Storage - Alauda Container Platform

Menu

Storage

Introduction

Introduction

Concepts

Core Concepts

Persistent Volume (PV)
Persistent Volume Claim (PVC)
Generic Ephemeral Volumes
emptyDir

hostPath

ConfigMap

Secret

StorageClass

Container Storage Interface (CSI)

Persistent Volume
Dynamic Persistent Volumes vs. Static Persistent Volumes

Lifecycle of Persistent Volumes

Storage - Alauda Container Platform

Access Modes and Volume Modes
Access Modes in Kubernetes

Volume Modes in Kubernetes

Storage Features: Snapshots and Expansion

Conclusion

Guides

Creating CephFsS File Storage Type Storage Class
Deploy Volume Plugin

Create Storage Class

Creating CephRBD Block Storage Class
Deploy Volume Plugin

Create Storage Class

Create TopoLVM Local Storage Class
Background Information

Deploy Volume Plugin

Create Storage Class

Follow-up Actions

Storage - Alauda Container Platform

Creating an NFS Shared Storage Class
Prerequisites
Deploying the Alauda Container Platform NFS CSI plugin

Creating an NFS Shared Storage Class

Deploy Volume Snapshot Component
Deploying via Web Console

Deploying via YAML

Creating a PV

Prerequisites

Example PersistentVolume

Creating PV by using the web console
Creating PV by using the CLI

Related Operations

Additional resource

Creating PVCs

Prerequisites

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the web console

Creating a Persistent Volume Claim by using the CLI

Operations

Expanding PersistentVolumeClaim Storage Capacity by using the web console
Expanding Persistent Volume Claim Storage Capacity by using the CLI

Additional resources

Storage - Alauda Container Platform

Using Volume Snapshots

Prerequisites

Example VolumeSnapshot custom resource (CR)

Creating Volume Snapshots by using th web console
Creating Volume Snapshots by using the CLI

Creating Persistent Volume Claims from Volume Snapshots

Additional resource

How To

Generic ephemeral volumes
Example ephemeral volumes

Key features

When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Using an emptyDir
Example emptyDir
Optional Medium Setting
Key Characteristics

Common Use Cases

Storage - Alauda Container Platform

Configuring Persistent Storage Using NFS
Prerequisites

Procedure

Enforcing Disk Quotas via Partitioned Exports

NFS volume security

Reclaiming resources

Third-Party Storage Capability Annotation Guide
1. Getting Started

2. Sample ConfigMap

3. Update Existing Capability Descriptions

4. Compatibility with the Legacy Format

5. Frequently Asked Questions

Troubleshooting

Recover From PVC Expansion Failure
Procedure

Additional Tips

Introduction - Alauda Container Platform

Menu

Introduction

Kubernetes offers a flexible and scalable storage mechanism for managing data persistence
in containerized environments. By abstracting storage resources such as Volumes,
PersistentVolumes, and PersistentVolumeClaims, Kubernetes decouples applications from
underlying storage systems, enabling dynamic provisioning, automatic mounting, and
persistent data across nodes.

Key features include support for multiple backend storage systems (e.g., local disks, NFS,
cloud storage services), dynamic provisioning, access mode control (such as read/write
permissions), and lifecycle management—meeting the storage needs of stateful applications.
For enterprise-level workloads requiring high availability, data persistence, and multi-tenant

isolation, Kubernetes storage is an essential foundational capability.

Kubernetes storage is designed for developers, operations engineers, and platform teams,

helping them efficiently and securely manage data in containerized workloads.

Concepts - Alauda Container Platform

Menu

Concepts

Core Concepts

Persistent Volume (PV)
Persistent Volume Claim (PVC)
Generic Ephemeral Volumes
emptyDir

hostPath

ConfigMap

Secret

StorageClass

Container Storage Interface (CSI)

Persistent Volume
Dynamic Persistent Volumes vs. Static Persistent Volumes

Lifecycle of Persistent Volumes

Access Modes and Volume Modes
Access Modes in Kubernetes

Volume Modes in Kubernetes

Storage Features: Snapshots and Expansion

Conclusion

Core Concepts - Alauda Container Platform

Menu ON THIS PAGE >

Core Concepts

Kubernetes storage is centered on three key concepts: PersistentVolume (PV),

PersistentVolumeClaim (PVC), and StorageClass. These define how storage is requested,
allocated, and configured within a cluster. Under the hood, CSI (Container Storage Interface)
drivers frequently handle the actual provisioning and attachment of storage. Let's briefly look

at each component and then highlight the CSI Driver's role.

TOC

Persistent Volume (PV)
Persistent Volume Claim (PVC)
Generic Ephemeral Volumes
emptyDir

hostPath

ConfigMap

Secret

StorageClass

Container Storage Interface (CSI)

Persistent Volume (PV)

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned (either

statically by an administrator or dynamically through a StorageClass). It represents the

Core Concepts - Alauda Container Platform

underlying storage—such as a disk on a cloud provider or a network-attached filesystem—and

is treated as a resource in the cluster, similar to a node.

Persistent Volume Claim (PVC)

A PersistentVolumeClaim (PVC) is a request for storage. Users define how much storage
they need and the access mode (e.g., read-write). If an appropriate PV is available or can be
dynamically provisioned (via a StorageClass), the PVC becomes “bound” to that PV. Once

bound, Pods can reference the PVC to persist or share data.

Generic Ephemeral Volumes

Generic Ephemeral Volumes for Kubernetes is a feature introduced in Kubernetes that allows
you to use CSl-driven temporary volumes during the Pod lifecycle, similar to the This is
similar to emptyDir , but is more powerful and allows you to mount any type of CSI volume

(with support for snapshots, scaling, etc.).

For more usage, please refer to Generic ephemeral volumes

emptyDir

1. emptyDir is a temporary storage volume of the empty directory type.

2. It is created when a Pod is dispatched to a node, and the storage is located on that node's

local filesystem (node disk by default).
3. When a Pod is deleted, the data in emptyDir is also erased.

For more usage, please refer to Using an emptyDir

hostPath

Core Concepts - Alauda Container Platform

In Kubernetes, a hostPath volume is a special type of volume that maps a file or directory from
the host node's filesystem directly into a Pod's container.

» [t allows a pod to access files or directories on the host node.

o Useful for:

o Accessing host-level resources (e.g., Docker socket)
o Debugging
o Using pre-existing data on the node

ConfigMap

A ConfigMap in Kubernetes is an API object used to store non-sensitive configuration data in
the form of key-value pairs. It allows you to decouple configuration from application code,
making your applications more portable and easier to manage.

Secret

In Kubernetes, a Secret is an API object that stores sensitive data such as:

passwords

OAuth tokens

SSH keys

TLS certificates

database credentials

Secrets help protect this data by avoiding storing it directly in Pod specifications or container
images.

Core Concepts - Alauda Container Platform

StorageClass

A StorageClass describes how volumes should be dynamically provisioned. It maps to a
specific provisioner (often a CSl driver) and can include parameters such as storage tiers,
performance characteristics, or other backend configurations. By creating multiple

StorageClasses, you can offer various types of storage to developers.

Cluster

Namespace
requests——»| StorageClass ——dynamic provision
T
PersistentVolumeClaim PersistentVolume
binds to __—

Diagram: Relationship between PVC, PV, and StorageClass.

Container Storage Interface (CSl)

The Container Storage Interface (CSI) is a standard API that Kubernetes uses to integrate
with storage drivers. It allows third-party storage providers to build out-of-tree plugins,

meaning you can install or update a storage driver without modifying Kubernetes itself.
A CSl driver typically has two components:

1. Controller component: Runs in the cluster (often as a Deployment) and handles high-
level operations, such as creating or deleting volumes. For networked storage, it may also

handle attaching and detaching volumes to nodes.

2. Node component: Runs on each node (often as a DaemonSet) and is responsible for
mounting and unmounting the volume on that particular node. It communicates with the

kubelet to ensure the volume is accessible to Pods.

When a user creates a PVC referring to a StorageClass that uses a CSI driver, the CSI driver
observes that request and provisions storage accordingly (if dynamic provisioning is required).
Once the storage is created, the driver notifies Kubernetes, which creates a corresponding PV
and binds it to the PVC. Whenever a Pod uses that PVC, the node component of the driver
handles the volume mount, making the storage available inside the container.

Core Concepts - Alauda Container Platform

By leveraging PV, PVC, StorageClass, and CSI, Kubernetes enables a powerful, declarative
approach to storage management. Administrators can define one or more StorageClasses to
represent different storage backends or performance tiers, while developers simply request

storage using PVCs—uwithout worrying about the underlying infrastructure.

Persistent Volume - Alauda Container Platform

Menu ON THIS PAGE >

Persistent Volume

A PersistentVolume (PV) represents the mapping relationship with backend storage volumes
in a Kubernetes cluster, functioning as a Kubernetes API resource. It is a cluster resource
created and configured uniformly by administrators, responsible for abstracting the actual

storage resources and forming the storage infrastructure of the cluster.

PersistentVolumes possess a lifecycle independent of Pods, enabling the persistent storage
of Pod data.

Administrators may manually create static PersistentVolumes or generate dynamic
PersistentVolumes based on storage classes. If developers need to obtain storage resources
for applications, they can request them via PersistentVolumeClaims (PVC), which match and

bind to suitable PersistentVolumes.

TOC

Dynamic Persistent Volumes vs. Static Persistent Volumes

Lifecycle of Persistent Volumes

Dynamic Persistent Volumes vs. Static Persistent

Volumes

The platform supports management of two types of PersistentVolumes by administrators,

namely dynamic and static Persistent Volumes.

Persistent Volume - Alauda Container Platform

+ Dynamic Persistent Volumes: Implemented based on storage classes. Storage classes
are created by administrators and define a Kubernetes resource that describes the
category of storage resources. Once a developer creates a PersistentVolumeClaim
associated with a storage class, the platform will dynamically create a suitable
PersistentVolume according to the parameters configured in the PersistentVolumeClaim
and storage class, binding it to the PersistentVolumeClaim for dynamic allocation of

storage resources.

« Static Persistent Volumes: Persistent Volumes created manually by the administrator.
Currently, it supports the creation of HostPath or NFS shared storage type static
Persistent Volumes. When developers create a PersistentVolumeClaim without using a
storage class, the platform will match and bind a suitable static PersistentVolume according

to the parameters configured in the PersistentVolumeClaim.

o HostPath: Uses a file directory on the node host (local storage is not supported) as
backend storage, such as: /etc/kubernetes . It generally applies only to testing scenarios

within a single compute node cluster.

* NFS Shared Storage: Refers to the Network File System, a common type of backend
storage for Persistent Volumes. Users and programs can access files on remote

systems as if they were local files.

Lifecycle of Persistent Volumes

1. Provisioning: Administrators manually create static Persistent Volumes. After creation, the
Persistent Volume enters an Available state; alternatively, the platform creates suitable
Persistent Volumes dynamically based on PersistentVolumeClaims associated with storage

classes.

2. Binding: Once a static Persistent Volume is matched and bound to a
PersistentVolumeClaim, it enters a Bound state; dynamic Persistent Volumes are created
dynamically based on requests matching PersistentVolumeClaims and also enter a Bound

state once created successfully.

3. Using: Developers associate PersistentVolumeClaims with container instances of compute

components, utilizing the backend storage resources mapped by the Persistent Volumes.

Persistent Volume - Alauda Container Platform

4. Releasing: After developers delete the PersistentVolumeClaim, the Persistent Volume is

released.

5. Reclaiming: Once the Persistent Volume is released, reclamation operations are
performed on it according to the reclamation policy parameters of the Persistent Volume or

storage class.

Access Modes and Volume Modes - Alauda Container Platform

Menu ON THIS PAGE >

Access Modes and Volume Modes

In Kubernetes, PersistentVolumeClaims (PVCs) and StorageClasses work together to
manage how storage is provisioned and accessed by workloads. Two essential concepts in
this domain are Access Modes and Volume Modes. This article explores these concepts and
highlights how different storage systems support them.

TOC

Access Modes in Kubernetes
Access Modes by Storage Class
Volume Modes in Kubernetes
Volume Modes by Storage Class
Storage Features: Snapshots and Expansion

Conclusion

Access Modes in Kubernetes

Access Modes define how a volume can be mounted and used by pods. The key access
modes are:

+ ReadWriteOnce (RWO): The volume can be mounted as read-write by a single node.
+ ReadOnlyMany (ROX): The volume can be mounted as read-only by multiple nodes.

+ ReadWriteMany (RWX): The volume can be mounted as read-write by multiple nodes.

Access Modes by Storage Class

Access Modes and Volume Modes - Alauda Container Platform

RWO ROX RWX
Storage Class
Supported Supported Supported

CephFS File Storage Yes No Yes
CephRBD Block

Yes No No
Storage
TopoLVM Yes No No
NFS Shared Storage Yes No Yes

As shown above, file-based storage systems like CephFS and NFS support multiple
concurrent write or read operations, making them suitable for shared-access scenarios. On
the other hand, block storage systems like CephRBD and TopoLVM provide exclusive access

to a single node at a time.

Volume Modes in Kubernetes

Volume Modes define how the data is exposed to the pod:

e Filesystem: The volume is mounted into the pod as a filesystem.

e Block: The volume is presented as a raw block device.

Volume Modes by Storage Class

Storage Class Type Supported Volume Modes
CephFS File Storage File Storage Filesystem
CephRBD Block Storage Block Storage Filesystem, Block
TopoLVM Block Storage Filesystem, Block

NFS Shared Storage File Storage Filesystem

Access Modes and Volume Modes - Alauda Container Platform

Block storage systems like CephRBD and TopoLVM offer both filesystem and raw block
access, providing flexibility for different application needs. File storage systems such as

CephFS and NFS, in contrast, only support the filesystem mode.

Storage Features: Snapshots and Expansion

Kubernetes also supports advanced features like volume snapshots and dynamic expansion

of PVCs, depending on the storage class used.

Storage Class Volume Snapshot Expansion
CephFS File Storage Supported Supported
CephRBD Block Storage Supported Supported
TopoLVM Supported Supported
NFS Shared Storage Not Supported Not Supported

Only dynamically provisioned PVCs using a StorageClass support volume snapshots. This

feature is useful for backups and cloning environments.

Conclusion

When configuring storage in Kubernetes, understanding the Access Modes and Volume
Modes of PVCs and their backing StorageClasses is critical for choosing the right solution for
your workload. File storage solutions such as CephFS and NFS are ideal for shared access
scenarios, while block storage like CephRBD and TopoLVM excel in high-performance, single-
node deployments. Furthermore, support for features like snapshots and expansion can

greatly enhance storage flexibility and data management strategies.

Guides - Alauda Container Platform

Menu

Guides

Creating CephFS File Storage Type Storage Class
Deploy Volume Plugin

Create Storage Class

Creating CephRBD Block Storage Class
Deploy Volume Plugin

Create Storage Class

Create TopoLVM Local Storage Class
Background Information

Deploy Volume Plugin

Create Storage Class

Follow-up Actions

Creating an NFS Shared Storage Class
Prerequisites
Deploying the Alauda Container Platform NFS CSI plugin

Creating an NFS Shared Storage Class

Guides - Alauda Container Platform

Deploy Volume Snapshot Component
Deploying via Web Console

Deploying via YAML

Creating a PV

Prerequisites

Example PersistentVolume

Creating PV by using the web console
Creating PV by using the CLI

Related Operations

Additional resource

Creating PVCs

Prerequisites

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the web console

Creating a Persistent Volume Claim by using the CLI

Operations

Expanding PersistentVolumeClaim Storage Capacity by using the web console
Expanding Persistent Volume Claim Storage Capacity by using the CLI

Additional resources

Guides - Alauda Container Platform

Using Volume Snapshots

Prerequisites

Example VolumeSnapshot custom resource (CR)

Creating Volume Snapshots by using th web console
Creating Volume Snapshots by using the CLI

Creating Persistent Volume Claims from Volume Snapshots

Additional resource

Creating CephFS File Storage Type Storage Class - Alauda Container Platform

Menu ON THIS PAGE >

Creating CephFS File Storage Type Storage

Class

CephFsS file storage is a built-in Ceph file storage system that provides the platform with a
Container Storage Interface (CSl)-based storage access method, offering a secure, reliable,
and scalable shared file storage service suitable for scenarios such as file sharing and data
backup. Before proceeding, you must first create a CephFS file storage class.

After binding the storage class in a Persistent Volume Claim (PVC), the platform will
dynamically create persistent volumes on the nodes according to the persistent volume claim

for business applications.

TOC

Deploy Volume Plugin

Create Storage Class

Deploy Volume Plugin

After clicking Deploy, on the Distributed Storage page, Create Storage Service or Access

Storage Service.

Create Storage Class

http://localhost:4173/container_platform/storage/storagesystem_ceph/installation/create_service_stand.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html

Creating CephFS File Storage Type Storage Class - Alauda Container Platform

. Go to Administrator.

. In the left navigation bar, click Storage Management > Storage Classes.

. Click Create Storage Class.

Note: The following content is provided as an example in form format; you may also

choose to create it using YAML.

. Select CephFsS File Storage and click Next.

. Configure the relevant parameters according to the following instructions.

Parameter Description

The reclaim policy for persistent volumes.

- Delete: When the persistent volume claim is deleted, the bound

Reclaim . _
] persistent volume will also be deleted.
Policy . . : : :
- Retain: The bound persistent volume will remain, even if the
persistent volume claim is deleted.
All access modes supported by the current storage. Only one of
these modes can be selected when declaring persistent volumes
later.
Access _ . .
- ReadWriteOnce (RWO): Can be mounted as read-write by a single
Modes
node.
- ReadWriteMany (RWX): Can be mounted as read-write by multiple
nodes.
Please allocate projects that can use this type of storage.
Allocate If there are currently no projects that need to use this type of
Project storage, you may choose not to allocate them for now and update

later.

Tip: The following parameters need to be set in the distributed storage and will be applied

directly here.

o Storage Cluster: The built-in Ceph storage cluster in the current cluster.

o Storage Pool: The logical partition used for data storage in the storage cluster.

Creating CephFS File Storage Type Storage Class - Alauda Container Platform

6. Click Create.

Creating CephRBD Block Storage Class - Alauda Container Platform

Menu ON THIS PAGE >

Creating CephRBD Block Storage Class

CephRBD block storage is a built-in Ceph block storage for the platform, providing a
Container Storage Interface (CSI) based storage access method that can deliver high IOPS
and low-latency storage services, suitable for scenarios such as databases and virtualization.

Before using this, you need to create a CephRBD block storage class.

Once a Persistent Volume Claim (PVC) is bound to the storage class, the platform will
dynamically create a Persistent Volume based on the Persistent Volume Claim for business

applications to use.

TOC

Deploy Volume Plugin

Create Storage Class

Deploy Volume Plugin

After clicking Deploy, on the Distributed Storage page, create a storage service or access a

storage service.

Create Storage Class

1. Go to Administrator.

http://localhost:4173/container_platform/storage/storagesystem_ceph/installation/create_service_stand.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html
http://localhost:4173/container_platform/storage/storagesystem_ceph/functions/access_storage_service.html

Creating CephRBD Block Storage Class - Alauda Container Platform

2. In the left navigation bar, click Storage Management > Storage Classes.

3. Click Create Storage Class.

Note: The following content is an example in form format, you can also choose YAML to

complete the operation.

4. Select CephRBD Block Storage, and click Next.

5. Configure the parameters as required.

Parameter Description

Defaults to EXT4, which is a journaling file system for Linux, capable

File of providing extent file storage and processing large files. The
System filesystem capacity can reach 1 EiB, with supported file sizes up to
16 TiB.

The reclaim policy for persistent volumes.

- Delete: The bound persistent volume will be deleted along with the

Reclaim . .
] persistent volume claim.
Policy . . : . .
- Retain: The bound persistent volume will be retained even if the
persistent volume claim is deleted.
Access Only supports ReadWriteOnce (RWO): it can be mounted by a single
Modes node in read-write mode.
e Please assign projects that can use this type of storage.
ssign _ _ _
e If there are no projects currently needing this type of storage, you can
rojec

choose not to assign one and update it later.

Tip: The following parameters need to be set in distributed storage and will be directly

applied here.

o Storage Cluster: The built-in Ceph storage cluster in the current cluster.

e Storage Pool: The logical partition used for storing data within the storage cluster.

6. Click Create.

Create TopoLVM Local Storage Class - Alauda Container Platform

Menu ON THIS PAGE >

Create TopoLVM Local Storage Class

TopoLVM is an LVM-based local storage solution that provides simple, easy-to-maintain, and
high-performance local storage services suitable for scenarios such as databases and

middleware. Before using it, you need to create a TopoLVM storage class.

Once the Persistent Volume Claim (PVC) is bound to the storage class, the platform
dynamically creates persistent volumes on the nodes based on the Persistent Volume Claim

for business applications to use.

TOC

Background Information

Advantages of Use

Use Cases

Constraints and Limitations
Deploy Volume Plugin
Create Storage Class

Follow-up Actions

Background Information

Advantages of Use

Create TopoLVM Local Storage Class - Alauda Container Platform

o Compared to remote storage (e.g., NFS shared storage): TopoLVM-type storage is located
locally on the node, offering better IOPS and throughput performance, as well as lower

latency.

+ Compared to hostPath (e.g., local-path): Although both are local storage on the node,
TopoLVM allows for flexible scheduling of container groups to nodes with sufficient
available resources, avoiding issues where container groups cannot start due to insufficient

resources.

¢ TopoLVM supports automatic volume expansion by default. After modifying the required
storage quota in the Persistent Volume Claim, the expansion can be completed

automatically without restarting the container group.

Use Cases

e When only temporary storage is needed, such as for development and debugging.

e When there are high storage I/O requirements, such as real-time indexing.

Constraints and Limitations

Please try to use local storage only for applications where data replication and backup at the
application layer can be realized, such as MySQL. Avoid data loss due to the lack of data

persistence guarantee from local storage.

Learn more ~

Deploy Volume Plugin

After clicking deploy, on the newly opened page configure local storage.

Create Storage Class

1. Go to Administrator.

https://github.com/topolvm/topolvm/blob/main/docs/user-manual.md
https://github.com/topolvm/topolvm/blob/main/docs/user-manual.md
https://github.com/topolvm/topolvm/blob/main/docs/user-manual.md
http://localhost:4173/container_platform/storage/storagesystem_topolvm/installation.html

Create TopoLVM Local Storage Class - Alauda Container Platform

. In the left navigation bar, click Storage Management > Storage Classes.
. Click Create Storage Class.

. Select TopoLVM, then click Next.

. Configure the storage class parameters as described below.

Note: The following content is presented as a form example; you may also choose to
create it using YAML.

Parameter Description

N The name of the storage class, which must be unique within the
ame
current cluster.

] A name that can help you identify or filter it, such as a Chinese
Display Name o
description of the storage class.
The device class is a way to categorize storage devices in
TopoLVM, with each device class corresponding to a group of
Device Class storage devices with similar characteristics. If there are no
special requirements, use the Automatically Assigned device

class.

o XFS is a high-performance journaling file system well-suited
for handling parallel I/O workloads, supporting large file

handling and smooth data transfer.

File System « EXT4 is a journaling file system under Linux that provides
extent file storage and supports large file handling, with a
maximum file system capacity of 1 EiB and a maximum file
size of 16 TiB.

Parameter

Reclamation

Policy

Access Mode

PVC

Reconstruction

Allocated

Projects

Create TopoLVM Local Storage Class - Alauda Container Platform
Description
The reclamation policy for persistent volumes.

o Delete: The bound persistent volume will also be deleted

along with the PVC.

e Retain: The bound persistent volume will remain even if the

PVC is deleted.

ReadWriteOnce (RWO): Can be mounted as read-write by a

single node.

Supports PVC reconstruction across nodes. When enabled, the
Reconstruction Wait Time must be configured. When the node
hosting the PVC created using this storage class fails, the PVC

will be automatically rebuilt on other nodes after the wait time to
ensure business continuity.

Note:

e The rebuilt PVC does not contain the original data.

o Please ensure that the number of storage nodes is greater
than the number of application instance replicas, or it will

affect PVC reconstruction.

Persistent volume claims of this type can only be created in
specific projects.
If no project is currently allocated, the project can also be

updated later.

6. After confirming that the configuration information is correct, click the Create button.

Follow-up Actions

Once everything is ready, you can notify the developers to use the TopoLVM features. For

example, create a Persistent Volume Claim and bind it to the TopoLVM storage class in the

Storage > Persistent Volume Claims page of the container platform.

Creating an NFS Shared Storage Class - Alauda Container Platform

Menu ON THIS PAGE >

Creating an NFS Shared Storage Class

Based on the community NFS CSI (Container Storage Interface) storage driver, it provides the

capability to access multiple NFS storage systems or accounts.

Unlike the traditional client-server model of NFS access, NFS shared storage utilizes the
community NFS CSI (Container Storage Interface) storage plugin, which is more aligned with

Kubernetes design principles and allows client access to multiple servers.

TOC

Prerequisites

Deploying the Alauda Container Platform NFS CSI plugin
Deploying via Web Console
Deploying via YAML

Creating an NFS Shared Storage Class

Prerequisites

* An NFS server must be configured, and its access methods must be obtained. Currently,
the platform supports three NFS protocol versions: v3, v4.0 ,and v4.1 . You can execute

nfsstat -s on the server side to check the version information.

Creating an NFS Shared Storage Class - Alauda Container Platform

Deploying the Alauda Container Platform NFS CSI
plugin

Deploying via Web Console

1. Enter Administrator.

2. In the left navigation bar, click Storage > StorageClasses.

3. Click Create StorageClass.

4. On the right side of NFS CSiI, click Deploy to navigate to the Plugins page.

5. On the right side of the Alauda Container Platform NFS CSI plugin, click : > Install.

6. Wait for the deployment status to indicate Deployment Successful before completing the

deployment.

Deploying via YAML
Refs to Installing via YAML

Alauda Container Platform NFS CSI is a Non-config plugin, and the module-name is nfs

Creating an NFS Shared Storage Class

1. Click Create Storage Class.

Note: The following content is presented in a form, but you may also choose to complete

the operation using YAML.
2. Select NFS CSl and click Next.

3. Refer to the following instructions to configure the relevant parameters.

http://localhost:4173/container_platform/extend/cluster_plugin.html#installing-via-yaml

Parameter

Name

Service
Address

Path

NFS
Protocol

Version

Reclaim

Policy

Access
Modes

Allocated

Projects

subDir

Creating an NFS Shared Storage Class - Alauda Container Platform
Description

The name of the storage class. It must be unique within the current

cluster.

The access address of the NFS server. For example: 192.168.2.11 .

The mount path of the NFS file system on the server node. For

example: /nfs/data .

Currently supports three versions: v3 , v4.0 ,and v4.1.

The reclaim policy for the persistent volume.

- Delete: When the persistent volume claim is deleted, the bound
persistent volume will also be deleted.

- Retain: Even if the persistent volume claim is deleted, the bound

persistent volume will still be retained.

All access modes supported by the current storage. During the
subsequent declaration of persistent volumes, only one of these
modes can be selected for mounting persistent volumes.

- ReadWriteOnce (RWO): Can be mounted as read-write by a single
node.

- ReadWriteMany (RWX): Can be mounted as read-write by multiple
nodes.

- ReadOnlyMany (ROX): Can be mounted as read-only by multiple

nodes.

Please allocate the projects that can use this type of storage.
If there are currently no projects needing this type of storage, you
may choose not to allocate any projects at this time and update them

later.

Each PersistentVolumeClaim (PVC) created using the NFS Shared
Storage Class corresponds to a subdirectory within the NFS share.
By default, subdirectories are named using the pattern

${pv.metadata.name} (i.e., the PersistentVolume name). If the default

Creating an NFS Shared Storage Class - Alauda Container Platform

Parameter Description

generated name does not meet your requirements, you can

customize the subdirectory naming rules.

NOTE
The subDir field supports only the following three variables, which the NFS CSI Driver

automatically resolves:

o ${pvc.metadata.namespace} : PVC Namespace.
o ${pvc.metadata.name} : PVC Name.

o ${pv.metadata.name} : PV Name.

The subDir naming rule MUST guarantee unique subdirectory names. Otherwise, multiple
PVCs may share the same subdirectory, causing data conflicts.

Recommended Configurations:

o ${pvc.metadata.namespace}_${pvc.metadata.name}_${pv.metadata.name}

o <cluster-

identifier>_${pvc.metadata.namespace}_${pvc.metadata.name}_${pv.metadata.name}

Designed for multiple Kubernetes clusters sharing the same NFS Server, this configuration
ensures clear cluster differentiation by incorporating a cluster-specific identifier (e.g., the cluster

name) into the subdirectory naming rules.

Not Recommended Configurations:

o ${pvc.metadata.namespace}-${pvc.metadata.name}-${pv.metadata.name} Avoid - as
separators, may lead to ambiguous subdirectory names. For example: If two PVCs are

named ns-1/test and ns/1-test , both could generate the same subdirectory ns-1-test .

o ${pvc.metadata.namespace}/${pvc.metadata.name}/${pv.metadata.name} Do NOT configure
subDir to create nested directories. The NFS CSI Driver only deletes the last-level directory
${pv.metadata.name} when a PVC is removed, leaving orphaned parent directories on the

NFS Server.

4. Once you have confirmed that the configuration information is correct, click Create.

Deploy Volume Snapshot Component - Alauda Container Platform

Menu ON THIS PAGE >

Deploy Volume Snapshot Component

A volume snapshot refers to a snapshot of a persistent volume, which is a copy of the
persistent volume at a specific point in time. If the cluster uses persistent volumes that support
snapshot functionality, the volume snapshot component can be deployed to enable this
feature.

Currently, the platform only supports creating volume snapshots for PVCs that are
dynamically created using storage classes. You can create new PVC bindings based on

these snapshots.

Tip: The access modes supported when creating PVCs from snapshots differ from those

supported when creating PVCs using storage classes, which are indicated in bold in the table

below.

Storage Class Used to Single Node Multi-Node Multi-Node

Create Volume Read-Write Read-Only Read-Write

Snapshots (RWO) (ROX) (RWX)
TopoLVM Supported Not Supported Not Supported
CephRBD Block
Supported Not Supported Not Supported

Storage
CephFS File Storage Supported Supported Supported

TOC

Deploying via Web Console

Deploying via YAML

Deploy Volume Snapshot Component - Alauda Container Platform

Deploying via Web Console

1. Go to Administrator.
2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Snapshot Management cluster plugin, click Install, and

wait for a moment until the deployment is successful.

Deploying via YAML

Refs to Installing via YAML

Alauda Container Platform Snapshot Management is a Non-config plugin, and the module-name

IS snapshot

http://localhost:4173/container_platform/extend/cluster_plugin.html#installing-via-yaml

Creating a PV - Alauda Container Platform

Menu ON THIS PAGE >

Creating a PV

Manually create a static persistent volume of type HostPath or NFS Shared Storage.

+ HostPath: Mounts the file directory from the host where the container resides to a specified
path in the container (corresponding to Kubernetes' HostPath), allowing the container to
use the host's file system for persistent storage. If the host becomes inaccessible, the

HostPath may not be accessible.

* NFS Shared Storage: NFS Shared Storage uses the community NFS CSI (Container
Storage Interface) storage plugin, which aligns more closely with Kubernetes design
principles, providing client access capabilities for multiple services. Ensure that the current

cluster has deployed the NFS storage plugin before use.

TOC

Prerequisites

Example PersistentVolume

Creating PV by using the web console
Storage Information

Creating PV by using the CLI
Access Modes
Reclaim Policies

Related Operations

Additional resource

Creating a PV - Alauda Container Platform

Prerequisites

« Confirm the size of the persistent volume to be created and ensure that the backend

storage system currently has the capacity to provide the corresponding storage.

+ Obtain the backend storage access address, the file path to be mounted, credential access

(if required), and other relevant information.

Example PersistentVolume

apiVersion: v1
kind: PersistentVolume
metadata:

name: example-pv
spec:

capacity:

storage: 5Gi @)
accessModes:

- ReadlWiriteOnce 0
persistentVolumeReclaimPolicy: Retain @)
storageClassName: manual o

hostPath: e

path: "/mnt/data"

1. Amount of storage.

2. How the volume can be mounted.

3. What happens after PVC is deleted (Retain, Delete, Recycle).
4. Name of the StorageClass (for dynamic binding).

5. Storage backend type.

Creating PV by using the web console

Creating a PV - Alauda Container Platform

1. Navigate to Administrator.
2. In the left navigation bar, click on Storage Management > Persistent Volumes (PV).
3. Click on Create Persistent Volume.

4. Refer to the instructions below and configure the parameters before clicking Create.

Storage Information

Type Parameter Description

The path to the directory of files on the node backing

HostPath Path
the storage volume. For example: /etc/kubernetes .
Server
The access address of the NFS server.
Address
The mount path of the NFS file system on the server
NFS Path
node, such as /nfs/data .
Shared
Storage The currently supported NFS protocol versions on the
NFS Protocol platform are v3 , v4.0 ,and v4.1 . You can execute
Version nfsstat -s on the server side to view version

information.

Creating PV by using the CLI

kubectl apply -f example-pv.yaml

Access Modes

Access modes of the persistent volume influenced by the relevant parameters set by the

backend storage.

Creating a PV - Alauda Container Platform
Access Mode Meaning
ReadWriteOnce (RWO) Can be mounted as read-write by a single node.
ReadWriteMany (RWX) Can be mounted as read-write by multiple nodes.

ReadOnlyMany (ROX) Can be mounted as read-only by multiple nodes.

Reclaim Policies

Reclaim)
. Meaning
Policy
Deletes the persistent volume claim at the same time deletes the bound
Delet persistent volume, as well as the backend storage volume resource.
elete
Note: The reclaim policy for PV of type NFS Shared Storage does not
support Delete.
Even when the persistent volume claim is deleted, the bound persistent
__— volume and storage data will still be retained. Manual handling of the
etain

storage data and deletion of the persistent volume will be required

thereafter.

Related Operations

You can click the : on the right of the list page or click the Operations in the upper right corner

of the details page to update or delete the persistent volume as needed.
Deleting a persistent volume is applicable in the following two scenarios:

e Deleting an unbound persistent volume: Has not been written to and is no longer required

for writing, thus freeing up corresponding storage space upon deletion.

+ Deleting a Retained persistent volume: The persistent volume claim has been deleted, but
due to the retain reclaim policy, it has not been deleted simultaneously. If the data in the
persistent volume has been backed up to other storage or is no longer needed, deleting it

can also free up corresponding storage space.

Creating a PV - Alauda Container Platform

Additional resource

e Creating PVCs

Creating PVCs - Alauda Container Platform

Menu ON THIS PAGE >

Creating PVCs

Create a PersistentVolumeClaim (PVC) and set the parameters for the requested

PersistentVolume (PV) as needed.

You can create a PersistentVolumeClaim either through a visual Ul form or by using a custom
YAML orchestration file.

TOC

Prerequisites

Example PersistentVolumeClaim:

Creating a Persistent Volume Claim by using the web console

Creating a Persistent Volume Claim by using the CLI

Operations

Expanding PersistentVolumeClaim Storage Capacity by using the web console
Expanding Persistent Volume Claim Storage Capacity by using the CLI

Additional resources

Prerequisites

Ensure that there is enough remaining storage quota in the namespace to satisfy the required

storage size for this creation operation.

Creating PVCs - Alauda Container Platform

Example PersistentVolumeClaim:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: example-pvc
namespace: k-1
annotations: {}
labels: {}
spec:
storageClassName: cephfs
accessModes:

- ReadWriteOnce
volumeMode: Filesystem
resources:

requests:

storage: 4Gi

Creating a Persistent Volume Claim by using the

web console

1. Go to Container Platform.

2. Click on Storage > PersistentVolumeClaims (PVC) in the left sidebar.
3. Click on Create PVC.

4. Configure the parameters as required.

Note: The following content is provided as an example using the form method; you can

also switch to YAML mode to complete the operation.

Parameter

Name

Creation
Method

Storage

Class

Access
Mode

Capacity

Volume
Mode

More

Creating PVCs - Alauda Container Platform

Description

The name of the PersistentVolumeClaim, which must be unique within

the current namespace.

- Dynamic Creation: Dynamically generates a PersistentVolume
based on the storage class and binds it.
- Static Binding: Matches and binds based on configured parameters

and existing PersistentVolumes.

After selecting the dynamic creation method, the platform will
dynamically create the PersistentVolume as per the description in the

specified storage class.

- ReadWriteOnce (RWO): Can be mounted by a single node in read-
write mode.

- ReadWriteMany (RWX): Can be mounted by multiple nodes in read-
write mode.

- ReadOnlyMany (ROX): Can be mounted by multiple nodes in read-

only mode.

Tip: It's recommended to consider the number of workload instances
that are planned to bind to the current PersistentVolumeClaim and the
type of deployment controller. For example, when creating a multi-
instance deployment (Deployment), since all instances use the same
PersistentVolumeClaim, it is not advisable to choose the RWO access

mode, which can only attach to a single node.
The size of the requested PersistentVolume.

- Filesystem: Binds the PersistentVolume as a file directory mounted
into the Pod. This mode is available for any type of workload.

- Block Device: Binds the PersistentVolume as a raw block device
mounted into the Pod. This mode is available only for virtual

machines.

- Labels
- Annotations

- Selector: After selecting the static binding method, you can use a

Creating PVCs - Alauda Container Platform

Parameter Description

selector to target PersistentVolumes that are labeled with specific
tags. PersistentVolume labels can be used to denote special

attributes of the storage, such as disk type or geographic location.

5. Click on Create. Wait for the PersistentVolumeClaim to change to Bound status, indicating

that the PersistentVolume has been successfully matched.

Creating a Persistent Volume Claim by using the
CLI

kubectl apply -f example-pvc.yaml

Operations

» Bind PersistentVolumeClaim: When creating applications or workloads that require
persistent data storage, bind the PersistentVolumeClaim to request a compliant

PersistentVolume.

» Create a PersistentVolumeClaim using Volume Snapshots: This helps to back up
application data and restore it as needed, ensuring the reliability of business application

data. Please refer to Using Volume Snapshots.

o Delete PersistentVolumeClaim: You can click the Actions button in the top right corner of
the details page to delete the PersistentVolumeClaim as needed. Before deleting, please
ensure that the PersistentVolumeClaim is not bound to any applications or workloads and
that it does not contain any volume snapshots. After deleting the PersistentVolumeClaim,
the platform will process the PersistentVolume according to the reclamation policy, which
may clear data in the PersistentVolume and free storage resources. Please proceed with

caution based on data security considerations.

Creating PVCs - Alauda Container Platform

Expanding PersistentVolumeClaim Storage

Capacity by using the web console

1. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).
2. Find the persistent volume claim and click : > Expand.
3. Fill in the new capacity.

4. Click Expand. The expansion process may take some time, please be patient.

Expanding Persistent Volume Claim Storage

Capacity by using the CLI

kubectl patch pvc example-pvc -n k-1 --type="merge' -p '{
"spec": {
"resources": {
"requests": {

"storage": "6Gi"

INFO

When PVC expansion fails in Kubernetes, administrators can manually recover the Persistent

Volume Claim (PVC) state and cancel the expansion request. See Recover From PVC Expansion

Failure

Additional resources

Creating PVCs - Alauda Container Platform

e How to Annotate Third-Party Storage Capabilities

Using Volume Snapshots - Alauda Container Platform

Menu ON THIS PAGE >

Using Volume Snhapshots

A volume snapshot is a point-in-time copy of a persistent volume claim (PVC) that can be
used to configure new persistent volume claims (pre-filling with snapshot data) or to roll back
existing persistent volume claims to a previous state, achieving the effect of backing up

application data and restoring it as needed, thereby ensuring the reliability of application data.

TOC

Prerequisites
Example VolumeSnapshot custom resource (CR)
Creating Volume Snapshots by using th web console
Creating a Volume Snapshot Based on a Specified Persistent Volume Claim (PVC)
Creating Volume Snapshots in a Custom Way
Creating Volume Snapshots by using the CLI
Creating Persistent Volume Claims from Volume Snapshots
Method One
Method Two

Additional resource

Prerequisites

¢ The administrator has deployed the volume snapshot component Snapshot Controller for

the current cluster and enabled snapshot-related features in the storage cluster.

Using Volume Snapshots - Alauda Container Platform

¢ The persistent volume claim must be created dynamically and its status must be Bound.

¢ The storage class bound to the persistent volume claim must support snapshot
functionality, such as CephRBD Built-in Storage, CephFS Built-in Storage, or TopoLVM.

Example VolumeSnapshot custom resource (CR)

This creates a snapshot of the example-pvc PVC using a CSI snapshot class.

apiVersion: snapshot.storage.k8s.io/v1
kind: VolumeSnapshot
metadata:
name: example-pvc-20250527-111124
namespace: k-1
labels:
snapshot.cpaas.io/sourcepvc: example-pvc
annotations:
cpaas.io/description: demo
spec:
volumeSnapshotClassName: csi-cephfs-snapshotclass
source:

persistentVolumeClaimName: example-pvc

Creating Volume Snapshots by using th web

console

Creating a Volume Snapshot Based on a Specified
Persistent Volume Claim (PVC)

Method One
1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).

Using Volume Snapshots - Alauda Container Platform

3. Click the : next to the corresponding persistent volume claim in the list and select Create

Volume Snapshot.

4. Fill in the snapshot description. This description can help you record the current state of the

persistent volume, such as Before Application Upgrade.

5. Click Create. The time taken for the snapshot depends on network conditions and data

volume; please be patient.

When the snapshot changes to Available status, it indicates that the creation was

successful.
Method Two
1. Enter the Container Platform.
2. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).
3. Click on the name of the persistent volume claim in the list.
4. Switch to the Volume Snapshots tab.
5. Click Create Volume Snapshot, and configure the relevant parameters as needed.

6. Click Create. The time taken for the snapshot depends on network conditions and data

volume; please be patient.
When the snapshot changes to Available status, it indicates that the creation was

successful.

Creating Volume Snapshots in a Custom Way

1. Enter the Container Platform.
2. In the left navigation bar, click Storage > Volume Snapshots.
3. Click Create Volume Snapshot, and configure the relevant parameters as needed.

4. Click Create. The time taken for the snapshot depends on network conditions and data

volume; please be patient.

Using Volume Snapshots - Alauda Container Platform

When the snapshot changes to Available status, it indicates that the creation was

successful.

Creating Volume Snapshots by using the CLI

kubectl apply -f example-snapshot.yaml

Creating Persistent Volume Claims from Volume
Snapshots
Currently, the platform only supports creating volume snapshots using PVCs created from

storage classes with Dynamic Provisioning. You can create new PVCs based on that
snapshot and bind them.

Note: The access modes supported when creating a PVC from a snapshot differ from those
supported when creating a PVC from a storage class, as highlighted in bold in the table.

Storage Class Used Single Node Multi-Node Multi-Node
for Creating Volume Read-Write Read-Only Read-Write
Snapshots (RWO) (ROX) (RWX)
TopoLVM Supported Not Supported Not Supported
CephRBD Block
Supported Not Supported Not Supported
Storage
CephFS File Storage Supported Supported Supported
Method One

1. Enter the Container Platform.

2. In the left navigation bar, click Storage > Persistent Volume Claims (PVC).

Using Volume Snapshots - Alauda Container Platform

3. Click on the name of the persistent volume claim in the list.
4. Switch to the Volume Snapshots tab.

5. Click the : next to the corresponding volume snapshot in the list and select Create

Persistent Volume Claim, configuring the relevant parameters.

6. Click Create.

Method Two

1. Enter the Container Platform.
2. In the left navigation bar, click Storage > Volume Snapshots.

3. Click the : next to the corresponding volume snapshot in the list and select Create

Persistent Volume Claim, configuring the relevant parameters.

4. Click Create.

Additional resource

e Creating PVCs

How To - Alauda Container Platform

Menu

How To

Generic ephemeral volumes
Example ephemeral volumes

Key features

When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Using an emptyDir
Example emptyDir
Optional Medium Setting
Key Characteristics

Common Use Cases

Configuring Persistent Storage Using NFS
Prerequisites

Procedure

Enforcing Disk Quotas via Partitioned Exports

NFS volume security

Reclaiming resources

How To - Alauda Container Platform

Third-Party Storage Capability Annotation Guide
1. Getting Started

2. Sample ConfigMap

3. Update Existing Capability Descriptions

4. Compatibility with the Legacy Format

5. Frequently Asked Questions

Generic ephemeral volumes - Alauda Container Platform

Menu ON THIS PAGE >

Generic ephemeral volumes

Generic Ephemeral Volumes in Kubernetes are a feature that allows you to provision
ephemeral (temporary), per-pod volumes using existing StorageClasses and CSI drivers,

without needing to predefine PersistentVolumeClaims (PVCs).

They combine the flexibility of dynamic provisioning with the simplicity of pod-level volume

declaration.
¢ They are temporary volumes that are automatically:
e created when the Pod starts
o deleted when the Pod terminates
¢ Use the same underlying mechanisms as PersistentVolumeClaim

* Require a CSI (Container Storage Interface) driver that supports dynamic provisioning

TOC

Example ephemeral volumes
Key features
When to Use Generic Ephemeral Volumes

How Are They Different from emptyDir?

Example ephemeral volumes

Generic ephemeral volumes - Alauda Container Platform

This automatically creates a temporary PVC for the Pod using the specified StorageClass .

apiVersion: v1
kind: Pod
metadata:

name: ephemeral-demo

spec:
containers:
- name: app

image: busybox

command: ["sh", "-c", "echo hello > /data/hello.txt && sleep 3600"]

volumeMounts:

- mountPath: /data
name: ephemeral-volume

volumes:

- name: ephemeral-volume
ephemeral: 0
volumeClaimTemplate:
metadata:
labels:
type: temporary
spec:
accessModes: ["ReadWriteOnce"]
resources:
requests:
storage: 161
storageClassName: standard

1. Pod will create a PVC by using this template.

Key features

Feature Description
Ephemeral Volume is deleted when the Pod is deleted
Dynamic

o Backed by any CSI driver with dynamic provisioning
provisioning

Generic ephemeral volumes - Alauda Container Platform
Feature Description
No separate PVC VolumeClaim is embedded directly in the Pod spec

Works with any compatible CSI driver (EBS, RBD, Longhorn,

CSl-powered
etc.)

When to Use Generic Ephemeral Volumes

e When you need temporary storage with features like:

Resizable volumes

Snapshots

Encryption

Non-node-local storage (e.g., cloud block storage)
 |deal for:

¢ Caching intermediate data

o Temporary working directories

¢ Pipelines, AI/ML workflows

How Are They Different from emptyDir?

Feature emptyDir Generic Ephemeral Volume

_ Node's local disk or
Backing storage Any CSI-supported backend
memory

Storage _ Supports snapshots, encryption,
Basic
features etc.

Feature

Use case

Reschedulable

Generic ephemeral volumes - Alauda Container Platform

emptyDir Generic Ephemeral Volume

_ Advanced ephemeral storage
Simple temporary storage
needs

No (tied to node) Yes (if CSl volume is attachable)

Using an emptyDir - Alauda Container Platform

Menu ON THIS PAGE >

Using an emptyDir

In Kubernetes, an emptyDir is a simple ephemeral volume type that provides temporary
storage to a pod during its lifetime. It is created when a pod is assigned to a node, and

deleted when the pod is removed from that node.

TOC

Example emptyDir
Optional Medium Setting
Key Characteristics

Common Use Cases

Example emptyDir

This Pod creates a temporary volume mounted at /data, which is shared with the container.

Using an emptyDir - Alauda Container Platform

apiVersion: v1
kind: Pod
metadata:

name: emptydir-demo

spec:
containers:
- name: app
image: busybox
command: ["sh", "-c", "echo hello > /data/hello.txt && sleep 3600"]
volumeMounts:
- mountPath: /data
name: cache-volume
volumes:

- name: cache-volume

emptyDir: {}

Optional Medium Setting

You can choose where the data is stored:

emptyDir:

medium: "Memory"

Medium Description
(default) Uses node's disk, SSD or network storage, depending on your environment

Memory Uses RAM (tmpfs) for faster access (but volatile)

Key Characteristics

Feature Description

Starts empty No data when created

Feature

Shared across

containers
Deleted with pod
Node-local

Fast

Using an emptyDir - Alauda Container Platform
Description

Same volume can be used by multiple containers in the

pod
Volume is destroyed when the pod is removed
Volume is stored on the node's local disk or memory

Ideal for performance-sensitive scratch space

Common Use Cases

Buffering logs

Temporary work directories

Caching intermediate build artifacts

Sharing data between containers in the same pod (like sidecars)

Configuring Persistent Storage Using NFS - Alauda Container Platform

Menu ON THIS PAGE >

Configuring Persistent Storage Using NFS

Alauda Container Platform clusters support persistent storage using NFS. Persistent Volumes
(PVs) and Persistent Volume Claims (PVCs) provide an abstraction layer for provisioning and
consuming storage volumes within a project. While NFS configuration details can be

embedded directly in a Pod definition, this approach does not create the volume as a distinct,

isolated cluster resource, increasing the risk of conflicts.

TOC

Prerequisites
Procedure

Create an object definition for the PV

Verify that the PV was created

Create a PVC that references the PV

Verify that the persistent volume claim was created
Enforcing Disk Quotas via Partitioned Exports
NFS volume security

Group IDs

User IDs

Export settings

Reclaiming resources

Prerequisites

Configuring Persistent Storage Using NFS - Alauda Container Platform

¢ Storage must exist in the underlying infrastructure before it can be mounted as a volume in

Alauda Container Platform.

+ To provision NFS volumes, a list of NFS servers and export paths are all that is required.

Procedure

1) Create an object definition for the PV

cat << EOF | kubectl create -f -
apiVersion: v1
kind: PersistentVolume
metadata:
name: pv-nfs-example 0
spec:
capacity:

storage: 1Gi 0
accessModes:

- ReadWriteOnce 9

nfs: @)

path: /tmpe

server: 1@.0.@.3@
persistentVolumeReclaimPolicy: Retaine

EOF

1. The name of the volume.
2. Amount of storage.

3. Though this appears to be related to controlling access to the volume, it is actually
used similarly to labels and used to match a PVC to a PV. Currently, no access rules

are enforced based on the accessModes.
4. The volume type being used, in this case the nfs plugin.
5. The NFS server address.
6. The NFS export path.

7. What happens after PVC is deleted (Retain, Delete, Recycle).

2) Verify that the PV was created

Configuring Persistent Storage Using NFS - Alauda Container Platform

Command

kubectl get pv

Output Example

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM
STORAGECLASS ~ REASON AGE

pv-nfs-example 1Gi RWO Retain Available

10s

3 Create a PVC that references the PV

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: nfs-claiml
spec:
accessModes:
- ReadWriteOnce)
resources:
requests:

storage: 16i @
volumeName: pv-nfs-example @)

storageClassName:

1. The access modes do not enforce security, but rather act as labels to match a PV to
a PVC.

2. This claim looks for PVs offering 1Gi or greater capacity.

3. The name of the PV to be used.

4 Verify that the persistent volume claim was created

Command

kubectl get pvc

Configuring Persistent Storage Using NFS - Alauda Container Platform

Output Example

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE

nfs-claiml Bound pv-nfs-example 1Gi RWO

10s

Enforcing Disk Quotas via Partitioned Exports

To enforce disk quotas and size constraints, you can utilize disk partitions. Assign each
partition as a dedicated export point, with each export corresponding to a distinct
PersistentVolume (PV).

While Alauda Container Platform mandates unique PV names, it remains the administrator's

responsibility to ensure the uniqueness of the NFS volume's server and path for each export.

This partitioned approach enables precise capacity management. Developers request
persistent storage specifying a required amount (e.g., 10Gi), and ACP matches the request to
a PV backed by a partition/export offering at least that specified capacity. Please note: The

guota enforcement applies to the usable storage space within the assigned partition/export.

NFS volume security

This section details NFS volume security mechanisms with a focus on permission matching.
Readers are assumed to possess fundamental knowledge of POSIX permissions, process

UIDs, and supplemental groups.
Developers request NFS storage through either:

¢ A PersistentVolumeClaim (PVC) reference by name, or
¢ Direct configuration of the NFS volume plugin in the volumes section of their Pod

specification.

On the NFS server, the /etc/exports file defines export rules for accessible directories. Each
exported directory retains its native POSIX owner/group IDs.

Configuring Persistent Storage Using NFS - Alauda Container Platform

Key behavior of Alauda Container Platform's NFS plugin:

1. Mounts volumes to containers while preserving exact POSIX ownership and permissions

from the source directory

2. Executes containers without forcing process UIDs to match the mount ownership - an

intentional security measure

For example, consider an NFS directory with these server-side attributes:

Command

1s -1 /share/nfs -d

Output Example

drwxrws---. nfsnobody 5555 /share/nfs

Command

id nfsnobody

Output Example

uid=65534(nfsnobody) gid=65534(nfsnobody) groups=65534(nfsnobody)

Then the container must either run with a UID of 65534, the nfsnobody owner, or with 5555 in

its supplemental groups to access the directory.

NOTE

Note The owner ID of 65534 is used as an example. Even though NFS's root_squash maps root,
uid 0, to nfsnobody, uid 65534, NFS exports can have arbitrary owner IDs. Owner 65534 is not
required for NFS exports.

Group IDs

Configuring Persistent Storage Using NFS - Alauda Container Platform

Recommended NFS Access Management (When Export Permissions Are Fixed) When
modifying permissions on the NFS export is not feasible, the recommended approach for

managing access is through supplemental groups.

Supplemental groups in Alauda Container Platform are a common mechanism for controlling

access to shared file storage, such as NFS.

Contrast with Block Storage: Access to block storage volumes (e.g., iISCSI) is typically
managed by setting the fsGroup value within the pod's securityContext. This approach

leverages filesystem group ownership change upon mount.

NOTE

To gain access to persistent storage, it is generally preferable to use supplemental group IDs

versus user IDs.

Because the group ID on the example target NFS directory is 5555, the pod can define that

group ID using supplementalGroups under the securityContext definition of the pod. For

example:

spec:
containers:

- hame:

securityContext: ()
supplementalGroups: [5555] (@)

1. securityContext must be defined at the pod level, not under a specific container.

2. An array of GIDs defined for the pod. In this case, there is one element in the array.

Additional GIDs would be comma-separated.

User IDs

User IDs can be defined in the container image or in the Pod definition.

NOTE

Configuring Persistent Storage Using NFS - Alauda Container Platform

It is generally preferable to use supplemental group IDs to gain access to persistent storage versus

using user IDs.

In the example target NFS directory shown above, the container needs its UID set to 65534,
ignoring group IDs for the moment, so the following can be added to the Pod definition:

securityContext:
runAsUser: 655340

1. Pods contain a securityContext definition specific to each container and a pod's

securityContext which applies to all containers defined in the pod.

2. 65534 is the nfsnobody user.

Export settings

To enable arbitrary container users to read and write the volume, each exported volume on

the NFS server should conform to the following conditions:

o Every export must be exported using the following format:

/<example_fs> 10.0.0.0/24(rw,sync,root_squash,no_subtree_check)
¢ The firewall must be configured to allow traffic to the mount point.
e For NFSv4, configure the default port 2049 (nfs).
iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT

o For NFSv3, there are three ports to configure: 2049 (nfs), 20048 (mountd), and 111
(portmapper).

Configuring Persistent Storage Using NFS - Alauda Container Platform

iptables -I INPUT 1 -p tcp --dport 2049 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 20048 -j ACCEPT
iptables -I INPUT 1 -p tcp --dport 111 -j ACCEPT

o The NFS export and directory must be set up so that they are accessible by the target
pods. Either set the export to be owned by the container's primary UID, or supply the pod

group access using supplementalGroups, as shown in the group IDs above.

Reclaiming resources

NFS implements the Alauda Container Platform Recyclable plugin interface. Automatic

processes handle reclamation tasks based on policies set on each persistent volume.
By default, PVs are set to Retain.

Once claim to a PVC is deleted, and the PV is released, the PV object should not be reused.

Instead, a new PV should be created with the same basic volume details as the original.

For example, the administrator creates a PV named nfs1:

apiVersion: v1
kind: PersistentVolume
metadata:
name: nfs1
spec:
capacity:
storage: 1Mi
accessModes:
- ReadWiriteMany
nfs:
server: 192.168.1.1
path: "/"

The user creates PVCL1, which binds to nfsl. The user then deletes PVC1, releasing claim to
nfsl. This results in nfs1 being Released. If the administrator wants to make the same NFS
share available, they should create a new PV with the same NFS server details, but a different

PV name:

Configuring Persistent Storage Using NFS - Alauda Container Platform

apiVersion: v1
kind: PersistentVolume
metadata:
name: nfs2
spec:
capacity:
storage: 1Mi
accessModes:
- ReadWriteMany
nfs:
server: 192.168.1.1
path: "/"

Deleting the original PV and re-creating it with the same name is discouraged. Attempting to
manually change the status of a PV from Released to Available causes errors and potential
data loss.

ThirdParty Storage Capability Annotation Guide - Alauda Container Platform

Menu ON THIS PAGE >

Third-Party Storage Capability Annotation
Guide

Feature Overview: By adding a StorageDescription ConfigMap in the kube-public

namespace, the platform automatically detects each third-party StorageClass's snapshot
support as well as supported volume modes and access modes (including block-specific
access modes). The PVC creation screen will then display only the valid options, helping

you choose and use the right storage features with ease.

TOC

1. Getting Started
1.1 Create or Update the ConfigMap
1.2 Populate the data field
1.3 Apply the configuration
2. Sample ConfigMap
3. Update Existing Capability Descriptions
4. Compatibility with the Legacy Format

5. Frequently Asked Questions

1. Getting Started

1.1 Create or Update the ConfigMap

ThirdParty Storage Capability Annotation Guide - Alauda Container Platform

Important: Perform the following operation in the kube-public namespace, otherwise the

platform will not recognize the storage capabilities.

Edit or create a ConfigMap whose name starts with sd- , for example sd-capabilities-

enhanced :

kubectl -n kube-public edit configmap sd-capabilities-enhanced

Required label

metadata:
labels:
features.alauda.io/type: StorageDescription

1.2 Populate the data field

Each key corresponds to a StorageClass provisioner ; the value is a YAML string that

describes its capabilities. Key fields:

Field Type Description

Indicates whether volume snapshots are

snapshot Boolean
supported
Supported volume modes; at least one of
volumeMode List[String]
Filesystem , Block
Access modes available when volumeMode is
accessModes List[String]
Filesystem
Access modes specific to Block volumes
blockAccessModes List[String]

(optional)

If blockAccessModes is omitted, the platform will fall back to accessModes for Block volumes.

1.3 Apply the configuration

ThirdParty Storage Capability Annotation Guide - Alauda Container Platform

kubectl apply -f sd-capabilities-enhanced.yaml

Once applied, the Ul automatically adjusts available options, for example:

* When Block volume mode is selected, the access-mode dropdown is populated with

blockAccessModes .

o If snapshot: true , snapshot-related operations become available on the PVC page.

2. Sample ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
name: sd-capabilities-enhanced
namespace: kube-public
labels:
features.alauda.io/type: StorageDescription
data:
storage.advanced-block-fs.com: |-
snapshot: true
volumeMode:
- Filesystem
- Block
accessModes:
- ReadWriteOnce
- ReadOnlyMany
blockAccessModes:
- ReadWriteOnce
storage.filesystem-basic.com: |-
snapshot: false
volumeMode:
- Filesystem
accessModes:
- ReadWriteOnce

- ReadWriteMany

ThirdParty Storage Capability Annotation Guide - Alauda Container Platform

3. Update Existing Capability Descriptions

1. Locate the provisioner key you want to modify.
2. Adjust the field values to reflect the actual capabilities.

3. Re-apply the ConfigMap with kubectl apply -f The platform polls for updates and
refreshes the Ul automatically; you can also refresh the browser to see the changes

immediately.

4. Compatibility with the Legacy Format

o If blockAccessModes is missing, Block volumes will inherit accessModes .

¢ You do not need to delete old ConfigMaps; simply add the new fields for a smooth upgrade.

5. Frequently Asked Questions

Symptom Possible Cause Resolution
Access-mode list empty blockAccessModes is empty and Provide at least one
for Block volumes accessModes is also empty of the two
Ul still shows outdated ConfigMap not saved or browser Verify with kubectl

capabilities cache get cm , reload

Troubleshooting - Alauda Container Platform

Menu

Troubleshooting

Recover From PVC Expansion Failure
Procedure

Additional Tips

Recover From PVC Expansion Failure - Alauda Container Platform

Menu ON THIS PAGE >

Recover From PVC Expansion Failure

When PVC expansion fails in Kubernetes, administrators can manually recover the Persistent

Volume Claim (PVC) state and cancel the expansion request.

TOC

Procedure

Additional Tips

Procedure

1. Modify the reclaim policy of the Persistent Volume (PV) bound to the PVC to Retain . To do
this, edit the corresponding PV and set the persistentVolumeReclaimPolicy field to Retain .

2. Delete the original PVC.

3. Manually edit the PV to remove the claimRef entry from its specifications. This ensures

that the new PVC can bind to this PV, changing the PV's status to Available .

4. Recreate a new PVC with a smaller size or a size supported by the underlying storage

provider.

5. Explicitly specify the volumeName field in the new PVC to match the original PV name. This

ensures that the new PVC accurately binds to the specified PV.

6. Finally, restore the original reclaim policy of the PV.

Recover From PVC Expansion Failure - Alauda Container Platform

Additional Tips

o Ensure that the StorageClass in use has volume expansion enabled by setting

allowVolumeExpansion to true .

o Perform these actions carefully to avoid the risk of data loss.

	Storage
	Introduction
	Concepts
	Core Concepts
	TOC
	Persistent Volume (PV)
	Persistent Volume Claim (PVC)
	Generic Ephemeral Volumes
	emptyDir
	hostPath
	ConfigMap
	Secret
	StorageClass
	Container Storage Interface (CSI)

	Persistent Volume
	TOC
	Dynamic Persistent Volumes vs. Static Persistent Volumes
	Lifecycle of Persistent Volumes

	Access Modes and Volume Modes
	TOC
	Access Modes in Kubernetes
	Access Modes by Storage Class

	Volume Modes in Kubernetes
	Volume Modes by Storage Class

	Storage Features: Snapshots and Expansion
	Conclusion

	Guides
	Creating CephFS File Storage Type Storage Class
	TOC
	Deploy Volume Plugin
	Create Storage Class

	Creating CephRBD Block Storage Class
	TOC
	Deploy Volume Plugin
	Create Storage Class

	Create TopoLVM Local Storage Class
	TOC
	Background Information
	Advantages of Use
	Use Cases
	Constraints and Limitations

	Deploy Volume Plugin
	Create Storage Class
	Follow-up Actions

	Creating an NFS Shared Storage Class
	TOC
	Prerequisites
	Deploying the Alauda Container Platform NFS CSI plugin
	Deploying via Web Console
	Deploying via YAML

	Creating an NFS Shared Storage Class

	Deploy Volume Snapshot Component
	TOC
	Deploying via Web Console
	Deploying via YAML

	Creating a PV
	TOC
	Prerequisites
	Example PersistentVolume
	Creating PV by using the web console
	Storage Information

	Creating PV by using the CLI
	Access Modes
	Reclaim Policies

	Related Operations
	Additional resource

	Creating PVCs
	TOC
	Prerequisites
	Example PersistentVolumeClaim:
	Creating a Persistent Volume Claim by using the web console
	Creating a Persistent Volume Claim by using the CLI
	Operations
	Expanding PersistentVolumeClaim Storage Capacity by using the web console
	Expanding Persistent Volume Claim Storage Capacity by using the CLI
	Additional resources

	Using Volume Snapshots
	TOC
	Prerequisites
	Example VolumeSnapshot custom resource (CR)
	Creating Volume Snapshots by using th web console
	Creating a Volume Snapshot Based on a Specified Persistent Volume Claim (PVC)
	Creating Volume Snapshots in a Custom Way

	Creating Volume Snapshots by using the CLI
	Creating Persistent Volume Claims from Volume Snapshots
	Method One
	Method Two

	Additional resource

	How To
	Generic ephemeral volumes
	TOC
	Example ephemeral volumes
	Key features
	When to Use Generic Ephemeral Volumes
	How Are They Different from emptyDir?

	Using an emptyDir
	TOC
	Example emptyDir
	Optional Medium Setting
	Key Characteristics
	Common Use Cases

	Configuring Persistent Storage Using NFS
	TOC
	Prerequisites
	Procedure
	Create an object definition for the PV
	Verify that the PV was created
	Create a PVC that references the PV
	Verify that the persistent volume claim was created

	Enforcing Disk Quotas via Partitioned Exports
	NFS volume security
	Group IDs
	User IDs
	Export settings

	Reclaiming resources

	Third‑Party Storage Capability Annotation Guide
	TOC
	1. Getting Started
	1.1 Create or Update the ConfigMap
	1.2 Populate the data field
	1.3 Apply the configuration

	2. Sample ConfigMap
	3. Update Existing Capability Descriptions
	4. Compatibility with the Legacy Format
	5. Frequently Asked Questions

	Troubleshooting
	Recover From PVC Expansion Failure
	TOC
	Procedure
	Additional Tips

