
Storage

Introduction

Introduction

Concepts

Core Concepts
Persistent Volume (PV)

Persistent Volume Claim (PVC)

Generic Ephemeral Volumes

emptyDir

hostPath

ConfigMap

Secret

StorageClass

Container Storage Interface (CSI)

Persistent Volume
Dynamic Persistent Volumes vs. Static Persistent Volumes

Lifecycle of Persistent Volumes

Menu

Storage - Alauda Container Platform

Access Modes and Volume Modes
Access Modes in Kubernetes

Volume Modes in Kubernetes

Storage Features: Snapshots and Expansion

Conclusion

Guides

Creating CephFS File Storage Type Storage Class
Deploy Volume Plugin

Create Storage Class

Creating CephRBD Block Storage Class

Deploy Volume Plugin

Create Storage Class

Create TopoLVM Local Storage Class

Background Information

Deploy Volume Plugin

Create Storage Class

Follow-up Actions

Storage - Alauda Container Platform

Creating an NFS Shared Storage Class
Prerequisites

Deploying the Alauda Container Platform NFS CSI plugin

Creating an NFS Shared Storage Class

Deploy Volume Snapshot Component
Deploying via Web Console

Deploying via YAML

Creating a PV
Prerequisites

Example PersistentVolume

Creating PV by using the web console

Creating PV by using the CLI

Related Operations

Additional resource

Creating PVCs

Prerequisites

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the web console

Creating a Persistent Volume Claim by using the CLI

Operations

Expanding PersistentVolumeClaim Storage Capacity by using the web console

Expanding Persistent Volume Claim Storage Capacity by using the CLI

Additional resources

Storage - Alauda Container Platform

Using Volume Snapshots
Prerequisites

Example VolumeSnapshot custom resource (CR)

Creating Volume Snapshots by using th web console

Creating Volume Snapshots by using the CLI

Creating Persistent Volume Claims from Volume Snapshots

Additional resource

How To

Generic ephemeral volumes
Example ephemeral volumes

Key features

When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Using an emptyDir
Example emptyDir

Optional Medium Setting

Key Characteristics

Common Use Cases

Storage - Alauda Container Platform

Configuring Persistent Storage Using NFS
Prerequisites

Procedure

Enforcing Disk Quotas via Partitioned Exports

NFS volume security

Reclaiming resources

Third‑Party Storage Capability Annotation Guide

1. Getting Started

2. Sample ConfigMap

3. Update Existing Capability Descriptions

4. Compatibility with the Legacy Format

5. Frequently Asked Questions

Troubleshooting

Recover From PVC Expansion Failure
Procedure

Additional Tips

Storage - Alauda Container Platform

Kubernetes offers a flexible and scalable storage mechanism for managing data persistence

in containerized environments. By abstracting storage resources such as Volumes,

PersistentVolumes, and PersistentVolumeClaims, Kubernetes decouples applications from

underlying storage systems, enabling dynamic provisioning, automatic mounting, and

persistent data across nodes.

Key features include support for multiple backend storage systems (e.g., local disks, NFS,

cloud storage services), dynamic provisioning, access mode control (such as read/write

permissions), and lifecycle management—meeting the storage needs of stateful applications.

For enterprise-level workloads requiring high availability, data persistence, and multi-tenant

isolation, Kubernetes storage is an essential foundational capability.

Kubernetes storage is designed for developers, operations engineers, and platform teams,

helping them efficiently and securely manage data in containerized workloads.

Introduction

Menu

Introduction - Alauda Container Platform

Concepts

Core Concepts

Persistent Volume (PV)

Persistent Volume Claim (PVC)

Generic Ephemeral Volumes

emptyDir

hostPath

ConfigMap

Secret

StorageClass

Container Storage Interface (CSI)

Persistent Volume

Dynamic Persistent Volumes vs. Static Persistent Volumes

Lifecycle of Persistent Volumes

Access Modes and Volume Modes

Access Modes in Kubernetes

Volume Modes in Kubernetes

Storage Features: Snapshots and Expansion

Conclusion

Menu

Concepts - Alauda Container Platform

Kubernetes storage is centered on three key concepts: PersistentVolume (PV),

PersistentVolumeClaim (PVC), and StorageClass. These define how storage is requested,

allocated, and configured within a cluster. Under the hood, CSI (Container Storage Interface)

drivers frequently handle the actual provisioning and attachment of storage. Let's briefly look

at each component and then highlight the CSI Driver's role.

Persistent Volume (PV)

Persistent Volume Claim (PVC)

Generic Ephemeral Volumes

emptyDir

hostPath

ConfigMap

Secret

StorageClass

Container Storage Interface (CSI)

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned (either

statically by an administrator or dynamically through a StorageClass). It represents the

Core Concepts

TOC

Persistent Volume (PV)

Menu ON THIS PAGE

Core Concepts - Alauda Container Platform

underlying storage—such as a disk on a cloud provider or a network-attached filesystem—and

is treated as a resource in the cluster, similar to a node.

A PersistentVolumeClaim (PVC) is a request for storage. Users define how much storage

they need and the access mode (e.g., read-write). If an appropriate PV is available or can be

dynamically provisioned (via a StorageClass), the PVC becomes “bound” to that PV. Once

bound, Pods can reference the PVC to persist or share data.

Generic Ephemeral Volumes for Kubernetes is a feature introduced in Kubernetes that allows

you to use CSI-driven temporary volumes during the Pod lifecycle, similar to the This is

similar to emptyDir , but is more powerful and allows you to mount any type of CSI volume

(with support for snapshots, scaling, etc.).

For more usage, please refer to Generic ephemeral volumes

1. emptyDir is a temporary storage volume of the empty directory type.

2. It is created when a Pod is dispatched to a node, and the storage is located on that node's

local filesystem (node disk by default).

3. When a Pod is deleted, the data in emptyDir is also erased.

For more usage, please refer to Using an emptyDir

Persistent Volume Claim (PVC)

Generic Ephemeral Volumes

emptyDir

hostPath

Core Concepts - Alauda Container Platform

In Kubernetes, a hostPath volume is a special type of volume that maps a file or directory from

the host node's filesystem directly into a Pod's container.

It allows a pod to access files or directories on the host node.

Useful for:

Accessing host-level resources (e.g., Docker socket)

Debugging

Using pre-existing data on the node

A ConfigMap in Kubernetes is an API object used to store non-sensitive configuration data in

the form of key-value pairs. It allows you to decouple configuration from application code,

making your applications more portable and easier to manage.

In Kubernetes, a Secret is an API object that stores sensitive data such as:

passwords

OAuth tokens

SSH keys

TLS certificates

database credentials

Secrets help protect this data by avoiding storing it directly in Pod specifications or container

images.

ConfigMap

Secret

Core Concepts - Alauda Container Platform

A StorageClass describes how volumes should be dynamically provisioned. It maps to a

specific provisioner (often a CSI driver) and can include parameters such as storage tiers,

performance characteristics, or other backend configurations. By creating multiple

StorageClasses, you can offer various types of storage to developers.

Cluster
Namespace

requests dynamic provision

binds to

PersistentVolumeClaim PersistentVolume

StorageClass

Diagram: Relationship between PVC, PV, and StorageClass.

The Container Storage Interface (CSI) is a standard API that Kubernetes uses to integrate

with storage drivers. It allows third-party storage providers to build out-of-tree plugins,

meaning you can install or update a storage driver without modifying Kubernetes itself.

A CSI driver typically has two components:

1. Controller component: Runs in the cluster (often as a Deployment) and handles high-

level operations, such as creating or deleting volumes. For networked storage, it may also

handle attaching and detaching volumes to nodes.

2. Node component: Runs on each node (often as a DaemonSet) and is responsible for

mounting and unmounting the volume on that particular node. It communicates with the

kubelet to ensure the volume is accessible to Pods.

When a user creates a PVC referring to a StorageClass that uses a CSI driver, the CSI driver

observes that request and provisions storage accordingly (if dynamic provisioning is required).

Once the storage is created, the driver notifies Kubernetes, which creates a corresponding PV

and binds it to the PVC. Whenever a Pod uses that PVC, the node component of the driver

handles the volume mount, making the storage available inside the container.

StorageClass

Container Storage Interface (CSI)

Core Concepts - Alauda Container Platform

By leveraging PV, PVC, StorageClass, and CSI, Kubernetes enables a powerful, declarative

approach to storage management. Administrators can define one or more StorageClasses to

represent different storage backends or performance tiers, while developers simply request

storage using PVCs—without worrying about the underlying infrastructure.

Core Concepts - Alauda Container Platform

A PersistentVolume (PV) represents the mapping relationship with backend storage volumes

in a Kubernetes cluster, functioning as a Kubernetes API resource. It is a cluster resource

created and configured uniformly by administrators, responsible for abstracting the actual

storage resources and forming the storage infrastructure of the cluster.

PersistentVolumes possess a lifecycle independent of Pods, enabling the persistent storage

of Pod data.

Administrators may manually create static PersistentVolumes or generate dynamic

PersistentVolumes based on storage classes. If developers need to obtain storage resources

for applications, they can request them via PersistentVolumeClaims (PVC), which match and

bind to suitable PersistentVolumes.

Dynamic Persistent Volumes vs. Static Persistent Volumes

Lifecycle of Persistent Volumes

The platform supports management of two types of PersistentVolumes by administrators,

namely dynamic and static Persistent Volumes.

Persistent Volume

TOC

Dynamic Persistent Volumes vs. Static Persistent
Volumes

Menu ON THIS PAGE

Persistent Volume - Alauda Container Platform

Dynamic Persistent Volumes: Implemented based on storage classes. Storage classes

are created by administrators and define a Kubernetes resource that describes the

category of storage resources. Once a developer creates a PersistentVolumeClaim

associated with a storage class, the platform will dynamically create a suitable

PersistentVolume according to the parameters configured in the PersistentVolumeClaim

and storage class, binding it to the PersistentVolumeClaim for dynamic allocation of

storage resources.

Static Persistent Volumes: Persistent Volumes created manually by the administrator.

Currently, it supports the creation of HostPath or NFS shared storage type static

Persistent Volumes. When developers create a PersistentVolumeClaim without using a

storage class, the platform will match and bind a suitable static PersistentVolume according

to the parameters configured in the PersistentVolumeClaim.

HostPath: Uses a file directory on the node host (local storage is not supported) as

backend storage, such as: /etc/kubernetes . It generally applies only to testing scenarios

within a single compute node cluster.

NFS Shared Storage: Refers to the Network File System, a common type of backend

storage for Persistent Volumes. Users and programs can access files on remote

systems as if they were local files.

1. Provisioning: Administrators manually create static Persistent Volumes. After creation, the

Persistent Volume enters an Available state; alternatively, the platform creates suitable

Persistent Volumes dynamically based on PersistentVolumeClaims associated with storage

classes.

2. Binding: Once a static Persistent Volume is matched and bound to a

PersistentVolumeClaim, it enters a Bound state; dynamic Persistent Volumes are created

dynamically based on requests matching PersistentVolumeClaims and also enter a Bound

state once created successfully.

3. Using: Developers associate PersistentVolumeClaims with container instances of compute

components, utilizing the backend storage resources mapped by the Persistent Volumes.

Lifecycle of Persistent Volumes

Persistent Volume - Alauda Container Platform

4. Releasing: After developers delete the PersistentVolumeClaim, the Persistent Volume is

released.

5. Reclaiming: Once the Persistent Volume is released, reclamation operations are

performed on it according to the reclamation policy parameters of the Persistent Volume or

storage class.

Persistent Volume - Alauda Container Platform

In Kubernetes, PersistentVolumeClaims (PVCs) and StorageClasses work together to

manage how storage is provisioned and accessed by workloads. Two essential concepts in

this domain are Access Modes and Volume Modes. This article explores these concepts and

highlights how different storage systems support them.

Access Modes in Kubernetes

Access Modes by Storage Class

Volume Modes in Kubernetes

Volume Modes by Storage Class

Storage Features: Snapshots and Expansion

Conclusion

Access Modes define how a volume can be mounted and used by pods. The key access

modes are:

ReadWriteOnce (RWO): The volume can be mounted as read-write by a single node.

ReadOnlyMany (ROX): The volume can be mounted as read-only by multiple nodes.

ReadWriteMany (RWX): The volume can be mounted as read-write by multiple nodes.

Access Modes and Volume Modes

TOC

Access Modes in Kubernetes

Menu ON THIS PAGE

Access Modes and Volume Modes - Alauda Container Platform

Storage Class
RWO

Supported

ROX

Supported

RWX

Supported

CephFS File Storage Yes No Yes

CephRBD Block

Storage
Yes No No

TopoLVM Yes No No

NFS Shared Storage Yes No Yes

As shown above, file-based storage systems like CephFS and NFS support multiple

concurrent write or read operations, making them suitable for shared-access scenarios. On

the other hand, block storage systems like CephRBD and TopoLVM provide exclusive access

to a single node at a time.

Volume Modes define how the data is exposed to the pod:

Filesystem: The volume is mounted into the pod as a filesystem.

Block: The volume is presented as a raw block device.

Storage Class Type Supported Volume Modes

CephFS File Storage File Storage Filesystem

CephRBD Block Storage Block Storage Filesystem, Block

TopoLVM Block Storage Filesystem, Block

NFS Shared Storage File Storage Filesystem

Access Modes by Storage Class

Volume Modes in Kubernetes

Volume Modes by Storage Class

Access Modes and Volume Modes - Alauda Container Platform

Block storage systems like CephRBD and TopoLVM offer both filesystem and raw block

access, providing flexibility for different application needs. File storage systems such as

CephFS and NFS, in contrast, only support the filesystem mode.

Kubernetes also supports advanced features like volume snapshots and dynamic expansion

of PVCs, depending on the storage class used.

Storage Class Volume Snapshot Expansion

CephFS File Storage Supported Supported

CephRBD Block Storage Supported Supported

TopoLVM Supported Supported

NFS Shared Storage Not Supported Not Supported

Only dynamically provisioned PVCs using a StorageClass support volume snapshots. This

feature is useful for backups and cloning environments.

When configuring storage in Kubernetes, understanding the Access Modes and Volume
Modes of PVCs and their backing StorageClasses is critical for choosing the right solution for

your workload. File storage solutions such as CephFS and NFS are ideal for shared access

scenarios, while block storage like CephRBD and TopoLVM excel in high-performance, single-

node deployments. Furthermore, support for features like snapshots and expansion can

greatly enhance storage flexibility and data management strategies.

Storage Features: Snapshots and Expansion

Conclusion

Access Modes and Volume Modes - Alauda Container Platform

Guides

Creating CephFS File Storage Type Storage Class

Deploy Volume Plugin

Create Storage Class

Creating CephRBD Block Storage Class
Deploy Volume Plugin

Create Storage Class

Create TopoLVM Local Storage Class
Background Information

Deploy Volume Plugin

Create Storage Class

Follow-up Actions

Creating an NFS Shared Storage Class
Prerequisites

Deploying the Alauda Container Platform NFS CSI plugin

Creating an NFS Shared Storage Class

Menu

Guides - Alauda Container Platform

Deploy Volume Snapshot Component
Deploying via Web Console

Deploying via YAML

Creating a PV

Prerequisites

Example PersistentVolume

Creating PV by using the web console

Creating PV by using the CLI

Related Operations

Additional resource

Creating PVCs
Prerequisites

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the web console

Creating a Persistent Volume Claim by using the CLI

Operations

Expanding PersistentVolumeClaim Storage Capacity by using the web console

Expanding Persistent Volume Claim Storage Capacity by using the CLI

Additional resources

Guides - Alauda Container Platform

Using Volume Snapshots
Prerequisites

Example VolumeSnapshot custom resource (CR)

Creating Volume Snapshots by using th web console

Creating Volume Snapshots by using the CLI

Creating Persistent Volume Claims from Volume Snapshots

Additional resource

Guides - Alauda Container Platform

CephFS file storage is a built-in Ceph file storage system that provides the platform with a

Container Storage Interface (CSI)-based storage access method, offering a secure, reliable,

and scalable shared file storage service suitable for scenarios such as file sharing and data

backup. Before proceeding, you must first create a CephFS file storage class.

After binding the storage class in a Persistent Volume Claim (PVC), the platform will

dynamically create persistent volumes on the nodes according to the persistent volume claim

for business applications.

Deploy Volume Plugin

Create Storage Class

After clicking Deploy, on the Distributed Storage page, Create Storage Service or Access

Storage Service.

Creating CephFS File Storage Type Storage
Class

TOC

Deploy Volume Plugin

Create Storage Class

Menu ON THIS PAGE

Creating CephFS File Storage Type Storage Class - Alauda Container Platform

http://localhost:4173/container_platform/storage/storagesystem_ceph/installation/create_service_stand.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html

1. Go to Administrator.

2. In the left navigation bar, click Storage Management > Storage Classes.

3. Click Create Storage Class.

Note: The following content is provided as an example in form format; you may also

choose to create it using YAML.

4. Select CephFS File Storage and click Next.

5. Configure the relevant parameters according to the following instructions.

Parameter Description

Reclaim

Policy

The reclaim policy for persistent volumes.

- Delete: When the persistent volume claim is deleted, the bound

persistent volume will also be deleted.

- Retain: The bound persistent volume will remain, even if the

persistent volume claim is deleted.

Access

Modes

All access modes supported by the current storage. Only one of

these modes can be selected when declaring persistent volumes

later.

- ReadWriteOnce (RWO): Can be mounted as read-write by a single

node.

- ReadWriteMany (RWX): Can be mounted as read-write by multiple

nodes.

Allocate

Project

Please allocate projects that can use this type of storage.

If there are currently no projects that need to use this type of

storage, you may choose not to allocate them for now and update

later.

Tip: The following parameters need to be set in the distributed storage and will be applied

directly here.

Storage Cluster: The built-in Ceph storage cluster in the current cluster.

Storage Pool: The logical partition used for data storage in the storage cluster.

Creating CephFS File Storage Type Storage Class - Alauda Container Platform

6. Click Create.

Creating CephFS File Storage Type Storage Class - Alauda Container Platform

CephRBD block storage is a built-in Ceph block storage for the platform, providing a

Container Storage Interface (CSI) based storage access method that can deliver high IOPS

and low-latency storage services, suitable for scenarios such as databases and virtualization.

Before using this, you need to create a CephRBD block storage class.

Once a Persistent Volume Claim (PVC) is bound to the storage class, the platform will

dynamically create a Persistent Volume based on the Persistent Volume Claim for business

applications to use.

Deploy Volume Plugin

Create Storage Class

After clicking Deploy, on the Distributed Storage page, create a storage service or access a

storage service.

1. Go to Administrator.

Creating CephRBD Block Storage Class

TOC

Deploy Volume Plugin

Create Storage Class

Menu ON THIS PAGE

Creating CephRBD Block Storage Class - Alauda Container Platform

http://localhost:4173/container_platform/storage/storagesystem_ceph/installation/create_service_stand.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html

2. In the left navigation bar, click Storage Management > Storage Classes.

3. Click Create Storage Class.

Note: The following content is an example in form format, you can also choose YAML to

complete the operation.

4. Select CephRBD Block Storage, and click Next.

5. Configure the parameters as required.

Parameter Description

File

System

Defaults to EXT4, which is a journaling file system for Linux, capable

of providing extent file storage and processing large files. The

filesystem capacity can reach 1 EiB, with supported file sizes up to

16 TiB.

Reclaim

Policy

The reclaim policy for persistent volumes.

- Delete: The bound persistent volume will be deleted along with the

persistent volume claim.

- Retain: The bound persistent volume will be retained even if the

persistent volume claim is deleted.

Access

Modes

Only supports ReadWriteOnce (RWO): it can be mounted by a single

node in read-write mode.

Assign

Project

Please assign projects that can use this type of storage.

If there are no projects currently needing this type of storage, you can

choose not to assign one and update it later.

Tip: The following parameters need to be set in distributed storage and will be directly

applied here.

Storage Cluster: The built-in Ceph storage cluster in the current cluster.

Storage Pool: The logical partition used for storing data within the storage cluster.

6. Click Create.

Creating CephRBD Block Storage Class - Alauda Container Platform

TopoLVM is an LVM-based local storage solution that provides simple, easy-to-maintain, and

high-performance local storage services suitable for scenarios such as databases and

middleware. Before using it, you need to create a TopoLVM storage class.

Once the Persistent Volume Claim (PVC) is bound to the storage class, the platform

dynamically creates persistent volumes on the nodes based on the Persistent Volume Claim

for business applications to use.

Background Information

Advantages of Use

Use Cases

Constraints and Limitations

Deploy Volume Plugin

Create Storage Class

Follow-up Actions

Create TopoLVM Local Storage Class

TOC

Background Information

Advantages of Use

Menu ON THIS PAGE

Create TopoLVM Local Storage Class - Alauda Container Platform

Compared to remote storage (e.g., NFS shared storage): TopoLVM-type storage is located

locally on the node, offering better IOPS and throughput performance, as well as lower

latency.

Compared to hostPath (e.g., local-path): Although both are local storage on the node,

TopoLVM allows for flexible scheduling of container groups to nodes with sufficient

available resources, avoiding issues where container groups cannot start due to insufficient

resources.

TopoLVM supports automatic volume expansion by default. After modifying the required

storage quota in the Persistent Volume Claim, the expansion can be completed

automatically without restarting the container group.

When only temporary storage is needed, such as for development and debugging.

When there are high storage I/O requirements, such as real-time indexing.

Please try to use local storage only for applications where data replication and backup at the

application layer can be realized, such as MySQL. Avoid data loss due to the lack of data

persistence guarantee from local storage.

Learn more

After clicking deploy, on the newly opened page configure local storage.

1. Go to Administrator.

Use Cases

Constraints and Limitations

↗

Deploy Volume Plugin

Create Storage Class

Create TopoLVM Local Storage Class - Alauda Container Platform

https://github.com/topolvm/topolvm/blob/main/docs/user-manual.md
https://github.com/topolvm/topolvm/blob/main/docs/user-manual.md
https://github.com/topolvm/topolvm/blob/main/docs/user-manual.md
http://localhost:4173/container_platform/storage/storagesystem_topolvm/installation.html

2. In the left navigation bar, click Storage Management > Storage Classes.

3. Click Create Storage Class.

4. Select TopoLVM, then click Next.

5. Configure the storage class parameters as described below.

Note: The following content is presented as a form example; you may also choose to

create it using YAML.

Parameter Description

Name
The name of the storage class, which must be unique within the

current cluster.

Display Name
A name that can help you identify or filter it, such as a Chinese

description of the storage class.

Device Class

The device class is a way to categorize storage devices in

TopoLVM, with each device class corresponding to a group of

storage devices with similar characteristics. If there are no

special requirements, use the Automatically Assigned device

class.

File System

XFS is a high-performance journaling file system well-suited

for handling parallel I/O workloads, supporting large file

handling and smooth data transfer.

EXT4 is a journaling file system under Linux that provides

extent file storage and supports large file handling, with a

maximum file system capacity of 1 EiB and a maximum file

size of 16 TiB.

Create TopoLVM Local Storage Class - Alauda Container Platform

Parameter Description

Reclamation

Policy

The reclamation policy for persistent volumes.

Delete: The bound persistent volume will also be deleted

along with the PVC.

Retain: The bound persistent volume will remain even if the

PVC is deleted.

Access Mode
ReadWriteOnce (RWO): Can be mounted as read-write by a

single node.

PVC

Reconstruction

Supports PVC reconstruction across nodes. When enabled, the

Reconstruction Wait Time must be configured. When the node

hosting the PVC created using this storage class fails, the PVC

will be automatically rebuilt on other nodes after the wait time to

ensure business continuity.

Note:

The rebuilt PVC does not contain the original data.

Please ensure that the number of storage nodes is greater

than the number of application instance replicas, or it will

affect PVC reconstruction.

Allocated

Projects

Persistent volume claims of this type can only be created in

specific projects.

If no project is currently allocated, the project can also be

updated later.

6. After confirming that the configuration information is correct, click the Create button.

Once everything is ready, you can notify the developers to use the TopoLVM features. For

example, create a Persistent Volume Claim and bind it to the TopoLVM storage class in the

Storage > Persistent Volume Claims page of the container platform.

Follow-up Actions

Create TopoLVM Local Storage Class - Alauda Container Platform

Based on the community NFS CSI (Container Storage Interface) storage driver, it provides the

capability to access multiple NFS storage systems or accounts.

Unlike the traditional client-server model of NFS access, NFS shared storage utilizes the

community NFS CSI (Container Storage Interface) storage plugin, which is more aligned with

Kubernetes design principles and allows client access to multiple servers.

Prerequisites

Deploying the Alauda Container Platform NFS CSI plugin

Deploying via Web Console

Deploying via YAML

Creating an NFS Shared Storage Class

An NFS server must be configured, and its access methods must be obtained. Currently,

the platform supports three NFS protocol versions: v3 , v4.0 , and v4.1 . You can execute

nfsstat -s on the server side to check the version information.

Creating an NFS Shared Storage Class

TOC

Prerequisites

Menu ON THIS PAGE

Creating an NFS Shared Storage Class - Alauda Container Platform

1. Enter Administrator.

2. In the left navigation bar, click Storage > StorageClasses.

3. Click Create StorageClass.

4. On the right side of NFS CSI, click Deploy to navigate to the Plugins page.

5. On the right side of the Alauda Container Platform NFS CSI plugin, click ⋮ > Install.

6. Wait for the deployment status to indicate Deployment Successful before completing the

deployment.

Refs to Installing via YAML

Alauda Container Platform NFS CSI is a Non-config plugin, and the module-name is nfs

1. Click Create Storage Class.

Note: The following content is presented in a form, but you may also choose to complete

the operation using YAML.

2. Select NFS CSI and click Next.

3. Refer to the following instructions to configure the relevant parameters.

Deploying the Alauda Container Platform NFS CSI
plugin

Deploying via Web Console

Deploying via YAML

Creating an NFS Shared Storage Class

Creating an NFS Shared Storage Class - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html#installing-via-yaml

Parameter Description

Name
The name of the storage class. It must be unique within the current

cluster.

Service

Address
The access address of the NFS server. For example: 192.168.2.11 .

Path
The mount path of the NFS file system on the server node. For

example: /nfs/data .

NFS

Protocol

Version

Currently supports three versions: v3 , v4.0 , and v4.1 .

Reclaim

Policy

The reclaim policy for the persistent volume.

- Delete: When the persistent volume claim is deleted, the bound

persistent volume will also be deleted.

- Retain: Even if the persistent volume claim is deleted, the bound

persistent volume will still be retained.

Access

Modes

All access modes supported by the current storage. During the

subsequent declaration of persistent volumes, only one of these

modes can be selected for mounting persistent volumes.

- ReadWriteOnce (RWO): Can be mounted as read-write by a single

node.

- ReadWriteMany (RWX): Can be mounted as read-write by multiple

nodes.

- ReadOnlyMany (ROX): Can be mounted as read-only by multiple

nodes.

Allocated

Projects

Please allocate the projects that can use this type of storage.

If there are currently no projects needing this type of storage, you

may choose not to allocate any projects at this time and update them

later.

subDir Each PersistentVolumeClaim (PVC) created using the NFS Shared

Storage Class corresponds to a subdirectory within the NFS share.

By default, subdirectories are named using the pattern

${pv.metadata.name} (i.e., the PersistentVolume name). If the default

Creating an NFS Shared Storage Class - Alauda Container Platform

Parameter Description

generated name does not meet your requirements, you can

customize the subdirectory naming rules.

NOTE

The subDir field supports only the following three variables, which the NFS CSI Driver

automatically resolves:

${pvc.metadata.namespace} : PVC Namespace.

${pvc.metadata.name} : PVC Name.

${pv.metadata.name} : PV Name.

The subDir naming rule MUST guarantee unique subdirectory names. Otherwise, multiple

PVCs may share the same subdirectory, causing data conflicts.

Recommended Configurations:

${pvc.metadata.namespace}_${pvc.metadata.name}_${pv.metadata.name}

<cluster-

identifier>_${pvc.metadata.namespace}_${pvc.metadata.name}_${pv.metadata.name}

Designed for multiple Kubernetes clusters sharing the same NFS Server, this configuration

ensures clear cluster differentiation by incorporating a cluster-specific identifier (e.g., the cluster

name) into the subdirectory naming rules.

Not Recommended Configurations:

${pvc.metadata.namespace}-${pvc.metadata.name}-${pv.metadata.name} Avoid - as

separators, may lead to ambiguous subdirectory names. For example: If two PVCs are

named ns-1/test and ns/1-test , both could generate the same subdirectory ns-1-test .

${pvc.metadata.namespace}/${pvc.metadata.name}/${pv.metadata.name} Do NOT configure

subDir to create nested directories. The NFS CSI Driver only deletes the last-level directory

${pv.metadata.name} when a PVC is removed, leaving orphaned parent directories on the

NFS Server.

4. Once you have confirmed that the configuration information is correct, click Create.

Creating an NFS Shared Storage Class - Alauda Container Platform

A volume snapshot refers to a snapshot of a persistent volume, which is a copy of the

persistent volume at a specific point in time. If the cluster uses persistent volumes that support

snapshot functionality, the volume snapshot component can be deployed to enable this

feature.

Currently, the platform only supports creating volume snapshots for PVCs that are

dynamically created using storage classes. You can create new PVC bindings based on

these snapshots.

Tip: The access modes supported when creating PVCs from snapshots differ from those

supported when creating PVCs using storage classes, which are indicated in bold in the table

below.

Storage Class Used to

Create Volume

Snapshots

Single Node

Read-Write

(RWO)

Multi-Node

Read-Only

(ROX)

Multi-Node

Read-Write

(RWX)

TopoLVM Supported Not Supported Not Supported

CephRBD Block

Storage
Supported Not Supported Not Supported

CephFS File Storage Supported Supported Supported

Deploying via Web Console

Deploying via YAML

Deploy Volume Snapshot Component

TOC

Menu ON THIS PAGE

Deploy Volume Snapshot Component - Alauda Container Platform

1. Go to Administrator.

2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Snapshot Management cluster plugin, click Install, and

wait for a moment until the deployment is successful.

Refs to Installing via YAML

Alauda Container Platform Snapshot Management is a Non-config plugin, and the module-name

is snapshot

Deploying via Web Console

Deploying via YAML

Deploy Volume Snapshot Component - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html#installing-via-yaml

Manually create a static persistent volume of type HostPath or NFS Shared Storage.

HostPath: Mounts the file directory from the host where the container resides to a specified

path in the container (corresponding to Kubernetes' HostPath), allowing the container to

use the host's file system for persistent storage. If the host becomes inaccessible, the

HostPath may not be accessible.

NFS Shared Storage: NFS Shared Storage uses the community NFS CSI (Container

Storage Interface) storage plugin, which aligns more closely with Kubernetes design

principles, providing client access capabilities for multiple services. Ensure that the current

cluster has deployed the NFS storage plugin before use.

Prerequisites

Example PersistentVolume

Creating PV by using the web console

Storage Information

Creating PV by using the CLI

Access Modes

Reclaim Policies

Related Operations

Additional resource

Creating a PV

TOC

Menu ON THIS PAGE

Creating a PV - Alauda Container Platform

Confirm the size of the persistent volume to be created and ensure that the backend

storage system currently has the capacity to provide the corresponding storage.

Obtain the backend storage access address, the file path to be mounted, credential access

(if required), and other relevant information.

1. Amount of storage.

2. How the volume can be mounted.

3. What happens after PVC is deleted (Retain, Delete, Recycle).

4. Name of the StorageClass (for dynamic binding).

5. Storage backend type.

Prerequisites

Example PersistentVolume

Creating PV by using the web console

example-pv.yaml

apiVersion: v1

kind: PersistentVolume

metadata:

 name: example-pv

spec:

 capacity:

 storage: 5Gi 1

 accessModes:

 - ReadWriteOnce 2

 persistentVolumeReclaimPolicy: Retain 3

 storageClassName: manual 4

 hostPath: 5

 path: "/mnt/data"

Creating a PV - Alauda Container Platform

1. Navigate to Administrator.

2. In the left navigation bar, click on Storage Management > Persistent Volumes (PV).

3. Click on Create Persistent Volume.

4. Refer to the instructions below and configure the parameters before clicking Create.

Type Parameter Description

HostPath Path
The path to the directory of files on the node backing

the storage volume. For example: /etc/kubernetes .

NFS

Shared

Storage

Server

Address
The access address of the NFS server.

Path
The mount path of the NFS file system on the server

node, such as /nfs/data .

NFS Protocol

Version

The currently supported NFS protocol versions on the

platform are v3 , v4.0 , and v4.1 . You can execute

nfsstat -s on the server side to view version

information.

Access modes of the persistent volume influenced by the relevant parameters set by the

backend storage.

Storage Information

Creating PV by using the CLI

Access Modes

kubectl apply -f example-pv.yaml

Creating a PV - Alauda Container Platform

Access Mode Meaning

ReadWriteOnce (RWO) Can be mounted as read-write by a single node.

ReadWriteMany (RWX) Can be mounted as read-write by multiple nodes.

ReadOnlyMany (ROX) Can be mounted as read-only by multiple nodes.

Reclaim

Policy
Meaning

Delete

Deletes the persistent volume claim at the same time deletes the bound

persistent volume, as well as the backend storage volume resource.

Note: The reclaim policy for PV of type NFS Shared Storage does not

support Delete.

Retain

Even when the persistent volume claim is deleted, the bound persistent

volume and storage data will still be retained. Manual handling of the

storage data and deletion of the persistent volume will be required

thereafter.

You can click the ⋮ on the right of the list page or click the Operations in the upper right corner

of the details page to update or delete the persistent volume as needed.

Deleting a persistent volume is applicable in the following two scenarios:

Deleting an unbound persistent volume: Has not been written to and is no longer required

for writing, thus freeing up corresponding storage space upon deletion.

Deleting a Retained persistent volume: The persistent volume claim has been deleted, but

due to the retain reclaim policy, it has not been deleted simultaneously. If the data in the

persistent volume has been backed up to other storage or is no longer needed, deleting it

can also free up corresponding storage space.

Reclaim Policies

Related Operations

Creating a PV - Alauda Container Platform

Creating PVCs

Additional resource

Creating a PV - Alauda Container Platform

Create a PersistentVolumeClaim (PVC) and set the parameters for the requested

PersistentVolume (PV) as needed.

You can create a PersistentVolumeClaim either through a visual UI form or by using a custom

YAML orchestration file.

Prerequisites

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the web console

Creating a Persistent Volume Claim by using the CLI

Operations

Expanding PersistentVolumeClaim Storage Capacity by using the web console

Expanding Persistent Volume Claim Storage Capacity by using the CLI

Additional resources

Ensure that there is enough remaining storage quota in the namespace to satisfy the required

storage size for this creation operation.

Creating PVCs

TOC

Prerequisites

Menu ON THIS PAGE

Creating PVCs - Alauda Container Platform

1. Go to Container Platform.

2. Click on Storage > PersistentVolumeClaims (PVC) in the left sidebar.

3. Click on Create PVC.

4. Configure the parameters as required.

Note: The following content is provided as an example using the form method; you can

also switch to YAML mode to complete the operation.

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the
web console

example-pvc.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: example-pvc

 namespace: k-1

 annotations: {}

 labels: {}

spec:

 storageClassName: cephfs

 accessModes:

 - ReadWriteOnce

 volumeMode: Filesystem

 resources:

 requests:

 storage: 4Gi

Creating PVCs - Alauda Container Platform

Parameter Description

Name
The name of the PersistentVolumeClaim, which must be unique within

the current namespace.

Creation

Method

- Dynamic Creation: Dynamically generates a PersistentVolume

based on the storage class and binds it.

- Static Binding: Matches and binds based on configured parameters

and existing PersistentVolumes.

Storage

Class

After selecting the dynamic creation method, the platform will

dynamically create the PersistentVolume as per the description in the

specified storage class.

Access

Mode

- ReadWriteOnce (RWO): Can be mounted by a single node in read-

write mode.

- ReadWriteMany (RWX): Can be mounted by multiple nodes in read-

write mode.

- ReadOnlyMany (ROX): Can be mounted by multiple nodes in read-

only mode.

Tip: It's recommended to consider the number of workload instances

that are planned to bind to the current PersistentVolumeClaim and the

type of deployment controller. For example, when creating a multi-

instance deployment (Deployment), since all instances use the same

PersistentVolumeClaim, it is not advisable to choose the RWO access

mode, which can only attach to a single node.

Capacity The size of the requested PersistentVolume.

Volume

Mode

- Filesystem: Binds the PersistentVolume as a file directory mounted

into the Pod. This mode is available for any type of workload.

- Block Device: Binds the PersistentVolume as a raw block device

mounted into the Pod. This mode is available only for virtual

machines.

More - Labels

- Annotations

- Selector: After selecting the static binding method, you can use a

Creating PVCs - Alauda Container Platform

Parameter Description

selector to target PersistentVolumes that are labeled with specific

tags. PersistentVolume labels can be used to denote special

attributes of the storage, such as disk type or geographic location.

5. Click on Create. Wait for the PersistentVolumeClaim to change to Bound status, indicating

that the PersistentVolume has been successfully matched.

Bind PersistentVolumeClaim: When creating applications or workloads that require

persistent data storage, bind the PersistentVolumeClaim to request a compliant

PersistentVolume.

Create a PersistentVolumeClaim using Volume Snapshots: This helps to back up

application data and restore it as needed, ensuring the reliability of business application

data. Please refer to Using Volume Snapshots.

Delete PersistentVolumeClaim: You can click the Actions button in the top right corner of

the details page to delete the PersistentVolumeClaim as needed. Before deleting, please

ensure that the PersistentVolumeClaim is not bound to any applications or workloads and

that it does not contain any volume snapshots. After deleting the PersistentVolumeClaim,

the platform will process the PersistentVolume according to the reclamation policy, which

may clear data in the PersistentVolume and free storage resources. Please proceed with

caution based on data security considerations.

Creating a Persistent Volume Claim by using the
CLI

Operations

kubectl apply -f example-pvc.yaml

Creating PVCs - Alauda Container Platform

1. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).

2. Find the persistent volume claim and click ⋮ > Expand.

3. Fill in the new capacity.

4. Click Expand. The expansion process may take some time, please be patient.

INFO

When PVC expansion fails in Kubernetes, administrators can manually recover the Persistent

Volume Claim (PVC) state and cancel the expansion request. See Recover From PVC Expansion

Failure

Expanding PersistentVolumeClaim Storage
Capacity by using the web console

Expanding Persistent Volume Claim Storage
Capacity by using the CLI

Additional resources

kubectl patch pvc example-pvc -n k-1 --type='merge' -p '{

 "spec": {

 "resources": {

 "requests": {

 "storage": "6Gi"

 }

 }

 }

}'

Creating PVCs - Alauda Container Platform

How to Annotate Third-Party Storage Capabilities

Creating PVCs - Alauda Container Platform

A volume snapshot is a point-in-time copy of a persistent volume claim (PVC) that can be

used to configure new persistent volume claims (pre-filling with snapshot data) or to roll back

existing persistent volume claims to a previous state, achieving the effect of backing up

application data and restoring it as needed, thereby ensuring the reliability of application data.

Prerequisites

Example VolumeSnapshot custom resource (CR)

Creating Volume Snapshots by using th web console

Creating a Volume Snapshot Based on a Specified Persistent Volume Claim (PVC)

Creating Volume Snapshots in a Custom Way

Creating Volume Snapshots by using the CLI

Creating Persistent Volume Claims from Volume Snapshots

Method One

Method Two

Additional resource

The administrator has deployed the volume snapshot component Snapshot Controller for

the current cluster and enabled snapshot-related features in the storage cluster.

Using Volume Snapshots

TOC

Prerequisites

Menu ON THIS PAGE

Using Volume Snapshots - Alauda Container Platform

The persistent volume claim must be created dynamically and its status must be Bound.

The storage class bound to the persistent volume claim must support snapshot

functionality, such as CephRBD Built-in Storage, CephFS Built-in Storage, or TopoLVM.

This creates a snapshot of the example-pvc PVC using a CSI snapshot class.

Method One

1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).

Example VolumeSnapshot custom resource (CR)

Creating Volume Snapshots by using th web
console

Creating a Volume Snapshot Based on a Specified
Persistent Volume Claim (PVC)

example-snapshot.yaml

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: example-pvc-20250527-111124

 namespace: k-1

 labels:

 snapshot.cpaas.io/sourcepvc: example-pvc

 annotations:

 cpaas.io/description: demo

spec:

 volumeSnapshotClassName: csi-cephfs-snapshotclass

 source:

 persistentVolumeClaimName: example-pvc

Using Volume Snapshots - Alauda Container Platform

3. Click the ⋮ next to the corresponding persistent volume claim in the list and select Create

Volume Snapshot.

4. Fill in the snapshot description. This description can help you record the current state of the

persistent volume, such as Before Application Upgrade.

5. Click Create. The time taken for the snapshot depends on network conditions and data

volume; please be patient.

When the snapshot changes to Available status, it indicates that the creation was

successful.

Method Two

1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).

3. Click on the name of the persistent volume claim in the list.

4. Switch to the Volume Snapshots tab.

5. Click Create Volume Snapshot, and configure the relevant parameters as needed.

6. Click Create. The time taken for the snapshot depends on network conditions and data

volume; please be patient.

When the snapshot changes to Available status, it indicates that the creation was

successful.

1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Volume Snapshots.

3. Click Create Volume Snapshot, and configure the relevant parameters as needed.

4. Click Create. The time taken for the snapshot depends on network conditions and data

volume; please be patient.

Creating Volume Snapshots in a Custom Way

Using Volume Snapshots - Alauda Container Platform

When the snapshot changes to Available status, it indicates that the creation was

successful.

Currently, the platform only supports creating volume snapshots using PVCs created from

storage classes with Dynamic Provisioning. You can create new PVCs based on that

snapshot and bind them.

Note: The access modes supported when creating a PVC from a snapshot differ from those

supported when creating a PVC from a storage class, as highlighted in bold in the table.

Storage Class Used

for Creating Volume

Snapshots

Single Node

Read-Write

(RWO)

Multi-Node

Read-Only

(ROX)

Multi-Node

Read-Write

(RWX)

TopoLVM Supported Not Supported Not Supported

CephRBD Block

Storage
Supported Not Supported Not Supported

CephFS File Storage Supported Supported Supported

1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).

Creating Volume Snapshots by using the CLI

Creating Persistent Volume Claims from Volume
Snapshots

Method One

kubectl apply -f example-snapshot.yaml

Using Volume Snapshots - Alauda Container Platform

3. Click on the name of the persistent volume claim in the list.

4. Switch to the Volume Snapshots tab.

5. Click the ⋮ next to the corresponding volume snapshot in the list and select Create

Persistent Volume Claim, configuring the relevant parameters.

6. Click Create.

1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Volume Snapshots.

3. Click the ⋮ next to the corresponding volume snapshot in the list and select Create

Persistent Volume Claim, configuring the relevant parameters.

4. Click Create.

Creating PVCs

Method Two

Additional resource

Using Volume Snapshots - Alauda Container Platform

How To

Generic ephemeral volumes

Example ephemeral volumes

Key features

When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Using an emptyDir

Example emptyDir

Optional Medium Setting

Key Characteristics

Common Use Cases

Configuring Persistent Storage Using NFS

Prerequisites

Procedure

Enforcing Disk Quotas via Partitioned Exports

NFS volume security

Reclaiming resources

Menu

How To - Alauda Container Platform

Third‑Party Storage Capability Annotation Guide
1. Getting Started

2. Sample ConfigMap

3. Update Existing Capability Descriptions

4. Compatibility with the Legacy Format

5. Frequently Asked Questions

How To - Alauda Container Platform

Generic Ephemeral Volumes in Kubernetes are a feature that allows you to provision

ephemeral (temporary), per-pod volumes using existing StorageClasses and CSI drivers,

without needing to predefine PersistentVolumeClaims (PVCs).

They combine the flexibility of dynamic provisioning with the simplicity of pod-level volume

declaration.

They are temporary volumes that are automatically:

created when the Pod starts

deleted when the Pod terminates

Use the same underlying mechanisms as PersistentVolumeClaim

Require a CSI (Container Storage Interface) driver that supports dynamic provisioning

Example ephemeral volumes

Key features

When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Generic ephemeral volumes

TOC

Example ephemeral volumes

Menu ON THIS PAGE

Generic ephemeral volumes - Alauda Container Platform

This automatically creates a temporary PVC for the Pod using the specified StorageClass .

1. Pod will create a PVC by using this template.

Feature Description

Ephemeral Volume is deleted when the Pod is deleted

Dynamic

provisioning
Backed by any CSI driver with dynamic provisioning

Key features

apiVersion: v1

kind: Pod

metadata:

 name: ephemeral-demo

spec:

 containers:

 - name: app

 image: busybox

 command: ["sh", "-c", "echo hello > /data/hello.txt && sleep 3600"]

 volumeMounts:

 - mountPath: /data

 name: ephemeral-volume

 volumes:

 - name: ephemeral-volume

 ephemeral: 1

 volumeClaimTemplate:

 metadata:

 labels:

 type: temporary

 spec:

 accessModes: ["ReadWriteOnce"]

 resources:

 requests:

 storage: 1Gi

 storageClassName: standard

Generic ephemeral volumes - Alauda Container Platform

Feature Description

No separate PVC VolumeClaim is embedded directly in the Pod spec

CSI-powered
Works with any compatible CSI driver (EBS, RBD, Longhorn,

etc.)

When you need temporary storage with features like:

Resizable volumes

Snapshots

Encryption

Non-node-local storage (e.g., cloud block storage)

Ideal for:

Caching intermediate data

Temporary working directories

Pipelines, AI/ML workflows

Feature emptyDir Generic Ephemeral Volume

Backing storage
Node's local disk or

memory
Any CSI-supported backend

Storage

features
Basic

Supports snapshots, encryption,

etc.

When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Generic ephemeral volumes - Alauda Container Platform

Feature emptyDir Generic Ephemeral Volume

Use case Simple temporary storage
Advanced ephemeral storage

needs

Reschedulable No (tied to node) Yes (if CSI volume is attachable)

Generic ephemeral volumes - Alauda Container Platform

In Kubernetes, an emptyDir is a simple ephemeral volume type that provides temporary

storage to a pod during its lifetime. It is created when a pod is assigned to a node, and

deleted when the pod is removed from that node.

Example emptyDir

Optional Medium Setting

Key Characteristics

Common Use Cases

This Pod creates a temporary volume mounted at /data, which is shared with the container.

Using an emptyDir

TOC

Example emptyDir

Menu ON THIS PAGE

Using an emptyDir - Alauda Container Platform

You can choose where the data is stored:

Medium Description

(default) Uses node's disk, SSD or network storage, depending on your environment

Memory Uses RAM (tmpfs) for faster access (but volatile)

Feature Description

Starts empty No data when created

Optional Medium Setting

Key Characteristics

apiVersion: v1

kind: Pod

metadata:

 name: emptydir-demo

spec:

 containers:

 - name: app

 image: busybox

 command: ["sh", "-c", "echo hello > /data/hello.txt && sleep 3600"]

 volumeMounts:

 - mountPath: /data

 name: cache-volume

 volumes:

 - name: cache-volume

 emptyDir: {}

emptyDir:

 medium: "Memory"

Using an emptyDir - Alauda Container Platform

Feature Description

Shared across

containers

Same volume can be used by multiple containers in the

pod

Deleted with pod Volume is destroyed when the pod is removed

Node-local Volume is stored on the node's local disk or memory

Fast Ideal for performance-sensitive scratch space

Caching intermediate build artifacts

Buffering logs

Temporary work directories

Sharing data between containers in the same pod (like sidecars)

Common Use Cases

Using an emptyDir - Alauda Container Platform

Alauda Container Platform clusters support persistent storage using NFS. Persistent Volumes

(PVs) and Persistent Volume Claims (PVCs) provide an abstraction layer for provisioning and

consuming storage volumes within a project. While NFS configuration details can be

embedded directly in a Pod definition, this approach does not create the volume as a distinct,

isolated cluster resource, increasing the risk of conflicts.

Prerequisites

Procedure

Create an object definition for the PV

Verify that the PV was created

Create a PVC that references the PV

Verify that the persistent volume claim was created

Enforcing Disk Quotas via Partitioned Exports

NFS volume security

Group IDs

User IDs

Export settings

Reclaiming resources

Configuring Persistent Storage Using NFS

TOC

Prerequisites

Menu ON THIS PAGE

Configuring Persistent Storage Using NFS - Alauda Container Platform

Storage must exist in the underlying infrastructure before it can be mounted as a volume in

Alauda Container Platform.

To provision NFS volumes, a list of NFS servers and export paths are all that is required.

1. The name of the volume.

2. Amount of storage.

3. Though this appears to be related to controlling access to the volume, it is actually

used similarly to labels and used to match a PVC to a PV. Currently, no access rules

are enforced based on the accessModes.

4. The volume type being used, in this case the nfs plugin.

5. The NFS server address.

6. The NFS export path.

7. What happens after PVC is deleted (Retain, Delete, Recycle).

Procedure

Create an object definition for the PV1

Verify that the PV was created2

cat << EOF | kubectl create -f -

apiVersion: v1

kind: PersistentVolume

metadata:

 name: pv-nfs-example 1

spec:

 capacity:

 storage: 1Gi 2

 accessModes:

 - ReadWriteOnce 3

 nfs: 4

 path: /tmp 5

 server: 10.0.0.3 6

 persistentVolumeReclaimPolicy: Retain 7

EOF

Configuring Persistent Storage Using NFS - Alauda Container Platform

1. The access modes do not enforce security, but rather act as labels to match a PV to

a PVC.

2. This claim looks for PVs offering 1Gi or greater capacity.

3. The name of the PV to be used.

Command

kubectl get pv

Output Example

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM

STORAGECLASS REASON AGE

pv-nfs-example 1Gi RWO Retain Available

10s

Create a PVC that references the PV3

Verify that the persistent volume claim was created4

Command

kubectl get pvc

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: nfs-claim1

spec:

 accessModes:

 - ReadWriteOnce 1

 resources:

 requests:

 storage: 1Gi 2

 volumeName: pv-nfs-example 3

 storageClassName: ""

Configuring Persistent Storage Using NFS - Alauda Container Platform

To enforce disk quotas and size constraints, you can utilize disk partitions. Assign each

partition as a dedicated export point, with each export corresponding to a distinct

PersistentVolume (PV).

While Alauda Container Platform mandates unique PV names, it remains the administrator's

responsibility to ensure the uniqueness of the NFS volume's server and path for each export.

This partitioned approach enables precise capacity management. Developers request

persistent storage specifying a required amount (e.g., 10Gi), and ACP matches the request to

a PV backed by a partition/export offering at least that specified capacity. Please note: The

quota enforcement applies to the usable storage space within the assigned partition/export.

This section details NFS volume security mechanisms with a focus on permission matching.

Readers are assumed to possess fundamental knowledge of POSIX permissions, process

UIDs, and supplemental groups.

Developers request NFS storage through either:

A PersistentVolumeClaim (PVC) reference by name, or

Direct configuration of the NFS volume plugin in the volumes section of their Pod

specification.

On the NFS server, the /etc/exports file defines export rules for accessible directories. Each

exported directory retains its native POSIX owner/group IDs.

Output Example

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

nfs-claim1 Bound pv-nfs-example 1Gi RWO

10s

Enforcing Disk Quotas via Partitioned Exports

NFS volume security

Configuring Persistent Storage Using NFS - Alauda Container Platform

Key behavior of Alauda Container Platform's NFS plugin:

1. Mounts volumes to containers while preserving exact POSIX ownership and permissions

from the source directory

2. Executes containers without forcing process UIDs to match the mount ownership - an

intentional security measure

For example, consider an NFS directory with these server-side attributes:

Then the container must either run with a UID of 65534, the nfsnobody owner, or with 5555 in

its supplemental groups to access the directory.

NOTE

Note The owner ID of 65534 is used as an example. Even though NFS's root_squash maps root,

uid 0, to nfsnobody, uid 65534, NFS exports can have arbitrary owner IDs. Owner 65534 is not

required for NFS exports.

Command

ls -l /share/nfs -d

Output Example

drwxrws---. nfsnobody 5555 /share/nfs

Command

id nfsnobody

Output Example

uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Group IDs

Configuring Persistent Storage Using NFS - Alauda Container Platform

Recommended NFS Access Management (When Export Permissions Are Fixed) When

modifying permissions on the NFS export is not feasible, the recommended approach for

managing access is through supplemental groups.

Supplemental groups in Alauda Container Platform are a common mechanism for controlling

access to shared file storage, such as NFS.

Contrast with Block Storage: Access to block storage volumes (e.g., iSCSI) is typically

managed by setting the fsGroup value within the pod's securityContext. This approach

leverages filesystem group ownership change upon mount.

NOTE

To gain access to persistent storage, it is generally preferable to use supplemental group IDs

versus user IDs.

Because the group ID on the example target NFS directory is 5555, the pod can define that

group ID using supplementalGroups under the securityContext definition of the pod. For

example:

1. securityContext must be defined at the pod level, not under a specific container.

2. An array of GIDs defined for the pod. In this case, there is one element in the array.

Additional GIDs would be comma-separated.

User IDs can be defined in the container image or in the Pod definition.

NOTE

User IDs

spec:

 containers:

 - name:

 ...

 securityContext: 1

 supplementalGroups: [5555] 2

Configuring Persistent Storage Using NFS - Alauda Container Platform

It is generally preferable to use supplemental group IDs to gain access to persistent storage versus

using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534,

ignoring group IDs for the moment, so the following can be added to the Pod definition:

1. Pods contain a securityContext definition specific to each container and a pod's

securityContext which applies to all containers defined in the pod.

2. 65534 is the nfsnobody user.

To enable arbitrary container users to read and write the volume, each exported volume on

the NFS server should conform to the following conditions:

Every export must be exported using the following format:

The firewall must be configured to allow traffic to the mount point.

For NFSv4, configure the default port 2049 (nfs).

For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111

(portmapper).

Export settings

spec:

 containers: 1

 - name:

 ...

 securityContext:

 runAsUser: 65534 2

replace 10.0.0.0/24 to trusted CIDRs/hosts

/<example_fs> 10.0.0.0/24(rw,sync,root_squash,no_subtree_check)

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

Configuring Persistent Storage Using NFS - Alauda Container Platform

The NFS export and directory must be set up so that they are accessible by the target

pods. Either set the export to be owned by the container's primary UID, or supply the pod

group access using supplementalGroups, as shown in the group IDs above.

NFS implements the Alauda Container Platform Recyclable plugin interface. Automatic

processes handle reclamation tasks based on policies set on each persistent volume.

By default, PVs are set to Retain.

Once claim to a PVC is deleted, and the PV is released, the PV object should not be reused.

Instead, a new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

The user creates PVC1, which binds to nfs1. The user then deletes PVC1, releasing claim to

nfs1. This results in nfs1 being Released. If the administrator wants to make the same NFS

share available, they should create a new PV with the same NFS server details, but a different

PV name:

Reclaiming resources

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT

iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

apiVersion: v1

kind: PersistentVolume

metadata:

 name: nfs1

spec:

 capacity:

 storage: 1Mi

 accessModes:

 - ReadWriteMany

 nfs:

 server: 192.168.1.1

 path: "/"

Configuring Persistent Storage Using NFS - Alauda Container Platform

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to

manually change the status of a PV from Released to Available causes errors and potential

data loss.

apiVersion: v1

kind: PersistentVolume

metadata:

 name: nfs2

spec:

 capacity:

 storage: 1Mi

 accessModes:

 - ReadWriteMany

 nfs:

 server: 192.168.1.1

 path: "/"

Configuring Persistent Storage Using NFS - Alauda Container Platform

Feature Overview: By adding a StorageDescription ConfigMap in the kube-public

namespace, the platform automatically detects each third‑party StorageClass's snapshot

support as well as supported volume modes and access modes (including block‑specific

access modes). The PVC creation screen will then display only the valid options, helping

you choose and use the right storage features with ease.

1. Getting Started

1.1 Create or Update the ConfigMap

1.2 Populate the data field

1.3 Apply the configuration

2. Sample ConfigMap

3. Update Existing Capability Descriptions

4. Compatibility with the Legacy Format

5. Frequently Asked Questions

Third‑Party Storage Capability Annotation
Guide

TOC

1. Getting Started

1.1 Create or Update the ConfigMap

Menu ON THIS PAGE

Third‑Party Storage Capability Annotation Guide - Alauda Container Platform

Important: Perform the following operation in the kube-public namespace, otherwise the

platform will not recognize the storage capabilities.

Edit or create a ConfigMap whose name starts with sd- , for example sd-capabilities-

enhanced :

Required label

Each key corresponds to a StorageClass provisioner ; the value is a YAML string that

describes its capabilities. Key fields:

Field Type Description

snapshot Boolean
Indicates whether volume snapshots are

supported

volumeMode List[String]
Supported volume modes; at least one of

Filesystem , Block

accessModes List[String]
Access modes available when volumeMode is

Filesystem

blockAccessModes List[String]
Access modes specific to Block volumes

(optional)

If blockAccessModes is omitted, the platform will fall back to accessModes for Block volumes.

1.2 Populate the data field

1.3 Apply the configuration

kubectl -n kube-public edit configmap sd-capabilities-enhanced

metadata:

 labels:

 features.alauda.io/type: StorageDescription

Third‑Party Storage Capability Annotation Guide - Alauda Container Platform

Once applied, the UI automatically adjusts available options, for example:

When Block volume mode is selected, the access‑mode dropdown is populated with

blockAccessModes .

If snapshot: true , snapshot‑related operations become available on the PVC page.

2. Sample ConfigMap

kubectl apply -f sd-capabilities-enhanced.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: sd-capabilities-enhanced

 namespace: kube-public

 labels:

 features.alauda.io/type: StorageDescription

data:

 storage.advanced-block-fs.com: |-

 snapshot: true

 volumeMode:

 - Filesystem

 - Block

 accessModes:

 - ReadWriteOnce

 - ReadOnlyMany

 blockAccessModes:

 - ReadWriteOnce

 storage.filesystem-basic.com: |-

 snapshot: false

 volumeMode:

 - Filesystem

 accessModes:

 - ReadWriteOnce

 - ReadWriteMany

Third‑Party Storage Capability Annotation Guide - Alauda Container Platform

1. Locate the provisioner key you want to modify.

2. Adjust the field values to reflect the actual capabilities.

3. Re‑apply the ConfigMap with kubectl apply -f The platform polls for updates and

refreshes the UI automatically; you can also refresh the browser to see the changes

immediately.

If blockAccessModes is missing, Block volumes will inherit accessModes .

You do not need to delete old ConfigMaps; simply add the new fields for a smooth upgrade.

Symptom Possible Cause Resolution

Access‑mode list empty

for Block volumes

blockAccessModes is empty and

accessModes is also empty

Provide at least one

of the two

UI still shows outdated

capabilities

ConfigMap not saved or browser

cache

Verify with kubectl

get cm , reload

3. Update Existing Capability Descriptions

4. Compatibility with the Legacy Format

5. Frequently Asked Questions

Third‑Party Storage Capability Annotation Guide - Alauda Container Platform

Troubleshooting

Recover From PVC Expansion Failure

Procedure

Additional Tips

Menu

Troubleshooting - Alauda Container Platform

When PVC expansion fails in Kubernetes, administrators can manually recover the Persistent

Volume Claim (PVC) state and cancel the expansion request.

Procedure

Additional Tips

1. Modify the reclaim policy of the Persistent Volume (PV) bound to the PVC to Retain . To do

this, edit the corresponding PV and set the persistentVolumeReclaimPolicy field to Retain .

2. Delete the original PVC.

3. Manually edit the PV to remove the claimRef entry from its specifications. This ensures

that the new PVC can bind to this PV, changing the PV's status to Available .

4. Recreate a new PVC with a smaller size or a size supported by the underlying storage

provider.

5. Explicitly specify the volumeName field in the new PVC to match the original PV name. This

ensures that the new PVC accurately binds to the specified PV.

6. Finally, restore the original reclaim policy of the PV.

Recover From PVC Expansion Failure

TOC

Procedure

Menu ON THIS PAGE

Recover From PVC Expansion Failure - Alauda Container Platform

Ensure that the StorageClass in use has volume expansion enabled by setting

allowVolumeExpansion to true .

Perform these actions carefully to avoid the risk of data loss.

Additional Tips

Recover From PVC Expansion Failure - Alauda Container Platform

	Storage
	Introduction
	Concepts
	Core Concepts
	TOC
	Persistent Volume (PV)
	Persistent Volume Claim (PVC)
	Generic Ephemeral Volumes
	emptyDir
	hostPath
	ConfigMap
	Secret
	StorageClass
	Container Storage Interface (CSI)

	Persistent Volume
	TOC
	Dynamic Persistent Volumes vs. Static Persistent Volumes
	Lifecycle of Persistent Volumes

	Access Modes and Volume Modes
	TOC
	Access Modes in Kubernetes
	Access Modes by Storage Class

	Volume Modes in Kubernetes
	Volume Modes by Storage Class

	Storage Features: Snapshots and Expansion
	Conclusion

	Guides
	Creating CephFS File Storage Type Storage Class
	TOC
	Deploy Volume Plugin
	Create Storage Class

	Creating CephRBD Block Storage Class
	TOC
	Deploy Volume Plugin
	Create Storage Class

	Create TopoLVM Local Storage Class
	TOC
	Background Information
	Advantages of Use
	Use Cases
	Constraints and Limitations

	Deploy Volume Plugin
	Create Storage Class
	Follow-up Actions

	Creating an NFS Shared Storage Class
	TOC
	Prerequisites
	Deploying the Alauda Container Platform NFS CSI plugin
	Deploying via Web Console
	Deploying via YAML

	Creating an NFS Shared Storage Class

	Deploy Volume Snapshot Component
	TOC
	Deploying via Web Console
	Deploying via YAML

	Creating a PV
	TOC
	Prerequisites
	Example PersistentVolume
	Creating PV by using the web console
	Storage Information

	Creating PV by using the CLI
	Access Modes
	Reclaim Policies

	Related Operations
	Additional resource

	Creating PVCs
	TOC
	Prerequisites
	Example PersistentVolumeClaim:
	Creating a Persistent Volume Claim by using the web console
	Creating a Persistent Volume Claim by using the CLI
	Operations
	Expanding PersistentVolumeClaim Storage Capacity by using the web console
	Expanding Persistent Volume Claim Storage Capacity by using the CLI
	Additional resources

	Using Volume Snapshots
	TOC
	Prerequisites
	Example VolumeSnapshot custom resource (CR)
	Creating Volume Snapshots by using th web console
	Creating a Volume Snapshot Based on a Specified Persistent Volume Claim (PVC)
	Creating Volume Snapshots in a Custom Way

	Creating Volume Snapshots by using the CLI
	Creating Persistent Volume Claims from Volume Snapshots
	Method One
	Method Two

	Additional resource

	How To
	Generic ephemeral volumes
	TOC
	Example ephemeral volumes
	Key features
	When to Use Generic Ephemeral Volumes
	How Are They Different from emptyDir?

	Using an emptyDir
	TOC
	Example emptyDir
	Optional Medium Setting
	Key Characteristics
	Common Use Cases

	Configuring Persistent Storage Using NFS
	TOC
	Prerequisites
	Procedure
	Create an object definition for the PV
	Verify that the PV was created
	Create a PVC that references the PV
	Verify that the persistent volume claim was created

	Enforcing Disk Quotas via Partitioned Exports
	NFS volume security
	Group IDs
	User IDs
	Export settings

	Reclaiming resources

	Third‑Party Storage Capability Annotation Guide
	TOC
	1. Getting Started
	1.1 Create or Update the ConfigMap
	1.2 Populate the data field
	1.3 Apply the configuration

	2. Sample ConfigMap
	3. Update Existing Capability Descriptions
	4. Compatibility with the Legacy Format
	5. Frequently Asked Questions

	Troubleshooting
	Recover From PVC Expansion Failure
	TOC
	Procedure
	Additional Tips

