/*.10g)

Exclude specific logs from collection (e.qg.,
/var/log/aaa.log).

Execute commands before container termination.

Example: echo "stop"

https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Deployments - Alauda Container Platform
Parameters Description

Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2. Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

1. Start before app containers (sequential execution).
2. Release resources after completion.

3. Deletion allowed when:

¢ Pod has >1 app container AND =1 init container.

o Not allowed for single-app-container pods.

3. Click Create.

Reference Information

Storage Volume Mounting instructions

Type Purpose

Binds an existing PVC to request persistent storage.

Persistent
Volume Claim Note: Only bound PVCs (with associated PV) are selectable.
Unbound PVCs will cause pod creation failures.
Mounts full/partial ConfigMap data as files:
¢ Full ConfigMap: Creates files named after keys under mount
ConfigMap

path

o Subpath selection: Mount specific key (e.g., my.cnf)

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Deployments - Alauda Container Platform

Type Purpose

Mounts full/partial Secret data as files:

Secret Full Secret: Creates files named after keys under mount path
e Subpath selection: Mount specific key (e.g., tls.crt)
Cluster-provisioned temporary volume with features:
e Dynamic provisioning

Ephemeral _ _
» Lifecycle tied to pod

Volumes

e Supports declarative configuration
Use Case: Temporary data storage. See Ephemeral Volumes

Ephemeral storage sharing between containers in same pod:

o Created on node when pod starts

Empty Directory « Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage.
See EmptyDir

Mounts host machine directory (must start with / , e.g.,
Host Path
/volumepath).

Heath Checks

e Health checks YAML file example

¢ Health checks configuration parameters in web console

Managing Deployments

Managing a Deployment by using CLI

Viewing a Deployment

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Deployments - Alauda Container Platform

¢ Check the Deployment was created.

kubectl get deployments

¢ Get details of your Deployment.

kubectl describe deployments

Updating a Deployment

Follow the steps given below to update your Deployment:

1. Let's update the nginx Pods to use the nginx:1 .16.1 image.

kubectl set image deployment.v1.apps/nginx-deployment nginx=nginx:1.16.1

or use the following command:

kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1

Alternatively, you can edit the Deployment and change

.spec.template.spec.containers[0].image from nginx:1.14.2 to nginx:1.16.1

kubectl edit deployment/nginx-deployment

2. To see the rollout status, run:

kubectl rollout status deployment/nginx-deployment

Run kubectl get rs to see that the Deployment updated the Pods by creating a new
ReplicaSet and scaling it up to 3 replicas, as well as scaling down the old ReplicaSet to 0

replicas.

kubectl get rs

Deployments - Alauda Container Platform

Running get pods should now show only the new Pods:
kubectl get pods

Scaling a Deployment

You can scale a Deployment by using the following command:

kubectl scale deployment/nginx-deployment --replicas=10

Rolling Back a Deployment

e Suppose that you made a typo while updating the Deployment, by putting the image name
as nginx:1.161 instead of nginx:1.16.1 :

kubectl set image deployment/nginx-deployment nginx=nginx:1.161
¢ The rollout gets stuck. You can verify it by checking the rollout status:

kubectl rollout status deployment/nginx-deployment

Deleting a Deployment

Deleting a Deployment will also delete its managed ReplicaSet and all associated Pods.

kubectl delete deployment <deployment-name>

Managing a Deployment by using web console

Viewing a Deployment
You can view a deployment to get information of your application.

1. Container Platform, and navigate to Workloads > Deployments.

Deployments - Alauda Container Platform
2. Locate the Deployment you wish to view.
3. Click the deployment name to see the Details, Topology, Logs, Events, Monitoring, etc.
Updating a Deployment

1. Container Platform, and navigate to Workloads > Deployments.
2. Locate the Deployment you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit Deployment page.

Deleting a Deployment

1. Container Platform, and navigate to Workloads > Deployments.
2. Locate the Deployment you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

Troubleshooting by using CLI

When a Deployment encounters issues, here are some common troubleshooting methods.

Check Deployment status

kubectl get deployment nginx-deployment
kubectl describe deployment nginx-deployment

Check ReplicaSet status

kubectl get rs -1 app=nginx

kubectl describe rs <replicaset-name>

Check Pod status

Deployments - Alauda Container Platform

kubectl get pods -1 app=nginx
kubectl describe pod <pod-name>

View Logs

kubectl logs <pod-name> -c <container-name>

kubectl logs <pod-name> --previous

Enter Pod for debugging

kubectl exec -it <pod-name> -- /bin/bash # Enter the container shell

Check Health configuration

Ensure livenessProbe and readinessProbe are correctly configured, and your application's
health check endpoints are responding properly. Troubleshooting probe failures

Check Resource Limits

Ensure container resource requests and limits are reasonable and that containers are not

being killed due to insufficient resources.

DaemonSets - Alauda Container Platform

Menu

DaemonSets

TOC

Understanding DaemonSets
Creating DaemonSets
Creating a DaemonSet by using CLI
Prerequisites
YAML file example
Creating a DaemonSet via YAML
Creating a DaemonSet by using web console
Prerequisites
Procedure - Configure Basic Info
Procedure - Configure Pod
Procedure - Configure Containers
Procedure - Create
Managing DaemonSets
Managing a DaemonSet by using CLI
Viewing a DaemonSet
Updating a DaemonSet
Deleting a DaemonSet
Managing a DaemonSet by using web console
Viewing a DaemonSet
Updating a DaemonSet

Deleting a DaemonSet

ON THIS PAGE >

DaemonSets - Alauda Container Platform

Understanding DaemonSets

Refer to the official Kubernetes documentation: DaemonSets ~

A DaemonSet is a Kubernetes controller that ensures all (or a subset of) cluster nodes run
exactly one replica of a specified Pod. Unlike Deployments, DaemonSets are node-centric
rather than application-centric, making them ideal for deploying cluster-wide infrastructure

services such as log collectors, monitoring agents, or storage daemons.

WARNING

DaemonSet Operational Notes
1. Behavior Characteristics

» Pod Distribution: A DaemonSet deploys exactly one Pod replica per schedulable Node that

matches its criteria:
» Deploys exactly one Pod replica per schedulable node matching:

e Matches nodeSelector or nodeAffinity criteria (if specified).
e Isnotinthe NotReady state.
e Does not have NoSchedule or NoExecute Taints unless corresponding Tolerations

are configured in the Pod Template.

* Pod Count Formula: The number of Pods managed by a DaemonSet equals the number

of qualified Nodes.

» Dual-Role Node Handling: Nodes serving both Control Plane and Worker Node roles will
only run one Pod instance of the DaemonSet, regardless of their role labels, provided they

are schedulable.
2. Key Constraints (Excluded Nodes)

» Nodes explicitly marked Unschedulable: true (e.g., via kubectl cordon).
o Nodes with a NotReady status.

» Nodes having incompatible Taints without matching Tolerations configured in the

DaemonSet's Pod Template.

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

DaemonSets - Alauda Container Platform

Creating DaemonSets

Creating a DaemonSet by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

DaemonSets - Alauda Container Platform

example-daemonSet.yaml
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: fluentd-elasticsearch
namespace: kube-system
labels:
k8s-app: fluentd-logging
spec:
selector: # defines how the DaemonSet identifies its managed Pods. Must match
‘template.metadata.label’s.
matchLabels:
name: fluentd-elasticsearch
updateStrategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
template: # defines the Pod Template for the DaemonSet. Each Pod created by this
DaemonSet will conform to this template
metadata:
labels:
name: fluentd-elasticsearch
spec:
tolerations: # these tolerations are to have the daemonset runnable on control
plane nodes, remove them if your control plane nodes should not run pods
- key: node-role.kubernetes.io/control-plane
operator: Exists
effect: NoSchedule
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
containers:
- name: fluentd-elasticsearch
image: quay.io/fluentd_elasticsearch/fluentd:v2.5.2
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog
mountPath: /var/log

DaemonSets - Alauda Container Platform

terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log

Creating a DaemonSet via YAML

kubectl apply -f example-daemonSet.yaml

kubectl get daemonset fluentd-elasticsearch
kubectl get pods -1 name=fluentd-elasticsearch -o wide

Creating a DaemonSet by using web console

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

» For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

e Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure - Configure Basic Info
1. Container Platform, navigate to Workloads > DaemonSets in the left sidebar.

2. Click Create DaemonSet.

DaemonSets - Alauda Container Platform

3. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the
project name containers in the image repository.

In the Basic Info section, configure declarative parameters for DaemonSet workloads:

Parameters Description

Configures the rollingUpdate strategy for zero-downtime updates of
DaemonSet Pods.

Max unavailable (maxUnavailable): The maximum number of Pods
that can be temporarily unavailable during an update. Accepts
absolute values (e.g., 1) or percentages (e.g., 10%).

Example: If there are 10 nodes and maxUnavailable is 10%, then

floor(10 * 0.1) = 1 Pod can be unavailable.

Notes:

More > Update

o Default Values: If not explicitly set, maxSurge defaults to 0 and
Strategy
maxUnavailable defaults to 1 (or 10% if maxUnavailable is

specified as a percentage).

e Non-running Pods: Pods in states like Pending or

CrashLoopBack0ff are considered unavailable.

e Simultaneous Constraints: maxSurge and maxUnavailable

cannot both be 0 or 0%. If percentage values resolve to 0 for both
parameters, Kubernetes forces maxUnavailable=1 to ensure

update progress.

Procedure - Configure Pod

Pod section, please refer to Deployment - Configure Pod

DaemonSets - Alauda Container Platform

Procedure - Configure Containers

Containers section, please refer to Deployment - Configure Containers

Procedure - Create

Click Create.

After clicking Create, the DaemonSet will:

. Automatically deploy Pod replicas to all eligible Nodes meeting:

e nodeSelector criteria (if defined).
e tolerations configuration (allowing scheduling on tainted nodes).

e Node isin Ready state and Schedulable: true .
o X Excluded Nodes:

o Nodes with a NoSchedule taint (unless explicitly tolerated).
e Manually cordoned Nodes (kubectl cordon).

e Nodes in NotReady or Unschedulable states.

Managing DaemonSets

Managing a DaemonSet by using CLI

Viewing a DaemonSet

¢ To get a summary of all DaemonSets in a namespace.

kubectl get daemonsets -n <namespace>

» To get detailed information about a specific DaemonSet, including its events and Pod

status

DaemonSets - Alauda Container Platform

kubectl describe daemonset <daemonset-name>

Updating a DaemonSet

When you modify the Pod Template of a DaemonSet (e.g., changing the container image or
adding a volume mount), Kubernetes automatically performs a rolling update by default (if

updateStrategy.type is RollingUpdate , which is the default).

o First, edit the YAML file (e.g., example-daemonset.yaml) with the desired changes, then apply
it:

kubectl apply -f example-daemonset.yaml
¢ You can monitor the progress of the rolling update:
kubectl rollout status daemonset/<daemonset-name>
Deleting a DaemonSet
To delete a DaemonSet and all the Pods it manages:

kubectl delete daemonset <daemonset-name>

Managing a DaemonSet by using web console

Viewing a DaemonSet

1. Container Platform, and navigate to Workloads > DaemonSets.
2. Locate the DaemonSet you wish to view.

3. Click the DaemonSet name to see the Details, Topology, Logs, Events, Monitoring, etc.

Updating a DaemonSet

1. Container Platform, and navigate to Workloads > DaemonSets.

DaemonSets - Alauda Container Platform
2. Locate the DaemonSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit DaemonSet page, you can

update Replicas , image , updateStrategy , etc.

Deleting a DaemonSet

1. Container Platform, and navigate to Workloads > DaemonSets.
2. Locate the DaemonSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

StatefulSets - Alauda Container Platform

Menu

StatefulSets

TOC

Understanding StatefulSets
Creating StatefulSets
Creating a StatefulSet by using CLI
Prerequisites
YAML file example
Creating a StatefulSet via YAML
Creating a StatefulSet by using web console
Prerequisites
Procedure - Configure Basic Info
Procedure - Configure Pod
Procedure - Configure Containers
Procedure - Create
Heath Checks
Managing StatefulSets
Managing a StatefulSet by using CLI
Viewing a StatefulSet
Scaling a StatefulSet
Updating a StatefulSet (Rolling Update)
Deleting a StatefulSet
Managing a StatefulSet by using web console
Viewing a StatefulSet

Updating a StatefulSet

ON THIS PAGE >

StatefulSets - Alauda Container Platform

Deleting a StatefulSet

Understanding StatefulSets

Refer to the official Kubernetes documentation: StatefulSets ~

StatefulSet is a Kubernetes workload API object designed to manage stateful applications by
providing:

o Stable network identity: DNS hosthame <statefulset-name>-<ordinal>.<service-

name>.ns.svc.cluster.local .
+ Stable persistent storage: via volumeClaimTemplates .
+ Ordered deployment/scaling: sequential Pod creation/deletion: Pod-0 — Pod-1 — Pod-N.

e Ordered rolling updates: reverse-ordinal Pod updates: Pod-N - Pod-0.

In distributed systems, multiple StatefulSets can be deployed as discrete components to
deliver specialized stateful services (e.g., Kafka brokers, MongoDB shards).

Creating StatefulSets

Creating a StatefulSet by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

StatefulSets - Alauda Container Platform

example-statefulset.yaml
apiVersion: apps/v1
kind: StatefulSet
metadata:

name: web
spec:

selector:

matchLabels:
app: nginx # has to match .spec.template.metadata.labels

serviceName: 'nginx' # this headless Service is responsible for the network identity of
the Pods
replicas: 3 # defines the desired number of Pod replicas (default: 1)
minReadySeconds: 10 # by default is 0
template: # defines the Pod template for the StatefulSet
metadata:
labels:
app: nginx # has to match .spec.selector.matchLabels
spec:
terminationGracePeriodSeconds: 10
containers:
- name: nginx
image: registry.k8s.io/nginx-slim:0.24
ports:
- containerPort: 80
name: web
volumeMounts:
- name: www
mountPath: /usr/share/nginx/html
volumeClaimTemplates: # defines PersistentVolumeClaim (PVC) templates. Each Pod gets a
unique PersistentVolume (PV) dynamically provisioned based on these templates.
- metadata:
name: www
spec:
accessModes: ['ReadWriteOnce']
storageClassName: 'my-storage-class'
resources:
requests:
storage: 1Gi
example-service.yaml
apiVersion: v1
kind: Service

metadata:

StatefulSets - Alauda Container Platform

name: nginx
labels:

app: nginx

spec:

ports:

- port: 80

name: web

clusterIP: None
selector:

app: nginx

Creating a StatefulSet via YAML

kubectl apply -f example-statefulset.yaml

kubectl get statefulset web
kubectl get pods -1 app=nginx
kubectl get pvc -1 app=nginx

Creating a StatefulSet by using web console

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

« For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

o Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure - Configure Basic Info

StatefulSets - Alauda Container Platform

1. Container Platform, navigate to Workloads > StatefulSets in the left sidebar.

2. Click Create StatefulSet.

3. Select or Input an image, and click Confirm.

INFO

Note: When using images from the image repository integrated into web console, you can filter

images by Already Integrated. The Integration Project Name, for example, images (docker-

registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for StatefulSet workloads:

Parameters

Replicas

Update
Strategy

Volume Claim

Templates

Description

Defines the desired number of Pod replicas in the StatefulSet
(default: 1). Adjust based on workload requirements and expected

request volume.

Controls phased updates during StatefulSet rolling updates. The
RollingUpdate strategy is default and recommended.

Partition value: Ordinal threshold for Pod updates.

e Pods with index = partition update immediately.

e Pods with index < partition retain previous spec.
Example:

e Replicas=5 (Pods: web-0 ~web-4)

e Partition=3 (Updates web-3 & web-4 only)

volumeClaimTemplates is a critical feature of StatefulSets that enables
dynamic per-Pod persistent storage provisioning. Each Pod replica in
a StatefulSet automatically gets its own dedicated

PersistentVolumeClaim (PVC) based on predefined templates.

StatefulSets - Alauda Container Platform

Parameters Description

e 1. Dynamic PVC Creation: Automatically creates unique PVCs for

each Pod with a naming pattern: <statefulset-name>-<claim-

template-name>-<pod-ordinal> . Example: web-www-web-0 , web-www-

web-1 .

e 2. Access Modes: Supports all Kubernetes access modes.

¢ ReadWriteOnce (RWO - single-node read/write)
¢ ReadOnlyMany (ROX - multi-node read-only)

¢ ReadWriteMany (RWX - multi-node read/write).

o 3. Storage Class: Specify the storage backend via
storageClassName. It uses the cluster's default StorageClass if

unspecified. Supports various cloud/on-prem storage types (e.g.,
SSD, HDD).

e 4. Capacity: Configure storage capacity through
resources.requests.storage. Example: 1Gi. Supports dynamic

volume expansion if enabled by the StorageClass.

Procedure - Configure Pod

Pod section, please refer to Deployment - Configure Pod

Procedure - Configure Containers

Containers section, please refer to Deployment - Configure Containers

Procedure - Create

Click Create.

Heath Checks

e Health checks YAML file example

¢ Health checks configuration parameters in web console

StatefulSets - Alauda Container Platform

Managing StatefulSets

Managing a StatefulSet by using CLI

Viewing a StatefulSet
You can view a StatefulSet to get information of your application.

e Check the StatefulSet was created.
kubectl get statefulsets

o Get details of your StatefulSet.
kubectl describe statefulsets
Scaling a StatefulSet
+ To change the number of replicas for an existing StatefulSet:

kubectl scale statefulset <statefulset-name> --replicas=<new-replica-count>

o Example:

kubectl scale statefulset web --replicas=5

Updating a StatefulSet (Rolling Update)

When you modify the Pod template of a StatefulSet (e.g., changing the container image),
Kubernetes performs a rolling update by default (if updateStrategy is set to RollingUpdate,

which is the default).

 First, edit the YAML file (e.g., example-statefulset.yaml) with the desired changes, then

apply it:

StatefulSets - Alauda Container Platform

kubectl apply -f example-statefulset.yaml

¢ Then, you can monitor the progress of the rolling update:

kubectl rollout status statefulset/<statefulset-name>

Deleting a StatefulSet

To delete a StatefulSet and its associated Pods:

kubectl delete statefulset <statefulset-name>

By default, deleting a StatefulSet does not delete its associated PersistentVolumeClaims
(PVCs) or PersistentVolumes (PVs) to prevent data loss. To also delete the PVCs, you must
do so explicitly:

kubectl delete pvc -1 app=<label-selector-for-your-statefulset>

Alternatively, if your volumeClaimTemplates use a StorageClass with a reclaimPolicy of

Delete , the PVs and underlying storage will be deleted automatically when the PVCs are
deleted.

Managing a StatefulSet by using web console

Viewing a StatefulSet

1. Container Platform, and navigate to Workloads > StatefulSets.
2. Locate the StatefulSet you wish to view.

3. Click the statefulSet name to see the Details, Topology, Logs, Events, Monitoring, etc.

Updating a StatefulSet

1. Container Platform, and navigate to Workloads > StatefulSets.

StatefulSets - Alauda Container Platform
2. Locate the StatefulSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit StatefulSet page, you can

update Replicas , image , updateStrategy , etc.

Deleting a StatefulSet

1. Container Platform, and navigate to Workloads > StatefulSets.
2. Locate the StatefulSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

CronJobs - Alauda Container Platform

Menu

CronJobs

TOC

Understanding CronJobs
Creating CronJobs
Creating a CronJob by using CLI
Prerequisites
YAML file example
Creating a CronJobs via YAML
Creating CronJobs by using web console
Prerequisites
Procedure - Configure basic info
Procedure - Configure Pod
Procedure - Configure Containers
Create
Execute Immediately
Locate the CronJob resource
Initiate ad-hoc execution
Verify Job detalils:
Monitor execution status
Deleting CronJobs
Deleting CronJobs by using web console

Deleting CronJobs by using CLI

ON THIS PAGE >

CronJobs - Alauda Container Platform

Understanding CronJobs

Refer to the official Kubernetes documentation:

e CronJobs ”

¢ Running Automated Tasks with a CronJob ~

CronJob define tasks that run to completion and then stop. They allow you to run the same
Job multiple times according to a schedule.

A CronJob is a type of workload controller in Kubernetes. You can create a CronJob through
the web console or CLI to periodically or repeatedly run a non-persistent program, such as

scheduled backups, scheduled clean-ups, or scheduled email dispatches.

Creating CronJobs

Creating a CronJob by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

CronJobs - Alauda Container Platform

apiVersion: batch/v1
kind: CronJob
metadata:
name: hello
spec:
schedule: "* * * * "
jobTemplate:
spec:
template:
spec:
containers:
- name: hello
image: busybox:1.28
imagePullPolicy: IfNotPresent
command:
- /bin/sh
= =
- date; echo Hello from the Kubernetes cluster

restartPolicy: OnFailure

Creating a CronJobs via YAML

kubectl apply -f example-cronjob.yaml

Creating CronJobs by using web console

Prerequisites

Obtain the image address. Images can be sourced from an image registry integrated by the
platform administrator via a toolchain, or from third-party image registries.

+ For images from an integrated registry, the Administrator typically assigns the image
registry to your project, allowing you to use the images within it. If the required image

registry is not found, please contact the Administrator for allocation.

 If using a third-party image registry, ensure that images can be pulled directly from it within
the current cluster.

CronJobs - Alauda Container Platform

Procedure - Configure basic info

1. Container Platform, navigate to Workloads > CronJobs in the left sidebar.
2. Click on Create CronJob.

3. Select or Input an image, and click Confirm.

Note: Image filtering is available only when using images from the platform's integrated
image registry. For example, an integrated project name like containers (docker-registry-
projectname) indicates the platform’'s project name projectname and the image registry's

project name containers.

4. In the Cron Configuration section, configure the task execution method and associated

parameters.
Execute Type:
+ Manual: Manual execution requires explicit manual triggering for each task run.

e Scheduled: Scheduled execution requires configuring the following scheduling

parameters:

Parameter Description

Define the cron schedule using Crontab syntax . The
CronJob controller calculates the next execution time based

on the selected timezone.

Notes:
Schedule

e For Kubernetes clusters < v1.25: Timezone selection is

unsupported; schedules MUST use UTC.

e For Kubernetes clusters = v1.25: Timezone-aware

scheduling is supported (default: user's local timezone).

Concurrency Specify how concurrent Job executions are handled (Allow ,

Polic Forbid , or Replace per K8s spec).
y

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy

CronJobs - Alauda Container Platform

Job History Retention:

e Set retention limits for completed Jobs:

¢ History Limits: Successful jobs history limit (default: 20)

¢ Failed Jobs: Failed jobs history limit** (default: 20)

¢ When retention limits are exceeded, the oldest jobs are garbage-collected first.

5. In the Job Configuration section, select the job type. A CronJob manages Jobs composed

of Pods. Configure the Job template based on your workload type:

Parameter Description

Select Job completion mode (Non-parallel , Parallel with fixed

Job Type

completion count , or Indexed Job per K8s Job patterns 7).
Backoff Set the maximum number of retry attempts before marking a Job as
Limit failed.

Procedure - Configure Pod

¢ Pod section, please refer to Deployment - Configure Pod

Procedure - Configure Containers

+ Container section, please refer to Deployment - Configure Containers

Create

¢ Click Create.

Execute Immediately

Locate the CronJob resource

+ web console: Container Platform, and navigate to Workloads > CronJobs in the left

sidebar.

https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns

CronJobs - Alauda Container Platform

e CLI:

kubectl get cronjobs -n <namespace>

Initiate ad-hoc execution

+ web console: Execute Immediately

1. Click the vertical ellipsis (:) on the right side of the cronjob list.

2. Click Execute Immediately. (Alternatively, from the CronJob details page, click Actions

in the upper-right corner and select Execute Immediately).

e CLIL

kubectl create job --from=cronjob/<cronjob-name> <job-name> -n <namespace>

Verify Job details:

kubectl describe job/<job-name> -n <namespace>

kubectl logs job/<job-name> -n <namespace>

Monitor execution status

Status Description
Pending The Job has been created but not yet scheduled.
Running The Job Pod(s) are actively executing.

Succeeded All Pods associated with the Job completed successfully (exit code 0).

. At least one Pod associated with the Job terminated unsuccessfully
aile
(non-zero exit code).

CronJobs - Alauda Container Platform

Deleting CronJobs

Deleting CronJobs by using web console

1. Container Platform, and navigate to Workloads > CronJobs.
2. Locate the CronJobs you wish to delete.

3. In the Actions drop-down menu, Click the Delete button and confirm.

Deleting CronJobs by using CLI

kubectl delete cronjob <cronjob-name>

Jobs - Alauda Container Platform

Menu ON THIS PAGE >

TOC

Understanding Jobs
YAML file example

Execution Overview

Understanding Jobs

Refer to the official Kubernetes documentation: Jobs ~

A Job provide different ways to define tasks that run to completion and then stop. You can use

a Job to define a task that runs to completion, just once.

* Atomic Execution Unit: Each Job manages one or more Pods until successful
completion.

¢ Retry Mechanism: Controlled by spec.backoffLimit (default: 6).

o Completion Tracking: Use spec.completions to define required success count.

YAML file example

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

Jobs - Alauda Container Platform

apiVersion: batch/v1
kind: Job
metadata:
name: data-processing-job
spec:
completions: 1
parallelism: 1
backoffLimit: 3
template:
spec:
restartPolicy: Never
containers:

- name: processor
image: alpine:3.14
command: ['/bin/sh', '-c']
args:

- echo "Processing data..."; sleep 30; echo "Job completed"

Execution Overview

Each Job execution in Kubernetes creates a dedicated Job object, enabling users to:

Creating a job via

kubectl apply -f example-job.yaml

Track job lifecycle via

kubectl get jobs

Inspect execution details via

kubectl describe job/<job-name>

View Pod logs via

Jobs - Alauda Container Platform

kubectl logs <pod-name>

Pods - Alauda Container Platform

Menu ON THIS PAGE >

Pods

TOC

Understanding Pods
YAML file example
Managing a Pod by using CLI
Viewing a Pod
Viewing a Pod Logs
Executing Commands in a Pod
Port Forwarding to a Pod
Deleting a Pod
Managing a Pod by using web console
Viewing a Pod
Procedure
Pod Parameters
Deleting a Pod
Use Cases

Procedure

Understanding Pods

Refer to the official Kubernetes website documentation: Pod ~

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/

Pods - Alauda Container Platform

A Pod is the smallest deployable unit of computing that you can create and manage in
Kubernetes. APod (as in a pod of whales or a pea pod) is a group of one or more containers
(such as Docker containers), with shared storage and network resources, and a specification
for how to run the containers. Pods are the fundamental building blocks on which all higher-

level controllers (like Deployments, StatefulSets, DaemonSets) are built.

YAML file example

pod-example.yaml

apiVersion: v1
kind: Pod
metadata:
name: my-nginx-pod
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:latest
ports:

- containerPort: 80

resources:
requests:
cpu: '100m'
memory: '128Mi'
limits:
cpu: '200m'

memory: '256Mi'

Managing a Pod by using CLI

While Pods are often managed by higher-level controllers, direct kubectl operations on Pods

are useful for troubleshooting, inspection, and ad-hoc tasks.

Pods - Alauda Container Platform

Viewing a Pod

« To list all Pods in the current namespace:
kubectl get pods
» To list all Pods across all namespaces:

kubectl get pods --all-namespaces

kubectl get pods -A

¢ To get detailed information about a specific Pod:

kubectl describe pod <pod-name> -n <namespace>

kubectl describe pod my-nginx-pod -n default

Viewing a Pod Logs

« To stream logs from a container within a Pod (useful for debugging):
kubectl logs <pod-name> -n <namespace>

¢ If a Pod has multiple containers, you must specify the container name:
kubectl logs <pod-name> -c <container-name> -n <namespace>

+ To follow the logs (stream new logs as they appear):

kubectl logs -f <pod-name> -n <namespace>

Pods - Alauda Container Platform

Executing Commands in a Pod

To execute a command inside a specific container within a Pod (useful for debugging, like
accessing a shell):

kubectl exec -it <pod-name> -n <namespace> -- <command>

kubectl exec -it my-nginx-pod -n default -- /bin/bash

Port Forwarding to a Pod

To forward a local port to a port on a Pod, allowing direct access to a service running inside
the Pod from your local machine (useful for testing or direct access without exposing the

service externally):

kubectl port-forward <pod-name> <local-port>:<pod-port> -n <namespace>

kubectl port-forward my-nginx-pod 8080:80 -n default

After running this command, you can access the Nginx web server running in my-nginx-pod by

visiting localhost:8080 in your web browser.

Deleting a Pod

+ To delete a specific Pod:

kubectl delete pod <pod-name> -n <namespace>

kubectl delete pod my-nginx-pod -n default

o To delete multiple Pods by their names:

Pods - Alauda Container Platform

kubectl delete pod <pod-name-1> <pod-name-2> -n <namespace>

o To delete Pods based on a label selector (e.g., delete all Pods with the label app=nginx):

kubectl delete pods -1 app=nginx -n <namespace>

Managing a Pod by using web console

Viewing a Pod

The platform interface provides various information about the pods for quick reference.

Procedure
1. Container Platform, navigate to Workloads > Pods in the left sidebar.
2. Locate the Pod you wish to view.

3. Click the deployment name to see the Details, YAML, Configuration, Logs, Events,

Monitoring, etc.

Pod Parameters

Below are some parameter explanations:

Parameter Description
Resource Resource Requests and Limits define the CPU and memory
Requests & consumption boundaries for Containers within a Pod, which then
Limits aggregate to form the Pod's overall resource profile. These values are

crucial for Kubernetes' scheduler to efficiently place Pods on Nodes

and for the kubelet to enforce resource governance.

¢ Requests: The minimum guaranteed CPU/memory required for a

container to be scheduled and run. This value is used by the

Parameter

Pods - Alauda Container Platform

Description
Kubernetes scheduler to decide which Node a Pod can run on.

¢ Limits: The maximum CPU/memory a container is allowed to
consume during its execution. Exceeding CPU limits results in
throttling, while exceeding memory limits leads to the container
being terminated (Out Of Memory - OOM Killed).

For detailed unit definitions (e.g., m for miliCPU, Mi for mebibytes),

refer to Resource Units.

Pod-Level Resource Calculation Logic

The effective CPU and memory Requests and Limits values for a Pod
are derived from the sum and maximum of its individual container
specifications. The calculation method for Pod-level Requests and
Limits is analogous; this document illustrates the logic using Limit
values as an example. When a Pod contains only standard containers
(business containers): The Pod's effective CPU/Memory Limit value is
the sum of the CPU/Memory Limit values of all containers within the
Pod.

Example: If a Pod includes two containers with CPU/Memory Limits of
100m/100Mi and 50m/200Mi respectively, the Pod's aggregated
CPU/Memory Limit will be 150m/300Mi. When a Pod contains both
initContainers and standard containers: The calculation steps for the

Pod's CPU/Memory Limit values are as follows:

e 1. Determine the maximum CPU/Memory Limit value among all

initContainers.

¢ 2. Calculate the sum of CPU/Memory Limit values of all standard

containers.

o 3. Compare the results from step 1 and step 2. The Pod's
comprehensive CPU/Memory Limit will be the maximum of the CPU
values (from initContainers max and containers sum) and the
maximum of the Memory values (from initContainers max and

containers sum).

Pods - Alauda Container Platform

Parameter Description

Calculation Example: If a Pod contains two initContainers with
CPU/Memory Limits of 200m/200Mi and 200m/100Mi, the maximum
effective CPU/Memory Limit for the initContainers would be
200m/200Mi. Simultaneously, if the Pod also contains two standard
containers with CPU/Memory Limits of 2700m/100Mi and 50m/200Mi,
the total aggregated Limit for the standard containers will be
150m/300Mi. Therefore, the Pod's comprehensive CPU/Memory Limit
would be max(200m, 150m) for CPU and max(200Mi, 300Mi) for
Memory, resulting in 200m/300Mi.

The Kubernetes workload controller that manages this Pod's life cycle.

Source o
This includes Deployments, StatefulSets, DaemonSets, Jobs.
The number of times the Container within the Pod has restarted since
Restart the Pod was started. A high restart count often indicates an issue with
the application or its environment.
o The name of the Kubernetes Node where the Pod is currently
ode
scheduled and running.
A Service Account is a Kubernetes object that provides an identity for
processes and services running inside a Pod, allowing them to
Service authenticate and access the Kubernetes APIServer. This field is
Account typically visible only when the currently logged-in user has the platform

administrator role or the platform auditor role, enabling the viewing of

the Service Account's YAML definition.

Deleting a Pod

Deleting pods may affect the operation of computing components; please proceed with

caution.

Use Cases

» Restore the pods to its desired state promptly: If a pods remains in a state that affects

business operations, such as Pending or CrashLoopBack0ff , manually deleting the pods

Pods - Alauda Container Platform

after addressing the error message can help it quickly return to its desired state, such as

Running . At this time, the deleted pods will be rebuilt on the current node or rescheduled.

o Resource cleanup for operations management: Some podss reach a designated stage
where they no longer change, and these groups often accumulate in large numbers,
complicating the management of other podss. The podss to be cleaned up may include
those in the Evicted status due to insufficient node resources or those in the Completed

status triggered by recurring scheduled tasks. In this case, the deleted podss will no longer

exist.
Note: For scheduled tasks, if you need to check the logs of each task execution, it is not

recommended to delete the corresponding Completed status podss.

Procedure

1. Go to Container Platform.
2. In the left navigation bar, click Workloads > Pods.

3. (Delete individually) Click the : on the right side of the pods to be deleted > Delete, and

confirm.

4. (Delete in bulk) Select the podss to be deleted, click Delete above the list, and confirm.

Containers - Alauda Container Platform

Menu ON THIS PAGE >

Containers

TOC

Understanding Containers
Understanding Ephemeral Containers
Implementation Principle: Leveraging Ephemeral Containers
Debugging Ephemeral Containers by using CLI
Debugging Ephemeral Containers by using web console
Interacting with Containers
Interacting with Containers by using CLI
Exec
Transfer Files
Interacting with Containers by using web console
Entering the Container through Applications

Entering the Container through the Pod

Understanding Containers

Refer to the official Kubernetes website documentation: Containers .

A container is a lightweight, executable package of software that includes everything needed
to run an application: code, runtime, system tools, system libraries, and settings. While Pods

are the smallest deployable units, containers are the core components within Pods.

https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/

Containers - Alauda Container Platform

Understanding Ephemeral Containers

Debugging Containers with Refer to the official Kubernetes website documentation:

Ephemeral Containers ~

The Kubernetes Ephemeral Containers feature provides a robust way to debug running
containers by injecting specialized debugging tools (system, network, and disk utilities) into an

existing Pod.

While you can often execute commands directly within a running container using kubectl exec,
many production container images are intentionally minimal and may lack essential debugging
utilities (e.g., bash, net-tools, tcpdump) to reduce image size and attack surface. Ephemeral

Containers address this limitation by providing a pre-configured environment with a rich set of

debugging tools, making them ideal for the following scenarios:

+ Fault Diagnosis: When a primary application container experiences issues (e.g.,
unexpected crashes, performance degradation, network connectivity problems), beyond
checking standard Pod events and logs, you often need to perform deeper, interactive

troubleshooting directly within the Pod's runtime environment.

* Configuration Tuning and Experimentation: If the current application configuration
exhibits suboptimal behavior, you might want to temporarily adjust component settings or
test new configurations directly within the running container to observe immediate effects

and devise improved solutions.

Implementation Principle: Leveraging Ephemeral

Containers

The debugging functionality is implemented using Ephemeral Containers. An Ephemeral
Container is a special type of container designed for introspection and debugging. It shares
the Pod's network namespace and process namespace (if enabled) with the existing primary

containers , allowing it to directly interact with and observe the application processes.

You can dynamically add an Ephemeral Container (e.g., my-app-debug) to a running Pod and
utilize its pre-installed debugging tools. The diagnostic results from this Ephemeral Container
are directly relevant to the behavior and state of the primary application containers within the

same Pod.

https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/
https://kubernetes.io/docs/concepts/workloads/pods/ephemeral-containers/

Containers - Alauda Container Platform

Pods

. =€ @ Container C E Container C—debug | XEC
EXE 5) h- b ;
- @ Container B Resource sharing 1 Container B-debug ' 'EXEC
EXE 3 i —
@ Container A Container A-debug NEC
@ ConfigMaps @ Secrets @ Services
@ Load Balancers @ Ingress @ CRDs

:::Notes * You cannot add an Ephemeral Container by directly modifying a Pod's static
manifest (PodSpec). The Ephemeral Containers feature is designed for dynamic injection into
running Pods, typically via API calls (like kubectl debug). * **Ephemeral Containers** created
via the debug feature do not have resource (CPU/Memory) or scheduling guarantees (i.e.,
they don't block Pod startup or get their own QoS class) and will not automatically restart if
they exit. Therefore, avoid running persistent business applications within them; they are
strictly for debugging purposes. * Exercise caution when using the debug feature if the Node
where the Pod is located is experiencing high resource utilization or is nearing resource
exhaustion. Injecting an Ephemeral Container, even with minimal resource footprint, could

potentially contribute to Pod eviction under severe resource pressure. :::

Debugging Ephemeral Containers by using CLI

Kubernetes 1.25+ offers the kubectl debug command for creating ephemeral containers. This

method provides a powerful command-line alternative for debugging.

Command

Containers - Alauda Container Platform

kubectl debug -it <pod-name> --image=<debug-image> --target=<target-container-name> -n

<namespace>

Pod YAML file example
Example: Debugging nginx in my-nginx-pod

» First, ensure you have a Pod running:

kubectl apply -f pod-example.yaml

* Now, create an ephemeral debug container named debugger inside my-nginx-pod ,

targeting my-nginx-container, using the busybox image:
kubectl debug -it my-nginx-pod --image=busybox --target=nginx -- /bin/sh

This command will attach you to a shell inside the debugger ephemeral container. You can

now use busybox tools to debug my-nginx-container.

+ To view the ephemeral containers attached to a Pod:

kubectl describe pod my-nginx-pod

Look for the Ephemeral Containers section in the output.

Debugging Ephemeral Containers by using web console

1. Container Platform, and navigate to Workloads > Pods in the left sidebar.

2. Locate the Pod you wish to view, and click : > Debug.

Containers - Alauda Container Platform

3. Choose the specific container within the Pod you wish to debug.

4. (Optional) If the interface prompts that initialization is required (e.g., for setting up

necessary debug environment), click Initialize.

INFO

After initializing the Debug feature, as long as the pod is not recreated, you can directly enter the

Ephemeral Container (for example, Container A-debug) for debugging.

5. Wait for the debugging terminal window to become ready, then begin your debugging
operations. Tip: Click the "Command Query" option in the upper right corner of the terminal

to view a list of common debugging tools and their usage examples.

INFO

Click the command query in the upper right corner to view common tools and their usage.

6. Once debugging is complete, close the terminal window.

Interacting with Containers

You can directly interact with the internal instance of a running container using the kubectl
exec command, allowing you to execute arbitrary command-line operations. Additionally,
Kubernetes provides convenient features for uploading and downloading files to and from

containers.

Interacting with Containers by using CLI

Exec

To execute a command inside a specific container within a Pod (useful for getting a shell,

running diagnostic commands, etc.):

Containers - Alauda Container Platform

kubectl exec -it <pod-name> -c <container-name> -n <namespace> -- <command>

o Example: Getting a Bash shell in the nginx of my-nginx-pod
kubectl exec -it my-nginx-pod -c nginx -n default -- /bin/bash
« Example: Listing files in /tmp of a container

kubectl exec my-nginx-pod -c nginx -n default -- 1s /tmp

Transfer Files

+ To copy files from your local machine to a container within a Pod:

kubectl cp <local-file-path> <namespace>/<pod-name>:<container-file-path> -c
<container-name>

kubectl cp my-config.txt default/my-nginx-pod:/usr/share/nginx/html/my-config.txt -c
nginx

» To copy files from a container within a Pod to your local machine:

kubectl cp <namespace>/<pod-name>:<container-file-path> <local-file-path> -c
<container-name>

kubectl cp default/my-nginx-pod:/var/log/nginx/access.log ./nginx_access.log -c nginx

Interacting with Containers by using web console

Containers - Alauda Container Platform

Entering the Container through Applications

You can enter the internal instance of the container using the kubectl exec command,
allowing you to execute command-line operations in the Web console window. Additionally,

you can easily upload and download files within the container using the file transfer feature.
1. Container Platform, and navigate to Application > Applications in the life sidebar.
2. Click on Application Name.

3. Locate the associated workload (e.g., Deployment, StatefulSet), click EXEC, and then

select the specific Pod Name you wish to enter. EXEC > Contianer Name.
4. Enter the command you wish to execute.
5. Click OK to enter the Web console window and execute command-line operations.
6. Click File Transfer.

o Enter an Upload Path to upload local files into the container (e.g., configuration files for

testing).

» Enter a Download Path to download logs, diagnostic data, or other files from the

container to your local machine for analysis.

Entering the Container through the Pod
1. Container Platform, and navigate to Workloads > Pods.

2. Locate the target Pod, click the vertical ellipsis (:) next to it, select EXEC, and then choose

the specific Container Name within that Pod you wish to enter.
3. Enter the command you wish to execute.
4. Click OK to enter the Web console window and execute command-line operations.
5. Click File Transfer.

o Enter an Upload Path to upload local files into the container (e.g., configuration files for

testing).

Containers - Alauda Container Platform

o Enter a Download Path to download logs, diagnostic data, or other files from the

container to your local machine for analysis.

Working with Helm charts

Working with Helm charts - Alauda Container Platform

Menu

TOC

1. Understanding Helm

1.1. Key features

1.2. Catalog
Terminology Definitions

1.3 Understanding HelmRequest
Differences Between HelImRequest and Helm
HelmRequest and Application Integration
Deployment Workflow
Component Definitions

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

2.2 Preparing the Chart

2.3 Packaging the Chart

2.4 Obtaining an API Token

2.5 Creating a Chart Repository

2.6 Uploading the Chart

2.7 Uploading Related Images

2.8 Deploying the Application

2.9 Updating the Application

2.10 Uninstalling the Application

2.11 Deleting the Chart Repository

3. Deploying Helm Charts as Applications via Ul

ON THIS PAGE >

Working with Helm charts - Alauda Container Platform

3.1 Workflow Overview

3.2 Prerequisites

3.3 Adding Templates to Manageable Repositories
3.4 Deleting Specific Versions of Templates

Steps to Operate

1. Understanding Helm

Helm is a package manager that simplifies the deployment of applications and services on
Alauda Container Platform clusters. Helm uses a packaging format called charts. A Helm chart
is a collection of files that describe Kubernetes resources. Creating a chart in a cluster
generates a chart running instance called a release. Each time a chart is created, or a release

is upgraded or rolled back, an incremental revision is created.

1.1. Key features

Helm provides the ability to:

e Search for a large collection of charts in chart repositories
* Modify existing charts
« Create your own charts using Kubernetes resources

o Package applications and share them as charts

1.2. Catalog

The Catalog is built on Helm and provides a comprehensive Chart distribution management
platform, extending the limitations of the Helm CLI tool. The platform enables developers to
more conveniently manage, deploy, and use charts through a user-friendly interface.

Terminology Definitions

Working with Helm charts - Alauda Container Platform

Term Definition Notes
Application A one-stop management platform for Helm
Catalog Charts
Helm Charts An application packaging format
CRD. Defines the configuration needed to Template
HelmRequest o
deploy a Helm Chart Application
CRD. Corresponds to a Helm charts Template
ChartRepo _ _
repository Repository
Chart CRD. Corresponds to Helm Charts Template

1.3 Understanding HeImRequest

In Alauda Container Platform, Helm deployments are primarily managed through a custom
resource called HelmRequest. This approach extends standard Helm functionality and

integrates it seamlessly into the Kubernetes native resource model.

Differences Between HelImRequest and Helm

Standard Helm uses CLI commands to manage releases, while Alauda Container Platform
uses HelmRequest resources to define, deploy, and manage Helm charts. Key differences
include:

1. Declarative vs Imperative: HelmRequest provides a declarative approach to Helm

deployments, while traditional Helm CLI is imperative.

2. Kubernetes Native: HelmRequest is a custom resource directly integrated with the
Kubernetes API.

3. Continuous Reconciliation: Captain continuously monitors and reconciles HeImRequest

resources with their desired state.

4. Multi-cluster Support: HelmRequest supports deployments across multiple clusters

through the platform.

5. Platform Feature Integration: HeImRequest can be integrated with other platform

features, such as Application resources.

Working with Helm charts - Alauda Container Platform

HelmRequest and Application Integration

HelmRequest and Application resources have conceptual similarities, and users may want to
view them uniformly. The platform provides a mechanism to synchronize HelmRequest as
Application resources.

Users can mark a HeImRequest to be deployed as an Application by adding the following
annotation:

alauda.io/create-app: "true"

When this feature is enabled, the platform Ul displays additional fields and links to the

corresponding Application page.

Deployment Workflow

The workflow for deploying charts via HelmRequest includes:

1. User creates or updates a HelmRequest resource

2. HelmRequest contains chart references and values to apply

3. Captain processes the HeImRequest and creates a Helm Release
4. Release contains the deployed resources

5. Metis monitors HelmRequests with application annotations and synchronizes them to

Applications

6. Application provides a unified view of deployed resources

Component Definitions

HelmRequest: Custom resource definition that describes the desired Helm chart

deployment

o Captain: Controller that processes HelmRequest resources and manages Helm releases

(source code available at https://github.com/alauda/captain ")
¢ Release: Deployed instance of a Helm chart

¢ Charon: Component that monitors HelmRequests and creates corresponding Application

resources

https://github.com/alauda/captain
https://github.com/alauda/captain
https://github.com/alauda/captain

Working with Helm charts - Alauda Container Platform

+ Application: Unified representation of deployed resources, providing additional

management capabilities

« Archon-api: Component responsible for specific advanced API functions within the

platform

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

Prepare chart — Package chart — Obtain API token — Create chart repository - Upload
chart — Upload related images — Deploy application - Update application — Uninstall

application - Delete chart repository

2.2 Preparing the Chart

Helm uses a packaging format called charts. A chart is a collection of files that describe
Kubernetes resources. A single chart can be used to deploy anything from a simple pod to a

complex application stack.
Refer to the official documentation: Helm Charts Documentation ~

Example chart directory structure:

https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/

Working with Helm charts - Alauda Container Platform

nginx/

—— Chart.lock

F—— Chart.yaml

—— README.md

—— charts/

L—— common/
—— Chart.yaml
—— README.md
—— templates/

| —— _affinities.tpl

| —— _capabilities.tpl

| —— _errors.tpl

| —— _images.tpl

| —— _ingress.tpl

| —— _labels.tpl

| —— _names. tpl

| —— _secrets.tpl

| —— _storage.tpl

| —— _tplvalues.tpl

| —— _utils.tpl

| —— _warnings.tpl

| L—— validations/

| —— _cassandra.tpl

| —— _mariadb.tpl

| —— _mongodb. tpl

| —— _postgresql.tpl

| —— _redis.tpl

| L—— _validations.tpl

L—— values.yaml

ci/

—— ct-values.yaml

L—— values-with-ingress-metrics-and-serverblock.yaml

[

templates/

F—— NOTES. txt

—— _helpers.tpl

—— deployment.yaml

—— extra-list.yaml

—— health-ingress.yaml
—— hpa.yaml

—— ingress.yaml

—— 1dap-daemon-secrets.yaml

F—— pdb.yaml
—— server-block-configmap.yaml

Working with Helm charts - Alauda Container Platform

| —— serviceaccount.yaml
| —— servicemonitor.yaml
|

F—— svc.yaml
| L—— tls-secrets.yaml
—— values.descriptor.yaml
——— values.schema. json

L—— values.yaml

Key file descriptions:

e values.descriptor.yaml (optional): Works with ACP Ul to display user-friendly forms
e values.schema.json (optional): Validates values.yaml content and renders a simple Ul

e values.yaml (required): Defines chart deployment parameters

2.3 Packaging the Chart

Use the helm package command to package the chart:

helm package nginx

2.4 Obtaining an API Token

1. In Alauda Container Platform, click the avatar in the top-right corner => Profile
2. Click Add Api Token
3. Enter appropriate Description & Remaining Validity

4. Save the displayed token information (only shown once)

2.5 Creating a Chart Repository

Create a local chart repository via API:

Working with Helm charts - Alauda Container Platform

curl -k --request POST \
--url https://$ACP_DOMAIN/catalog/v1/chartrepos \
--header 'Authorization:Bearer $API_TOKEN' \
--header 'Content-Type: application/json' \
--data '{
"apiVersion": "v1",
"kind": "ChartRepoCreate",
"metadata": {
"name": "test",
"namespace": "cpaas-system"
}
"spec": {
"chartRepo": {
"apiVersion": "app.alauda.io/vlbetal",
"kind": "ChartRepo",
"metadata": {
"name": "test",
"namespace": "cpaas-system",
"labels": {
"project.cpaas.io/catalog": "true"
}
1y
"spec": {
"type": "Local",
"url": null,

"source": null

2.6 Uploading the Chart

Upload the packaged chart to the repository:

curl -k --request POST \

--url https://$ACP_DOMAIN/catalog/v1/chartrepos/cpaas-system/test/charts \
--header 'Authorization:Bearer $API_TOKEN' \
--data-binary @"/root/charts/nginx-8.8.0.tgz"

Working with Helm charts - Alauda Container Platform

2.7 Uploading Related Images

1. Pull the image: docker pull nginx
2. Save as tar package: docker save nginx > nginx.latest.tar

3. Load and push to private registry:

docker load -i nginx.latest.tar

docker tag nginx:latest 192.168.80.8:30050/nginx:latest
docker push 192.168.80.8:30050/nginx:latest

2.8 Deploying the Application

Create Application resource via API:

curl -k --request POST \
--url
https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPACE/applications \
--header 'Authorization:Bearer $API_TOKEN' \
--header 'Content-Type: application/json' \
--data '{
"apiVersion": "app.k8s.io/v1betal",
"kind": "Application",
"metadata": {
"name": "test",
"namespace": "catalog-ns",
"annotations": {
"app.cpaas.io/chart.source": "test/nginx",
"app.cpaas.io/chart.version": "8.8.0",
"app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"IfNotPresent\"}}"
I,
"labels": {

"sync-from-helmrequest": "true"

Working with Helm charts - Alauda Container Platform

2.9 Updating the Application

Update the application using PATCH request:

curl -k --request PATCH \
--url

https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPACE/applications/test
\
--header 'Authorization:Bearer $API _TOKEN' \
--header 'Content-Type: application/merge-patch+json' \
--data '{

"apiVersion": "app.k8s.io/vi1betal",

"kind": "Application",

"metadata": {

"annotations": {

"app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"Always\"}}"

2.10 Uninstalling the Application

Delete the Application resource:

curl -k --request DELETE \
--url

https://$ACP_DOMAIN/acp/v1/kubernetes/$CLUSTER_NAME/namespaces/$NAMESPACE/applications/test
\
--header 'Authorization:Bearer $API_TOKEN'

2.11 Deleting the Chart Repository

curl -k --request DELETE \

--url https://$ACP_DOMAIN/apis/app.alauda.io/v1betal/namespaces/cpaas-
system/chartrepos/test \

--header 'Authorization:Bearer $API _TOKEN'

Working with Helm charts - Alauda Container Platform

3. Deploying Helm Charts as Applications via Ul

3.1 Workflow Overview

Add templates to manageable repositories — Upload templates - Manage template versions

3.2 Prerequisites

Template repositories are added by platform administrators. Please contact the platform
administrator to obtain the available Chart or OCI Chart type template repository names with
Management permissions.

3.3 Adding Templates to Manageable Repositories

1. Go to Catalog.
2. In the left navigation bar, click Helm Charts.

3. Click Add Template in the upper right corner of the page, and select the template
repository based on the parameters below.

Parameter Description

Synchronize the template directly to a Chart or OCI Chart type

Template template repository with Management permissions. Project
Repository owners assigned to this Template Repository can directly use the
template.

When the selected template repository type is OCI Chart, a
directory to store the Helm Chart must be selected or manually
Template entered.
Directory Note: When manually entering a new template directory, the
platform will create this directory in the template repository, but

there is a risk of creation failure.

4. Click Upload Template and upload the local template to the repository.

Working with Helm charts - Alauda Container Platform

5. Click Confirm. The template upload process may take a few minutes, please be patient.

Note: When the template status changes from Uploading to Upload Successful , it indicates

that the template has been uploaded successfully.
6. If the upload fails, please troubleshoot according to the following prompts.
Note: An illegal file format means there is an issue with the files in the uploaded

compressed package, such as missing content or incorrect formatting.

3.4 Deleting Specific Versions of Templates

If a version of a template is no longer applicable, it can be deleted.

Steps to Operate

1. Go to Catalog.

2. In the left navigation bar, click Helm Charts.

3. Click on the Chart card to view details.

4. Click Manage Versions.

5. Find the template that is no longer applicable, click Delete, and confirm.

After deleting the version, the corresponding application will not be able to be updated.

Configurations - Alauda Container Platform

Menu

Configurations

Configuring ConfigMap

Understanding Config Maps

Config Map Restrictions

Example ConfigMap

Creating a ConfigMap by using the web console
Creating a ConfigMap by using the CLI
Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

ConfigMap vs Secret

Configuring Secrets

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret
Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console
How to Use a Secret in a Pod

Follow-up Actions

Operations

Configuring ConfigMap - Alauda Container Platform

Menu ON THIS PAGE >

Configuring ConfigMap

Config maps allow you to decouple configuration artifacts from image content to keep
containerized applications portable. The following sections define config maps and how to

create and use them.

TOC

Understanding Config Maps
Config Map Restrictions
Example ConfigMap
Creating a ConfigMap by using the web console
Creating a ConfigMap by using the CLI
Operations
View, Edit and Delete by using the CLI
Ways to Use a ConfigMap in a Pod

As Environment Variables

As Files in a Volume

As Individual Environment Variables

ConfigMap vs Secret

Understanding Config Maps

Many applications require configuration by using some combination of configuration files,

command-line arguments, and environment variables. In OpenShift Container Platform, these

Configuring ConfigMap - Alauda Container Platform

configuration artifacts are decoupled from image content to keep containerized applications

portable.

The ConfigMap object provides mechanisms to inject containers with configuration data while
keeping containers agnostic of OpenShift Container Platform. A config map can be used to
store fine-grained information like individual properties or coarse-grained information like

entire configuration files or JSON blobs.

The ConfigMap object holds key-value pairs of configuration data that can be consumed in
pods or used to store configuration data for system components such as controllers. For

example:

apiVersion: v1
kind: ConfigMap
metadata:
name: my-app-config
namespace: default
data:
app_mode: "development"
feature_flags: "true"
database.properties: |-
jdbc.url=jdbc:mysql://Tlocalhost:3306/mydb
jdbc.username=user
jdbc.password=password
log_settings.json: |-
{
"level": "INFO",

"format": "json"

Note: You can use the binaryData field when you create a config map from a binary file, such

as an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used

to:

+ Populate environment variable values in containers
¢ Set command-line arguments in a container

¢ Populate configuration files in a volume

Configuring ConfigMap - Alauda Container Platform

Users and system components can store configuration data in a config map. A config map is
similar to a secret, but designed to more conveniently support working with strings that do not
contain sensitive information.

Config Map Restrictions

* A config map must be created before its contents can be consumed in pods.

» Controllers can be written to tolerate missing configuration data. Consult individual

components configured by using config maps on a case-by-case basis.
e (onfigMap objects reside in a project.
¢ They can only be referenced by pods in the same project.

e The Kubectl only supports the use of a config map for pods it gets from the API server. This
includes any pods created by using the CLI, or indirectly from a replication controller. It
does not include pods created by using the OpenShift Container Platform node's --
manifest-url flag, its --config flag, or its REST API because these are not common ways

to create pods.

NOTE

A Pod can only use ConfigMaps within the same namespace.

Example ConfigMap

You can now use app-config ina Pod .

Configuring ConfigMap - Alauda Container Platform

apiVersion: v1
kind: ConfigMap
metadata:
name: app-config
namespace: k-1
data:

APP_ENV: "production”
LOG_LEVEL: "debug"

Creating a ConfigMap by using the web console

1. Go to Container Platform.
2. In the left sidebar, click Configuration > ConfigMap.
3. Click Create ConfigMap.

4. Refer to the instructions below to configure the relevant parameters.

Parameter Description

Refers to key:value pairs, supporting both Add and Import

methods.

¢ Add: You can add configuration items one by one, or you can
paste one or multiple lines of key=value pairs in the Key input

Entries . .
area to bulk add configuration items.

o Import: Import a text file not larger than 1M. The file name will be
used as the key, and the file content will be used as the value,

filled into a configuration item.

Configuring ConfigMap - Alauda Container Platform

Parameter Description

Refers to binary files not larger than 1M. The file name will be used
- as the key, and the file content will be used as the value, filled into a
Inary , .
. configuration item.
Entries . .)]
Note: After creating a ConfigMap, the imported files cannot be

modified.

Example of Bulk Add Format:

One key=value pair per line, multiple pairs must be on separate lines, otherwise
they will not be recognized correctly after pasting.

keyl=valuel

key2=value2

key3=value3

5. Click Create.

Creating a ConfigMap by using the CLI

kubectl create configmap app-config \
--from-literal=APP_ENV=production \
--from-literal=L0G_LEVEL=debug

Or from a file:

kubectl apply -f app-config.yaml -n k-1

Operations

You can click the (¢) on the right side of the list page or click Actions in the upper right corner
of the detail page to update or delete the ConfigMap as needed.

Configuring ConfigMap - Alauda Container Platform

Changes to the ConfigMap will affect the workloads that reference the configuration, so please
read the operation instructions in advance.

Operations Description

« After adding or updating a ConfigMap, any workloads that have
referenced this ConfigMap (or its configuration items) through

environment variables need to rebuild their Pods for the new

Update configuration to take effect.
o For imported binary configuration items, only key updates are
supported, not value updates.
After deleting a ConfigMap, workloads that have referenced this
- ConfigMap (or its configuration items) through environment variables
elete

may be adversely affected during Pod creation if they are rebuilt and

cannot find the reference source.

View, Edit and Delete by using the CLI

kubectl get configmap app-config -n k-1 -o yaml
kubectl edit configmap app-config -n k-1
kubectl delete configmap app-config -n k-1

Ways to Use a ConfigMap in a Pod

As Environment Variables

envFrom:
- configMapRef:

name: app-config

Configuring ConfigMap - Alauda Container Platform

Each key becomes an environment variable in the container.

As Files in a Volume

volumes:
- name: config-volume
configMap:

name: app-config

volumeMounts:
- name: config-volume

mountPath: /etc/config

Each key is a file under /etc/config , and the file content is the value.

As Individual Environment Variables

env:
- name: APP_ENV
valueFrom:
configMapKeyRef:
name: app-config
key: APP_ENV

ConfigMap vs Secret

Feature ConfigMap Secret
Data Type Non-sensitive Sensitive (e.g., passwords)
Encoding Plaintext Base64-encoded

Use Cases Configs, flags Passwords, tokens

Configuring Secrets - Alauda Container Platform

Menu

Configuring Secrets

TOC

Understanding Secrets

Usage Characteristics

Supported Types

Usage Methods
Creating an Opaque type Secret
Creating a Docker registry type Secret
Creating a Basic Auth type Secret
Creating a SSH-Auth type Secret
Creating a TLS type Secret
Creating a Secret by using the web console
How to Use a Secret in a Pod

As Environment Variables

As Mounted Files (Volume)
Follow-up Actions

Operations

Understanding Secrets

ON THIS PAGE >

In Kubernetes (k8s), a Secret is a fundamental object designed to store and manage sensitive

information, such as passwords, OAuth tokens, SSH keys, TLS certificates, and API keys. Its

Configuring Secrets - Alauda Container Platform

primary purpose is to prevent sensitive data from being directly embedded in Pod definitions

or container images, thereby enhancing security and portability.

Secrets are similar to ConfigMaps but are specifically intended for confidential data. They are

typically base64-encoded for storage and can be consumed by pods in various ways,

including being mounted as volumes or exposed as environment variables.

Usage Characteristics

Enhanced Security: Compared to plaintext configuration maps (Kubernetes ConfigMap),
Secrets offer better security by storing sensitive information using Base64 encoding. This
mechanism, combined with Kubernetes' ability to control access, significantly reduces the

risk of data exposure.

Flexibility and Management: Using Secrets provides a more secure and flexible approach
than hardcoding sensitive information directly into Pod definition files or container images.
This separation simplifies the management and modification of sensitive data without

requiring changes to application code or container images.

Supported Types

Kubernetes supports various types of Secrets, each tailored for specific use cases. The

platform typically supports the following types:

Opaque: A general-purpose Secret type used to store arbitrary key-value pairs of sensitive

data, such as passwords or API keys.

TLS: Specifically designed to store TLS (Transport Layer Security) protocol certificate and

private key information, commonly used for HTTPS communication and secure ingress.

SSH Key: Used to store SSH private keys, often for secure access to Git repositories or

other SSH-enabled services.

SSH Authentication (kubernetes.iolssh-auth): Stores authentication information for data

transmitted over the SSH protocol.

Username/Password (kubernetes.iolbasic-auth): Used to store basic authentication

credentials (username and password).

Configuring Secrets - Alauda Container Platform

+ Image Pull Secret (kubernetes.ioldockerconfigjson): Stores the JSON authentication
string required for pulling container images from private image repositories (Docker

Registry).

Usage Methods

Secrets can be consumed by applications within pods through different methods:

+ As Environment Variables: Sensitive data from a Secret can be injected directly into a

container's environment variables.

¢ As Mounted Files (Volume): Secrets can be mounted as files within a pod's volume,

allowing applications to read sensitive data from a specified file path.

Note: Pod instances in workloads can only reference Secrets within the same namespace.

For advanced usage and YAML configurations, refer to the Kubernetes official documentation

/' O

Creating an Opaque type Secret

kubectl create secret generic my-secret \
--from-literal=username=admin \

--from-literal=password=Pa$$word

YAML

apiVersion: v1

kind: Secret

metadata:
name: my-secret

type: Opaque

data:
username: YWRtaW4=
password: UGEkJHcwemQ=

You can decode them like:

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

Configuring Secrets - Alauda Container Platform

echo YWRtaW4= | baseb64 --decode

Creating a Docker registry type Secret

kubectl create secret docker-registry my-docker-creds \
--docker-username=myuser \
--docker-password=mypass \
--docker-server=https://index.docker.io/v1/ \

--docker-email=my@example.com
YAML

apiVersion: v1
kind: Secret
metadata:
name: my-docker-creds
type: kubernetes.io/dockerconfigjson
data:
.dockerconfigjson:
eyJhdXRocyI6eyJodHRwczovL21uZGV4LmRvY2t1ci5pby92MS8i0nsidXN1cm5hbWUi0ilteXVzZXIiLCIwYXNzd29y:

K8s automatically converts your username, password, email, and server information into the

Docker standard login format:

"auths": {
"https://index.docker.io/v1/": {
"username": "myuser",
"password": "mypass"”,
"email": "my@example.com",

"auth": "bX11c2VyOm15cGFzcw=="# baseb4(username:password)

This JSON is then base64 encoded and used as the data field value of the Secret.

Configuring Secrets - Alauda Container Platform

Use itin a Pod:

imagePullSecrets:

- name: my-docker-creds

Creating a Basic Auth type Secret

apiVersion: v1
kind: Secret
metadata:

name: basic-auth-secret
type: kubernetes.io/basic-auth
stringData:

username: myuser

password: mypass

Creating a SSH-Auth type Secret

Use Case: Store SSH private keys (e.g., for Git access).

apiVersion: v1
kind: Secret
metadata:
name: ssh-key-secret
type: kubernetes.io/ssh-auth
stringData:
ssh-privatekey: |

Creating a TLS type Secret

Configuring Secrets - Alauda Container Platform

Use Case: TLS certs (used by Ingress, webhooks, etc.)

kubectl create secret tls tls-secret \
--cert=path/to/tls.crt \
--key=path/to/tls.key

YAML

apiVersion: v1
kind: Secret
metadata:
name: tls-secret
type: kubernetes.io/tls
data:
tls.crt: <baseb4>
tls.key: <baseb4>

Creating a Secret by using the web console

1. Go to Container Platform.

2. In the left navigation bar, click Configuration > Secrets.
3. Click Create Secret.

4. Configure the parameters.

Note: In the form view, sensitive data such as the input username and password will
automatically be encoded in Base64 format before being stored in the Secret. The

converted data can be previewed in the YAML view.

5. Click Create.

How to Use a Secret in a Pod

Configuring Secrets - Alauda Container Platform

As Environment Variables

env:
- name: DB_USERNAME
valueFrom:
secretKeyRef:
name: my-secret

key: username

From the secret named my-secret , take the value with the key username and assign it to the

environment variable DB_USERNAME .

As Mounted Files (Volume)

volumes:
- name: secret-volume
secret:
secretName: my-secret

volumeMounts:
- name: secret-volume
mountPath: "/etc/secret"

Follow-up Actions

When creating workloads for native applications in the same namespace, you can reference

the Secrets that have already been created.

Operations

You can click the (:) on the right side of the list page or click Actions in the upper right corner

of the details page to update or delete the Secret as needed.

Configuring Secrets - Alauda Container Platform

Operation Description

After adding or updating a Secret, workloads that have referenced this
Update Secret (or its configuration items) via environment variables need to have

their Pods rebuilt for the new configuration to take effect.

o After deleting a Secret, workloads that have referenced this Secret (or
its configuration items) via environment variables may be impacted due

to the inability to find the reference source when rebuilding Pods.

Delete * Please do not delete the Secrets automatically generated by the
platform, as this may prevent the platform from functioning properly.
For example: Secrets of type service-account-token that contain

authentication information for namespace resources and Secrets in

system namespaces (such as kube-system).

Application Observability - Alauda Container Platform

Menu

Application Observability

Monitoring Dashboards
Prerequisites
Namespace-Level Monitoring Dashboards

Workload-Level Monitoring

Logs

Procedure

Events
Procedure

Event records interpretation

Monitoring Dashboards - Alauda Container Platform

Menu ON THIS PAGE >

Monitoring Dashboards

¢ Supports viewing resource monitoring data for workload components on the platform for
the past 7 days (with configurable monitoring data retention period). Includes statistics for

applications, workloads, pods, and trends/rankings of CPU/memory usage.

¢ Supports Namespace-Level monitoring.

o Supported Workload-Level Monitoring: Applications, Deployments, DaemonSets,
StatefulSets, and Pods

TOC

Prerequisites
Namespace-Level Monitoring Dashboards
Procedure
Creating Namespace-Level Monitoring Dashboard
Workload-Level Monitoring
Default Monitoring Dashboard
Procedure
Metric interpretation

Custom Monitoring Dashboard

Prerequisites

¢ Installation of Monitoring Plugins

http://localhost:4173/container_platform/observability/monitor/install_monitor.html

Monitoring Dashboards - Alauda Container Platform

Namespace-Level Monitoring Dashboards

Procedure

1. Container Platform, click Observe > Dashboards.

2. View monitoring data under the namespace. Three dashboards are provided: Applications

Overview, Workloads Overview, and Pods Overview.

3. Switch between dashboards to monitor target Overview.

Creating Namespace-Level Monitoring Dashboard

1. Administrator, create a dedicated monitoring dashboard by referring to Creating

Monitoring Dashboard to create a dedicated monitoring dashboard.

2. Configure the following labels to display the Namespace-Level Monitoring dashboard on

the Container Platform:

e cpaas.io/dashboard.folder: container-platform

e (paas.io/dashboard.tag.overview: "true"

Workload-Level Monitoring

This procedure demonstrates how to view pod monitoring through the Deployment

interface.

Default Monitoring Dashboard

Procedure
1. Container Platform, click Workloads > Deployments.
2. Click a Deployment name from the list.

3. Navigate to the Monitoring tab to view default monitoring metrics.

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#create_dashboard
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#create_dashboard

Monitoring Dashboards - Alauda Container Platform

Metric interpretation

Monitoring

Resource

CPU

Memory

Network
Traffic

Network
Packet

Disk Rate

Disk IOPS

Custom Monitoring Dashboard

Metric Granularity

Utilization/Usage

Utilization/Usage

Inflow Rate/Outflow
Rate

Receiving

Rate/Transmit Rate

Read/Write

Read/Write

Technical Definition

Utilization = Usage/Limit (limits)
Assess container limit configuration.
High utilization indicates insufficient
limits.

Usage represents actual resource

consumption.

Utilization = Usage/Limit (limits)
Evaluation method same as CPU. High

rate may cause component instability.

Network traffic (bytes/sec) flowing

into/out of pods.

Network packets (count/sec)

received/sent by pods.

Read/write throughput (bytes/sec) of

mounted volumes per workload.

Input/Output Operations Per Second
(IOPS) of mounted volumes per

workload.

4. Click the Toggle Icon to switch to custom dashboards. Refer to Add Panel in Custom

Dashboard to create dedicated Workload-Level monitoring dashboard.

INFO

Hover over chart curves to view per-pod metrics and PromQL expressions at specific timestamps. If

exceeding 15 pods, only top 15 entries sorted in descending order are displayed.

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html

Monitoring Dashboards - Alauda Container Platform

Logs - Alauda Container Platform

Menu ON THIS PAGE >

Logs

Aggregate container runtime logs with visual query capabilities. When applications, workloads,

or other resources exhibit abnormal behavior, log analysis helps diagnose root causes.

TOC

Procedure

Procedure

This procedure demonstrates how to view container runtime logs through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.
2. Click a Deployment name from the list.

3. Navigate to the Logs tab to view detailed records.

Operation Description

) Switch between Pods and Containers using the dropdown
Pod/Container _ _
selector to view the corresponding logs.

Previous View logs from terminated containers (available when container

Logs restartCount > 0).

Logs - Alauda Container Platform

Operation Description

Lines Configure display log buffer size: 1k/10k/100k lines.

Wrap Line Toggle line wrapping for long log entries (enabled by default).
Find Full-text search with highlight matching and Enter-to-navigate.

Unprocessed log streams directly captured from container runtime

Raw
interfaces (CRI) without formatting, filtering, or truncation.
Export Download raw logs.
Full Screen Click truncated line to view full content in modal dialog.
WARNING

e Truncation Handling: Log entries exceeding 2000 characters will be truncated with an ellipsis

» Trimmed portions cannot be matched by the page's find function.

e Click the ellipsis ... marker in truncated lines to view full content in a modal dialog.
» Copy Reliability: Avoid direct copying from rendered log viewer when seeing truncation

markers (...) or ANSI color codes. Always use Export, Raw function for complete logs.

» Retention Policy: Live logs follow Kubernetes log rotation configuration. For historical analysis,

use Logs under Observe.

http://localhost:4173/container_platform/observability/log/functions/log.html

Events - Alauda Container Platform

= Menu ON THIS PAGE >

Events

Event information generated by Kubernetes resource state changes and operational status
updates, with integrated visual query interface.When applications, workloads, or other

resources encounter exceptions, real-time event analysis helps troubleshoot root causes.

TOC

Procedure

Event records interpretation

Procedure

This procedure demonstrates how to view container runtime evens through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.
2. Click a Deployment name from the list.

3. Navigate to the Events tab to view detailed records.

Event records interpretation

Events - Alauda Container Platform

Resource event records: Below the event summary panel, all matching events within the
specified time range are listed. Click event cards to view complete event details. Each card

displays:
o Resource Type: Kubernetes resource type represented by icon abbreviations:

P =Pod

RS = ReplicaSet

D = Deployment

SVC = Service

« Resource Name: Target resource named.

e Event Reason: Kubernetes-reported reason (e.g., FailedScheduling).

e Event Level: Event severity.

e Normal : Informational

e llarning : Requires immediate attention

¢ Time: Last Occurrence time, Occurrence Count.

INFO

Kubernetes allows administrators to configure event retention periods through the Event TTL
controller with a default retention period of 1 hour. Expired events are automatically purged by the
system. For comprehensive historical records, access the All Events.

http://localhost:4173/container_platform/observability/event/event.html

How To - Alauda Container Platform

Menu

How To

Setting Scheduled Task Trigger Rules
Time Conversion

Writing Crontab Expressions

Setting Scheduled Task Trigger Rules - Alauda Container Platform

= Menu ON THIS PAGE >

Setting Scheduled Task Trigger Rules

The scheduled task trigger rules support the input of Crontab expressions.

TOC

Time Conversion

Writing Crontab Expressions

Time Conversion

Time conversion rule: Local time - time zone offset = UTC
Taking Beijing time to UTC time as an example:

Beijing is in the East Eight Time Zone, with a time difference of 8 hours between Beijing time
and UTC. The time conversion rule is:

Beijing Time - 8 = UTC

Example 1: Beijing time 9:42 converts to UTC time: 42 09 - 00 08 = 42 01, which means the
UTC time is 1:42 AM.

Example 2: Beijing time 4:32 AM converts to UTC time: 32 04 - 00 08 = -68 03. If the result is
negative, it indicates the previous day, requiring another conversion: -68 03 + 00 24 = 32 20,

which means the UTC time is 8:32 PM of the previous day.

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Writing Crontab Expressions

Basic format and value range of Crontab: minute hour day month weekday , with the

corresponding value ranges as shown in the table below:

Minute Hour Day Month Weekday

[0-59] [0-23] [1-31] [1-12] or [JAN-DEC] [0-6] or [SUN-SAT]

The special characters allowed in the minute hour day month weekday fields include:

, - Value list separator, used to specify multiple values. For example: 1,2,5,7,8,9 .

- : User-defined value range. For example: 2-4 , which represents 2, 3, 4.

* . Represents the entire time period. For example, when used for minutes, it means every

minute.

/ : Used to specify the increment of values. For example: n/m indicates starting from n,

increasing by m each time.

Conversion tool reference ~

Common Examples:

Input 30 18 25 12 * indicates a task triggers at 18:30:00 on December 25th .

e Input 30 18 25 * 6 indicates a task triggers at 18:30:00 every Saturday .

e Input 30 18 * * 6 indicates a task triggers at 18:30:00 on Saturdays .

e Input * 18 * * * indicates a task triggers every minute starting from 18:00:00 (including

18:00:00).

e Input 0 18 1,10,22 * * indicates a task triggers at 18:00:00 on the 1st, 10th, and 22nd of

every month .

e Input 0,30 18-23 * * * indicates a task triggers at 00 minutes and 30 minutes of each hour

between 18:00 and 23:00 daily .

e Input * */1 * * * indicates a task triggers every minute.

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/

Setting Scheduled Task Trigger Rules - Alauda Container Platform

e Input * 2-7/1 * * * indicates a task triggers every minute between 2 AM and 7 AM daily.

e Input @ 11 4 * mon-wed indicates a task triggers at 11:00 AM on the 4th of every month and

on every Monday to Wednesday .

Images - Alauda Container Platform

Menu

Images

Overview of images

Overview of images
Understanding containers and images
Images

Image registry

Image repository

Image tags

Image IDs

Containers

How To

Creating images
Learning container best practices

Including metadata in images

Images - Alauda Container Platform

Managing images

Image pull policy overview

Allowing pods to reference images from other secured registries
Creating a pull secret

Using a pull secret in a workload

Overview of images - Alauda Container Platform

Menu ON THIS PAGE >

Overview of images

TOC

Understanding containers and images
Images

Image registry

Image repository

Image tags

Image IDs

Containers

Understanding containers and images

Containers and images are important concepts to understand when you set out to create and
manage containerized software. An image holds a set of software that is ready to run, while a
container is a running instance of a container image. Those different versions are represented

by different tags on the same image name.

Images

Containers in Alauda Container Platform are based on OCI- or Docker-formatted container
images. An image is a binary that includes all of the requirements for running a single

container, as well as metadata describing its needs and capabilities.

Overview of images - Alauda Container Platform

You can think of it as a packaging technology. Containers have access only to resources
defined in the image unless granted additional access at creation time. By deploying the same
image in multiple containers across multiple hosts and load balancing between them, Alauda
Container Platform can provide redundancy and horizontal scaling for a service packaged into
an image.

You can use the nerdctl or docker CLI directly to build images, but Alauda Container
Platform also supplies builder images that assist with creating new images by adding your
code or configuration to existing images.

Because applications develop over time, a single image name can actually refer to many
different versions of the same image. Each different image is referred to uniquely by its hash,
a long hexadecimal number such as fd44297e2ddb050ec4f..., which is usually shortened to
12 characters, such as fd44297e2ddb.

Image registry

An image registry is a content server that can store and serve container images. For example:

e Docker Hub ~
¢ Quay.io Container Registry ~

¢ Alauda Container Platform Registry

A registry contains a collection of one or more image repositories, which contain one or more
tagged images. Alauda Container Platform can supply its own image registry for managing
custom container images.

Image repository

An image repository is a collection of related container images and tags identifying them. For
example, the Alauda Container Platform Jenkins images are in the repository:

docker.io/alauda/jenkins-2-centos7

https://hub.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://quay.io/
https://quay.io/
https://quay.io/

Overview of images - Alauda Container Platform

Image tags

An image tag is a label applied to a container image in a repository that distinguishes a
specific image from other images in an image stream. Typically, the tag represents a version

number of some sort. For example, here :v3 .11.59-2 is the tag:

docker.io/alauda/jenkins-2-centos7:v3.11.59-2

You can add additional tags to an image. For example, an image might be assigned the tags
'v3.11.59-2 and :latest .

Image IDs

An image ID is a SHA (Secure Hash Algorithm) code that can be used to pull an image. A SHA
image ID cannot change. A specific SHA identifier always references the exact same

container image content. For example:

docker.io/alauda/jenkins-2-centos7@sha256:ab312bda324

Containers

The basic units of Alauda Container Platform applications are called containers. Linux
container technologies are lightweight mechanisms for isolating running processes so that
they are limited to interacting with only their designated resources. The word container is

defined as a specific running or paused instance of a container image.

Many application instances can be running in containers on a single host without visibility into
each others' processes, files, network, and so on. Typically, each container provides a single
service, often called a micro-service, such as a web server or a database, though containers

can be used for arbitrary workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. The

Docker project developed a convenient management interface for Linux containers on a host.

Overview of images - Alauda Container Platform

More recently, the Open Container Initiative © has developed open standards for container
formats and container runtimes. Alauda Container Platform and Kubernetes add the ability to

orchestrate OCI- and Docker-formatted containers across multi-host installations.

Though you do not directly interact with container runtimes when using Alauda Container
Platform, understanding their capabilities and terminology is important for understanding their

role in Alauda Container Platform and how your applications function inside of containers.

https://github.com/opencontainers/
https://github.com/opencontainers/
https://github.com/opencontainers/

How To - Alauda Container Platform

Menu

How To

Creating images
Learning container best practices

Including metadata in images

Managing images

Image pull policy overview

Allowing pods to reference images from other secured registries
Creating a pull secret

Using a pull secret in a workload

Creating images - Alauda Container Platform

Menu ON THIS PAGE >

Creating images

Learn how to create your own container images, based on pre-built images that are ready to
help you. The process includes learning best practices for writing images, defining metadata
for images, testing images, and using a custom builder workflow to create images to use with
Alauda Container Platform Registry. After you create an image, you can push it to the Alauda

Container Platform Registry.

TOC

Learning container best practices
General container image guidelines
Including metadata in images

Defining image metadata

Learning container best practices

When creating container images to run on Alauda Container Platform there are a number of
best practices to consider as an image author to ensure a good experience for consumers of
those images. Because images are intended to be immutable and used as-is, the following
guidelines help ensure that your images are highly consumable and easy to use on Alauda

Container Platform.

General container image guidelines

Creating images - Alauda Container Platform

The following guidelines apply when creating a container image in general, and are

independent of whether the images are used on Alauda Container Platform.

Reuse images

Wherever possible, base your image on an appropriate upstream image using the FROM
statement. This ensures your image can easily pick up security fixes from an upstream image
when it is updated, rather than you having to update your dependencies directly.

In addition, use tags in the FROM instruction, for example, alpine:3.20 , to make it clear to
users exactly which version of an image your image is based on. Using a tag other than latest
ensures your image is not subjected to breaking changes that might go into the latest version

of an upstream image.

Maintain compatibility within tags

When tagging your own images, try to maintain backwards compatibility within a tag. For
example, if you provide an image named image and it currently includes version 1.0 , you
might provide a tag of image:v1 . When you update the image, as long as it continues to be
compatible with the original image, you can continue to tag the new image image:v1 , and

downstream consumers of this tag are able to get updates without being broken.

If you later release an incompatible update, then switch to a new tag, for example image:v2 .
This allows downstream consumers to move up to the new version at will, but not be
inadvertently broken by the new incompatible image. Any downstream consumer using

image:latest takes on the risk of any incompatible changes being introduced.

Avoid multiple processes

Do not start multiple services, such as a database and SSHD , inside one container. This is not
necessary because containers are lightweight and can be easily linked together for
orchestrating multiple processes. Alauda Container Platform allows you to easily colocate and

co-manage related images by grouping them into a single pod.

This colocation ensures the containers share a network namespace and storage for
communication. Updates are also less disruptive as each image can be updated less
frequently and independently. Signal handling flows are also clearer with a single process as

you do not have to manage routing signals to spawned processes.

Use exec in wrapper scripts

Creating images - Alauda Container Platform

Many images use wrapper scripts to do some setup before starting a process for the software
being run. If your image uses such a script, that script uses exec so that the script's process
is replaced by your software. If you do not use exec , then signals sent by your container
runtime go to your wrapper script instead of your software's process. This is not what you

want.

If you have a wrapper script that starts a process for some server. You start your container, for
example, using docker run -i , which runs the wrapper script, which in turn starts your
process. If you want to close your container with CTRL+C . If your wrapper script used exec to
start the server process, docker sends SIGINT to the server process, and everything works
as you expect. If you did not use exec in your wrapper script, docker sends SIGINT to the

process for the wrapper script and your process keeps running like nothing happened.

Also note that your process runs as PID 1 when running in a container. This means that if
your main process terminates, the entire container is stopped, canceling any child processes

you launched from your PID 1 process.
Clean temporary files

Remove all temporary files you create during the build process. This also includes any files
added with the ADD command. For example, run the yum clean command after performing

yum install operations.

You can prevent the yum cache from ending up in an image layer by creating your RUN

statement as follows:

RUN yum -y install mypackage &% yum -y install myotherpackage &% yum clean all -y

Note that if you instead write:

RUN yum -y install mypackage
RUN yum -y install myotherpackage &% yum clean all -y

Then the first yum invocation leaves extra files in that layer, and these files cannot be
removed when the yum clean operation is run later. The extra files are not visible in the final

image, but they are present in the underlying layers.

The current container build process does not allow a command run in a later layer to shrink

the space used by the image when something was removed in an earlier layer. However, this

Creating images - Alauda Container Platform

may change in the future. This means that if you perform an rm command in a later layer,
although the files are hidden it does not reduce the overall size of the image to be
downloaded. Therefore, as with the yum clean example, it is best to remove files in the same

command that created them, where possible, so they do not end up written to a layer.

In addition, performing multiple commands in a single RUN statement reduces the number of

layers in your image, which improves download and extraction time.
Place instructions in the proper order

The container builder reads the Dockerfile and runs the instructions from top to bottom.
Every instruction that is successfully executed creates a layer which can be reused the next
time this or another image is built. It is very important to place instructions that rarely change
at the top of your Dockerfile . Doing so ensures the next builds of the same image are very

fast because the cache is not invalidated by upper layer changes.

For example, if you are working on a Dockerfile that contains an ADD command to install a
file you are iterating on, and a RUN command to yum install a package, itis best to put the

ADD command last:

FROM foo
RUN yum -y install mypackage &% yum clean all -y
ADD myfile /test/myfile

This way each time you edit myfile and rerun docker build , the system reuses the cached

layer for the yum command and only generates the new layer for the ADD operation.

If instead you wrote the Dockerfile as:

FROM foo
ADD myfile /test/myfile
RUN yum -y install mypackage &% yum clean all -y

Then each time you changed myfile and reran docker build , the ADD operation would

invalidate the RUN layer cache, so the yum operation must be rerun as well.

Mark important ports

Creating images - Alauda Container Platform

The EXPOSE instruction makes a port in the container available to the host system and other
containers. While it is possible to specify that a port should be exposed with a docker run
invocation, using the EXPOSE instruction in a Dockerfile makes it easier for both humans and

software to use your image by explicitly declaring the ports your software needs to run:

o Exposed ports show up under docker ps associated with containers created from your

image.
o Exposed ports are present in the metadata for your image returned by docker inspect .

e Exposed ports are linked when you link one container to another.

Set environment variables

It is good practice to set environment variables with the ENV instruction. One example is to
set the version of your project. This makes it easy for people to find the version without
looking at the Dockerfile . Another example is advertising a path on the system that could be

used by another process, such as JAVA_HOME .

Avoid default passwords

Avoid setting default passwords. Many people extend the image and forget to remove or
change the default password. This can lead to security issues if a user in production is
assigned a well-known password. Passwords are configurable using an environment variable
instead.

If you do choose to set a default password, ensure that an appropriate warning message is
displayed when the container is started. The message should inform the user of the value of

the default password and explain how to change it, such as what environment variable to set.

Avoid sshd

It is best to avoid running sshd in your image. You can use the docker exec command to
access containers that are running on the local host. Alternatively, you can use the docker
exec command to access containers that are running on the Alauda Container Platform
cluster. Installing and running sshd in your image opens up additional vectors for attack and
requirements for security patching.

Use volumes for persistent data

Images use a volume for persistent data. This way Alauda Container Platform mounts the

network storage to the node running the container, and if the container moves to a new node

Creating images - Alauda Container Platform

the storage is reattached to that node. By using the volume for all persistent storage needs,
the content is preserved even if the container is restarted or moved. If your image writes data

to arbitrary locations within the container, that content could not be preserved.

All data that needs to be preserved even after the container is destroyed must be written to a
volume. Container engines support a readonly flag for containers, which can be used to
strictly enforce good practices about not writing data to ephemeral storage in a container.

Designing your image around that capability now makes it easier to take advantage of it later.

Explicitly defining volumes in your Dockerfile makes it easy for consumers of the image to

understand what volumes they must define when running your image.

See the Kubernetes documentation ©~ for more information on how volumes are used in

Alauda Container Platform.

Note:
Even with persistent volumes, each instance of your image has its own volume, and the
filesystem is not shared between instances. This means the volume cannot be used to

share state in a cluster.

Including metadata in images

Defining image metadata helps Alauda Container Platform better consume your container
images, allowing Alauda Container Platform to create a better experience for developers using
your image. For example, you can add metadata to provide helpful descriptions of your image,

or offer suggestions on other images that may also be needed.

This topic only defines the metadata needed by the current set of use cases. Additional

metadata or use cases may be added in the future.

Defining image metadata

You can use the LABEL instructionin a Dockerfile to define image metadata. Labels are
similar to environment variables in that they are key value pairs attached to an image or a
container. Labels are different from environment variable in that they are not visible to the

running application and they can also be used for fast look-up of images and containers.

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

Creating images - Alauda Container Platform

See the Docker documentation ~ for more information on the LABEL instruction.

The label names are typically namespaced. The namespace is set accordingly to reflect the
project that is going to pick up the labels and use them. For Kubernetes the namespace is
i0.k8s.

See the Docker custom metadata documentation - for details about the format.

https://docs.docker.com/reference/dockerfile/#label
https://docs.docker.com/reference/dockerfile/#label
https://docs.docker.com/reference/dockerfile/#label
https://docs.docker.com/engine/userguide/labels-custom-metadata
https://docs.docker.com/engine/userguide/labels-custom-metadata
https://docs.docker.com/engine/userguide/labels-custom-metadata

Managing images - Alauda Container Platform

Menu ON THIS PAGE >

Managing images

With Alauda Container Platform you can interact with images, depending on where the
registries of the images are located, any authentication requirements around those registries,

and how you want your builds and deployments to behave.
Image pull policy

Each container in a pod has a container image. After you have created an image and pushed

it to a registry, you can then refer to it in the pod.

TOC

Image pull policy overview
Allowing pods to reference images from other secured registries
Creating a pull secret

Using a pull secret in a workload

Image pull policy overview

When Alauda Container Platform creates containers, it uses the container imagePullPolicy to
determine if the image should be pulled prior to starting the container. There are three
possible values for imagePullPolicy :

Table imagePullPolicy values:

Managing images - Alauda Container Platform
Value Description
Always Always pull the image.
IfNotPresent Only pull the image if it does not already exist on the node.

Never Never pull the image.

If a container imagePullPolicy parameter is not specified, Alauda Container Platform sets it

based on the image tag:

1. If the tag is latest, Alauda Container Platform defaults imagePullPolicy to Always.

2. Otherwise, Alauda Container Platform defaults imagePullPolicy to IfNotPresent.

Using image pull secrets

If you are using the Alauda Container Platform image registry, then your pod service account

should already have the correct permissions and no additional action should be required.

However, for other scenarios, such as referencing images across Alauda Container Platform

projects or from secured registries, additional configuration steps are required.

Allowing pods to reference images from other
secured registries
To pull a secured container from other private or secured registries, you must create a pull

secret from your container client credentials, such as Docker , and add it to your service

account.

Docker use a configuration file to store authentication details to log in to secured or insecure
registry:

By default, Docker uses $HOME/.docker/config.json.

These files store your authentication information if you have previously logged in to a secured

or insecure registry.

Managing images - Alauda Container Platform

Creating a pull secret

You can obtain the image pull secret to pull an image from a private container image registry

or repository. You can refer to Pull an Image from a Private Registry .

Using a pull secret in a workload

You can use a pull secret to allow workloads to pull images from a private registry with one of

the following methods:

¢ By linking the secret to a ServiceAccount , which automatically applies the secret to all pods

using that service account.

o By defining imagePullSecrets in the pod specification, which is useful for environments like
GitOps or ArgoCD.

You can use a secret for pulling images for pods by adding the secret to your service account.
Note that the name of the service account should match the name of the service account that

pod uses.

Example output:

apiVersion: v1
imagePullSecrets:
- name: default-dockercfg-123456
- name: <pull_secret_name>
kind: ServiceAccount
metadata:
name: default
namespace: default
secrets:

- name: <pull_secret_name>

Instead of linking the secret to a service account, you can alternatively reference it directly in
your pod or workload definition. This is useful for GitOps workflows such as ArgoCD. For

example:

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Managing images - Alauda Container Platform

Example pod specification:

apiVersion: v1
kind: Pod
metadata:
name: <secure_pod_name>
Spec:
containers:
- name: <container_name>
image: your.registry.io/my-private-image
imagePullSecrets:

- name: <pull_secret_name>

Example ArgoCD workflow:

apiVersion: argoproj.io/vlalphal
kind: Workflow
metadata:
generateName: <example_workflow>
spec:
entrypoint: <main_task>
imagePullSecrets:

- name: <pull_secret_name>

Registry - Alauda Container Platform

Menu

Registry

Introduction

Introduction

Principles and namespace isolation
Authentication and authorization
Advantages

Application Scenarios

Install

Install Via YAML

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry via YAML

Updating/Uninstalling Alauda Container Platform Registry

Install Via Web Ul

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Updating/Uninstalling Alauda Container Platform Registry

Registry - Alauda Container Platform

How To

Common CLI Command Operations
Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account
Pulling Images

Pushing Images

Using Alauda Container Platform Registry in Kubernetes Clusters
Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Best Practices

Verification Checklist

Troubleshooting

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Building, storing and managing container images is a core part of the cloud-native application
development process. Alauda Container Platform(ACP) provides a high-performance, highly-
available, built-in container image repository service designed to provide users with a secure
and convenient image storage and management experience, greatly simplifying application
development, continuous integration/continuous deployment (CI/CD) and application
deployment processes within the platform. CD) and application deployment processes within

the platform.

Deeply integrated into the platform architecture, Alauda Container Platform Registry provides
tighter platform collaboration, simplified configuration, and greater internal access efficiency

than an external, independently deployed image repository.

TOC

Principles and namespace isolation
Authentication and authorization
Authentication
Authorization
Advantages

Application Scenarios

Principles and nhamespace isolation

Introduction - Alauda Container Platform

Alauda Container Platform's built-in image repository, as one of the core components of the
platform, runs inside the cluster in a highly-available manner and utilizes the persistent
storage capabilities provided by the platform to ensure that the image data is secure and

reliable.

One of its core design concepts is logical isolation and management based on Namespace.
Within the Registry, image repositories are organized by namespace. This means that each
namespace can be considered as a separate “zone” for images belonging to that namespace,
and images between different namespaces are isolated by default, unless explicitly

authorized.

Authentication and authorization

The authentication and authorization mechanism of Alauda Container Platform Registry is
deeply integrated with ACP's platform-level authentication and authorization system, enabling

access control as granular as the namespace:

Authentication

Users or automated processes (e.g., CI/CD pipelines on the platform, automated build tasks,
etc.) do not need to maintain a separate set of account passwords for the Registry. They are
authenticated through the platform's standard authentication mechanisms (e.g., using
platform-provided API tokens, integrated enterprise identity systems, etc.). When accessing
Alauda Container Platform Registry through the CLI or other tools, it is common to utilize

existing platform login sessions or ServiceAccount tokens for transparent authentication.

Authorization

Authorization control is implemented at the namespace level. Pull or Push permissions for an
image repository in Alauda Container Platform Registry depend on the platform role and

permissions that the user or ServiceAccount has in the corresponding namespace.

o Typically, the owner or developer role of a namespace is automatically granted Push and

Pull permissions to image repositories under that namespace.

Introduction - Alauda Container Platform

+ Users in other namespaces or users who wish to pull images across namespaces
need to be explicitly granted the appropriate permissions by the administrator of the target
namespace (e.g., bind a role that allows pulling of images via RBAC) before they can

access images within that namespace.

+ This namespace-based authorization mechanism ensures isolation of images between

namespaces, improving security and avoiding unauthorized access and modification.

Advantages

Core advantages of Alauda Container Platform Registry:

Ready-to-Use: Rapidly deploy a private image registry without complex configurations.

Flexible Access: Supports both intra-cluster and external access modes.

Security Assurance: Provides RBAC authorization and image scanning capabilities.

High Availability: Ensures service continuity through replication mechanisms.

Production-Grade: Validated in enterprise environments with SLA guarantees.

Application Scenarios

* Lightweight Deployment: Implement streamlined registry solutions in low-traffic

environments to accelerate application delivery.

+ Edge Computing: Enable autonomous management for edge clusters with dedicated

registries.

+ Resource Optimization: Demonstrate full workflow capabilities through integrated Source

to Image (S2I) solutions when underutilizing infrastructure.

Install - Alauda Container Platform

Menu

Install

Install Via YAML
When to Use This Method?

Prerequisites
Installing Alauda Container Platform Registry via YAML

Updating/Uninstalling Alauda Container Platform Registry

Install Via Web Ul
When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Updating/Uninstalling Alauda Container Platform Registry

Install Via YAML - Alauda Container Platform

= Menu ON THIS PAGE >

Install Via YAML

TOC

When to Use This Method?
Prerequisites
Installing Alauda Container Platform Registry via YAML
Procedure
Configuration Reference
Mandatory Fields
Verification
Updating/Uninstalling Alauda Container Platform Registry
Update

Uninstall

When to Use This Method?

Recommended for:

Advanced users with Kubernetes expertise who prefer a manual approach.

Production-grade deployments requiring enterprise storage (NAS, AWS S3, Ceph, etc.).

Environments needing fine-grained control over TLS, ingress.

Full YAML customization for advanced configurations.

Install Via YAML - Alauda Container Platform

Prerequisites

+ Install the Alauda Container Platform Registry cluster plugin to a target cluster.
e Access to the target Kubernetes cluster with kubectl configured.

¢ Cluster admin permissions to create cluster-scoped resources.

o Obtain a registered domain (e.g., registry.yourcompany.com) Create a Domain

+ Provide valid NAS storage (e.g., NFS, GlusterFS, etc.).

e (Optional) Provide valid S3 storage (e.g., AWS S3, Ceph, etc.). If no existing S3 storage is
available, deploy a MinlO (Built-in S3) instance in the cluster Deploy MinlO.

Installing Alauda Container Platform Registry via
YAML

Procedure

1. Create a YAML configuration file named registry-plugin.yaml with the following template:

http://localhost:4173/container_platform/configure/networking/functions/create_domain.html
http://localhost:4173/container_platform/storage/storagesystem_minio/installation.html

Install Via YAML - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alphal
kind: ClusterPluginInstance
metadata:
annotations:
cpaas.io/display-name: internal-docker-registry
labels:
create-by: cluster-transformer
manage-delete-by: cluster-transformer
manage-update-by: cluster-transformer
name: internal-docker-registry
spec:
config:
access:
address: ""
enabled: false
fake:
replicas: 2
global:
expose: false
isIPvb: false
replicas: 2
oidc:
ldapID: ""
resources:
limits:
cpu: 500m
memory: 512Mi
requests:
cpu: 250m
memory: 256Mi
ingress:
enabled: true
hosts:
- name: <YOUR-DOMAIN> # [REQUIRED] Customize domain
tlsCert: <NAMESPACE>/<TLS-SECRET> # [REQUIRED] Namespace/SecretName
ingressClassName: "<INGRESS-CLASS-NAME>" # [REQUIRED] IngressClassName
insecure: false
persistence:
accessMode: ReadWriteMany
nodes: ""
path: <YOUR-HOSTPATH> # [REQUIRED] Local path for LocalVolume
size: <STORAGE-SIZE> # [REQUIRED] Storage size (e.g., 10Gi)
storageClass: <STORAGE-CLASS-NAME> # [REQUIRED] StorageClass name

Install Via YAML - Alauda Container Platform

type: StorageClass
s3storage:

bucket: <S3-BUCKET-NAME>

enabled: false

env:

REGISTRY_STORAGE_S3_SKIPVERIFY: false

region: <S3-REGION>

regionEndpoint: <S3-ENDPOINT>

secretName: <S3-CREDENTIALS-SECRET>
service:

nodePort: ""
type: ClusterIP

pluginName: internal-docker-registry

2. Customize the following fields according to your environment:

spec:
config:
global:
oidc:
ldapID: "<LDAP-ID>"
ingress:
hosts:
- name: "<YOUR-DOMAIN>"
tlsCert: "<NAMESPACE>/<TLS-SECRET>"
ingressClassName: "<INGRESS-CLASS-NAME>"
persistence:
size: "<STORAGE-SIZE>"
storageClass: "<STORAGE-CLASS-NAME>"
s3storage:
bucket: "<S3-BUCKET-NAME>"
region: "<S3-REGION>"
regionEndpoint: "<S3-ENDPOINT>"
secretName: "<S3-CREDENTIALS-SECRET>"

env:
REGISTRY_STORAGE_S3_SKIPVERIFY: "true"

3. How to create a secret for S3 credentials:

Install Via YAML - Alauda Container Platform

kubectl create secret generic <S3-CREDENTIALS-SECRET> \
--from-literal=access-key-id=<YOUR-S3-ACCESS-KEY-ID> \

--from-literal=secret-access-key=<YOUR-S3-SECRET-ACCESS-KEY> \

-n cpaas-system

Replace <S3-CREDENTIALS-SECRET> with the name of your S3 credentials secret.

4. Apply the configuration to your cluster:

kubectl apply -f registry-plugin.yaml

Configuration Reference

Mandatory Fields

Parameter Description

. : LDAP ID for OIDC
spec.config.global.oidc.ldapID
authentication

o Custom domain for
spec.config.ingress.hosts[@].name

registry access

TLS certificate

o secret reference
spec.config.ingress.hosts[@].t1lsCert

(namespace/secret-

name)

. _ Ingress class name
spec.config.ingress.ingressClassName

for the registry

.) . Storage size for the
spec.config.persistence.size

registry

)) StorageClass name
spec.config.persistence.storageClass

for the registry

Example Value

ldap-test

registry.yourcompany.com

cpaas-system/registry-

tls

cluster-alb-1

1061

nfs-storage-sc

Install Via YAML - Alauda Container Platform
Parameter Description Example Value

S3 bucket name for
spec.config.s3storage.bucket _ prod-image-store
image storage

AWS region for S3
spec.config.s3storage.region us-west-1
storage

S3 service endpoint

spec.config.s3storage.regionEndpoint URL https://s3.amazonaws.com

_ Secret containing
spec.config.s3storage.secretName) s3-access-keys
S3 credentials

Verification

1. Check plugin:
kubectl get clusterplugininstances internal-docker-registry -o yaml
2. Verify registry pods:

kubectl get pods -n cpaas-system -1 app=internal-docker-registry

Updating/Uninstalling Alauda Container Platform

Registry

Update

Execute the following command on the global cluster and update the values in the resource

according to the parameter descriptions provided above to complete the update:

Install Via YAML - Alauda Container Platform

<CLUSTER-NAME> is the cluster where the plugin is installed
kubectl edit -n cpaas-system \

$(kubectl get moduleinfo -n cpaas-system -1 cpaas.io/cluster-name=<CLUSTER-
NAME>, cpaas.io/module-name=internal-docker-registry -o name)

Uninstall

Execute the following command on the global cluster:

<CLUSTER-NAME> is the cluster where the plugin is installed

kubectl get moduleinfo -n cpaas-system -1 cpaas.io/cluster-name=<CLUSTER-

NAME>, cpaas.io/module-name=internal-docker-registry -o name | xargs kubectl delete -n
cpaas-system

Install Via Web Ul - Alauda Container Platform

Menu ON THIS PAGE >

Install Via Web Ul

TOC

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console
Procedure
Verification

Updating/Uninstalling Alauda Container Platform Registry

When to Use This Method?

Recommended for:

* First-time users who prefer a guided, visual interface.

¢ Quick proof-of-concept setups in non-production environments.

+ Teams with limited Kubernetes expertise seeking a simplified deployment process.
e Scenarios requiring minimal customization (e.g., default storage configurations).

+ Basic networking setups without specific ingress rules.

+ StorageClass configurations for high availability.
Not Recommended for:

¢ Production environments requiring advanced storage(S3 storage) configurations.

Install Via Web Ul - Alauda Container Platform

o Networking setups needing specific ingress rules.

Prerequisites

 Install the Alauda Container Platform Registry cluster plugin to a target cluster using the

Cluster Plugin mechanism.

Installing Alauda Container Platform Registry

cluster plugin using the web console

Procedure

1. Log in and navigate to the Administrator page.
2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Registry cluster plugin, click Install, then proceed

to the installation page.

4. Configure parameters according to the following specifications and click Install to complete

the deployment.

The parameter descriptions are as follows:

Parameter Description

Once enabled, administrators can manage the image repository
Expose Service externally using the access address. This poses significant

security risks and should be enabled with extreme caution.

Enable this option when the cluster uses IPv6 single-stack
Enable IPv6 .
networking.

When Expose Service is enabled, configure NodePort to allow

NodePort . S
external access to the Registry via this port.

http://localhost:4173/container_platform/extend/cluster_plugin.html

Install Via Web Ul - Alauda Container Platform
Parameter Description

Select a storage type. Supported types: LocalVolume and
Storage Type
StorageClass.

Nod Select a node to run the Registry service for image storage and
odes
distribution. (Available only when Storage Type is LocalVolume)

Select a StorageClass. When replicas exceed 1, select storage

with RWX (ReadWriteMany) capability (e.g., File Storage) to
StorageClass) o _ _
ensure high availability. (Available only when Storage Type is

StorageClass)
Storage Size Storage capacity allocated to the Registry (Unit: Gi).
Configure the number of replicas for the Registry Pod:

Replicas e LocalVolume: Default is 1 (fixed)

» StorageClass: Default is 3 (adjustable)

Resource Define CPU and Memory resource requests and limits for the
Requirements Registry Pod.
Verification

1. Navigate to Marketplace > Cluster Plugins and confirm the plugin status shows Installed.
2. Click the plugin name to view its details.

3. Copy the Registry Address and use the Docker client to push/pull images.

Updating/Uninstalling Alauda Container Platform
Registry

You can update or uninstall the Alauda Container Platform Registry plugin from either the

list page or details page.

How To - Alauda Container Platform

Menu

How To

Common CLI Command Operations
Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account
Pulling Images

Pushing Images

Using Alauda Container Platform Registry in Kubernetes Clusters
Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access

Best Practices

Verification Checklist

Troubleshooting

Common CLI Command Operations - Alauda Container Platform

Menu ON THIS PAGE >

Common CLI Command Operations

The Alauda Container Platform provides command line tools for users to interact with the
Alauda Container Platform Registry. The following are some examples of common operations
and commands:

Let's assume that Alauda Container Platform Registry for the cluster has a service address of

registry.cluster.local and the namespace you are currently working on is my-ns.

Contact technical services to acquire the kubectl-acp plugin and ensure it is properly

installed in your environment.

TOC

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account
Pulling Images

Pushing Images

Logging in Registry
Log in to the cluster's Registry by logging in to the ACP.

kubectl acp login <ACP-endpoint>

Common CLI Command Operations - Alauda Container Platform

Add namespace permissions for users

Add namespace pull permission for a user.

kubectl create rolebinding <binding-name> --clusterrole=system:image-puller --user=

<username> -n <namespace>
Add namespace push permissions to a user.

kubectl create rolebinding <binding-name> --clusterrole=system:image-pusher --user=
<username> -n <namespace>

Add namespace permissions for a service

account

Add namespace pull permission for a service account.

kubectl create rolebinding <binding-name> --clusterrole=system:image-puller --

serviceaccount:<namespace> :<serviceaccount-name> -n <namespace>

Add namespace push permission for a service account.

kubectl create rolebinding <binding-name> --clusterrole=system:image-pusher --

serviceaccount=<namespace>:<serviceaccount-name> -n <namespace>

Pulling Images

Pulls an image from the registry to inside the cluster (e.g., for Pod deployment).

Common CLI Command Operations - Alauda Container Platform

kubectl acp pull registry.cluster.local/my-ns/my-app:latest

kubectl acp pull registry.cluster.local/shared-ns/base-image:latest

This command verifies your identity and pull permissions in the target namespace, and then

pulls the image from the Registry.

Pushing Images

Pushes locally built images or images pulled from elsewhere to a specific namespace in the

registry.

You need to first tag (tag) the local image with the address and namespace format of the

target Registry using a standard container command line tool such as docker.

docker tag my-app:latest registry.cluster.local/my-ns/my-app:v]1

kubectl acp push registry.cluster.local/my-ns/my-app:v1

Pushes an image from a remote image repository to a specific namespace in the Alauda

Container Platform Registry.

kubectl acp push remote.registry.io/demo/my-app:latest registry.cluster.local/my-ns/my-

app: latest

This command verifies your identity and push permissions within the my-ns namespace, and
then uploads the locally tagged image to Registry.

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Menu ON THIS PAGE >

Using Alauda Container Platform Registry

In Kubernetes Clusters

The Alauda Container Platform (ACP) Registry provides secure container image management

for Kubernetes workloads.

TOC

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access
Example Role Binding

Best Practices

Verification Checklist

Troubleshooting

Registry Access Guidelines

¢ Internal Address Recommended: For images stored in the cluster's registry, always
prioritize using the internal service address internal-docker-registry.cpaas-system.svc
when deploying within the cluster. This ensures optimal network performance and avoids

unnecessary external routing.

+ External Address Usage: The external ingress domain (e.g. registry.cluster.local)is

primarily intended for:

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform
» Image pushes/pulls from outside the cluster (e.g., developer machines, CI/CD systems)

o Cluster-external operations requiring registry access

Deploy Sample Application

1. Create an application named my-app inthe my-ns namespace.

2. Store the application image in the registry at internal-docker-registry.cpaas-system.svc/my-

ns/my-app:vi .

3. The default ServiceAccount in each namespace is automatically configured with an

imagePullSecret for accessing images from internal-docker-registry.cpaas-system.svc .

Example Deployment:

apiVersion: apps/v1
kind: Deployment
metadata:
name: my-app
namespace: my-ns
spec:
replicas: 3
selector:
matchLabels:
app: my-app
template:
metadata:
labels:
app: my-app
spec:
containers:
- name: main-container
image: internal-docker-registry.cpaas-system.svc/my-ns/my-app:vi
ports:

- containerPort: 8080

Cross-Namespace Access

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

To allow users from my-ns to pull images from shared-ns , the administrator of shared-ns can

create a role binding to grant the necessary permissions.

Example Role Binding

kubectl create rolebinding cross-ns-pull \
--clusterrole=system:image-puller \
--serviceaccount=my-ns:default \
-n shared-ns

Best Practices

* Registry Usage: Always use internal-docker-registry.cpaas-system.svc for deployments to

ensure security and performance.

 Namespace Isolation: Leverage namespace isolation for better security and management

of images.

» Use namespace-based image paths: internal-docker-registry.cpaas-

system.svc/<namespace>/<image>:<tag>

¢ Access Control: Use role bindings to manage cross-namespace access for users and

service accounts.

Verification Checklist

1. Validate image accessibility for the default ServiceAccount in my-ns :

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --

as=system:serviceaccount:my-ns:default

2. Validate image accessibility for a user in my-ns :

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --as=<username>

Troubleshooting

+ Image Pull Errors: Check the imagePullSecrets in the pod spec and ensure they are

correctly configured.

+ Permission Denied: Ensure the user or ServiceAccount has the necessary role bindings in

the target namespace.

+ Network Issues: Verify network policies and service configurations to ensure connectivity

to the internal registry.

¢ DNS Failures: Check the content of /etc/hosts file on the node, ensure DNS resolution

for the internal-docker-registry.cpaas-system.svc is correctly configured.

» Verify node's /etc/hosts configuration to ensure correct DNS resolution of internal-

docker-registry.cpaas-system.svc

o Example showing registry service mapping (ClusterlP of internal-docker-registry

service):

127.0.0.1 Tlocalhost localhost.localdomain
10.4.216.11 internal-docker-registry.cpaas-system internal-docker-registry.cpaas-

system.svc internal-docker-registry.cpaas-system.svc.cluster.local

o How to get internal-docker-registry current ClusterlP:

kubectl get svc -n cpaas-system internal-docker-registry -o

jsonpath="{.spec.clusterIP}'

Source to Image - Alauda Container Platform

Menu

Source to Image

Overview

Introduction

Source to Image Concept
Core Features

Core Benefits

Application scenarios

Usage Limitations

Architecture

Release Notes
Alauda Container Platform Builds Release Notes
Supported Versions

v1.1 Release Notes

Lifecycle Policy

Install

Source to Image - Alauda Container Platform

Installing Alauda Container Platform Builds
Prerequisites

Procedure

Upgrade

Upgrading Alauda Container Platform Builds
Prerequisites

Procedure

Guides

Managing applications created from Code
Key Features

Advantages

Prerequisites

Procedure

Related operations

How To

Creating an application from Code
Prerequisites

Procedure

Source to Image - Alauda Container Platform

Overview - Alauda Container Platform

Menu

Overview

Introduction

Source to Image Concept
Core Features

Core Benefits

Application scenarios

Usage Limitations

Architecture

Release Notes
Alauda Container Platform Builds Release Notes
Supported Versions

v1.1 Release Notes

Lifecycle Policy

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Alauda Container Platform Builds is a cloud-native container tool provided by Alauda
Container Platform that integrates Source to Image (S2I) capabilities with automated
pipelines. It accelerates enterprise cloud-native journeys by enabling fully automated CI/CD
pipelines that support multiple programming languages, including Java, Go, Python, and
Node.js. Additionally, Alauda Container Platform Builds offers visual release management and
seamless integration with Kubernetes-native tools like Helm and GitOps, ensuring efficient

application lifecycle management from development to production.

TOC

Source to Image Concept
Core Features

Core Benefits

Application scenarios

Usage Limitations

Source to Image Concept

Source to Image (S2I) is a tool and workflow for building reproducible container images from
source code. It injects the application's source code into a predefined builder image and
automatically completes steps such as compilation and packaging, ultimately generating a
runnable container image. This allows developers to focus more on business code

development without worrying about the details of containerization.

Introduction - Alauda Container Platform

Core Features

Alauda Container Platform Builds facilitates a full-stack, cloud-native workflow from code to
application, enabling multi-language builds and visual release management. It leverages
Kubernetes-native capabilities to convert source code into runnable container images,

ensuring seamless integration into a comprehensive cloud-native platform.

+ Multi-language Builds: Supports building applications in various programming languages

such as Java, Go, Python, and Node.js, accommodating diverse development needs.

« Visual Interface: Provides an intuitive interface that allows you to easily create, configure,

and manage build tasks without deep technical knowledge.

¢ Full Lifecycle Management: Covers the entire lifecycle from code commit to application

deployment, automating build, deployment, and operational management.

+ Deep Integration: Seamlessly integrates with your Container Platform product, providing a

seamless development experience.

« High Extensibility: Supports custom plugins and extensions to meet your specific needs.

Core Benefits

o Accelerated Development: Streamlines the build process, speeding up application

delivery.
o Enhanced Flexibility: Supports building in multiple programming languages.

+ Improved Efficiency: Automates build and deployment processes, reducing manual

intervention.

¢ Increased Reliability: Provides detailed build logs and visual monitoring for easy

troubleshooting.

Application scenarios

The main application scenarios for S2I are as follows:

» Web applications

Introduction - Alauda Container Platform

S2| supports various programming languages, such as Java, Go, Python, and Node.js. By
leveraging the Alauda Container Platform application management capabilities, it allows for
rapid building and deployment of web applications simply by entering the code repository
URL.

e CI/ICD

S2l integrates seamlessly with DevOps pipelines, leveraging Kubernetes-native tools like
Helm and GitOps to automate the image building and deployment processes. This enables

continuous integration and continuous deployment of applications.

Usage Limitations

The current version only supports Java, Go, Python, and Node.|s languages.

WARNING

Prerequisites: Alauda DevOps Pipelines operator © is now available in the cluster OperatorHub.

https://docs.alauda.io/alauda-devops-pipelines
https://docs.alauda.io/alauda-devops-pipelines
https://docs.alauda.io/alauda-devops-pipelines

Architecture - Alauda Container Platform

Menu

Architecture
{f - "“\\' {f"_"x\
| ﬁ | — Create—» | |
\ J \ J
o e
ACP Builds TaskRun
Wa|t|:h
TN SN TN
.-’/ \‘-. I,K \‘-. .-’/ \‘-.
l. ? || Clone—m || 6 || 4——Run l. % .l
\ / \ / \ /
R S R
Git Repo Pod Tektan
DL|.|1put
f,/’"_"x\ K,x'"_"x
R i
f |1 f ‘ \
l. .“ﬂ .l ——Push—» l. l“'l .l
'\F**'J,f' \ J
S S
Caontainer Image
Image Registry

Source to Image (S2I) capability is implemented through the Alauda Container Platform
Builds operator, enabling automated container image builds from Git repository source code

and subsequent pushes to a designated image registry. The core components include:

+ Alauda Container Platform Builds operator: Manages the end-to-end build lifecycle and

orchestrates Tekton pipelines.

o Tekton pipelines: Executes S21 workflows via Kubernetes-native TaskRun resources.

Release Notes - Alauda Container Platform

Menu ON THIS PAGE >

Release Notes

TOC

Alauda Container Platform Builds Release Notes
Supported Versions
v1.1 Release Notes

v1.1.0

Alauda Container Platform Builds Release Notes

The release notes for the Alauda Container Platform Builds operator describe new features

and enhancements, deprecated features, and known issues.

INFO

The Alauda Container Platform Builds operator is provided as an installable component, with a

distinct release cycle from the core Alauda Container Platform. The Alauda Container Platform

Builds operator Lifecycle Policy outlines release compatibility.

Supported Versions

Release Notes - Alauda Container Platform

] Alauda Container Platform Alauda DevOps Pipelines
Version . .
Version Version

v1.1.0 v4.l v4.l

v1.1 Release Notes

v1.1.0

1. Security Vulnerability Remediation.

2. Independently Releasable.

Lifecycle Policy - Alauda Container Platform

Menu

Lifecycle Policy

Version Lifecycle Timeline

Below is the lifecycle schedule for released versions of the Alauda Container Platform Builds
Operator:

Version Release Date End of Life

v1.1.0 2025-08-15 2027-08-15

Install - Alauda Container Platform

Menu

Install

Installing Alauda Container Platform Builds
Prerequisites

Procedure

Installing Alauda Container Platform Builds - Alauda Container Platform

Menu ON THIS PAGE >

Installing Alauda Container Platform Builds

TOC

Prerequisites

Procedure
Install the Alauda Container Platform Builds Operator
Install the Shipyard instance

Verification

Prerequisites

Alauda Container Platform Builds is a container tool offered by Alauda Container Platform

that integrates building (capable of Source to Image) and create application.

1. Download the latest version package of Alauda Container Platform Builds that matches
your platform. If the Alauda DevOps Pipelines operator has not been installed on the

Kubernetes cluster, it is recommended to download it together.

2. Utilize the violet CLI tool to upload Alauda Container Platform Builds and Alauda
DevOps Pipelines packages to your target cluster. For detailed instructions on using

violet , please refer to the CLI.

Procedure

http://localhost:4173/container_platform/ui/cli_tools/index.html

Installing Alauda Container Platform Builds - Alauda Container Platform

Install the Alauda Container Platform Builds Operator

1. Log in, and navigate to the Administrator page.
2. Click Marketplace > OperatorHub.
3. Find the Alauda Container Platform Builds operator, click Install, and enter the Install

page.

Configuration Parameters:

Parameter Recommended Configuration
Channel Alpha : The default Channel is set to alpha.
Version Please select the latest version.

Cluster : Asingle Operator is shared across all namespaces in the

Installation _ . N
Mod cluster for instance creation and management, resulting in lower
ode
resource usage.
Recommended : It is recommended to use the shipyard-operator
Namespace o _ . _
namespace; it will be created automatically if it does not exist.
Please select the Manual .
Upgrade) . : :
e Manual : When a new version is available in the OperatorHub
Strategy

o the Upgrade action will not be executed automatically.

4. On the Install page, select default configuration, click Install, and complete the installation

of the Alauda Container Platform Builds Operator.

Install the Shipyard instance

1. Click on Marketplace > OperatorHub.
2. Find the installed Alauda Container Platform Builds operator, navigate to All Instances.

3. Click Create Instance button, and click Shipyard card in the resource area.

Installing Alauda Container Platform Builds - Alauda Container Platform

4. On the parameter configuration page for the instance, you may use the default

configuration unless there are specific requirements.

5. Click Create.

Verification

o After the instance is successfully created, wait approximately 20 minutes, then navigate to

Container Platform > Applications > Applications and click Create.

¢ You should see the entry for Create from Code. At this time, the installation of Alauda
Container Platform Builds is successful, and you can start your S2I journey with the

Creating an application from Code.

Upgrade - Alauda Container Platform

Menu

Upgrade

Upgrading Alauda Container Platform Builds
Prerequisites

Procedure

Upgrading Alauda Container Platform Builds - Alauda Container Platform

= Menu ON THIS PAGE >

Upgrading Alauda Container Platform
Builds

TOC

Prerequisites
Procedure

Upgrading the Alauda Container Platform Builds Operator

Prerequisites

Alauda Container Platform Builds is a container tool offered by Alauda Container Platform

that integrates building (capable of Source to Image) and create application.

1. Download the new version package of Alauda Container Platform Builds that matches
your platform.

2. Utilize the violet CLI tool to upload Alauda Container Platform Builds and Alauda

DevOps Pipelines packages to your target cluster. For detailed instructions on using

violet , please refer to the CLI.

Procedure

Upgrading the Alauda Container Platform Builds Operator

http://localhost:4173/container_platform/ui/cli_tools/index.html

Upgrading Alauda Container Platform Builds - Alauda Container Platform

INFO

If you are upgrading from version v4.0 and earlier, first migrate the Alauda DevOps Tekton v3 to

Alauda DevOps Pipelines .

1. Log in, and navigate to the Administrator page.

2. Click Marketplace > OperatorHub.

3. In the navigation bar, select the cluster where the operator is installed.

4. Find the Alauda Container Platform Builds operator and open its Details page.

5. Click Confirm to start the upgrade, and wait until the operator finishes upgrading.

https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html
https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html
https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html
https://docs.alauda.io/devops/4.0/upgrade/migrating-tekton-v3-to-v4.md.html

Guides - Alauda Container Platform

Menu

Guides

Managing applications created from Code
Key Features

Advantages

Prerequisites

Procedure

Related operations

Managing applications created from Code - Alauda Container Platform

Menu ON THIS PAGE >

Managing applications created from Code

TOC

Key Features
Advantages
Prerequisites
Procedure

Related operations

Build

Key Features

¢ Input the code repository URL to trigger the S2I process, which converts the source code

into a image and publishes it as an application.

* When the source code is updated, initiate the Rebuild action via the visual interface to

update the application version with a single click.

Advantages

« Simplifies the process of creating and upgrading applications from code.

o Lowers the barrier for developers, eliminating the need to understand the details of

containerization.

Managing applications created from Code - Alauda Container Platform

¢ Provides a visual construction process and operational management, facilitating problem

localization, analysis, and troubleshooting.

Prerequisites

¢ Installing Alauda Container Platform Builds is completed.

e Access to a image repository is required; if unavailable, contact the Administrator to

Installing Alauda Container Platform Registry

Procedure

1. Container Platform, navigate to Application > Application.
2. Click Create.
3. Select the Create from Code.

4. Refer to the parameter descriptions below to complete the configuration.

Region Parameter Description

Code

Repository o Platform Integrated: Choose a code repository
that is integrated with the platform and already
allocated for the current project; the platform

Type supports GitLab, GitHub, and Bitbucket.

e Input: Use a code repository URL that is not

integrated with the platform.

Integrated The name of the integration tool project assigned
Project or associated with the current project by the

Name Administrator.

Managing applications created from Code - Alauda Container Platform

Repository
Address

Version

Identifier

Context dir

Secret

Builder

Image

Select or input the address of the code repository

that stores the source code.

Supports creating applications based on branches,
tags, or commits in the code repository. Among

them:

e When the version identifier is a branch, only the
latest commit under the selected branch is

supported for creating applications.

e When the version identifier is a tag or commit,
the latest tag or commit in the code repository is
selected by default. However, you can also

choose other versions as needed.

Optional directory for the source code, used as a

context directory for build.

When using an input code repository, you can add

an authentication secret as needed.

e Animage that includes specific programming
language runtime environments, dependency
libraries, and S2I scripts. Its main purpose is to
convert source code into runnable application

images.

e The supported builder images, include: Golang,

Java, Node.js, and Python.

Build

Managing applications created from Code - Alauda Container Platform

Version

Build Type

Select the runtime environment version that is
compatible with your source code to ensure

smooth application execution.

Currently, only the Build method is supported for
constructing application images. This method
simplifies and automates the complex image
building process, allowing developers to focus
solely on code development. The general process

is as follows:

1. After installed Alauda Container Platform Builds

and creating the Shipyard instance, the system
automatically generates cluster-level resources,
such as ClusterBuildStrategy, and defines a
standardized build process. This process
includes detailed build steps and necessary
build parameters, thereby enabling Source-to-
Image (S2l) builds. For detailed information,
refer to: Installing Alauda Container Platform
Builds

. Create Build type resources based on the

above strategies and the information provided
in the form. These resources specify build
strategies, build parameters, source code
repositories, output image repositories, and

other relevant information.

. Create BuildRun type resources to initiate

specific build instances, which coordinate the

entire build process.

4. After completing the BuildRun creation, the

system will automatically generate the

corresponding TaskRun resource instance. This

Managing applications created from Code - Alauda Container Platform

TaskRun instance triggers the Tekton pipeline
build and creates a Pod to execute the build

process. The Pod is responsible for the actual
build work, which includes: Pulling the source

code from the code repository.

Calling the specified builder image.

Executing the build process.

After the build is complete, specify the target
Image URL .) o
image repository address for the application.

Fill in the application configuration as needed. For
o specific details, refer to the parameter descriptions
Application - _ _ o
in the Creating applications from Image

documentation.

o Target Port: The actual port that the application
inside the container listens on. When external
access is enabled, all matching traffic will be

forwarded to this port to provide external
Network - services.

o Other Parameters: Please refer to the
parameter descriptions in the Creatinglngress

documentation.

Label Fill in the relevant labels and annotations as

Annotations needed.

http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

Managing applications created from Code - Alauda Container Platform

5. After filling in the parameters, click on Create.

6. You can view the corresponding deployment on the Details page.

Related operations

Build
After the application has been created, the corresponding information can be viewed on the
details page.

Parameter Description

Build Click the link to view the specific build (Build) and build task (BuildRun)

ui
resource information and YAML.
Start When the build fails or the source code changes, you can click this

Build button to re-execute the build task.

How To - Alauda Container Platform

Menu

How To

Creating an application from Code
Prerequisites

Procedure

Creating an application from Code - Alauda Container Platform

Menu ON THIS PAGE >

Creating an application from Code

Using the powerful capabilities of Alauda Container Platform Builds installation to achieve
the entire process from Java source code to create an application, and ultimately enable

the application to run efficiently in a containerized manner on Kubernetes.

TOC

Prerequisites

Procedure

Prerequisites

Before using this functionality, ensure that:

¢ Installing Alauda Container Platform Builds

e There is an accessible image repository on the platform. If not, please contact the
Administrator to Installing ACP Registry

Procedure

1. Container Platform, click Applications > Applications.

2. Click Create.

Creating an application from Code - Alauda Container Platform

3. Select the Create from Code.

4. Complete the configuration according to the parameters below:

Parameter Recommended Configuration

Type: Input
Code Repository Repository URL: https://github.com/alauda/spring-boot-hello-

wor ld
Build Method Build
Image o
] Contact the Administrator.
Repository
Application: spring-boot-hello-world
Application Name: spring-boot-hello-world
Resource Limits: Use the default value.
Network Target Port: 8080

5. After filling in the parameters, click Create.

6. You can check the corresponding application status on the Details page.

Node Isolation Strategy - Alauda Container Platform

Node Isolation Strategy

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to
exclusively use cluster nodes.

Introduction

Introduction
Advantages

Application Scenarios

Architecture

Architecture

Concepts

Core Concepts

Node Isolation

Node Isolation Strategy - Alauda Container Platform

Guides

Create Node Isolation Strategy
Create Node Isolation Strategy

Delete Node Isolation Strategy

Permissions

Permissions

Introduction - Alauda Container Platform

Menu ON THIS PAGE >

Introduction

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

TOC

Advantages

Application Scenarios

Advantages

Conveniently allocate nodes to projects in an exclusive or shared manner, preventing

resource contention between projects.

Application Scenarios

Node Isolation Strategy is suitable for scenarios where enhanced resource isolation between
projects is required, and where there is a desire to prevent other projects' components from
occupying nodes, which could lead to resource constraints or inability to meet performance

requirements.

Architecture - Alauda Container Platform

Menu

Architecture
Kubernetes
Cluster
Project A Project B

Node Isolation Strategy is implemented based on the Container Platform Cluster Core
component, providing the capability of node isolation between projects by allocating nodes on
each workload cluster. When containers are created in a project, they are forcibly scheduled

to the nodes allocated to that specific project.

Menu

Concepts

Core Concepts

Node Isolation

Concepts - Alauda Container Platform

Core Concepts - Alauda Container Platform

Menu ON THIS PAGE >

Core Concepts

TOC

Node Isolation

Node Isolation

Node Isolation refers to isolating nodes in a cluster to prevent containers from different
projects from simultaneously using the same node, thereby avoiding resource contention and
performance degradation.

Guides - Alauda Container Platform

Menu

Guides

Create Node Isolation Strategy
Create Node Isolation Strategy

Delete Node Isolation Strategy

Create Node Isolation Strategy - Alauda Container Platform

= Menu ON THIS PAGE >

Create Node Isolation Strategy

Create a node isolation policy for the current cluster, allowing specified projects to have
exclusive access to the nodes of grouped resources within the cluster, thereby restricting the

runnable nodes for Pods under the project, achieving physical resource isolation between
projects.

TOC

Create Node Isolation Strategy

Delete Node Isolation Strategy

Create Node Isolation Strategy

1. In the left navigation bar, click on Security > Node Isolation Strategy.
2. Click on Create Node Isolation Strategy.

3. Refer to the instructions below to configure the relevant parameters.

Parameter Description
Project Whether to enable or disable the switch for the nodes contained in
Exclusivity the project isolation policy configured in the strategy; click to toggle

on or off, default is on.
When the switch is on, only Pods under the specified project in the

policy can run on the nodes included in the policy; when off, Pods

Create Node Isolation Strategy - Alauda Container Platform

Parameter Description

under other projects in the current cluster can also run on the nodes

included in the policy apart from the specified project.

The project that is configured to use the nodes in the policy.

Click the Project dropdown selection box, and check the checkbox
before the project name to select multiple projects.

Note:

Project A project can only have one node isolation policy set; if a project
has already been assigned a node isolation policy, it cannot be
selected;

Supports entering keywords in the dropdown selection box to filter

and select projects.

The IP addresses of the compute nodes allocated for use by the
project in the policy.
Click the Node dropdown selection box, and check the checkbox
before the node name to select multiple nodes.

Node Note:
A node can belong to only one isolation policy; if a node already
belongs to another isolation policy, it cannot be selected;
Supports entering keywords in the dropdown selection box to filter

and select nodes.

4. Click Create.
Note:

o After the policy is created, existing Pods in the project that do not comply with the
current policy will be scheduled to the nodes included in the current policy after they are

rebuilt;

« When Project Exclusivity is on, currently existing Pods on the nodes will not be

automatically evicted; manual scheduling is required if eviction is needed.

Delete Node Isolation Strategy

Create Node Isolation Strategy - Alauda Container Platform

Note: After the node isolation policy is deleted, the project will no longer be restricted to run
on specific nodes, and the nodes will no longer be exclusively used by the project.

1. In the left navigation bar, click on Security > Node Isolation Strategy.

2. Locate the node isolation policy, click : > Delete.

Menu

Permissions
Function Action
View
nodegroups Create
acp-
nodegroups Update
Delete

Permissions - Alauda Container Platform

Platform Platform

Administrator auditors

v v
v X
v X
v X

Project

Manager
v

X

Namespace

Administrator
v

X

FAQ - Alauda Container Platform

Menu ON THIS PAGE >

FAQ

TOC

Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist in a namespace when importing it?

Why shouldn't multiple ResourceQuotas exist in a
namespace when importing it?
When importing a namespace, if the namespace contains multiple ResourceQuota resources,

the platform will select the smallest value for each quota item among all ResourceQuotas and

merge them, ultimately creating a single ResourceQuota named default .
Example:

The namespace to-import to be imported contains the following resourcequota resources:

FAQ - Alauda Container Platform

apiVersion: v1
kind: ResourceQuota
metadata:
name: a
namespace: to-import
spec:
hard:
requests.cpu: "1"
requests.memory: "500Mi"
limits.cpu: "3"
limits.memory: "1Gi"
apiVersion: v1
kind: ResourceQuota
metadata:
name: b
namespace: to-import
spec:
hard:
requests.cpu: "2"
requests.memory: "300Mi"
limits.cpu: "2"
limits.memory: "2Gi"

After importing the to-import namespace, the following default ResourceQuota will be

created in that namespace:

apiVersion: v1
kind: ResourceQuota
metadata:
name: default
namespace: to-import
spec:
hard:
requests.cpu: "1"
requests.memory: "300Mi"
limits.cpu: "2"
limits.memory: "1Gi"

For each ResourceQuota, the quotas of resources is the minimum value between a and b .

FAQ - Alauda Container Platform

When multiple ResourceQuotas exist in a namespace, Kubernetes validates each
ResourceQuota independently. Therefore, after importing a namespace, it is recommended to
delete all ResourceQuotas except for the default one. This helps avoid complications in

guota calculations due to multiple ResourceQuotas, which can easily lead to errors.

Why shouldn't multiple LimitRanges exist in a

namespace when importing it?

When importing a namespace, if the namespace contains multiple LimitRange resources, the
platform cannot merge them into a single LimitRange. Since Kubernetes independently
validates each LimitRange when multiple exist, and the behavior of which LimitRange's

default values Kubernetes selects is unpredictable.

If the namespace only contains a single LimitRange, the platform will created a LimitRange
named default with the values from that LimitRange.

Therefore, before importing a namespace, only a single LimitRange should exist in the
namespace. And after the namespace is imported it is recommended to delete the
LimitRanges except for the one named default to avoid unpredictable behavior caused by

multiple LimitRanges.

	Developer
	Overview
	TOC
	Namespace Management
	Application Lifecycle Management
	Application Creation Patterns
	Application Operations
	Application Observability

	Kubernetes Workload Management

	Quick Start
	Creating a simple application via image
	TOC
	Introduction
	Use Cases
	Time Commitment

	Important Notes
	Prerequisites
	Workflow Overview
	Procedure
	Create namespace
	Configure Image Repository
	Method 1: Integrated Registry via Toolchain
	Method 2: External Registry Services

	Create application via Deployment
	Expose Service via NodePort
	Validate Application Accessibility

	Building Applications
	Build application architecture
	TOC
	Introduction to build application
	Core components
	Archon
	Metis
	Captain controller manager
	Icarus

	Concepts
	Application Types
	Custom Applications
	TOC
	UnderStanding Custom Applications
	Core Capabilities
	Design Value

	Custom Application CRD Architecture Design
	Application CRD Define
	ApplicationHistory Define

	Workload Types
	Understanding Parameters
	TOC
	Overview
	Core Concepts
	What are Parameters?
	Relationship with Docker

	Use Cases and Scenarios
	1. Application Configuration
	2. Environment-Specific Deployment
	3. Database Connection Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Parameter Examples
	Web Server with Custom Configuration
	Application with Multiple Parameters

	Best Practices
	1. Parameter Design Principles
	2. Security Considerations
	3. Configuration Management

	Troubleshooting Common Issues
	1. Parameter Not Recognized
	2. Parameter Override Not Working
	3. Debugging Parameter Issues

	Advanced Usage Patterns
	1. Conditional Parameters with Init Containers
	2. Parameter Templating with Helm

	Understanding Environment Variables
	TOC
	Overview
	Core Concepts
	What are Environment Variables?
	Environment Variable Sources in Kubernetes
	Environment Variable Precedence

	Use Cases and Scenarios
	1. Application Configuration
	2. Database Configuration
	3. Dynamic Runtime Information
	4. Environment-Specific Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Environment Variable Examples
	Microservices with Service Discovery
	Multi-Container Pod with Shared Configuration

	Best Practices
	1. Security Best Practices
	2. Configuration Organization
	3. Environment Variable Naming
	4. Default Values and Validation

	Understanding Startup Commands
	TOC
	Overview
	Core Concepts
	What are Startup Commands?
	Relationship with Docker and Parameters
	Command vs Args Interaction

	Use Cases and Scenarios
	1. Custom Application Startup
	2. Debugging and Troubleshooting
	3. Initialization Scripts
	4. Multi-Purpose Images

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create job
	Complex Startup Command Examples
	Multi-Step Initialization
	Conditional Startup Logic

	Best Practices
	1. Signal Handling and Graceful Shutdown
	2. Error Handling and Logging
	3. Security Considerations
	4. Resource Management

	Advanced Usage Patterns
	1. Init Containers with Custom Commands
	2. Sidecar Containers with Different Commands
	3. Job Patterns with Custom Commands

	Resource Unit Description
	Namespaces
	Creating Namespaces
	TOC
	Understanding namespaces
	Creating namespaces by using web console
	Creating namespace by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Importing Namespaces
	TOC
	Overview
	Use Cases
	Prerequisites
	Procedure

	Resource Quota
	TOC
	Understanding Resource Requests & Limits
	Quotas
	Resource Quotas
	YAML file example
	Create resouce quota by using CLI

	Storage Quotas

	Hardware accelerator Resources Quotas
	Other Quotas

	Limit Range
	TOC
	Understanding Limit Range
	Create Limit Range by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Pod Security Admission
	TOC
	Security Modes
	Security Standards
	Configuration
	Namespace Labels
	Exemptions

	UID/GID Assignment
	TOC
	Enable UID/GID Assignment
	Verify UID/GID Assignment
	The UID/GID Range
	Verify the Pod UID/GID

	Overcommit Ratio
	TOC
	UnderStanding Namespace Resource Overcommit Ratio
	CRD Define
	Creating overcommit ratio by using CLI
	Creating/Updating Overcommit Ratio by using web console
	Precautions
	Procedure

	Managing Namespace Members
	TOC
	Importing Members
	Constraints and Limitations
	Prerequisites
	Procedure

	Adding Members
	Procedure

	Removing Members
	Procedure

	Updating Namespaces
	TOC
	Updating Quotas
	Updating a Resource Quota by using web console
	Updating a Resource Quota by using CLI

	Updating Container LimitRanges
	Updating a LimitRange by using web console
	Updating a LimitRange by using CLI

	Updating Pod Security Admission
	Updating a Pod Security Admission by using web console
	Updating a Pod Security Admission by using CLI

	Deleting/Removing Namespaces
	TOC
	Deleting Namespaces
	Removing Namespaces

	Creating Applications
	Creating applications from Image
	TOC
	Prerequisites
	Procedure 1 - Workloads
	Workload 1 - Configure Basic Info
	Workload 2 - Configure Pod
	Workload 3 - Configure Containers

	Procedure 2 - Services
	Procedure 3 - Ingress
	Application Management Operations
	Reference Information
	Storage Volume Mounting Instructions
	Health Check Parameters
	Common Parameters
	Protocol-Specific Parameters

	Creating applications from Chart
	TOC
	Precautions
	Prerequisites
	Procedure
	Status Analysis Reference

	Creating applications from YAML
	TOC
	Precautions
	Prerequisites
	Procedure

	Creating applications from Code
	TOC
	Prerequisites
	Procedure

	Creating applications from Operator Backed
	TOC
	UnderStanding Operator Backed Application
	Core Capabilities
	Operator Backed Application CRD

	Creating a Operator Backed Application by using web console
	Troubleshooting

	Creating applications by using CLI
	TOC
	Prerequisites
	Procedure
	Example
	YAML
	kubectl commands

	Reference

	Operation and Maintaining Applications
	Application Rollout
	Installing Alauda Container Platform Argo Rollouts
	TOC
	Prerequisites
	Installing Alauda Container Platform Argo Rollouts
	Procedure

	Application Blue Green Deployment
	Benefits of Blue Green Deployments
	Blue Green Deployment with Argo Rollouts
	TOC
	Prerequisites
	Procedure
	Creating the Deployment
	Creating the Blue Service
	Verify the Blue Deployment
	Verify Traffic Routing to Blue
	Creating the Rollout
	Verify the Rollouts
	Preparing Green Deployment
	Promoting the Rollout to Green

	Application Canary Deployment
	Benefits of Canary Deployments
	Canary Deployments with Argo Rollouts
	TOC
	Prerequisites
	Procedure
	Creating the Deployment
	Creating the Stable Service
	Creating the Canary Service
	Creating the Gateway
	DNS Configuration
	Creating the HTTPRoute
	Accessing the Stable service
	Creating the Rollout
	Verify the Rollouts
	Preparing Canary Deployment
	Promoting the Rollout
	Aborting the Rollout (Optional)

	Status Description
	TOC
	Applications

	Deployment
	KEDA(Kubernetes Event-driven Autoscaling)
	KEDA Overview
	TOC
	Introduction
	Advantages
	How KEDA works
	KEDA Custom Resource Definitions (CRDs)

	Installing KEDA
	TOC
	Prerequisites
	Installing via Command Line
	Installing KEDA Operator
	Creating the KedaController instance

	Installing via Web Console
	Installing KEDA Operator
	Creating the KedaController instance

	Verification
	Additional Scenarios
	Integrating ACP Log Collector

	Uninstalling KEDA Operator
	Removing the KedaController instance
	Uninstalling KEDA Operator via CLI
	Uninstalling KEDA Operator via Web Console

	How To
	Integrating ACP Monitoring with Prometheus Plugin
	TOC
	Prerequisites
	Procedure
	Verification

	Other KEDA scalers
	Pausing Autoscaling in KEDA
	TOC
	Procedure
	Immediate Pause with Current Replicas
	Pause After Scaling to a Specific Replica Count
	Behavior When Both Annotations are Set
	Unpausing Autoscaling

	Scaling to Zero
	Verification

	Configuring HPA
	TOC
	Understanding Horizontal Pod Autoscalers
	How Does the HPA Work?
	Supported Metrics

	Prerequisites
	Creating a Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console
	Using Custom Metrics for HPA
	Requirements
	Traditional (Core Metrics) HPA
	Custom Metrics HPA
	Trigger Condition Definition
	Custom Metrics HPA Compatibility
	Updates in autoscaling/v2beta2

	Calculation Rules

	Starting and Stopping Applications
	TOC
	Starting the Application
	Stopping the Application

	Configuring VerticalPodAutoscaler (VPA)
	TOC
	Understanding VerticalPodAutoscalers
	How Does the VPA Work?
	Supported Features

	Prerequisites
	Installing the Vertical Pod Autoscaler Plugin

	Creating a VerticalPodAutoscaler
	Using the CLI
	Using the Web Console
	Advanced VPA Configuration
	Update Policy Options
	Container Policy Options

	Follow-Up Actions

	Configuring CronHPA
	TOC
	Understanding Cron Horizontal Pod Autoscalers
	How Does the CronHPA Work?

	Prerequisites
	Creating a Cron Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console

	Schedule Rule Explanation

	Updating Applications
	TOC
	Importing Resources
	Removing/Batch Removing Resources

	Exporting Applications
	TOC
	Exporting Helm Charts
	Procedure
	Follow-Up Actions

	Exporting YAML to Local
	Steps
	Method 1
	Method 2

	Follow-Up Actions

	Exporting YAML to Code Repository (Alpha)
	Precautions
	Steps
	Follow-Up Actions

	Updating and deleting Chart Applications
	TOC
	Important Notes
	Prerequisites
	Status Analysis Description

	Version Management for Applications
	TOC
	Creating a Version Snapshot
	Procedure

	Rolling Back to a Historical Version
	Procedure

	Deleting Applications
	Handling Out of Resource Errors
	TOC
	Overview
	Configuring Eviction Policies
	Creating Eviction Policies in Node Configuration
	Eviction Signals
	Eviction Thresholds
	Hard Eviction Thresholds
	Default Hard Eviction Thresholds

	Soft Eviction Thresholds

	Configuring Allocatable Resources for Scheduling
	Preventing Node Condition Oscillation
	Reclaiming Node-level Resources
	Pod Eviction
	Quality of Service and Out of Memory Killer
	Scheduler and Out of Resource Conditions
	Example Scenario
	Recommended Practices
	Daemon Sets and Out of Resource Handling

	Health Checks
	TOC
	Understanding Health Checks
	Probe Types
	HTTP GET Action
	exec Action
	TCP Socket Action

	Best Practices

	YAML file example
	Health Checks configuration parameters by using web console
	Common parameters
	Protocol specific parameters

	Troubleshooting probe failures
	Check pod events
	View container logs
	Test probe endpoint manually
	Review probe configuration
	Check application code
	Resource constraints
	Network issues

	Workloads
	Deployments
	TOC
	Understanding Deployments
	Creating Deployments
	Creating a Deployment by using CLI
	Prerequisites
	YAML file example
	Creating a Deployment via YAML

	Creating a Deployment by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Reference Information
	Storage Volume Mounting instructions

	Heath Checks

	Managing Deployments
	Managing a Deployment by using CLI
	Viewing a Deployment
	Updating a Deployment
	Scaling a Deployment
	Rolling Back a Deployment
	Deleting a Deployment

	Managing a Deployment by using web console
	Viewing a Deployment
	Updating a Deployment
	Deleting a Deployment

	Troubleshooting by using CLI
	Check Deployment status
	Check ReplicaSet status
	Check Pod status
	View Logs
	Enter Pod for debugging
	Check Health configuration
	Check Resource Limits

	DaemonSets
	TOC
	Understanding DaemonSets
	Creating DaemonSets
	Creating a DaemonSet by using CLI
	Prerequisites
	YAML file example
	Creating a DaemonSet via YAML

	Creating a DaemonSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create

	Managing DaemonSets
	Managing a DaemonSet by using CLI
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	Managing a DaemonSet by using web console
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	StatefulSets
	TOC
	Understanding StatefulSets
	Creating StatefulSets
	Creating a StatefulSet by using CLI
	Prerequisites
	YAML file example
	Creating a StatefulSet via YAML

	Creating a StatefulSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create
	Heath Checks

	Managing StatefulSets
	Managing a StatefulSet by using CLI
	Viewing a StatefulSet
	Scaling a StatefulSet
	Updating a StatefulSet (Rolling Update)
	Deleting a StatefulSet

	Managing a StatefulSet by using web console
	Viewing a StatefulSet
	Updating a StatefulSet
	Deleting a StatefulSet

	CronJobs
	TOC
	Understanding CronJobs
	Creating CronJobs
	Creating a CronJob by using CLI
	Prerequisites
	YAML file example
	Creating a CronJobs via YAML

	Creating CronJobs by using web console
	Prerequisites
	Procedure - Configure basic info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Create

	Execute Immediately
	Locate the CronJob resource
	Initiate ad-hoc execution
	Verify Job details:
	Monitor execution status

	Deleting CronJobs
	Deleting CronJobs by using web console
	Deleting CronJobs by using CLI

	Jobs
	TOC
	Understanding Jobs
	YAML file example
	Execution Overview

	Pods
	TOC
	Understanding Pods
	YAML file example
	Managing a Pod by using CLI
	Viewing a Pod
	Viewing a Pod Logs
	Executing Commands in a Pod
	Port Forwarding to a Pod
	Deleting a Pod

	Managing a Pod by using web console
	Viewing a Pod
	Procedure
	Pod Parameters

	Deleting a Pod
	Use Cases
	Procedure

	Containers
	TOC
	Understanding Containers
	Understanding Ephemeral Containers
	Implementation Principle: Leveraging Ephemeral Containers
	Debugging Ephemeral Containers by using CLI
	Debugging Ephemeral Containers by using web console

	Interacting with Containers
	Interacting with Containers by using CLI
	Exec
	Transfer Files

	Interacting with Containers by using web console
	Entering the Container through Applications
	Entering the Container through the Pod

	Working with Helm charts
	TOC
	1. Understanding Helm
	1.1. Key features
	1.2. Catalog
	Terminology Definitions

	1.3 Understanding HelmRequest
	Differences Between HelmRequest and Helm
	HelmRequest and Application Integration
	Deployment Workflow
	Component Definitions

	2 Deploying Helm Charts as Applications via CLI
	2.1 Workflow Overview
	2.2 Preparing the Chart
	2.3 Packaging the Chart
	2.4 Obtaining an API Token
	2.5 Creating a Chart Repository
	2.6 Uploading the Chart
	2.7 Uploading Related Images
	2.8 Deploying the Application
	2.9 Updating the Application
	2.10 Uninstalling the Application
	2.11 Deleting the Chart Repository

	3. Deploying Helm Charts as Applications via UI
	3.1 Workflow Overview
	3.2 Prerequisites
	3.3 Adding Templates to Manageable Repositories
	3.4 Deleting Specific Versions of Templates
	Steps to Operate

	Configurations
	Configuring ConfigMap
	TOC
	Understanding Config Maps
	Config Map Restrictions
	Example ConfigMap
	Creating a ConfigMap by using the web console
	Creating a ConfigMap by using the CLI
	Operations
	View, Edit and Delete by using the CLI
	Ways to Use a ConfigMap in a Pod
	As Environment Variables
	As Files in a Volume
	As Individual Environment Variables

	ConfigMap vs Secret

	Configuring Secrets
	TOC
	Understanding Secrets
	Usage Characteristics
	Supported Types
	Usage Methods

	Creating an Opaque type Secret
	Creating a Docker registry type Secret
	Creating a Basic Auth type Secret
	Creating a SSH-Auth type Secret
	Creating a TLS type Secret
	Creating a Secret by using the web console
	How to Use a Secret in a Pod
	As Environment Variables
	As Mounted Files (Volume)

	Follow-up Actions
	Operations

	Application Observability
	Monitoring Dashboards
	TOC
	Prerequisites
	Namespace-Level Monitoring Dashboards
	Procedure
	Creating Namespace-Level Monitoring Dashboard

	Workload-Level Monitoring
	Default Monitoring Dashboard
	Procedure
	Metric interpretation

	Custom Monitoring Dashboard

	Logs
	TOC
	Procedure

	Events
	TOC
	Procedure
	Event records interpretation

	How To
	Setting Scheduled Task Trigger Rules
	TOC
	Time Conversion
	Writing Crontab Expressions

	Images
	Overview of images
	TOC
	Understanding containers and images
	Images
	Image registry
	Image repository
	Image tags
	Image IDs
	Containers

	How To
	Creating images
	TOC
	Learning container best practices
	General container image guidelines

	Including metadata in images
	Defining image metadata

	Managing images
	Image pull policy
	TOC
	Image pull policy overview

	Using image pull secrets
	Allowing pods to reference images from other secured registries
	Creating a pull secret
	Using a pull secret in a workload

	Registry
	Introduction
	TOC
	Principles and namespace isolation
	Authentication and authorization
	Authentication
	Authorization

	Advantages
	Application Scenarios

	Install
	Install Via YAML
	TOC
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry via YAML
	Procedure
	Configuration Reference
	Mandatory Fields

	Verification

	Updating/Uninstalling Alauda Container Platform Registry
	Update
	Uninstall

	Install Via Web UI
	TOC
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry cluster plugin using the web console
	Procedure
	Verification

	Updating/Uninstalling Alauda Container Platform Registry

	How To
	Common CLI Command Operations
	TOC
	Logging in Registry
	Add namespace permissions for users
	Add namespace permissions for a service account
	Pulling Images
	Pushing Images

	Using Alauda Container Platform Registry in Kubernetes Clusters
	TOC
	Registry Access Guidelines
	Deploy Sample Application
	Cross-Namespace Access
	Example Role Binding

	Best Practices
	Verification Checklist
	Troubleshooting

	Source to Image
	Overview
	Introduction
	TOC
	Source to Image Concept
	Core Features
	Core Benefits
	Application scenarios
	Usage Limitations

	Architecture
	Release Notes
	TOC
	Alauda Container Platform Builds Release Notes
	Supported Versions
	v1.1 Release Notes
	v1.1.0

	Lifecycle Policy
	Version Lifecycle Timeline
	Install
	Installing Alauda Container Platform Builds
	TOC
	Prerequisites
	Procedure
	Install the Alauda Container Platform Builds Operator
	Install the Shipyard instance
	Verification

	Upgrade
	Upgrading Alauda Container Platform Builds
	TOC
	Prerequisites
	Procedure
	Upgrading the Alauda Container Platform Builds Operator

	Guides
	Managing applications created from Code
	TOC
	Key Features
	Advantages
	Prerequisites
	Procedure
	Related operations
	Build

	How To
	Creating an application from Code
	TOC
	Prerequisites
	Procedure

	Node Isolation Strategy
	Introduction
	TOC
	Advantages
	Application Scenarios

	Architecture
	Concepts
	Core Concepts
	TOC
	Node Isolation

	Guides
	Create Node Isolation Strategy
	TOC
	Create Node Isolation Strategy
	Delete Node Isolation Strategy

	Permissions
	FAQ
	TOC
	Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?
	Why shouldn't multiple LimitRanges exist in a namespace when importing it?

