
Nodes are the fundamental building blocks of a cluster. Nodes added to a cluster can be either
virtual machines or physical servers. Each node contains the essential components required to
run Pods, including Kubelet, Kube-proxy, and Container Runtime.

Platform administrators can add nodes to self-managed clusters under platform management.

Clusters

Overview

Overview

Immutable Infrastructure

Immutable Infrastructure

Node Management

Overview

Add Nodes to On-Premises Clusters

Menu

Clusters - Alauda Container Platform

Supports updating node labels and adding or removing custom node labels.

View node monitoring data on the node details page.

Public cloud cluster initialization.

Manage Nodes

Node Monitoring

Managed Clusters

overview

Import Clusters

Register Cluster

Public Cloud Cluster Initialization

How to

Clusters - Alauda Container Platform

Creating an On-Premise Cluster

Creating an On-Premise Cluster

Hosted Control Plane

Hosted Control Plane

Cluster Node Planning

Cluster Node Planning

etcd Encryption

etcd Encryption

How to

Add External Address for Built-in Registry

Clusters - Alauda Container Platform

Choosing a Container Runtime

Updating Public Repository Credentials

Clusters - Alauda Container Platform

The platform supports multiple Kubernetes cluster management models depending on how

the underlying infrastructure is provisioned and how the control plane is deployed.

Platform-Provisioned Infrastructure

User-Provisioned Infrastructure

Connected Clusters

Public Cloud Kubernetes

CNCF-Compliant Kubernetes

Tunnel-Based Connectivity

Choosing the Right Model

Description:

In this model, the platform provisions both the machines and the node operating systems. All

nodes use an Immutable OS, which ensures a consistent, declarative, and easily recoverable

infrastructure state. This model provides full automation across the entire cluster lifecycle —

from provisioning to scaling and upgrades.

Examples of Immutable OS:

Clusters Overview

TOC

Platform-Provisioned Infrastructure

Menu ON THIS PAGE

Overview - Alauda Container Platform

Common Immutable OS examples include Fedora CoreOS, Flatcar Linux, and openSUSE
MicroOS. Currently, the platform supports MicroOS for immutable node management.

Responsibilities:

Component Managed by

Machines / Nodes Platform

Node OS Platform (Immutable OS only)

Kubernetes Platform

Description:

In this model, the user provides pre-provisioned physical or virtual machines. The platform

installs and manages Kubernetes on these nodes, while node OS management — including

provisioning, patching, or replacement — remains under the user's control.

This model is designed for organizations that already have established procedures or

automation tools for managing their infrastructure or operating systems.

Responsibilities:

Component Managed by

Machines / Nodes User

Node OS User

Kubernetes Platform

User-Provisioned Infrastructure

Connected Clusters

Overview - Alauda Container Platform

The platform also supports connecting and managing existing Kubernetes clusters, whether

they are public cloud clusters or CNCF-compliant Kubernetes distributions.

Connects to managed Kubernetes services such as EKS, AKS, and GKE through cloud-

specific providers (e.g., Alauda Container Platform EKS Provider).

Cloud credentials can be securely stored in the platform.

Enables creation and management of public cloud clusters directly from the platform.

Connects any existing Kubernetes cluster conforming to CNCF standards.

Supports unified visibility, policy control, and monitoring across environments.

Refer to the Supported Kubernetes Versions list.

When the Global cluster cannot directly access a Workload cluster, a Tunnel Server

(global side) and Tunnel Agent (workload side) establish secure communication.

Suitable for disconnected or restricted network environments.

Scenario

Infra

Provisioned

By

Node OS

Managed By

Kubernetes

Managed By

Automation

Level

Platform-

provisioned

Infrastructure

Platform

Platform

(Immutable

OS only)

Platform Full

Public Cloud Kubernetes

CNCF-Compliant Kubernetes

Tunnel-Based Connectivity

Choosing the Right Model

Overview - Alauda Container Platform

Scenario

Infra

Provisioned

By

Node OS

Managed By

Kubernetes

Managed By

Automation

Level

User-

provisioned

Infrastructure

User User Platform Partial

Connected

Cluster (Cloud

or CNCF)

External

Provider

External

Provider

Partial /

External
Minimal

Overview - Alauda Container Platform

Immutable Infrastructure uses an immutable operating system to provision Kubernetes

clusters. Unlike traditional OS-based clusters, all node configurations are baked into images

and remain unchanged after deployment. Cluster upgrades and configuration changes are

applied by replacing nodes with new images, ensuring consistency, reliability, and simplified

operations throughout the cluster lifecycle.

Note

Because Immutable Infrastructure releases on a different cadence from Alauda Container Platform,

the Immutable Infrastructure documentation is now available as a separate documentation set at

Immutable Infrastructure .

About Immutable Infrastructure

↗

Menu

Immutable Infrastructure - Alauda Container Platform

https://docs.alauda.io/immutable-infra/
https://docs.alauda.io/immutable-infra/
https://docs.alauda.io/immutable-infra/

Nodes are the fundamental building blocks of a cluster. Nodes added to a cluster can be either
virtual machines or physical servers. Each node contains the essential components required to

run Pods, including Kubelet, Kube-proxy, and Container Runtime.

Platform administrators can add nodes to self-managed clusters under platform management.

Supports updating node labels and adding or removing custom node labels.

View node monitoring data on the node details page.

Node Management

Overview

Add Nodes to On-Premises Clusters

Manage Nodes

Node Monitoring

Menu

Node Management - Alauda Container Platform

Nodes are the fundamental building blocks of a cluster. Nodes added to a cluster can be

either virtual machines or physical servers. Each node contains the essential components

required to run Pods, including Kubelet, Kube-proxy, and Container Runtime.

Users with platform management permissions can manage nodes under clusters.

Note: Adding nodes to imported clusters or deleting nodes from imported clusters is not

supported.

Node Types

Linux Node Availability Check

Supported Operating Systems and CPU Models

Control Plane Nodes: Responsible for running cluster components such as kube-

apiserver, kube-scheduler, kube-controller-manager, etcd, container networking, and some

platform management components.

When applications are allowed to be deployed on control plane nodes, control plane

nodes can also function as compute nodes.

Overview

TOC

Node Types

Menu ON THIS PAGE

Overview - Alauda Container Platform

At least 1 control plane node must be added. Setting 2 control plane nodes is not

supported. With 3 or more control plane nodes, the cluster becomes a high-availability

cluster (for high-availability clusters, it is recommended to use an odd number of nodes,

preferably 3 or 5).

When the number of control plane nodes is 3 or more, the cluster has multi-replica

disaster recovery capabilities and is considered a high-availability cluster.

Compute Nodes: Responsible for hosting business Pods running on the cluster. The

number of compute nodes required in a cluster can typically be planned based on business

volume.

If you need to build an on-premises cluster, please first refer to the cluster check to ensure all

node configurations meet the requirements. All prerequisites must be satisfied, otherwise

cluster deployment may fail.

Please refer to Supported Operating Systems and CPU Models.

Linux Node Availability Check

Supported Operating Systems and CPU Models

Overview - Alauda Container Platform

http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks
http://localhost:4173/container_platform/install/prepare/prerequisites.html#supported_os_and_kernels

When a cluster needs to scale up or when abnormal nodes on the cluster need to be replaced

with new nodes, you can add control plane nodes and compute nodes to existing on-
premises workload clusters on the platform by adding nodes.

Constraints and Limitations

Prerequisites

Procedure

Follow-up Operations

View Execution Progress

Re-add Failed Nodes

Nodes to be added to the cluster must be prepared in advance. Please refer to the Node

Availability Check Reference to prepare and check nodes to be added to the cluster.

Ensure all conditions are met, otherwise cluster deployment may fail.

The hardware architecture of nodes to be added must be consistent with the cluster's

hardware architecture.

To avoid unpredictable errors, the operating system type of nodes to be added should be

consistent with other nodes in the cluster.

Add Nodes to On-Premises Clusters

TOC

Constraints and Limitations

Menu ON THIS PAGE

Add Nodes to On-Premises Clusters - Alauda Container Platform

http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks

SSH ports and authentication information for nodes added in the same Add Node dialog

must be unified.

Cluster planning guideline: A cluster must have at least 1 control plane node. Setting

exactly 2 control plane nodes is not supported. With 3 or more control plane nodes, the

cluster becomes a high-availability cluster (for high-availability clusters, it is recommended

to use an odd number of nodes, preferably 3 or 5). Note: This requirement applies only

when adding or changing control plane capacity; you can safely add worker/compute nodes

without being forced to add control plane nodes.

A node can only belong to one cluster. Nodes to be added cannot be occupied by other

clusters.

When the global cluster cannot directly access nodes to be added to the cluster through

SSH service and needs to access through a proxy, prepare the proxy service in advance.

Currently, only SOCKS5 proxy is supported.

1. In the left navigation bar, click Clusters > Clusters.

2. Click the cluster name of type On-Premises where you want to add nodes.

3. Under the Nodes tab, click Add Node.

4. Refer to Node Configuration Parameters to configure relevant parameters.

5. Click Add to perform availability check on the nodes.

After the check passes, node addition begins, and the nodes are in Adding state.

Prerequisites

Procedure

Follow-up Operations

Add Nodes to On-Premises Clusters - Alauda Container Platform

On the node list page, you can view the list information of added nodes. For nodes in Adding
state, you can view the execution progress.

Procedure

1. Click View Execution Progress on the right side of nodes in Adding state.

2. In the pop-up execution progress dialog, you can view the node execution progress

(status.conditions).

Tip: When a certain type is executing or has a failed state with a reason, you can view

detailed information about the reason (status.conditions.reason) by hovering the cursor

over the corresponding reason (displayed in blue text).

After adding nodes, if some nodes fail to be added, a prompt will appear above the node list.

Click the Re-add button in the prompt box to re-add the failed nodes.

View Execution Progress

Re-add Failed Nodes

Add Nodes to On-Premises Clusters - Alauda Container Platform

Update Node Labels

Procedure

Stop/Resume Node Scheduling

Procedure

Evict Pods

Procedure

Set Taints

Procedure

Label and Taint Management

Constraints and Limitations

Procedure

Enable/Disable Virtualization Switch

Delete On-Premises Cluster Nodes

Constraints and Limitations

Procedure

Labels are key-value pairs attached to nodes that can define node attributes. After setting

labels for nodes, you can easily filter or select nodes by labels. For example: directing Pods to

Manage Nodes

TOC

Update Node Labels

↗

Menu ON THIS PAGE

Manage Nodes - Alauda Container Platform

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

be scheduled to specific nodes.

Supports updating node labels for nodes in normal state, adding or removing custom node

labels.

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click the cluster name where the node with labels to be updated is located.

3. Under the Nodes tab, click Update Node Labels on the right side of the node with labels

to be updated.

4. Add, modify, or delete node labels.

5. Click OK.

After successfully updating node labels, the number of node labels changes. You can view

all label information of the node in the Node Labels item in the Node information bar.

By setting the scheduling state of nodes, you can control whether newly created Pods in the

cluster are allowed to be scheduled to the node.

Stop Scheduling: Newly created Pods are not allowed to be scheduled to the node, but

existing Pods running on the node are not affected.

Resume Scheduling: Newly created Pods are allowed to be scheduled to the node.

1. In the left navigation bar, click Clusters > Clusters.

2. Click the cluster name where the node to stop/resume scheduling is located.

Procedure

Stop/Resume Node Scheduling

Procedure

Manage Nodes - Alauda Container Platform

3. Under the Nodes tab, click Stop Scheduling/Resume Scheduling on the right side of the

node to set scheduling state.

4. Click OK.

Evict all Pods except those managed by DaemonSet (daemon set) from nodes in normal state

to other nodes in the cluster, and set the node to unschedulable state.

Note: Data from locally stored Pods will be lost after eviction. Please proceed with caution.

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click the cluster name where the node to evict Pods is located.

3. Under the Nodes tab, click the node name to evict Pods.

4. In the upper right corner, click Actions > Evict Pods.

5. Review the information of Pods to be evicted, then click Evict.

Set taint information for nodes in normal state.

Taints are a property of nodes that allow nodes to refuse to run certain types of Pods or even

evict Pods. Taints work together with tolerations on Pods to prevent Pods from being assigned

to inappropriate nodes. One or more taints can be applied to each node, and Pods that cannot

tolerate these taints will not be accepted by the node.

For example: For a node where we find its memory utilization has reached 91%, it is not

recommended to continue scheduling new Pods to this node. We can set a taint for it. After

setting the taint, Kubernetes will not schedule Pods to this node.

Evict Pods

Procedure

Set Taints

Manage Nodes - Alauda Container Platform

Learn more...

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click the cluster name where the node to set taints is located.

3. Under the Nodes tab, click Set Taints on the right side of the node to set taints.

4. Refer to the following description to set the key, value, and effect of taints. Multiple taints

can be added to a node.

Taint attributes consist of key=value [effect] .

key=value is used to match Pod tolerations. The taint indicates that the node has been

contaminated by key=value , and Pod scheduling is not allowed or should avoid scheduling

to this node, unless the Pod can tolerate (Tolerations) the key=value taint.

effect is the effect of the taint, with the following three options:

NoSchedule: Indicates scheduling is not allowed, and already scheduled resources are

not affected.

PreferNoSchedule: Indicates try not to schedule.

NoExecute: Indicates scheduling is not allowed, and already scheduled resources will

be deleted after tolerationSeconds .

5. Click OK.

The platform supports batch setting of labels and taints for nodes.

↗

Procedure

Label and Taint Management

Constraints and Limitations

Manage Nodes - Alauda Container Platform

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

Before setting device labels, you need to deploy device plugins on the cluster first, such as

NVIDIA GPU MPS device plugin, NVIDIA GPU device plugin, GPU Manager device plugin,

etc.

Tip: Device labels are actually node labels. For your convenience, the platform categorizes

node labels that device plugins depend on as device labels for quick configuration.

1. In the left navigation bar, click Clusters > Clusters.

2. Click the cluster name where you want to manage labels and taints.

3. Under the Nodes tab, multi-select the nodes you want to manage, and click the Label and

Taint Management button.

Tip: You can enter the node labels you care about in the search box on the node list page

to quickly filter out the list of nodes you want to manage labels and taints for.

4. In Batch Operations, add and fill in the operations you want to perform, then click OK to

submit the batch operations to the cluster.

Node Labels: You can add/update specified labels for selected nodes, or delete

specified labels. When selecting delete, the platform will filter out all label lists on the

selected nodes. When the value is set to Any, it represents deleting labels on all nodes

containing the specified label key.

Taints: You can add/update specified taints for selected nodes, or delete specified

taints. When selecting delete, the platform will filter out all taint lists on the selected

nodes. When the value is set to Any, it represents deleting taints on all nodes containing

the specified taint key.

Device Labels: You can set the devices you want to use for selected nodes, where the

device list comes from device plugins you have deployed in this cluster.

Procedure

Enable/Disable Virtualization Switch

Manage Nodes - Alauda Container Platform

When nodes in an on-premises cluster are physical machines, you can control whether

Kubernetes is allowed to schedule virtual machines (VMI, VirtualMachineInstance) to the node

by enabling/disabling the node virtualization switch.

When the switch is enabled, newly created virtual machines are allowed to be scheduled to

the physical machine node; when the switch is disabled, newly created virtual machines are

prohibited from being scheduled to the physical machine node, but this does not affect virtual

machines already running on the node.

Tip: For related operations and precautions, please refer to Prepare Virtualization

Environment.

Supports deleting nodes in clusters of type on-premises. For example: deleting failed nodes in

on-premises clusters.

Nodes in imported clusters are not supported for deletion.

When there is only one control plane node in the cluster, deleting this control plane node is

not supported.

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click the cluster name of type On-Premises where the node to be deleted is located.

3. Under the Nodes tab, click Delete on the right side of the node to be deleted.

Tip: If you need to clean up resources under the node after deleting a Linux node, click

Download Cleanup Script at the bottom of the dialog to download the cleanup script to

local. After the node is successfully deleted, log in to the node and execute the cleanup

script.

Delete On-Premises Cluster Nodes

Constraints and Limitations

Procedure

Manage Nodes - Alauda Container Platform

http://localhost:4173/container_platform/virtualization/virtualization/overview.html
http://localhost:4173/container_platform/virtualization/virtualization/overview.html

4. Enter the node name, then click Delete.

Manage Nodes - Alauda Container Platform

View node monitoring data on the node details page.

TIP

When a cluster has more than 1 node, you can click the current node name in the resource

path area on the node details page to expand the node dropdown list, then click to select a node

for quick switching to other node details pages.

When monitoring components are configured for the cluster, you can view node monitoring data

including resource runtime status, resource usage, and resource trend statistics.

Procedure

1. In the left navigation bar, click Clusters > Clusters.

2. Click the cluster name where the target node is located.

3. Under the Nodes tab, click the target node name.

Node Monitoring

TOC

Procedure

Menu ON THIS PAGE

Node Monitoring - Alauda Container Platform

4. Click the Monitoring tab to enter the node monitoring data display page and view relevant

node monitoring data.

TIP

Hover over a card and click the Details icon to view PromQL expressions; click the Export

icon to export PromQL expressions for all charts on the current page.

When a cluster has more than 1 node, you can click the current node name in the resource

path area on the node details page to expand the node dropdown list, then click to select a

node for quick switching to other node details pages.

TIP

In the storage space statistics display area, when a node has more than 4 storage partitions:

In the partition total usage pie chart, the top 3 partitions with the highest usage are displayed

separately, while remaining partitions are shown as Others with their total usage data

displayed when hovering over the area;

In the partition usage bar chart, the top 3 partitions with the highest usage are displayed

separately, while remaining partitions are shown as Others with their total usage and

individual usage rates displayed when hovering over the bars.

The monitoring trend statistics are described in the following table.

Parameter Description

CPU Usage rate, request rate, and limit rate of CPU within the

specified time range.

Usage rate = CPU usage of all pods on the node / Total CPU of

the node.

Note: If the CPU usage rate of a node spikes during a certain

period, you must first identify the process consuming the most

CPU resources. For example, for Java custom applications,

memory leaks or infinite loops in the code may cause high CPU

Node Monitoring - Alauda Container Platform

Parameter Description

usage.

Request rate = CPU requests of all pods on the node / Total

CPU of the node.

Note: If the CPU request rate of a node spikes during a certain

period, it may be due to unreasonable cluster oversubscription

ratio settings or excessively high request values for pods

running on the node, which may cause resource waste.

Limit rate = CPU limits of all pods on the node / Total CPU of

the node.

Note: If the CPU limit rate of a node spikes during a certain

period, it indicates that the limit values for pods running on the

node are set too high, which may cause CPU resource waste.

Memory Usage rate, request rate, and limit rate of memory within the

specified time range.

Usage rate = Memory usage of all pods on the node / Total

memory of the node.

Memory is one of the important components on a server and

serves as a bridge for CPU communication. Therefore, memory

performance has a significant impact on the machine. When

programs run, data loading, thread concurrency, and I/O

buffering all depend on memory. The available memory size

determines whether programs can run normally and how they

run.

Request rate = Memory requests of all pods on the node / Total

memory of the node.

Note: If the memory request rate of a node spikes during a

certain period, it may be due to unreasonable cluster

oversubscription ratio settings or excessively high request

values for pods running on the node, which may cause resource

waste.

Node Monitoring - Alauda Container Platform

Parameter Description

Limit rate = Memory limits of all pods on the node / Total

memory of the node.

Note: If the memory limit rate of a node spikes during a certain

period, it indicates that the limit values for pods running on the

node are set too high, which may cause memory resource

waste.

Storage

Space usage rate and inode usage rate within the specified

time range.

Space usage rate = Storage space used / Total storage space.

By monitoring historical disk space data, you can evaluate disk

usage during a given time period. When disk usage is high, you

can free up disk space by cleaning up unnecessary images or

containers.

Inode usage rate = Inode storage used / Total inode storage.

Note: Every file must have an inode to store file metadata such

as file creator and creation date. Inodes also consume disk

space, and many small cache files can easily lead to inode

resource exhaustion. Additionally, when inodes are exhausted

but the disk is not full, new files cannot be created on the disk.

System Load Average CPU load over 1 minute, 5 minutes, and 15 minutes.

The value is the ratio of the total number of processes currently

being executed by the CPU and waiting to be executed by the

CPU to the maximum number of processes the CPU can

execute, which is an important indicator of system busy/idle

status.

Note: If the 1-minute/5-minute/15-minute curves are similar over

a certain period, it indicates that the cluster's CPU load is

relatively stable.

If the 1-minute value is much greater than the 15-minute value

at a certain time period or specific time point, it indicates that the

load in the recent 1 minute is increasing and needs continued

Node Monitoring - Alauda Container Platform

Parameter Description

observation. Once the 1-minute value exceeds the number of

CPUs, it may indicate system overload. You need to further

analyze the root cause of the problem.

If the 1-minute value is much smaller than the 15-minute value

at a certain time period or specific time point, it indicates that the

system load is decreasing in the recent 1 minute and generated

high load in the previous 15 minutes.

Disk

Throughput

Disk throughput within the specified time range refers to the

speed of data flow transmission by the disk, where transmission

data is the sum of read and write data.

Disk IOPS

Disk IOPS within the specified time range is the sum of

continuous reads and writes per second, representing a

performance metric of the number of read and write operations

per second by the disk.

Network Traffic

Rate

Network traffic inflow and outflow rates within the specified time

range, counted by the node's physical network interface.

Network Packet

Rate

(packets/sec)

Network packet receive and send rates within the specified time

range, counted by the node's physical network interface.

Node Monitoring - Alauda Container Platform

Managed Clusters

overview

overview

Import Clusters

Overview

Import Standard Kubernetes Cluster

Import OpenShift Cluster

Import Amazon EKS Cluster

Import GKE Cluster

Menu

Managed Clusters - Alauda Container Platform

Import an existing CCE (Cloud Container Engine) cluster (public cloud) into the platform for

unified management.

Public cloud cluster network initialization.

Import Huawei Cloud CCE Cluster (Public Cloud)

Import Azure AKS Cluster

Import Alibaba Cloud ACK Cluster

Import Tencent Cloud TKE Cluster

Register Cluster

Register Cluster

Public Cloud Cluster Initialization

Network Initialization

Managed Clusters - Alauda Container Platform

Public cloud cluster storage initialization.

Collect network data from custom named network cards

Storage Initialization

How to

Network Configuration for Import Clusters

Fetch import cluster information

Trust an insecure image registry

Collect Network Data from Custom Named Network Cards

Managed Clusters - Alauda Container Platform

The platform supports managing existing standard Kubernetes clusters, OpenShift, Amazon

EKS (Elastic Kubernetes Service), and Huawei Cloud CCE (Cloud Container Engine) clusters.

What is a managed cluster?

What's the difference between the two onboarding methods?

A managed cluster refers to consolidating existing clusters into a centralized platform for

unified governance. It allows enterprises to bring various cluster types—including standard

Kubernetes clusters and certain public cloud clusters—under a single control plane.

Centralized management improves scalability, availability, and maintainability, enabling better

utilization of compute resources and a more efficient cloud environment. You can onboard

clusters to the platform via Access a cluster or Register a cluster.

They differ only in how onboarding is performed; day‑to‑day operations are consistent.

overview

TOC

What is a managed cluster?

What's the difference between the two
onboarding methods?

Menu ON THIS PAGE

overview - Alauda Container Platform

Import a cluster: The platform first obtains information about the target cluster and then

actively sends access instructions to it. Using this information, the platform establishes a

stable connection for centralized monitoring and management, helping administrators

oversee the environment and ensure efficient, secure resource utilization.

Register a cluster: Deploy a reverse proxy in the target cluster, which initiates a

registration request to the platform. The cluster uses the CLI to automatically establish a

tunnel and communicate securely with the platform. Because no cluster details need to be

disclosed, security is enhanced and the process is simpler and more efficient.

overview - Alauda Container Platform

Import an existing CCE (Cloud Container Engine) cluster (public cloud) into the platform for
unified management.

Import Clusters

Overview

Import Standard Kubernetes Cluster

Import OpenShift Cluster

Import Amazon EKS Cluster

Import GKE Cluster

Import Huawei Cloud CCE Cluster (Public Cloud)

Import Azure AKS Cluster

Menu

Import Clusters - Alauda Container Platform

Import Alibaba Cloud ACK Cluster

Import Tencent Cloud TKE Cluster

Import Clusters - Alauda Container Platform

Choose a provider to connect an existing managed cluster to the platform.

Standard Kubernetes

OpenShift

AWS EKS

Google GKE

Azure AKS

Alibaba Cloud ACK

Tencent Cloud TKE

Overview

Menu

Overview - Alauda Container Platform

http://localhost:4173/container_platform/configure/clusters/managed/import/standard-kubernetes.mdx
http://localhost:4173/container_platform/configure/clusters/managed/import/openshift.mdx
http://localhost:4173/container_platform/configure/clusters/managed/import/aws-eks.mdx
http://localhost:4173/container_platform/configure/clusters/managed/import/gcp-gke.mdx
http://localhost:4173/container_platform/configure/clusters/managed/import/azure-aks.mdx
http://localhost:4173/container_platform/configure/clusters/managed/import/alibaba-ack.mdx
http://localhost:4173/container_platform/configure/clusters/managed/import/tencent-tke.mdx

Supports integrating standard native Kubernetes clusters deployed with kubeadm into the

platform for unified management.

Terminology

Prerequisites

Notes

Obtain Registry Address

Check if Extra Registry Config is Needed

Get Cluster Info

Integrate Cluster

Network Configuration

FAQ

Why is the "Add Node" button disabled?

Which certificates are supported?

Which features are unsupported?

How to fix Containerd runtime causing distributed storage deployment failures?

Import Standard Kubernetes Cluster

TOC

Terminology

Menu ON THIS PAGE

Import Standard Kubernetes Cluster - Alauda Container Platform

Term Description

Managed

Kubernetes

Cluster

A type of Kubernetes cluster provided by cloud vendors, where

the Master nodes and their components are managed by the

vendor. Users cannot log in or manage the Master nodes.

Unmanaged

Kubernetes

Cluster

In contrast, some cloud vendors provide clusters where users

manage the Master nodes, such as Alibaba Cloud ACK

Dedicated Edition or Tencent Cloud TKE Independent Cluster.

Kubernetes and related components in the cluster must meet the version and parameter

requirements.

If the runtime is Containerd, update the Containerd configuration before integration to

ensure distributed storage can be deployed successfully.

By default, the platform monitors NIC traffic matching eth.*|en.*|wl.*|ww.* . If your NIC uses

a different naming convention, update the configuration after integration following [Custom

NIC Monitoring].

To use the registry deployed by the platform during global cluster installation, run the

following on a global control node:

Prerequisites

Notes

Obtain Registry Address

Import Standard Kubernetes Cluster - Alauda Container Platform

To use an external registry, set REGISTRY manually:

1. Run the following to check if the registry supports HTTPS with a trusted CA certificate:

2. If check fails, see How to trust an insecure registry?

Refer to How to fetch cluster information?.

Check if Extra Registry Config is Needed

Get Cluster Info

if ["$(kubectl get productbase -o

jsonpath='{.items[].spec.registry.preferPlatformURL}')" = 'false']; then

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.registryAddress}')

else

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.platformURL}' | awk -F // '{print $NF}')

fi

echo "Registry address: $REGISTRY"

REGISTRY=<external-registry-address> # e.g., registry.example.cn:60080 or

192.168.134.43

echo "Registry address: $REGISTRY"

REGISTRY=<registry-address-from-previous-step>

if curl -s -o /dev/null --retry 3 --retry-delay 5 -- "https://${REGISTRY}/v2/"; then

 echo 'Pass: Registry uses a trusted CA certificate. No extra config needed.'

else

 echo 'Fail: Registry does not support HTTPS or uses an untrusted certificate.

Follow "Trust Insecure Registry".'

fi

Import Standard Kubernetes Cluster - Alauda Container Platform

1. In the left navigation, go to Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure parameters as below:

Parameter Description

Registry

Registry storing required platform component images. Options:

Platform Default (configured during global setup), Private Registry

(requires address, port, username, password), Public Registry

(requires cloud credential update).

Cluster

Info

Can be entered manually or parsed from a KubeConfig file. Required

fields: Cluster Address, CA Certificate (Base64 decoded if entered

manually), and Authentication (token or client certificate with cluster-

admin rights).

4. Click Check Connectivity. The platform verifies network access and auto-detects cluster

type.

5. If successful, click Import to complete.

Progress can be viewed via the execution progress dialog (status.conditions). Once

integrated, the cluster appears as healthy in the list.

Ensure connectivity between the global cluster and the imported cluster.

Integrate Cluster

Network Configuration

FAQ

Import Standard Kubernetes Cluster - Alauda Container Platform

For both managed and unmanaged clusters, adding nodes through the platform UI is not

supported. Add nodes directly or via the vendor.

1. Kubernetes Certificates: Only API Server certificates can be viewed; other certificates are

unsupported and will not auto-rotate.

2. Platform Component Certificates: Viewable and auto-rotatable.

Managed clusters: Audit logs are not available.

Managed clusters: ETCD, Scheduler, Controller Manager monitoring not supported (only

API Server metrics available).

All clusters: Certificates other than API Server are not supported.

When using Containerd, distributed storage deployment fails unless you adjust Containerd

settings on all nodes:

1. Edit /etc/systemd/system/containerd.service , set LimitNOFILE=1048576 .

2. Run systemctl daemon-reload .

3. Restart Containerd: systemctl restart containerd .

4. On control nodes, restart distributed storage pods:

Why is the "Add Node" button disabled?

Which certificates are supported?

Which features are unsupported?

How to fix Containerd runtime causing distributed storage
deployment failures?

kubectl delete pod --all -n rook-ceph

Import Standard Kubernetes Cluster - Alauda Container Platform

Supports integrating deployed OpenShift clusters into the platform for unified management.

Prerequisites

Obtain Registry Address

Check if Extra Registry Config is Needed

Trust Insecure Registry

Configure DNS for the Cluster

Get Cluster Info

Method 1 (Recommended): Get the KubeConfig File

Method 2: Use Token, API Server Address, and CA Certificate

Import Cluster

Network Configuration

Deploy Add-ons

Update Audit Policy

FAQ

Why is the "Add Node" button disabled?

Which certificates are supported?

Which features are unsupported for OpenShift clusters?

Import OpenShift Cluster

TOC

Prerequisites

Menu ON THIS PAGE

Import OpenShift Cluster - Alauda Container Platform

The Kubernetes version and parameters of the cluster must meet the Standard Kubernetes

Cluster Requirements.

During integration, kubectl commands are required. Please install the CLI tool on the

bastion host that can access the cluster.

To enable real-time monitoring of metrics such as nodes, workloads (Deployment,

StatefulSet, DaemonSet), Pods, and containers, ensure Prometheus is already deployed

in the target cluster.

To use the registry deployed by the platform during global cluster installation, run the

following command on a global control node:

To use an external registry, manually set the REGISTRY variable:

1. Run the following command to check if the registry supports HTTPS and uses a trusted CA

certificate:

Obtain Registry Address

Check if Extra Registry Config is Needed

if ["$(kubectl get productbase -o

jsonpath='{.items[].spec.registry.preferPlatformURL}')" = 'false']; then

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.registryAddress}')

else

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.platformURL}' | awk -F // '{print $NF}')

fi

echo "Registry address is: $REGISTRY"

REGISTRY=<external-registry-address> # e.g., registry.example.cn:60080 or

192.168.134.43

echo "Registry address is: $REGISTRY"

Import OpenShift Cluster - Alauda Container Platform

2. If the check fails, follow the steps below.

1. Log in to all OCP cluster nodes.

2. On each node, configure the registry settings:

3. Restart crio :

Trust Insecure Registry

REGISTRY=<registry-address-from-previous-step>

if curl -s -o /dev/null --retry 3 --retry-delay 5 -- "https://${REGISTRY}/v2/"; then

 echo 'Pass: Registry uses a trusted CA certificate. No extra config needed.'

else

 echo 'Fail: Registry does not support HTTPS or uses an untrusted certificate.

Follow "Trust Insecure Registry".'

fi

sudo -i

sudo chattr -i /

sudo mkdir -p /etc/systemd/system/crio.service.d/

cat | sudo tee /etc/systemd/system/crio.service.d/99-registry-cpaas-system.conf <<

'EOF'

[Service]

ExecStart=

ExecStart=/usr/bin/crio \

 --insecure-registry='<registry-address>' \ # e.g.,

registry.example.cn:60080 or 192.168.134.43

 $CRIO_CONFIG_OPTIONS \

 $CRIO_RUNTIME_OPTIONS \

 $CRIO_STORAGE_OPTIONS \

 $CRIO_NETWORK_OPTIONS \

 $CRIO_METRICS_OPTIONS

EOF

sudo systemctl daemon-reload && sudo systemctl restart crio

Import OpenShift Cluster - Alauda Container Platform

Modify the CoreDNS ConfigMap in the global cluster to configure DNS.

1. From the bastion host, get the OCP cluster base domain:

Example output:

2. Log in to the platform management console, switch to the global cluster, then go to

Cluster Management > Resource Management.

3. Edit the cpaas-coredns ConfigMap in the kube-system namespace.

Add a new block using the OCP base domain and DNS server address (from

/etc/resolv.conf on a cluster node).

Example:

Choose one of the following:

Configure DNS for the Cluster

Get Cluster Info

oc get dns cluster -o jsonpath='{.spec.baseDomain}'

ocp.example.com

Corefile: |

ocp.example.com:1053 {

 log

 forward . 192.168.31.220

}

.:1053 {

 log

 forward . 192.168.31.220

}

Import OpenShift Cluster - Alauda Container Platform

1. On the bastion host, search for the kubeconfig file and verify it contains an admin context.

2. Copy the kubeconfig file from the bastion host to your local machine:

See How to fetch cluster information?.

1. In the left navigation, go to Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure the parameters:

Parameter Description

Registry

Registry storing platform component images.Platform Default:

registry configured during global setup.Private Registry: requires

registry address, port, username, and password.Public Registry:

requires updating cloud credentials.

Cluster

Info

Either upload the KubeConfig file or enter manually.Cluster Address:

API Server address.CA Certificate: decoded Base64 CA

certificate.Authentication: token or client certificate with cluster-

admin permissions.

4. Click Check Connectivity.

Method 1 (Recommended): Get the KubeConfig File

Method 2: Use Token, API Server Address, and CA
Certificate

Import Cluster

scp root@<bastion-ip>:</path/to/kubeconfig> <local-path>

Import OpenShift Cluster - Alauda Container Platform

5. If successful, click Import. Progress can be viewed in the execution log. Once imported,

the cluster appears healthy in the list.

Ensure network connectivity between the global cluster and the imported cluster. See Network

Configuration for Imported Clusters.

After successful integration, go to Marketplace to deploy required add-ons such as

monitoring, log collection, and log storage.

Before deploying log collection, ensure /var/cpaas/ has more than 50GB free space:

You can modify the audit policy (spec.audit.profile) of the cluster:

Default: logs metadata of read/write requests (OAuth access token creation logs the body).

WriteRequestBodies: logs metadata for all requests and bodies of write requests.

AllRequestBodies: logs metadata and bodies of all requests.

Sensitive resources (e.g., Secrets, Routes, OAuthClient) only log metadata.

Update with:

Network Configuration

Deploy Add-ons

Update Audit Policy

df -h /var/cpaas

oc edit apiserver cluster

Import OpenShift Cluster - Alauda Container Platform

Adding nodes via the platform UI is not supported. Use the vendor's method.

1. Kubernetes Certificates: Only API Server certificates are visible, no auto-rotation.

2. Platform Component Certificates: Visible and auto-rotated.

Audit data collection.

ETCD, Scheduler, Controller Manager monitoring (only API Server metrics available).

Certificates other than API Server.

FAQ

Why is the "Add Node" button disabled?

Which certificates are supported?

Which features are unsupported for OpenShift clusters?

Import OpenShift Cluster - Alauda Container Platform

Connect an existing Amazon EKS (Elastic Kubernetes Service) cluster to the platform for

unified management.

Prerequisites

Prepare the environment

Get cluster information

Get the import token

Import the cluster

Network configuration

Next steps

Initialize Ingress and storage

FAQ

The Add Node button is disabled after import. How can I add nodes?

Which certificates are supported by certificate management for imported clusters?

What features are not supported for imported AWS EKS clusters?

The cluster's Kubernetes version and settings meet the requirements in Version

compatibility for importing standard Kubernetes clusters.

Import Amazon EKS Cluster

TOC

Prerequisites

Menu ON THIS PAGE

Import Amazon EKS Cluster - Alauda Container Platform

The image registry must support HTTPS and provide a valid TLS certificate issued by a

public CA.

To comply with AWS EKS security practices, perform the following steps in AWS CloudShell.

1. Ensure network connectivity to the AWS Management Console.

2. Search for cloudshell , then open CloudShell .

3. Verify that the selected region matches your target cluster's region; switch if needed.

4. After CloudShell is ready, clear the terminal and run:

5. The environment is now ready. For subsequent steps such as Get cluster information

and Import cluster, run any commands against the target cluster from within CloudShell.

KubeConfig from public‑cloud clusters cannot be used directly for import.

Refer to How do I get cluster information? to obtain the cluster import token.

Prepare the environment

↗

Get cluster information

Get the import token

List clusters in the current region and verify your permissions

aws eks list-clusters

<region-code> is the region of the cluster, e.g., us-west-1

<my-cluster> is the cluster name from the previous output

aws eks update-kubeconfig --region <region-code> --name <my-cluster>

The kubeconfig file is saved to "${HOME}/.kube/config"

Save its content to a file, then upload it to the platform for parsing

cat "${HOME}/.kube/config"

Import Amazon EKS Cluster - Alauda Container Platform

https://console.aws.amazon.com/cloudshell/home
https://console.aws.amazon.com/cloudshell/home
https://console.aws.amazon.com/cloudshell/home

1. In the left navigation, go to Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure the parameters as follows.

Parameter Description

Image

registry

Registry that stores platform component images required by the

cluster. - Platform default: the registry configured when the global

cluster was deployed. - Private registry: a pre-provisioned registry

hosting required images. Provide the private registry address,

port, username, and password. - Public registry: a public internet

registry. Before use, obtain credentials as described in Update

public registry cloud credentials.

Cluster

information

Tip: Upload the kubeconfig file and let the platform parse it

automatically. Cluster endpoint: the external API server address

exposed by the target cluster. CA certificate: the cluster's CA

certificate. Authentication: use the token created in the previous

step with cluster administrator privileges.

4. Click Check connectivity to verify network connectivity and automatically detect the

cluster type. The detected type appears as a badge in the top-right of the form.

5. After the connectivity check passes, click Import, then confirm.

Tips:

For clusters in the Importing state, click the details icon to view progress in the

Execution progress dialog (status.conditions).

After a successful import, the cluster list shows key information. The cluster status is

Normal and cluster operations are available.

Import the cluster

Import Amazon EKS Cluster - Alauda Container Platform

Ensure the global cluster and the imported cluster have network connectivity. See Network

Configuration for Imported Clusters.

If you need Ingress and storage capabilities, see Initialize Ingress for AWS EKS and Initialize

storage for AWS EKS.

Adding nodes from the platform UI is not supported. Please add nodes through your cluster

provider.

1. Kubernetes certificates: You can view the API server certificate only. Other Kubernetes

certificates are not visible and are not auto-rotated.

2. Platform component certificates: Visible in the platform and support automatic rotation.

Network configuration

Next steps

Initialize Ingress and storage

FAQ

The Add Node button is disabled after import. How can I
add nodes?

Which certificates are supported by certificate
management for imported clusters?

What features are not supported for imported AWS EKS
clusters?

Import Amazon EKS Cluster - Alauda Container Platform

Audit data is not available.

ETCD, Scheduler, and Controller Manager metrics are not supported; a subset of API

server charts is available.

Certificate details other than the Kubernetes API server certificate are not available.

Import Amazon EKS Cluster - Alauda Container Platform

The platform supports importing Google GKE clusters.

Prerequisites

Preparing the Operating Environment

Obtaining Cluster Information

Obtaining the API Server Address and CA Certificate of the Target Cluster

Obtaining the Target Cluster Token

Importing the Cluster

Network Configuration

Post-Import Operations

Ingress and Storage Initialization

Frequently Asked Questions

How to add nodes when the "Add Node" button is grayed out after importing the cluster?

What certificates are supported by the certificate management functionality for imported clusters?

The Kubernetes version and components on the cluster meet the version requirements for

importing public cloud clusters.

Import GKE Cluster

TOC

Prerequisites

Menu ON THIS PAGE

Import GKE Cluster - Alauda Container Platform

Ensure the cluster type is a standard cluster and the account has permissions to maintain

the control plane. Autopilot clusters are not currently supported.

The image repository must support HTTPS access and provide a valid TLS certificate

authenticated by a public certification authority.

To comply with GKE security standards, the following steps must be performed using Cloud

Shell.

1. Ensure network connectivity with Google.

2. Access the Clusters page in the Kubernetes Engine feature; find the cluster to be

imported, click on cluster details, and select the Connect button.

3. In the popup dialog, copy the command for configuring kubectl command-line access

permissions and click the Run in Cloud Shell button.

4. Wait for Cloud Shell to be ready, clear the command line, paste the content copied in the

previous step, and execute it.

5. The environment is now ready. All subsequent commands executed in the importing cluster

environment for steps such as Obtaining Cluster Information and Importing Cluster

should be executed in Cloud Shell.

1. Access the Clusters page in the Kubernetes Engine feature and click to enter the details

page of the target cluster.

2. The API Server address can be found in the External endpoints section.

Preparing the Operating Environment

↗

Obtaining Cluster Information

Obtaining the API Server Address and CA Certificate of
the Target Cluster

↗

Import GKE Cluster - Alauda Container Platform

https://console.cloud.google.com/kubernetes/list/overview
https://console.cloud.google.com/kubernetes/list/overview
https://console.cloud.google.com/kubernetes/list/overview
https://console.cloud.google.com/kubernetes/list/overview
https://console.cloud.google.com/kubernetes/list/overview
https://console.cloud.google.com/kubernetes/list/overview

3. To obtain the CA certificate, use one of the following methods in Cloud Shell:

Method A: Get the CA certificate from your kubeconfig:

Method B: Get the CA certificate directly from the cluster:

Note: The certificate must be Base64-decoded before pasting into the import form.

The KubeConfig file of public cloud clusters cannot be directly used for importing clusters.

Please refer to the FAQ How to obtain cluster information? to obtain the target cluster token.

1. In the left navigation bar, click Clusters > Clusters.

2. Click Manage Cluster > Import Cluster.

3. Configure the relevant parameters according to the following instructions.

Parameter Description

Image

Repository

Repository for storing platform component images required by the

cluster. - Platform Default: Image repository configured during

global deployment. - Private Repository: Pre-built repository storing

platform required components. Requires input of Private Image

Repository Address, Port, Username, and Password for

Obtaining the Target Cluster Token

Importing the Cluster

gcloud container clusters get-credentials <cluster-name> --zone <zone>

kubectl config view --raw -o jsonpath='{.clusters[0].cluster.certificate-authority-

data}' | base64 -d

gcloud container clusters describe <cluster-name> --zone <zone> --

format='get(masterAuth.clusterCaCertificate)' | base64 -d

Import GKE Cluster - Alauda Container Platform

Parameter Description

accessing the image repository. - Public Repository: Use public

image repository services on the internet. Before use, you must first

refer to Update Public Repository Cloud Credentials to obtain

repository authentication permissions.

Cluster

Information

Cluster Information: Includes the target cluster token and the API

Server address and CA certificate of the target cluster. Cluster

Address: The access address where the target cluster exposes the

API Server for platform access to the cluster's API Server. CA

Certificate: CA certificate of the target cluster. Note: When manually

inputting, you need to enter the Base64 decoded certificate.

Authentication Method: Authentication method for the target

cluster, requires using the token (Token) with cluster management

permissions created in the previous step for authentication.

4. Click Check Connectivity to verify network connectivity with the target cluster and

automatically identify the cluster type, which will be displayed as a badge in the top-right

corner of the form.

5. After connectivity check passes, click Import and confirm.

TIP

Click the Details icon on the right side of clusters in Importing status to view the cluster

execution progress (status.conditions) in the popup Execution Progress dialog.

After successful cluster import, you can view key cluster information in the cluster list, the

cluster status shows as normal, and you can perform cluster-related operations.

Ensure network connectivity between the global cluster and the imported cluster. See Network

Configuration for Imported Clusters.

Network Configuration

Import GKE Cluster - Alauda Container Platform

After importing the cluster, if you need to use Ingress and storage-related features, please

refer to Google GKE Ingress Controller Configuration and Google GKE Storage Configuration.

Adding nodes through the platform interface is not supported. Please contact the cluster

provider to add nodes.

1. Kubernetes Certificates: All imported clusters only support viewing APIServer certificate

information in the platform certificate management interface. Other Kubernetes certificates

cannot be viewed and automatic rotation is not supported.

2. Platform Component Certificates: All imported clusters can view platform component

certificate information in the platform certificate management interface and support

automatic rotation.

Post-Import Operations

Ingress and Storage Initialization

Frequently Asked Questions

How to add nodes when the "Add Node" button is grayed
out after importing the cluster?

What certificates are supported by the certificate
management functionality for imported clusters?

Import GKE Cluster - Alauda Container Platform

Import an existing CCE (Cloud Container Engine) cluster (public cloud) into the platform for

unified management.

Prerequisites

Obtain Image Registry Address

Determine if Image Registry Requires Additional Configuration

Obtain Cluster Information

Obtain Import Cluster Token

Import Cluster

Network Configuration

Follow-up Operations

Ingress (Inbound Rules) and Storage Initialization

FAQ

After importing the cluster, the add node button is grayed out. How to add nodes?

What certificates does the certificate management feature support for imported clusters?

What other features are not supported for imported Huawei Cloud CCE clusters?

Import Huawei Cloud CCE Cluster (Public
Cloud)

TOC

Prerequisites

Menu ON THIS PAGE

Import Huawei Cloud CCE Cluster (Public Cloud) - Alauda Container Platform

The Kubernetes version and parameters on the cluster meet the Standard Kubernetes

Cluster Component Version and Parameter Requirements.

Ensure the cluster type is Huawei Cloud CCE cluster and the account has permissions to

maintain the control plane. Turbo clusters are not currently supported.

Huawei Cloud CCE clusters do not have the ability to access external network resources

by default after creation. Before importing the cluster, ensure that the cluster to be imported

can access the platform access address.

To use the platform-deployed image registry from the global cluster deployment, execute

the following command on the control node of the global cluster to obtain the address:

To use an external image registry, manually set the REGISTRY variable.

Obtain Image Registry Address

Determine if Image Registry Requires Additional
Configuration

if ["$(kubectl get productbase -o

jsonpath='{.items[].spec.registry.preferPlatformURL}')" = 'false']; then

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.registryAddress}')

else

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.platformURL}' | awk -F \// '{print $NF}')

fi

echo "Image registry address is: $REGISTRY"

REGISTRY=<external image registry address> # Valid examples:

registry.example.cn:60080 or 192.168.134.43

echo "Image registry address is: $REGISTRY"

Import Huawei Cloud CCE Cluster (Public Cloud) - Alauda Container Platform

1. Execute the following command to determine whether the specified image registry supports

HTTPS access and uses certificates issued by trusted CA authorities:

2. If the test fails, please refer to the FAQ How to trust an insecure image registry?.

1. Ensure network connectivity with the Huawei Cloud console.

2. Access the Cluster Management page of the Cloud Container Engine CCE feature; find the

cluster to be imported and click the cluster name to enter the details page.

3. As shown in the figure below, follow the navigation to find the download KubeConfig file

button: Cluster Information - Connection Information - kubectl - Configuration , and

download the KubeConfig file.

The KubeConfig file of public cloud clusters cannot be directly used for cluster import.

Please refer to the FAQ How to obtain cluster information? to obtain the import cluster token.

Obtain Cluster Information

↗

Obtain Import Cluster Token

Import Cluster

REGISTRY=<image registry address obtained from the "Obtain Image Registry Address"

section>

if curl -s -o /dev/null --retry 3 --retry-delay 5 -- "https://${REGISTRY}/v2/"; then

 echo 'Test passed: The image registry uses certificates issued by trusted CA

authorities. You do not need to execute the content in the "Trust Insecure Image

Registry" section.'

else

 echo 'Test failed: The image registry does not support HTTPS or the certificate is

not trusted. Please refer to the "Trust Insecure Image Registry" section for

configuration.'

fi

Import Huawei Cloud CCE Cluster (Public Cloud) - Alauda Container Platform

https://console-intl.huaweicloud.com/cce2.0
https://console-intl.huaweicloud.com/cce2.0
https://console-intl.huaweicloud.com/cce2.0

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure the Image Registry related parameters according to the following instructions.

Parameter Description

Image

Registry

Repository for storing platform component images required by the

cluster.

- Platform Default: Image registry configured during global cluster

deployment.

- Private Registry: Pre-built registry storing platform required

components. You need to enter the private image registry

address, port, username, and password for accessing the image

registry.

- Public Registry: Use image registry services located on the

public network. Before use, you need to first refer to Update Public

Image Registry Cloud Credentials to obtain registry authentication

permissions.

Cluster

Information

Tip: Please upload the KubeConfig file for automatic parsing and

filling by the platform.

Cluster Address: The access address of the API Server exposed

by the imported cluster, used for the platform to access the API

Server of the imported cluster.

CA Certificate: The CA certificate of the imported cluster.

Authentication Method: The authentication method of the

imported cluster, which requires using a token with cluster

management permissions created in the previous step for

authentication.

4. Click the Parse KubeConfig File button and submit the KubeConfig file downloaded in the

previous step. The platform will automatically parse and fill in the Cluster Information

related parameters.

Import Huawei Cloud CCE Cluster (Public Cloud) - Alauda Container Platform

5. Click Check Connectivity to check network connectivity with the imported cluster and

automatically identify the type of the imported cluster. The cluster type will be displayed as

a badge in the upper right corner of the form.

6. After connectivity check passes, click Import and confirm.

Tips:

Click the

icon on the right side of a cluster in Importing status to view the cluster's execution

progress (status.conditions) in the popup Execution Progress dialog.

After successful cluster import, you can view the cluster's key information in the cluster

list. The cluster status displays as normal and you can perform cluster-related

operations.

To ensure network connectivity between the global cluster and the imported cluster, you must

refer to Imported Cluster Network Configuration.

After importing the cluster, if you need to use Ingress (inbound rules) and storage-related

features, please refer to Huawei Cloud CCE Cluster Ingress Initialization Configuration and

Huawei Cloud CCE Cluster Storage Initialization Configuration.

Network Configuration

Follow-up Operations

Ingress (Inbound Rules) and Storage Initialization

FAQ

After importing the cluster, the add node button is grayed
out. How to add nodes?

Import Huawei Cloud CCE Cluster (Public Cloud) - Alauda Container Platform

Adding nodes through the platform interface is not supported. Please contact the cluster

provider to add nodes.

1. Kubernetes Certificates: All imported clusters only support viewing APIServer certificate

information in the platform certificate management interface. Viewing other Kubernetes

certificates and automatic rotation are not supported.

2. Platform Component Certificates: All imported clusters can view platform component

certificate information in the platform certificate management interface and support

automatic rotation.

Audit data retrieval is not supported.

ETCD, Scheduler, and Controller Manager related monitoring information are not

supported. APIServer partial monitoring charts are supported.

Cluster certificate related information other than Kubernetes APIServer certificates cannot

be retrieved.

What certificates does the certificate management feature
support for imported clusters?

What other features are not supported for imported
Huawei Cloud CCE clusters?

Import Huawei Cloud CCE Cluster (Public Cloud) - Alauda Container Platform

Import an existing Azure AKS cluster into the platform for unified management.

Prerequisites

Prepare the Operating Environment

Obtain Cluster Information

Obtain Import Clusters Token

Import Cluster

Network Configuration

Post-Import Operations

Ingress (Inbound Rules) and Storage Initialization

Frequently Asked Questions

How to configure AKS node external IP security group rules

How to access AKS node

Azure ALB using internal load balancer

Azure ALB using external load balancer

The add node button is grayed out after importing the cluster. How to add nodes?

What certificates are supported by the certificate management feature for imported clusters?

What other features are not supported for imported AKS clusters?

Import Azure AKS Cluster

TOC

Prerequisites

Menu ON THIS PAGE

Import Azure AKS Cluster - Alauda Container Platform

The Kubernetes version and parameters on the cluster must meet the Standard

Kubernetes Cluster Component Version and Parameter Requirements.

TIP

If AKS nodes cannot access the global cluster, refer to the FAQ: How to configure AKS node

external IP security group rules.

The image registry must support HTTPS access and provide a valid TLS certificate

authenticated by a public certification authority.

To comply with Azure AKS security standards, the following steps must be performed using

Cloud Shell.

1. Ensure network connectivity with Azure Console.

2. Open the Kubernetes Services page , locate the cluster you want to import, and click to

enter the cluster overview page.

3. Click the Connect button, which will open a floating window titled Connect to <import

cluster name> . Follow the instructions to open Cloud Shell and configure the operating

environment.

The KubeConfig file of public cloud clusters cannot be directly used for cluster import.

Please refer to the FAQ How to obtain cluster information? to obtain the import cluster token.

Prepare the Operating Environment

↗

Obtain Cluster Information

Obtain Import Clusters Token

Import Azure AKS Cluster - Alauda Container Platform

https://portal.azure.com/#view/HubsExtension/BrowseResource/resourceType/Microsoft.ContainerService%2FmanagedClusters
https://portal.azure.com/#view/HubsExtension/BrowseResource/resourceType/Microsoft.ContainerService%2FmanagedClusters
https://portal.azure.com/#view/HubsExtension/BrowseResource/resourceType/Microsoft.ContainerService%2FmanagedClusters

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure the relevant parameters according to the following instructions.

Parameter Description

Image

Registry

The registry that stores platform component images required by the

cluster. - Platform Default: The image registry configured when

deploying the global cluster. - Private Registry: A pre-built registry

that stores platform-required component images. You need to enter

the Private Image Registry Address, Port, Username, and

Password for accessing the image registry. - Public Registry: Use

a public image registry service on the internet. Before use, you must

first refer to Update Public Image Registry Cloud Credentials to

obtain registry authentication permissions.

Cluster

Information

Tip: Please upload a KubeConfig file, and the platform will

automatically parse and fill in the information. Cluster Address: The

access address of the API Server exposed by the import cluster,

used by the platform to access the import cluster's API Server. CA

Certificate: The CA certificate of the import cluster. Authentication

Method: The authentication method of the import cluster, which

requires using a Token with cluster management permissions

created in the previous step for authentication.

4. Click Check Connectivity to verify network connectivity with the import cluster and

automatically identify the import cluster type. The cluster type will be displayed as a badge

in the upper right corner of the form.

5. After connectivity check passes, click Import and confirm.

TIP

Import Cluster

Import Azure AKS Cluster - Alauda Container Platform

Click the Details icon on the right side of a cluster in Importing status to view the cluster's

execution progress (status.conditions) in the popup Execution Progress dialog.

After the cluster is successfully imported, you can view the cluster's key information in the

cluster list. The cluster status will show as normal, and you can perform cluster-related

operations.

Ensure the global cluster and the imported cluster have network connectivity. See Network

Configuration for Imported Clusters.

After importing the cluster, if you need to use Ingress (inbound rules) and storage-related

features, please refer to Azure AKS Cluster Ingress Initialization Configuration and Azure AKS

Cluster Storage Initialization Configuration.

Nodes only have internal IPs by default. The external IP is configured on a frontend load

balancer (LB), which is used for outbound traffic by default. This LB is controlled by the AKS

principal. Direct manual modification of this configuration may cause issues. You can allow

traffic through Kubernetes > Properties > Infrastructure Resource Group > Network
Security Group > Add Outbound/Inbound All Rules.

Network Configuration

Post-Import Operations

Ingress (Inbound Rules) and Storage Initialization

Frequently Asked Questions

How to configure AKS node external IP security group
rules

Import Azure AKS Cluster - Alauda Container Platform

To view logs of system components such as Kubelet, CNI, and kernel, you need to SSH into

the node first. It is recommended to use the kubectl-node-shell plugin instead of assigning

public IP addresses to each node.

Option 1: Using kubectl node-shell

Official Link

Option 2: Using debug

Official Link

NOTE

This example requires kubectl version 1.25 or later, which includes the GA kubectl debug

command.

Refer to Official Link

How to access AKS node

↗

↗

Azure ALB using internal load balancer

↗

kubectl debug node/aks-newadd-41368356-vmss000002 -it --

image=mcr.microsoft.com/dotnet/runtime-deps:6.0

chroot /host

Import Azure AKS Cluster - Alauda Container Platform

https://github.com/kvaps/kubectl-node-shell
https://github.com/kvaps/kubectl-node-shell
https://github.com/kvaps/kubectl-node-shell
https://docs.microsoft.com/en-us/azure/aks/node-access
https://docs.microsoft.com/en-us/azure/aks/node-access
https://docs.microsoft.com/en-us/azure/aks/node-access
https://docs.azure.cn/zh-cn/aks/internal-lb
https://docs.azure.cn/zh-cn/aks/internal-lb
https://docs.azure.cn/zh-cn/aks/internal-lb

Deploy a highly available ALB with the access address configured as the external LB.

Azure ALB using external load balancer

apiVersion: v1

kind: Service

metadata:

 name: internal-app

 namespace: cpaas-system

 annotations:

 service.beta.kubernetes.io/azure-load-balancer-internal: "true"

spec:

 type: LoadBalancer

 ports:

 - name: http-port

 port: 80

 protocol: TCP

 - name: https-port

 port: 443

 protocol: TCP

 selector:

 service.cpaas.io/name: deployment-aks-alb

 service_name: alb2-aks-alb

Import Azure AKS Cluster - Alauda Container Platform

If it has been deployed in advance, you can use the following command to modify it.

Adding nodes through the platform interface is not supported. Please contact the cluster

provider to add nodes.

The add node button is grayed out after importing the
cluster. How to add nodes?

apiVersion: v1

kind: Service

metadata:

 name: azure-alb

 namespace: cpaas-system

spec:

 type: LoadBalancer

 ports:

 - name: http-port

 port: 80

 protocol: TCP

 - name: https-port

 port: 443

 protocol: TCP

 - name: prom-port

 port: 11780

 protocol: TCP

 - name: prom2-port

 port: 11781

 protocol: TCP

 - name: prom3-port

 port: 15012

 protocol: TCP

 selector:

 service_name: alb2-cpaas-system

kubectl edit helmrequest -n cpaas-system uat-cluster-aks-alb

Import Azure AKS Cluster - Alauda Container Platform

1. Kubernetes Certificates: All imported clusters only support viewing APIServer certificate

information in the platform certificate management interface. Other Kubernetes certificates

cannot be viewed and automatic rotation is not supported.

2. Platform Component Certificates: All imported clusters can view platform component

certificate information in the platform certificate management interface and support

automatic rotation.

Audit data retrieval is not supported.

ETCD, Scheduler, and Controller Manager related monitoring information is not supported.

APIServer partial monitoring charts are supported.

Cluster certificate-related information other than Kubernetes APIServer certificates cannot

be retrieved.

What certificates are supported by the certificate
management feature for imported clusters?

What other features are not supported for imported AKS
clusters?

Import Azure AKS Cluster - Alauda Container Platform

Import existing Alibaba Cloud ACK managed clusters (Managed Kubernetes) or Alibaba Cloud

ACK dedicated clusters (Dedicated Kubernetes) for unified platform management.

TIP

For product information about ACK managed clusters (Managed Kubernetes) or Alibaba Cloud ACK

dedicated clusters (Dedicated Kubernetes), refer to the official documentation .

Prerequisites

Get Image Registry Address

Determine if Image Registry Requires Additional Configuration

Get KubeConfig

Import Cluster

Network Configuration

FAQ

How to handle port conflicts between Alibaba Cloud monitoring and platform monitoring components?

How to use public network access for Alibaba Cloud clusters?

After importing a cluster, the add node button is grayed out. How to add nodes?

Which certificates are supported by the certificate management function for imported clusters?

What other features are not supported for imported Alibaba Cloud ACK managed clusters and A…

Import Alibaba Cloud ACK Cluster

↗

TOC

Menu ON THIS PAGE

Import Alibaba Cloud ACK Cluster - Alauda Container Platform

https://help.aliyun.com/document_detail/86737.html?scm=20140722.H_86737._.ID_86737-OR_rec-V_1
https://help.aliyun.com/document_detail/86737.html?scm=20140722.H_86737._.ID_86737-OR_rec-V_1
https://help.aliyun.com/document_detail/86737.html?scm=20140722.H_86737._.ID_86737-OR_rec-V_1

The Kubernetes version and parameters on the cluster meet the component version and

parameter requirements for importing standard Kubernetes clusters.

To use the platform-deployed image registry from the global cluster deployment, execute

the following command on the control node of the global cluster to get the address:

To use an external image registry, manually set the REGISTRY variable.

1. Execute the following command to determine if the specified image registry supports

HTTPS access and uses certificates issued by trusted CA authorities:

Prerequisites

Get Image Registry Address

Determine if Image Registry Requires Additional
Configuration

if ["$(kubectl get productbase -o

jsonpath='{.items[].spec.registry.preferPlatformURL}')" = 'false']; then

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.registryAddress}')

else

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.platformURL}' | awk -F \// '{print $NF}')

fi

echo "Image registry address is: $REGISTRY"

REGISTRY=<external image registry address> # Valid examples:

registry.example.cn:60080 or 192.168.134.43

echo "Image registry address is: $REGISTRY"

Import Alibaba Cloud ACK Cluster - Alauda Container Platform

2. If the test fails, refer to the FAQ How to trust insecure image registries?.

1. Log in to the Alibaba Cloud Container Service management platform.

2. In the left navigation bar of the console, click Clusters.

3. On the Cluster List page, click the target cluster name or Details under the Actions

column on the right side of the target cluster.

4. On the Cluster Information page, click the Connection Information tab, then click

Generate Temporary KubeConfig.

5. In the Temporary KubeConfig dialog, set the validity period of the temporary credentials

and the method to access the cluster (including public network access and internal network

access).

6. Click Generate Temporary KubeConfig, then click Copy to copy the content and save it

to the KubeConfig file on your local computer.

7. After the cluster is successfully imported, you can revoke the temporary credentials.

Get KubeConfig

REGISTRY=<image registry address obtained from the "Get Image Registry Address"

section>

if curl -s -o /dev/null --retry 3 --retry-delay 5 -- "https://${REGISTRY}/v2/"; then

 echo 'Test passed: The image registry uses certificates issued by trusted CA

authorities. You do not need to execute the content in the "Trust Insecure Image

Registry" section.'

else

 echo 'Test failed: The image registry does not support HTTPS or the certificate is

not trusted. Please refer to the "Trust Insecure Image Registry" section for

configuration.'

fi

Import Alibaba Cloud ACK Cluster - Alauda Container Platform

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure the relevant parameters according to the following instructions.

Parameter Description

Image

Registry

Repository for storing platform component images required by the

cluster. - Platform Default: Image registry configured during global

cluster deployment. - Private Registry: Pre-built registry that stores

platform-required component images. You need to enter the private

image registry address, port, username, and password for

accessing the image registry. - Public Registry: Use public image

registry services on the internet. Before use, you need to refer to

Update Public Repository Cloud Credentials to obtain repository

authentication permissions.

Cluster

Information

Tip: Can be filled manually or uploaded via KubeConfig file for

automatic parsing and filling by the platform. Parse KubeConfig

File: After uploading the obtained KubeConfig file, the platform will

automatically parse and fill the Cluster Information. You can modify

the automatically filled information. Cluster Address: The access

address of the cluster's externally exposed API Server, used by the

platform to access the cluster's API Server. CA Certificate: The

cluster's CA certificate. Note: When entering manually, you need to

enter the Base64-decoded certificate. Authentication Method:

Authentication method for accessing the cluster. You need to use a

token or certificate authentication (client certificate and key)

with cluster management permissions for authentication.

4. Click Check Connectivity to check network connectivity with the cluster to be imported

and automatically identify the type of cluster to be imported. The cluster type will be

displayed as a badge in the upper right corner of the form.

5. After connectivity check passes, click Import and confirm.

Import Cluster

Import Alibaba Cloud ACK Cluster - Alauda Container Platform

TIP

Click the Details icon on the right side of a cluster in Importing status to view the cluster's

execution progress (status.conditions) in the popup Execution Progress dialog.

After the cluster is successfully imported, you can view the cluster's key information in the

cluster list. The cluster status shows as normal and you can perform cluster-related

operations.

Ensure network connectivity between the global cluster and the cluster to be imported. See

Network Configuration for Imported Clusters.

When Alibaba Cloud's built-in monitoring and platform monitoring components coexist, port

conflicts will occur. It is recommended to uninstall Alibaba Cloud monitoring and keep only

platform monitoring.

If using public network access for Alibaba Cloud clusters, you can bind a public IP on Alibaba

Cloud.

Network Configuration

FAQ

How to handle port conflicts between Alibaba Cloud
monitoring and platform monitoring components?

How to use public network access for Alibaba Cloud
clusters?

After importing a cluster, the add node button is grayed
out. How to add nodes?

Import Alibaba Cloud ACK Cluster - Alauda Container Platform

Both Alibaba Cloud ACK managed clusters and ACK dedicated clusters do not support

adding nodes through the platform interface. Please add them in the backend or contact the

cluster provider to add them.

1. Kubernetes Certificates: All imported clusters only support viewing APIServer certificate

information in the platform certificate management interface. They do not support viewing

other Kubernetes certificates and do not support automatic rotation.

2. Platform Component Certificates: All imported clusters can view platform component

certificate information in the platform certificate management interface and support

automatic rotation.

Alibaba Cloud ACK managed clusters do not support obtaining audit data.

Alibaba Cloud ACK managed clusters do not support ETCD, Scheduler, Controller

Manager related monitoring information, but support some APIServer monitoring charts.

Both Alibaba Cloud ACK managed clusters and ACK dedicated clusters do not support

obtaining cluster certificate-related information except for Kubernetes APIServer

certificates.

Which certificates are supported by the certificate
management function for imported clusters?

What other features are not supported for imported
Alibaba Cloud ACK managed clusters and ACK dedicated
clusters?

Import Alibaba Cloud ACK Cluster - Alauda Container Platform

Import existing Tencent Cloud TKE Dedicated clusters or Tencent Cloud TKE Managed

clusters into the platform for unified management.

TIP

For product introduction of TKE Dedicated clusters or Tencent Cloud TKE Managed clusters,

please refer to the official documentation .

Prerequisites

Obtain Image Registry Address

Determine if Image Registry Requires Additional Configuration

Obtain KubeConfig

Import Cluster

Network Configuration

FAQ

After importing the cluster, the "Add Node" button is grayed out. How to add nodes?

What certificates does the certificate management function for imported clusters support?

What other features are not supported for imported TKE Managed clusters and TKE Dedicated cl…

Import Tencent Cloud TKE Cluster

↗

TOC

Prerequisites

Menu ON THIS PAGE

Import Tencent Cloud TKE Cluster - Alauda Container Platform

https://cloud.tencent.com/document/product/457/32187
https://cloud.tencent.com/document/product/457/32187
https://cloud.tencent.com/document/product/457/32187

The Kubernetes version and parameters on the cluster meet the component version and

parameter requirements for importing standard Kubernetes clusters.

The image registry must support HTTPS access and provide a valid TLS certificate issued

by a public certificate authority.

To use the platform-deployed image registry configured during global cluster deployment,

execute the following command on the control node of the global cluster to obtain the

address:

To use an external image registry, manually set the REGISTRY variable.

1. Execute the following command to determine whether the specified image registry supports

HTTPS access and uses a certificate issued by a trusted CA:

Obtain Image Registry Address

Determine if Image Registry Requires Additional
Configuration

if ["$(kubectl get productbase -o

jsonpath='{.items[].spec.registry.preferPlatformURL}')" = 'false']; then

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.registryAddress}')

else

 REGISTRY=$(kubectl get cm -n kube-public global-info -o

jsonpath='{.data.platformURL}' | awk -F \// '{print $NF}')

fi

echo "Image registry address is: $REGISTRY"

REGISTRY=<external image registry address> # Valid examples:

registry.example.cn:60080 or 192.168.134.43

echo "Image registry address is: $REGISTRY"

Import Tencent Cloud TKE Cluster - Alauda Container Platform

2. If verification fails, please refer to the FAQ How to trust an unsafe image registry?.

1. Log in to the Tencent Cloud Container Service management platform.

2. In Cluster Details > Basic Information, view the Cluster APIServer information.

3. Select Internet Access or Intranet Access based on the actual customer network, then

download Kubeconfig and save it to your local computer.

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click Import Cluster.

3. Configure the relevant parameters according to the following instructions.

Parameter Description

Image

Registry

Registry for storing platform component images required by the

cluster. - Platform Default: Image registry configured during global

Obtain KubeConfig

Import Cluster

REGISTRY=<image registry address obtained from the "Obtain Image Registry Address"

section>

if curl -s -o /dev/null --retry 3 --retry-delay 5 -- "https://${REGISTRY}/v2/"; then

 echo 'Verification passed: The image registry uses a certificate issued by a

trusted CA. It is not necessary to execute the content in the "Trust Unsafe Image

Registry" section.'

else

 echo 'Verification failed: The image registry does not support HTTPS or the

certificate is not trusted. Please refer to the "Trust Unsafe Image Registry" section

for configuration.'

fi

Import Tencent Cloud TKE Cluster - Alauda Container Platform

Parameter Description

deployment. - Private Registry: Pre-built registry that stores

platform-required component images. You need to input the private

image registry address, port, username, and password for

accessing the image registry. - Public Registry: Use image registry

services located on the public network. Before use, you need to first

refer to Update Public Registry Cloud Credentials to obtain registry

authentication permissions.

Cluster

Information

Tip: Can be filled manually or uploaded via KubeConfig file for

automatic parsing and filling by the platform. Parse KubeConfig

File: After uploading the obtained KubeConfig file, the platform will

automatically parse and fill in the Cluster Information, and you can

modify the automatically filled information. Cluster Address: The

access address of the cluster's externally exposed API Server, used

by the platform to access the cluster's API Server. CA Certificate:

The cluster's CA certificate. Note: When manually inputting, you

need to input the Base64-decoded certificate. Authentication

Method: Authentication method for accessing the cluster, requires

using a token (Token) or certificate authentication (client

certificate and key) with cluster management permissions.

4. Click Check Connectivity to verify network connectivity with the cluster to be imported and

automatically identify the type of cluster to be imported. The cluster type will be displayed

as a badge in the upper right corner of the form.

5. After connectivity check passes, click Import and confirm.

Tip:

Click the Details icon on the right side of a cluster in Importing status to view the

cluster's execution progress (status.conditions) in the popup Execution Progress

dialog.

After successful cluster import, you can view the cluster's key information in the cluster

list. The cluster status displays as normal, and cluster-related operations can be

performed.

Import Tencent Cloud TKE Cluster - Alauda Container Platform

Ensure network connectivity between the global cluster and the cluster to be imported. You

must refer to Network Configuration for Importing Clusters.

Both TKE Dedicated clusters and TKE Managed clusters do not support adding nodes

through the platform interface. Please add them in the backend or contact the cluster provider

to add them.

1. Kubernetes Certificates: All imported clusters only support viewing APIServer certificate

information in the platform certificate management interface. They do not support viewing

other Kubernetes certificates and do not support automatic rotation.

2. Platform Component Certificates: All imported clusters can view platform component

certificate information in the platform certificate management interface and support

automatic rotation.

TKE Managed clusters do not support obtaining audit data.

TKE Managed clusters do not support ETCD, Scheduler, Controller Manager related

monitoring information, but support partial APIServer monitoring charts.

Network Configuration

FAQ

After importing the cluster, the "Add Node" button is
grayed out. How to add nodes?

What certificates does the certificate management
function for imported clusters support?

What other features are not supported for imported TKE
Managed clusters and TKE Dedicated clusters?

Import Tencent Cloud TKE Cluster - Alauda Container Platform

Both TKE Managed clusters and TKE Dedicated clusters do not support obtaining

cluster certificate-related information except for Kubernetes APIServer certificates.

Import Tencent Cloud TKE Cluster - Alauda Container Platform

This is a method of deploying a reverse proxy service in the managed cluster, where the

managed cluster actively initiates registration requests to the platform.

Prerequisites

Important Notes

Register Cluster

View Registration Command

FAQ

How to Resolve Distributed Storage Deployment Failure When the Runtime Component of the Con…

Depending on the type of managed cluster, the versions and parameters of Kubernetes

and other components on the managed cluster must meet the Version and Parameter

Requirements for Managed Clusters.

The image registry must support HTTPS access and provide a valid TLS certificate

authenticated by a public certification authority. If this cannot be met, refer to the FAQ How

to Trust Insecure Image Registries?

Note: The Public Registry provided by the platform on the public network already meets

HTTPS access requirements. You only need to verify whether the Platform Default and

Register Cluster

TOC

Prerequisites

Menu ON THIS PAGE

Register Cluster - Alauda Container Platform

Private Registry support HTTPS access.

If the runtime component of the cluster to be connected is Containerd, you need to modify

the Containerd configuration before connecting the cluster to ensure successful

deployment of distributed storage.

The platform's network card traffic monitoring recognizes network cards with names matching

eth\.\|en\.\|wl\.*\|ww\.* by default. Therefore, if you use network cards with other naming

conventions, please refer to the Collecting Network Data from Custom Named Network Cards

documentation to modify the corresponding resources after cluster connection, ensuring the

platform can properly monitor network card traffic.

1. In the left navigation bar, click Clusters > Clusters.

2. Click Managed Clusters > Register Cluster.

3. Configure the registry parameters for storing platform component images required by the

registered cluster according to the following instructions.

Parameter Description

Platform

Default
Image registry used when deploying global components.

Private

Registry

External image registry that you have set up in advance. You need to

enter the Private Image Registry Address, Port, Username, and

Password for accessing the image registry.

Public

Registry

Pull required images through the public image registry provided by

the platform. You need to ensure that your cluster can access the

public network. Before use, you need to first refer to Update Public

Important Notes

Register Cluster

Register Cluster - Alauda Container Platform

Parameter Description

Network Image Registry Cloud Credentials to obtain registry

authentication permissions.

4. Click Create, obtain the registration command on the Registration Command page and

run the command in the cluster to be registered.

Note: The registration command is valid for 24 hours. Please re-obtain it after expiration.

You can find the cluster waiting for registration in the cluster list and click View Registration
Command. Please perform the registration operation before the expiration time.

When the runtime component of the connected cluster is Containerd, distributed storage

deployment will fail. To resolve this issue, you need to manually modify the Containerd

configuration information on all nodes of the cluster and restart Containerd.

Note: If you modify the Containerd configuration by following the steps below before

deploying distributed storage, you do not need to execute step four.

1. Log in to the cluster node and edit the /etc/systemd/system/containerd.service file,

changing the LimitNOFILE parameter value to 1048576 .

2. Execute the command systemctl daemon-reload to reload the configuration.

3. Execute the command systemctl restart containerd to restart Containerd.

View Registration Command

FAQ

How to Resolve Distributed Storage Deployment Failure
When the Runtime Component of the Connected Cluster
is Containerd?

Register Cluster - Alauda Container Platform

4. Execute the command kubectl delete pod --all -n rook-ceph on the cluster control node to

restart all Pods in the rook-ceph namespace to make the configuration effective.

Register Cluster - Alauda Container Platform

Public Cloud Cluster Initialization

Menu

Public Cloud Cluster Initialization - Alauda Container Platform

Network Initialization

Menu

Network Initialization - Alauda Container Platform

Support Overview

Prerequisites

Configuration Steps

Deploy AWS Load Balancer Controller

Create Ingress and LoadBalancer Services

Related Operations

Test AWS CLI and eksctl Installation

Get ACCOUNT_ID

Kubeconfig Configuration File

Add Tags to Subnets

Create Certificate

Feature
Support

Status
Requirements

LoadBalancer

Service

Supported Optionally deploy AWS Load Balancer Controller.

Without this controller, LoadBalancer capabilities

AWS EKS Cluster Network Initialization
Configuration

TOC

Support Overview

Menu ON THIS PAGE

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

Feature
Support

Status
Requirements

are limited.

Ingress Supported

Optionally deploy AWS Load Balancer Controller.

Optionally enable Ingress Class functionality (once

enabled, you can manually select ingress classes

when creating ingress through the form interface).

Prepare two subnets with the kubernetes.io/role/elb tag. For shared subnets, add the

kubernetes.io/cluster/<cluster-name>: shared tag. See Adding Tags to Subnets.

If you have created an EKS cluster, import the Amazon EKS cluster.

Ensure kubectl, Helm, AWS CLI, and eksctl tools are available before deploying AWS Load

Balancer Controller.

Note: After installing the tools, configure login information using the user who created the

cluster via AWS CLI, and test if AWS CLI and eksctl tools are correctly installed.

Obtain ACCOUNT_ID, REGION, and CLUSTER_NAME in advance, and replace

<ACCOUNT_ID> , <REGION> , and <CLUSTER_NAME> in the documentation with the actual values.

Note: ACCOUNT_ID is the Account ID of the user who created the cluster, REGION is the

cluster region, and CLUSTER_NAME is the cluster name.

Update and verify the Kubeconfig configuration file.

Prerequisites

Configuration Steps

Deploy AWS Load Balancer Controller

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

Note: For detailed information on deploying AWS Load Balancer Controller, see official

documentation .

Configure OIDC Provider

Kubernetes clusters use OpenID Connect (OIDC) for identity management and are associated

with an OIDC issuer URL. To enable AWS Identity in the cluster and allow IAM roles for

Service Accounts, create an IAM OIDC Provider associated with the cluster's OIDC issuer

URL.

Execute the following command in eksctl to configure the OIDC Provider:

Configure Service Account

Execute the following commands to create an IAM policy and create a Service Account

named aws-load-balancer-controller , associating it with an IAM role:

Deploy AWS Load Balancer Controller to Cluster

Execute the following commands in eksctl to deploy AWS Load Balancer Controller:

↗

eksctl utils associate-iam-oidc-provider --region=<REGION> --cluster=<CLUSTER_NAME> --

approve

curl -o aws-load-balancer-controller-iam-policy.json

https://raw.githubusercontent.com/kubernetes-sigs/aws-load-balancer-

controller/v2.4.7/docs/install/iam_policy.json

aws iam create-policy \

 --policy-name <CLUSTER_NAME>-AWSLoadBalancerControllerIAMPolicy \

 --policy-document file://aws-load-balancer-controller-iam-policy.json

eksctl create iamserviceaccount \

 --cluster=<CLUSTER_NAME> \

 --namespace=kube-system \

 --name=aws-load-balancer-controller \

 --role-name AmazonEKSLoadBalancerControllerRole \

 --attach-policy-arn=arn:aws:iam::<ACCOUNT_ID>:policy/<CLUSTER_NAME>-

AWSLoadBalancerControllerIAMPolicy \

 --approve

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/aws-load-balancer-controller.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/aws-load-balancer-controller.html

1. Add the eks-charts repository:

2. Update the local repository:

3. Deploy the AWS Load Balancer Controller Helm Chart to the cluster:

Note: aws-load-balancer-controller is the Service Account created in Configure Service

Account.

You can create ingress and LoadBalancer services simultaneously or choose one based on

your needs.

Create Ingress

1. In Container Platform, click Network > Ingress in the left navigation.

2. Click Create Ingress and select EKS Ingress Class for Ingress Class.

3. Select Protocol. Default is HTTP. For HTTPS, first create a certificate and select it.

4. Switch to YAML and add the following annotations. For details, see annotation

documentation :

Create Ingress and LoadBalancer Services

↗

helm repo add eks https://aws.github.io/eks-charts

helm repo update eks

helm install aws-load-balancer-controller eks/aws-load-balancer-controller \

 -n kube-system \

 --version=v2.4.7 \

 --set ingressClassConfig.default=true \

 --set clusterName=<CLUSTER_NAME> \

 --set serviceAccount.create=false \

 --set serviceAccount.name=aws-load-balancer-controller

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/alb-ingress.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/alb-ingress.html

5. Click Create.

Create LoadBalancer Service

1. In Container Platform, click Network > Services in the left navigation.

2. Click Create Service and select LoadBalancer for External Access.

3. Expand annotations and fill in LoadBalancer service annotations as needed.

4. Click Create.

Execute the following command. If it returns a cluster list, AWS CLI is correctly installed:

Execute the following command. If it returns a cluster list, eksctl is correctly installed:

Execute aws sts get-caller-identity to get ACCOUNT_ID. The 651168850570 in the

response is the ACCOUNT_ID:

Related Operations

Test AWS CLI and eksctl Installation

Get ACCOUNT_ID

alb.ingress.kubernetes.io/scheme: internet-facing ## Specify public access

alb.ingress.kubernetes.io/target-type: ip ## Route traffic directly to pods

aws eks list-clusters

eksctl get clusters

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/alb/deploy_alb.html#14

1. Execute the following command to update the Kubeconfig file for the specified region:

2. Execute the following command to verify the Kubeconfig file. If it returns information

normally, the configuration is correct:

1. Execute the following command to get cluster subnets:

2. Execute the following command to get subnet details:

3. Execute the following commands to add tags to subnets. Replace <subnet-id> with actual

values. See Subnet auto-discovery :

Add the kubernetes.io/role/elb tag to subnets:

Kubeconfig Configuration File

Add Tags to Subnets

↗

{

"ARN": "arn:aws:iam::651168850570:user/jwshi"

}

aws eks --region <REGION> update-kubeconfig --name <CLUSTER_NAME>

kubectl get svc -n cpaas-system

eksctl get cluster --name <CLUSTER_NAME>

aws ec2 describe-subnets

aws ec2 create-tags --resources <subnet-id> --tags

Key=kubernetes.io/role/elb,Value="1"

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/deploy/subnet_discovery/#common-tag
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/deploy/subnet_discovery/#common-tag
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/deploy/subnet_discovery/#common-tag

Add the kubernetes.io/cluster/<CLUSTER_NAME>: shared tag to shared subnets:

When using HTTPS protocol, save HTTPS certificate credentials as a Secret (TLS type) in

advance.

1. In Container Platform, click Configuration > Secrets in the left navigation.

2. Click Create Secret.

3. Select TLS type and import or fill in Certificate and Private Key as needed.

4. Click Create.

Create Certificate

aws ec2 create-tags --resources <subnet-id> --tags

Key=kubernetes.io/cluster/<CLUSTER_NAME>,Value="shared"

AWS EKS Cluster Network Initialization Configuration - Alauda Container Platform

Terminology

Important Notes

EKS Using aws-lb to Provide External Access for Container Network Load Balancers

Service Annotation Configuration Instructions

Access Address Acquisition Method

Abbreviation Full Name Description

eks-clb

Classic

Load

Balancer

AWS default load balancer. Has issues in certain

situations and is not recommended.

eks-nlb

Network

Load

Balancer

AWS Layer 4 load balancer that performs load

balancing at TCP/UDP level, suitable for scenarios

requiring higher-level network control.

eks-alb

Application

Load

Balancer

AWS Layer 7 load balancer. Compared to eks-nlb,

eks-alb can parse HTTP/HTTPS protocols and

distribute requests more intelligently, suitable for

web applications.

AWS EKS Supplementary Information

TOC

Terminology

Menu ON THIS PAGE

AWS EKS Supplementary Information - Alauda Container Platform

Abbreviation Full Name Description

aws-lb
AWS Load

Balancer

Load balancer installed on Kubernetes that can

automatically create eks-nlb and eks-alb based on

LoadBalancer Services and Ingress in Kubernetes

to meet application load balancing needs.

Platform

Load

Balancer

- Platform's proprietary Layer 7 load balancer.

Service

Annotations
-

Metadata attached to objects in key-value pairs.

This additional information can be recognized and

utilized to enhance and simplify management of

various aspects of Kubernetes resources.

Annotations can be explanatory text without specific

functionality, specify cloud provider configurations or

behaviors, or specify configuration parameters and

tools. Very powerful functionality.

When creating load balancers, it's recommended to manually configure service annotations to

ensure the platform load balancer correctly uses aws-lb. If the appropriate service annotations

are not configured correctly, the platform will default to using eks-clb, which has UDP-related

issues that may cause unexpected situations.

Important Notes

EKS Using aws-lb to Provide External Access for
Container Network Load Balancers

Service Annotation Configuration Instructions

AWS EKS Supplementary Information - Alauda Container Platform

1. In the corresponding cluster, execute the following command using kubectl to find all Pods

in the kube-system namespace with names containing "aws-load":

2. Create a load balancer; for detailed creation steps and parameters, see the Load Balancer

creation section in AWS EKS Service Annotation Instructions.

If the above command returns no related Pods, it means the cluster does not have AWS

Load Balancer Controller installed. No service annotations are needed; create the load

balancer directly.

If the above command returns related Pods, it means the cluster has AWS Load

Balancer Controller installed. When creating a load balancer in the corresponding

cluster, add the following service annotations. For annotation details, see AWS EKS

Service Annotation Instructions:

service.beta.kubernetes.io/aws-load-balancer-type: external //Required

service.beta.kubernetes.io/aws-load-balancer-nlb-target-type: ip //Required

service.beta.kubernetes.io/aws-load-balancer-scheme: internet-facing // Optional. Add

this annotation if public network support is needed.

When creating container network type load balancers, the filled service annotations will be

set on the LoadBalancer Service corresponding to the platform load balancer.

In public clouds, LoadBalancer Services with appropriate service annotations will be

recognized by the public cloud and assigned addresses. The platform load balancer will

read this address and set it as its own access address.

Access Address Acquisition Method

kubectl get pod -n kube-system |grep aws-load

AWS EKS Supplementary Information - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/alb/deploy_alb.html#14
http://localhost:4173/container_platform/configure/networking/how_to/alb/deploy_alb.html#14

Support Overview

Prerequisites

Configuration Steps

Create Ingress

Create LoadBalancer Service

Related Operations

Create Certificate

Feature
Support

Status
Requirements

LoadBalancer

Service

Default

Support
No additional deployment required.

Ingress
Default

Support

Optionally enable Ingress Class functionality (once

enabled, you can manually select ingress classes

when creating ingress through the form interface).

No additional deployment required.

Huawei Cloud CCE Cluster Network
Initialization Configuration

TOC

Support Overview

Menu ON THIS PAGE

Huawei Cloud CCE Cluster Network Initialization Configuration - Alauda Container Platform

If you have created a CCE cluster, import the CCE cluster (Public Cloud).

You can create ingress and LoadBalancer services simultaneously or choose one based on

your needs.

There are two methods to create ingress. Method 1: Manual Ingress Class Selection is

recommended.

Note: Avoid creating two ingress resources with the same path.

(Recommended) Method 1: Manual Ingress Class Selection

1. In Container Platform, click Network > Ingress in the left navigation.

2. Click Create Ingress and select CCE Ingress Class for Ingress Class.

3. Select Protocol. Default is HTTP. For HTTPS, first create a certificate and select it.

4. Switch to YAML and add the following annotations based on your default Ingress Controller

type. For annotation details, see Using Annotations to Configure Load Balancers :

Note: Replace the values in the annotations below with actual environment values.

Prerequisites

Configuration Steps

Create Ingress

↗

Huawei Cloud CCE Cluster Network Initialization Configuration - Alauda Container Platform

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html

Default

Ingress

Controller

Type

Annotations

Shared

(Auto-

create)

kubernetes.io/elb.autocreate: '{"type":"public","bandwidth_name":"

{random}","bandwidth_chargemode":"traffic","bandwidth_size":5,"bandwidth_sh

kubernetes.io/elb.class: union

Shared

(Reuse)

kubernetes.io/elb.class: union

kubernetes.io/elb.id: <Load Balancer Instance ID>

kubernetes.io/elb.port: '80'

Dedicated

(Auto-

create)

kubernetes.io/elb.autocreate: '{"type":"public","bandwidth_name":"<Bandwid

Name>","bandwidth_chargemode":"traffic","bandwidth_size":5,"bandwidth_share

["<AZ A>","<AZ B>","<AZ C>"],"elb_virsubnet_ids":["<ELB Virtual Subnet

ID>"],"l7_flavor_name":"L7_flavor.elb.s1.small","l4_flavor_name":"L4_flavor

kubernetes.io/elb.class: performance

kubernetes.io/elb.port: "80"

Dedicated

(Reuse)

kubernetes.io/elb.class: performance

kubernetes.io/elb.id: <Load Balancer Instance ID>

kubernetes.io/elb.port: "80"

5. Click Create. Once created, you can access cluster services through ELB.

Method 2: Use Default Ingress Class

1. Create an IngressClass YAML file with the following content. For details, see Default

Ingress Class :↗

Huawei Cloud CCE Cluster Network Initialization Configuration - Alauda Container Platform

https://kubernetes.io/zh-cn/docs/concepts/services-networking/ingress/#default-ingress-class
https://kubernetes.io/zh-cn/docs/concepts/services-networking/ingress/#default-ingress-class
https://kubernetes.io/zh-cn/docs/concepts/services-networking/ingress/#default-ingress-class
https://kubernetes.io/zh-cn/docs/concepts/services-networking/ingress/#default-ingress-class

2. Save the file and apply it to the imported cluster. Replace <filename.yaml> with your actual

YAML filename:

3. In Container Platform, click Network > Ingress in the left navigation.

4. Select Protocol. Default is HTTP. For HTTPS, first create a certificate and select it.

5. Click Create. Once created, you can access cluster services through ELB.

1. In Container Platform, click Network > Services in the left navigation.

2. Click Create Service and select LoadBalancer for External Access.

3. Expand annotations and fill in LoadBalancer service annotations as needed.

4. Click Create.

When using HTTPS protocol, save HTTPS certificate credentials as a Secret (TLS type) in

advance.

Create LoadBalancer Service

Related Operations

Create Certificate

apiVersion: networking.k8s.io/v1

kind: IngressClass

metadata:

 annotations:

 ingressclass.kubernetes.io/is-default-class: "true"

 name: cce

spec:

 controller: alauda/cce

kubectl apply -f <filename.yaml>

Huawei Cloud CCE Cluster Network Initialization Configuration - Alauda Container Platform

1. In Container Platform, click Configuration > Secrets in the left navigation.

2. Click Create Secret.

3. Select TLS type and import or fill in Certificate and Private Key as needed.

4. Click Create.

Huawei Cloud CCE Cluster Network Initialization Configuration - Alauda Container Platform

Support Overview

Prerequisites

Configuration Steps

Deploy Ingress Controller

Create Ingress and LoadBalancer Services

Related Operations

Create Certificate

Feature
Support

Status
Requirements

LoadBalancer

Service

Default

Support
No additional deployment required.

Ingress Supported

Optionally deploy Ingress Controller. Optionally

enable Ingress Class functionality (once enabled,

you can manually select ingress classes when

creating ingress through the form interface).

Azure AKS Cluster Network Initialization
Configuration

TOC

Support Overview

Menu ON THIS PAGE

Azure AKS Cluster Network Initialization Configuration - Alauda Container Platform

If you have created an AKS cluster, import the Azure AKS cluster.

AKS uses container network mode and leverages Nginx Ingress Controller to manage

load balancers, while providing external access addresses for virtual IP addresses (VIPs) in

the container internal network through LoadBalancer type Services.

1. Log in to Microsoft Azure and access your created AKS cluster.

2. In the left navigation, click Kubernetes Resources > Services and Ingresses.

3. Click Create, select Ingress (Preview) from the dropdown, and it will prompt and

automatically create an Ingress Controller.

4. Click Enable and wait for completion.

You can create ingress and LoadBalancer services simultaneously or choose one based on

your needs.

Create Ingress

1. In Container Platform, click Network > Ingress in the left navigation.

2. Click Create Ingress and select webapprouting.kubernetes.azure.com for Ingress

Class.

3. Select Protocol. Default is HTTP. For HTTPS, first create a certificate and select it.

4. Click Create.

Prerequisites

Configuration Steps

Deploy Ingress Controller

Create Ingress and LoadBalancer Services

Azure AKS Cluster Network Initialization Configuration - Alauda Container Platform

Create LoadBalancer Service

1. In Container Platform, click Network > Services in the left navigation.

2. Click Create Service and select LoadBalancer for External Access.

3. Expand annotations and fill in LoadBalancer service annotations as needed.

4. Click Create.

When using HTTPS protocol, save HTTPS certificate credentials as a Secret (TLS type) in

advance.

1. In Container Platform, click Configuration > Secrets in the left navigation.

2. Click Create Secret.

3. Select TLS type and import or fill in Certificate and Private Key as needed.

4. Click Create.

Related Operations

Create Certificate

Azure AKS Cluster Network Initialization Configuration - Alauda Container Platform

Support Overview

Prerequisites

Configuration Steps

Deploy Ingress Controller

Create Ingress and LoadBalancer Services

Related Operations

View Ingress Resources in Google Cloud

Create Certificate

Feature
Support

Status
Requirements

LoadBalancer

Service

Default

Support
No additional deployment required.

Ingress Default

Support

Optionally enable Ingress Class functionality (once

enabled, you can manually select ingress classes

Google GKE Cluster Network Initialization
Configuration

TOC

Support Overview

Menu ON THIS PAGE

Google GKE Cluster Network Initialization Configuration - Alauda Container Platform

Feature
Support

Status
Requirements

when creating ingress through the form interface).

No additional deployment required.

If you have created a GKE cluster, import the GKE cluster.

No manual deployment is required. GKE provides a managed built-in Ingress controller called

GKE Ingress. This controller maps Ingress resources to Google Cloud Load Balancers to

handle HTTP(S) workloads in GKE, making configuration simpler and more automated.

You can create ingress and LoadBalancer services simultaneously or choose one based on

your needs.

Create Ingress

1. In Container Platform, click Network > Ingress in the left navigation.

2. Click Create Ingress and select GKE Ingress Class for Ingress Class.

3. Select Protocol. Default is HTTP. For HTTPS, first create a certificate and select it.

4. Click Create. Wait approximately 5 minutes for GKE platform to automatically assign a

public IP address to the ingress.

Note: Different ingress resources will be assigned different public IP addresses.

Prerequisites

Configuration Steps

Deploy Ingress Controller

Create Ingress and LoadBalancer Services

Google GKE Cluster Network Initialization Configuration - Alauda Container Platform

Create LoadBalancer Service

1. In Container Platform, click Network > Services in the left navigation.

2. Click Create Service and select LoadBalancer for External Access.

3. Expand annotations and fill in LoadBalancer service annotations as needed.

4. Click Create.

1. Go to Google Cloud > Kubernetes Engine and click Services and Ingress in the left

navigation.

2. Click INGRESS.

3. View information about corresponding Ingress resources in the list.

When using HTTPS protocol, save HTTPS certificate credentials as a Secret (TLS type) in

advance.

1. In Container Platform, click Configuration > Secrets in the left navigation.

2. Click Create Secret.

3. Select TLS type and import or fill in Certificate and Private Key as needed.

4. Click Create.

Related Operations

View Ingress Resources in Google Cloud

Create Certificate

Google GKE Cluster Network Initialization Configuration - Alauda Container Platform

Storage Initialization

Menu

Storage Initialization - Alauda Container Platform

Amazon Elastic Kubernetes Service (Amazon EKS) is Amazon's managed Kubernetes

service for running Kubernetes on AWS Cloud and on-premises data centers. In the cloud,

Amazon EKS automatically manages the availability and scalability of Kubernetes control

plane nodes responsible for scheduling containers, managing application availability,

storing cluster data, and other critical tasks, providing a consistent and fully supported

Kubernetes solution.

Huawei Cloud Container Engine (CCE) provides highly reliable, high-performance

enterprise-level container application management services, supporting Kubernetes

community native applications and tools, simplifying the construction of automated

container runtime environments on the cloud.

Azure Kubernetes Service (AKS) provides the fastest way to start developing and

deploying cloud-native applications on Azure, data centers, or edge using built-in code-to-

cloud pipelines and guardrails, with unified management and governance for on-premises,

edge, and multi-cloud Kubernetes clusters.

Google Kubernetes Engine (GKE) provides an extremely scalable, fully automated

Kubernetes service that can be used with almost no Kubernetes expertise required. Its

advantages include increased speed, reduced risk, and lower total cost of ownership, with

built-in security posture and observability tools, and industry-leading autoscaling solutions

that can scale up to 15,000 nodes.

Storage Class Support

AWS EKS Clusters

Huawei Cloud CCE Clusters

Overview

TOC

Menu ON THIS PAGE

Overview - Alauda Container Platform

Azure AKS Clusters

Google GKE Clusters

Storage

Type

Default

Storage

Class

Create

PVC with

RWO

Access

Mode

Create

PVC with

RWX

Access

Mode

PVC

Expansion

PVC

Snapshots

File

Storage
efs-sc Supported Supported

Not

Supported

Not

Supported

Block

Storage
ebs-sc Supported

Not

Supported
Supported

Not

Supported

Storage

Type

Default

Storage

Class

Create

PVC with

RWO

Access

Mode

Create

PVC with

RWX

Access

Mode

PVC

Expansion

PVC

Snapshots

File

Storage
csi-nas

Not

Supported
Supported Supported

Not

Supported

Block

Storage
csi-disk Supported

Not

Supported
Supported

Not

Supported

Storage Class Support

AWS EKS Clusters

Huawei Cloud CCE Clusters

Overview - Alauda Container Platform

Storage

Type

Default

Storage

Class

Create

PVC with

RWO

Access

Mode

Create

PVC with

RWX

Access

Mode

PVC

Expansion

PVC

Snapshots

File

Storage
azurefile Supported Supported Supported

Not

Supported

Block

Storage
default Supported

Not

Supported
Supported

Not

Supported

Storage

Type

Default

Storage

Class

Create

PVC with

RWO

Access

Mode

Create

PVC with

RWX

Access

Mode

PVC

Expansion

PVC

Snapshots

File

Storage

standard-

rwx
Supported Supported Supported

Not

Supported

Block

Storage

standard-

rwo
Supported

Not

Supported
Supported

Not

Supported

Azure AKS Clusters

Google GKE Clusters

Overview - Alauda Container Platform

Platform integration with AWS EKS and storage initialization configuration.

Constraints and Limitations

Prerequisites

Configuration Steps

Create Storage Classes

Modify Storage Class Project Assignment

Related Operations

Configure Available Storage Class Parameters

The default efs-sc file storage class may not support permission modifications after

mounting, which may cause some applications like PostgreSQL and Jenkins to fail to run

properly.

A1 series instances are not supported by AL2023 AMIs, which prevents the EBS block

storage plugin (Amazon EBS CSI Driver) from deploying properly. The EBS CSI driver has

GA multi-architecture/ARM support, so the limitation is with AMI/instance support rather

AWS EKS Cluster Storage Initialization
Configuration

TOC

Constraints and Limitations

Menu ON THIS PAGE

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

than the driver itself. If you need to use EBS block storage classes, avoid using the

following instance types and consider Graviton2/3 alternatives instead:

a1.medium

a1.large

a1.xlarge

a1.2xlarge

a1.4xlarge

Recommended alternatives: Use Graviton2/3 instance families such as m6g, c6g, r6g,

t4g, etc., which provide better performance and full EBS CSI driver support.

Ensure kubectl and AWS CLI tools are available.

If you have created an EKS cluster, import the Amazon EKS cluster; if not, create an AWS

EKS cluster.

Deploy the EFS file storage plugin Amazon EFS CSI Driver and EBS block storage plugin

Amazon EBS CSI Driver in the EKS cluster.

Note: If using EFS file storage, create file storage in the EKS region and record the File

System ID from the File System.

1. Go to Platform Management and click Storage Management > Storage Classes in the

left navigation.

2. Click the dropdown next to Create Storage Class > Create from YAML.

Prerequisites

↗

Configuration Steps

Create Storage Classes

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/install-kubectl.html
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/install-kubectl.html

3. Add the following content to the YAML file to create default storage classes as needed. The

default storage class name for file storage is efs-sc, and for block storage is ebs-sc.

EFS File Storage

Note: Replace <File System ID> with the actual File System ID, e.g., fileSystemId: fs-

05aef9e1edd309f2b .

EBS Block Storage

4. Click Create.

Note: If the default storage classes don't meet requirements, create new storage classes

following the above steps and modify parameters as needed. See Available Storage Class

Parameters.

1. In the left navigation, click Storage Management > Storage Classes.

↗ ↗

Modify Storage Class Project Assignment

kind: StorageClass

apiVersion: storage.k8s.io/v1

metadata:

 name: efs-sc

provisioner: efs.csi.aws.com

parameters:

 provisioningMode: efs-ap

 fileSystemId: <File System ID>

 directoryPerms: "755"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ebs-sc

provisioner: ebs.csi.aws.com

reclaimPolicy: Delete

volumeBindingMode: WaitForFirstConsumer

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

https://aws.amazon.com/cn/efs/
https://aws.amazon.com/cn/efs/
https://aws.amazon.com/cn/efs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/

2. Click the three dots next to the storage class named efs-sc or ebs-sc > Update Project.

3. Select the Project Assignment method as needed and click Update to assign the storage

class to projects.

EFS File Storage Available Parameters

Parameter
Optional

Values

Default

Value
Optional Description

az "" true

Used for cross-

account

mounting. If

specified, uses

the mount target

associated with

az for cross-

account

mounting; if not

specified,

randomly selects

a mount target for

cross-account

mounting.

basePath true Path for creating

dynamically

provisioned

access points. If

not specified,

access points are

created under the

Related Operations

Configure Available Storage Class Parameters

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

Parameter
Optional

Values

Default

Value
Optional Description

file system root

directory.

directoryPerms false

Directory

permissions for

creating Access

Point root

directory .

uid true

POSIX user ID for

creating Access

Point root

directory .

gid true

POSIX group ID

for creating

Access Point root

directory .

gidRangeStart 50000 true

Starting range of

POSIX group IDs

to apply when

creating access

point root

directory . Not

needed if uid/gid

are set.

gidRangeEnd 7000000 true

Ending range of

POSIX group IDs.

Not needed if

uid/gid are set.

subPathPattern true Template for

constructing

subpaths where

↗

↗

↗

↗

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point
https://docs.aws.amazon.com/zh_cn/efs/latest/ug/efs-access-points.html#enforce-root-directory-access-point

Parameter
Optional

Values

Default

Value
Optional Description

each access point

created under

dynamic

provisioning is

located. Can

consist of fixed

strings and limited

variables, similar

to the

"subPathPattern"

variable in nfs-

subdir-external-

provisioner chart.

Optional

parameters are

.PVC.name,

.PVC.namespace,

and .PV.name.

ensureUniqueDirectory true true Used when

dynamic

provisioning is

enabled. When

set to true,

appends UID to

the pattern

specified in

subPathPattern to

ensure access

points don't

accidentally point

to the same

directory.Note:

Only set to false if

you're certain this

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

Parameter
Optional

Values

Default

Value
Optional Description

is the desired

behavior.

provisioningMode efs-ap false

EFS volume type,

currently supports

access points.

fileSystemId false

File system ID of

the created

access point.

EBS Block Storage Available Parameters

Note: For performance parameters of different volume types, see Amazon EBS Volume

Types .

Parameter
Optional

Values

Default

Value
Description

"allowAutoIOPSPerGBIncrease" true, false false When set to "true",

the CSI driver

increases volume

IOPS when

iopsPerGB * <volume

size> is too low to

meet AWS supported

IOPS range. This

ensures dynamic

provisioning always

succeeds even when

user-specified PVC

capacity or

iopsPerGB values are

too small, but may

incur additional costs

as such volumes

↗

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html

Parameter
Optional

Values

Default

Value
Description

have higher IOPS

than required by

iopsPerGB.

"blockExpress" true, false false

Creates io2 Block

Express volumes by

raising IOPS limits for

io2 volumes to

256000, but volumes

created with IOPS

exceeding 64000

cannot be mounted

on instances that

don't support io2

Block Express.

"blockSize"

Block size used when

formatting the

underlying filesystem.

Only applies to Linux

nodes with ext2, ext3,

ext4, or xfs filesystem

types.

"bytesPerINode"

Bytes per inode used

when formatting the

underlying filesystem.

Only applies to Linux

nodes with ext2, ext3,

or ext4 filesystem

types.

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

Parameter
Optional

Values

Default

Value
Description

"csi.storage.k8s.io/fstype"
xfs, ext2,

ext3, ext4
ext4

Filesystem type to

format when creating

volumes. Case-

sensitive.

"encrypted" true, false false
Whether the volume

needs encryption.

"inodeSize"

Inode size used when

formatting the

underlying filesystem.

Only applies to Linux

nodes with ext2, ext3,

ext4, or xfs filesystem

types. Inodes are

data structures in

filesystems that store

file and directory

metadata.

"iops"

I/O operations per

second, applicable to

IO1, IO2, and GP3

volumes.

"iopsPerGB"

I/O operations per

GiB per second,

applicable to IO1,

IO2, and GP3

volumes.

"kmsKeyId" Full ARN of the key to

use for encrypting

volumes. If not

specified, AWS uses

the default KMS key

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

Parameter
Optional

Values

Default

Value
Description

for the volume's

region and

automatically

generates a key

named /aws/ebs.

"numberOfINodes"

Number of inodes

specified when

formatting the

underlying filesystem.

Only applies to Linux

nodes with ext2, ext3,

or ext4 filesystem

types.

"throughput" 125

Throughput in MiB/s.

Only valid when

specifying gp3

volume type. If empty,

defaults to 125 MiB/s.

See Amazon EBS

Volume Types .

"type"

io1, io2,

gp2, gp3,

sc1, st1,

standard,

sbp1,

sbg1

gp3 EBS volume type.

↗

AWS EKS Cluster Storage Initialization Configuration - Alauda Container Platform

https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/zh_cn/AWSEC2/latest/UserGuide/ebs-volume-types.html

Platform integration with Huawei Cloud CCE and storage initialization configuration.

Constraints and Limitations

Prerequisites

Configuration Steps

Default Storage Class Description

Common Issues

PVC Creation Failure

Account Overdue

Cluster PVC quantity has limits, and account storage capacity has quotas. You can request

increases through support tickets.

If you have created a CCE cluster, import the CCE cluster (Public Cloud).

Huawei Cloud CCE Cluster Storage
Initialization Configuration

TOC

Constraints and Limitations

Prerequisites

Menu ON THIS PAGE

Huawei Cloud CCE Cluster Storage Initialization Configuration - Alauda Container Platform

1. Go to Platform Management and click Storage Management > Storage Classes in the

left navigation.

2. Click the three dots next to the storage class named csi-nas or csi-disk > Update Project.

Note: After importing a CCE cluster, default storage classes are generated. csi-disk is

recommended for block storage, and csi-nas for file storage. See Default Storage Class

Description.

3. Select the Project Assignment method as needed and click Update to assign csi-nas or

csi-disk storage classes to projects.

Storage Class

Name

Storage

Class Type
Description

(Recommended)

csi-disk
Block Storage Recommended for use.

(Recommended)

csi-nas
File Storage

Recommended for use. Only available in

regions that support csi-nas service.

csi-disk-topology Block Storage
Automatic cloud disk topology when nodes

span AZs.

csi-local Local Storage

csi-local-topology Local Storage

csi-obs
Object

Storage

csi-sfsturbo
Ultra-fast File

Storage

Ultra-fast file storage cannot dynamically

create persistent volumes.

Configuration Steps

Default Storage Class Description

Huawei Cloud CCE Cluster Storage Initialization Configuration - Alauda Container Platform

The following error occurs because the PVC quantity limit has been reached. You can request

an increase through support tickets:

PVC creation fails with the following error due to overdue payments. Please pay promptly:

Common Issues

PVC Creation Failure

Account Overdue

message: "ShareLimitExceeded: Maximum number of shares allowed (10) exceeded."

message: "Your account is suspended and resources cannot be used"

Huawei Cloud CCE Cluster Storage Initialization Configuration - Alauda Container Platform

Platform integration with Azure AKS and storage initialization configuration.

Constraints and Limitations

Prerequisites

Configuration Steps

Related Information

Default Storage Class Description

Available Storage Class Parameters

The default azurefile file storage class may not support permission modifications after

mounting, which may cause some applications like PostgreSQL and Jenkins to fail to run

properly.

If you have created an AKS cluster, import the Azure AKS cluster.

Azure AKS Cluster Storage Initialization
Configuration

TOC

Constraints and Limitations

Prerequisites

Menu ON THIS PAGE

Azure AKS Cluster Storage Initialization Configuration - Alauda Container Platform

1. Go to Platform Management and click Storage Management > Storage Classes in the

left navigation.

2. Click the three dots next to the storage class named default or azurefile > Update

Project.

Note: After importing an AKS cluster, the following default storage classes are generated.

default is recommended for block storage, and azurefile for file storage. See Default

Storage Class Description.

3. Select the Project Assignment method as needed and click Update to assign default or

azurefile storage classes to projects.

Note: If the default storage classes don't meet requirements, create new storage classes

following the above steps and modify parameters as needed. See Available Storage Class

Parameters.

Storage Class Name
Storage

Class Type
Description

(Recommended)

azurefile
File Storage

Creates Azure file shares using Azure

standard storage.

(Recommended)

default

Block

Storage

Creates managed disks using Azure

StandardSSD storage.

azurefile-csi File Storage
Creates Azure file shares using Azure

standard storage.

Configuration Steps

Related Information

Default Storage Class Description

Azure AKS Cluster Storage Initialization Configuration - Alauda Container Platform

Storage Class Name
Storage

Class Type
Description

azurefile-csi-nfs File Storage
Creates Azure file shares using Azure

standard storage, NFS protocol.

azurefile-csi-premium File Storage
Creates Azure file shares using Azure

premium storage.

azurefile-premium File Storage
Creates Azure file shares using Azure

premium storage.

managed
Block

Storage

Creates managed disks using Azure

StandardSSD storage.

managed-csi
Block

Storage

Creates managed disks using Azure

StandardSSD locally redundant storage

(LRS).

managed-csi-

premium

Block

Storage

Creates managed disks using Azure

premium locally redundant storage (LRS).

managed-premium
Block

Storage

Creates managed disks using Azure

premium storage.

For block storage optional parameters and meanings, see Create and use volumes with

Azure disks in Azure Kubernetes Service (AKS) .

For file storage optional parameters and meanings, see Create and use volumes with

Azure Files in Azure Kubernetes Service (AKS) .

Available Storage Class Parameters

↗

↗

Azure AKS Cluster Storage Initialization Configuration - Alauda Container Platform

https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-disk-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-disk-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-disk-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-disk-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-files-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-files-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-files-storage-provision
https://learn.microsoft.com/zh-cn/azure/aks/azure-csi-files-storage-provision

Platform integration with Google GKE and storage initialization configuration.

Constraints and Limitations

Prerequisites

Configuration Steps

Related Information

Default Storage Class Description

Available Storage Class Parameters

Common Issues

File Storage Type Storage Class PVC Creation Failure

Block Storage Type Storage Class PVC Cannot Bind Properly

The default file storage type PVC has a minimum capacity of 1T. If the capacity is set to

less than 1T during creation, it will automatically expand to 1T.

Default file storage has capacity limits. You can request expansion through support tickets.

Google GKE Cluster Storage Initialization
Configuration

TOC

Constraints and Limitations

Menu ON THIS PAGE

Google GKE Cluster Storage Initialization Configuration - Alauda Container Platform

Default file storage creation and deletion operations take considerable time. If it remains in

creating status for a long time, please be patient.

When creating clusters, on the Google Cloud Platform Cluster > Features page under the

Other section, check Enable Compute Engine Persistent Disk CSI Driver and Enable

Filestore CSI Driver options.

Enable Cloud Filestore API and Google Kubernetes Engine API on Google Cloud

Platform. See Access Filestore instances using the Filestore CSI driver .

Adjust regional file storage quotas on Google Cloud Platform. See Resource quotas and

limits .

If you have created a GKE cluster, import the GKE cluster.

1. Go to Platform Management and click Storage Management > Storage Classes in the

left navigation.

2. Click the three dots next to the storage class named standard-rwx or standard-rwo >

Update Project.

Note: After importing a GKE cluster, default storage classes are generated. standard-rwx

is recommended for file storage, and standard-rwo for block storage. See Default Storage

Class Description.

3. Select the Project Assignment method as needed and click Update to assign standard-

rwx or standard-rwo storage classes to projects.

Note: If the default storage classes don't meet requirements, create new storage classes

following the above steps and modify parameters as needed. See Available Storage Class

Parameters.

Prerequisites

↗

↗

Configuration Steps

Google GKE Cluster Storage Initialization Configuration - Alauda Container Platform

https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/filestore-csi-driver?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/filestore-csi-driver?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/filestore-csi-driver?hl=zh-cn
https://cloud.google.com/compute/resource-usage?hl=zh-cn
https://cloud.google.com/compute/resource-usage?hl=zh-cn
https://cloud.google.com/compute/resource-usage?hl=zh-cn
https://cloud.google.com/compute/resource-usage?hl=zh-cn

Storage Class Name
Storage

Class Type
Description

(Recommended)

standard-rwx
File Storage Uses Basic HDD Filestore service tier .

(Recommended)

standard-rwo

Block

Storage
Uses balanced persistent disks.

premium-rwx File Storage Uses Basic SSD Filestore service tier .

premium-rwo
Block

Storage
SSD persistent disks.

enterprise-rwx File Storage Uses Enterprise Filestore tier .

enterprise-multishare-

rwx
File Storage

Uses Enterprise Filestore tier . See

Filestore multishares for Google

Kubernetes Engine .

For block storage optional parameters and meanings, see Storage options .

For file storage optional parameters and meanings, see Service tiers .

The following error occurs because Cloud Filestore API is not enabled in the project or

lacks appropriate permissions. See Prerequisites to resolve:

Related Information

Default Storage Class Description

↗

↗

↗

↗

↗

Available Storage Class Parameters

↗

↗

Common Issues

File Storage Type Storage Class PVC Creation Failure

Google GKE Cluster Storage Initialization Configuration - Alauda Container Platform

https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#basic_hdd_and_basic_ssd_tiers
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#basic_hdd_and_basic_ssd_tiers
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#basic_hdd_and_basic_ssd_tiers
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#basic_hdd_and_basic_ssd_tiers
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#basic_hdd_and_basic_ssd_tiers
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#basic_hdd_and_basic_ssd_tiers
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#enterprise_tier
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#enterprise_tier
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#enterprise_tier
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#enterprise_tier
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#enterprise_tier
https://cloud.google.com/filestore/docs/service-tiers?hl=zh-cn#enterprise_tier
https://cloud.google.com/filestore/docs/multishares?hl=zh-cn
https://cloud.google.com/filestore/docs/multishares?hl=zh-cn
https://cloud.google.com/filestore/docs/multishares?hl=zh-cn
https://cloud.google.com/filestore/docs/multishares?hl=zh-cn
https://cloud.google.com/compute/docs/disks?hl=zh-cn#disk-types
https://cloud.google.com/compute/docs/disks?hl=zh-cn#disk-types
https://cloud.google.com/compute/docs/disks?hl=zh-cn#disk-types
https://cloud.google.com/filestore/docs/service-tiers
https://cloud.google.com/filestore/docs/service-tiers
https://cloud.google.com/filestore/docs/service-tiers

The following error occurs due to exceeding storage quotas. See Prerequisites to resolve:

The following error occurs because the node's CSINode lacks configuration for the

pd.csi.storage.gke.io driver. You can resolve this by restarting the Compute Engine
Persistent Disk CSI Driver.

Note: Updating this plugin will make the cluster unavailable. The update process takes

approximately 5-10 minutes.

Block Storage Type Storage Class PVC Cannot Bind
Properly

failed to provision volume with StorageClass "standard-rwx": rpc error: code =

PermissionDenied desc = googlespi: Error 403: Cloud Filestore API has not been used in

project alauda-proj-1234 before or it is disabled.

...

resion: SERVICE_DISABLED

failed to provision volume with StorageClass "standard-rwx": rpc error: code =

ResourceExhausted desc = googlespi: Error 429: Quora limit

'StandardStorageGbPerRegion' has been exceeded. Limit 2048 in region asia-east1.

 rateLimitExceeded

Warning ProvisioningFailed 18m (x14 over 39m) pd.csi.storage.gke.io_gke-

5cb9bddae4d1430eb8ad-01f4-2084-vm_4b4e70bd-e2db-4779-9102-fee83a657ced failed to

provision volume with StorageClass "standard": error generating accessibility

requirements: no available topology found

Normal ExternalProvisioning 4m35s (x143 over 39m) persistentvolume-controller waiting for

a volume to be created, either by external provisioner "pd.csi.storage.gke.io" or

manually created by system administrator

Normal Provisioning 3m19s (x18 over 39m) pd.csi.storage.gke.io_gke-5cb9bddae4d1430eb8ad-

01f4-2084-vm_4b4e70bd-e2db-4779-9102-fee83a657ced External provisioner is provisioning

volume for claim "acp-gke-test/standard"

Google GKE Cluster Storage Initialization Configuration - Alauda Container Platform

Collect network data from custom named network cards

How to

Network Configuration for Import Clusters

Fetch import cluster information

Trust an insecure image registry

Collect Network Data from Custom Named Network Cards

Menu

How to - Alauda Container Platform

Scenario Description

Prerequisites

Adding Annotation Information for Imported Clusters

Before cluster import, only unidirectional connectivity is ensured, allowing the global cluster to

access the imported cluster. After cluster import, to ensure the imported cluster can properly

access the global cluster and achieve bidirectional connectivity, additional network

configuration is required to ensure normal operation of platform functional components.

Please prepare in advance the domain name, IP address that the domain name points to,

and the corresponding valid certificate that the imported cluster can access.

Note:

This domain name must not be the same as the platform access address.

Network Configuration for Import Clusters

TOC

Scenario Description

Prerequisites

Menu ON THIS PAGE

Network Configuration for Import Clusters - Alauda Container Platform

Ensure that the domain's port (HTTPS port, which is the same port as the platform access

address) can forward traffic to all control nodes of the global cluster.

Specifically, to ensure that alerting and log collection components can properly access the

platform, you must add annotation information to the imported cluster.

1. In the left navigation bar, click Cluster Management > Clusters.

2. Click global.

3. Click Operations > CLI Tools, and replace the relevant parameters using the following

command:

Code example:

Adding Annotation Information for Imported
Clusters

kubectl annotate --overwrite -n cpaas-system clusters.cluster.x-k8s.io <imported

cluster name> \

 cpaas.io/platform-url=<prepared domain address, e.g.: https://www.domain.cn>

kubectl annotate --overwrite -n cpaas-system clusters.cluster.x-k8s.io cluster-

imported \

 cpaas.io/platform-url=https://www.domain.cn

Network Configuration for Import Clusters - Alauda Container Platform

Problem description

Prerequisites

Get cluster information

Get cluster token

Get the import cluster API server address and CA certificate

Obtain the configuration required to connect to the import cluster so that the platform can be

authorized to access and manage it. This section provides the steps to retrieve the import

cluster information.

A working kubectl environment. For public cloud clusters, it is strongly recommended

to use the provider's CloudShell. If CloudShell is not available, Linux or macOS is

recommended.

You have obtained the import cluster's KubeConfig file and copied it to the environment

where kubectl is installed. To avoid operating on the wrong environment, it is

How to fetch import cluster information?

TOC

Problem description

Prerequisites

Menu ON THIS PAGE

Fetch import cluster information - Alauda Container Platform

strongly recommended to use one of the following non-destructive approaches:

Backup approach: Copy your existing kubeconfig to a safe location first: cp

"${HOME}/.kube/config" "${HOME}/.kube/config.backup"

Isolated approach: Set the KUBECONFIG environment variable to point to the imported

kubeconfig: export KUBECONFIG="/path/to/imported/kubeconfig"

Merge approach: Use kubectl's merge/flatten without losing existing contexts:

1. export KUBECONFIG="/path/to/imported/kubeconfig:${HOME}/.kube/config"

2. kubectl config view --flatten > "${HOME}/.kube/merged.kubeconfig"

3. export KUBECONFIG="${HOME}/.kube/merged.kubeconfig"

1. Run the following commands:

Get cluster information

Get cluster token

Fetch import cluster information - Alauda Container Platform

WARNING

This procedure creates a cluster-admin credential intended to be non-expiring.

Prefer least-privilege RBAC scoped to required resources if possible.

Store the token securely; rotate/revoke when no longer needed.

Limit who can read Secret objects in cpaas-system .

2. An example of the token obtained in the previous step is shown below.

[Important] The following operations support bash only

Manually create a secret, bind a service account, and generate a non-expiring token

kubectl get ns cpaas-system > /dev/null 2>&1 || kubectl create namespace cpaas-system

kubectl create serviceaccount k8sadmin -n cpaas-system

kubectl create clusterrolebinding k8sadmin --clusterrole=cluster-admin --

serviceaccount=cpaas-system:k8sadmin

cat | kubectl apply -f - <<EOF

apiVersion: v1

kind: Secret

metadata:

 name: k8sadmin

 namespace: cpaas-system

 annotations:

 kubernetes.io/service-account.name: "k8sadmin"

type: kubernetes.io/service-account-token

EOF

kubectl -n cpaas-system describe secret \

 $(kubectl -n cpaas-system get secret | (grep k8sadmin || echo "$_") | awk '{print

$1}') \

 | grep -F 'token:' | awk '{print $2}'

Fetch import cluster information - Alauda Container Platform

3. Validate the token expiration.

Use any tool that supports parsing JWT tokens to analyze the token and confirm its

expiration time. If you can find an expiration field in the parsed result (a key containing

"exp", as shown below), the platform will be unable to manage the import cluster after that

time. In this case, stop and contact technical support.

TIP

Fetch import cluster information - Alauda Container Platform

The expiration is recorded as "exp": 1684486916, in the original JWT payload. The value is a

UNIX timestamp and can be converted to UTC time.

Cleanup (revoke access) when done:

TIP

If you have already obtained the API server address and CA certificate using the platform's Parse

KubeConfig File feature on the import cluster page, skip this step.

1. Run the following commands:

Get the import cluster API server address and CA
certificate

kubectl delete clusterrolebinding k8sadmin

kubectl -n cpaas-system delete secret k8sadmin

kubectl -n cpaas-system delete serviceaccount k8sadmin

View the import cluster API server addresses. There may be multiple addresses;

choose the one that fits your environment.

kubectl --kubeconfig "${KUBECONFIG:-${HOME}/.kube/config}" config view --show-managed-

fields=false --flatten --raw -ojsonpath='{$.clusters..cluster.server}'

addr_apiserver='<Selected API server address>'

Get the CA certificate for the API server specified above

kubectl --kubeconfig "${KUBECONFIG:-${HOME}/.kube/config}" config view --show-managed-

fields=false --flatten --raw \

 -ojsonpath="{$.clusters[?(@.cluster.server ==

'${addr_apiserver}')].cluster.certificate-authority-data}" \

 | { base64 -d 2>/dev/null || base64 -D; }

Fetch import cluster information - Alauda Container Platform

Problem description

Configure trust for an insecure image registry

Docker runtime

Containerd runtime

The image registry hosting platform component images may not provide HTTPS service or

may not have a valid TLS certificate issued by a public certificate authority. If you trust this

registry, configure your container runtime by following the steps below.

Configuration steps vary by container runtime. This document covers Docker and Containerd.

Steps

1. Run the following on every node in the import cluster:

How to trust an insecure image registry?

TOC

Problem description

Configure trust for an insecure image registry

Docker runtime

Menu ON THIS PAGE

Trust an insecure image registry - Alauda Container Platform

Back up the Docker configuration file.

Edit /etc/docker/daemon.json .

Ensure the insecure-registries parameter exists and add the image registry address

obtained earlier. For multiple registries, for example:

2. (Optional) Validate Docker config syntax with jq.

TIP

Ensure jq is installed. For example: yum install jq -y .

mkdir -p '/var/backup-docker-confs/'

if ! [-f /etc/docker/daemon.json]; then

 echo 'Docker config not found. Please check if Docker is correctly installed.

If you still cannot resolve the issue, contact technical support.'

 exit 1

else

 cp /etc/docker/daemon.json "/var/backup-docker-confs/daemon.json_$(date -u

+%F_%R)"

fi

{

 "insecure-registries": [

 "<registry-address>",

 "192.168.134.43"

],

 "registry-mirrors": ["https://6telrzl8.mirror.aliyuncs.com"],

 "log-opts": {

 "max-size": "100m",

 "max-file": "2"

 },

 "live-restore": true,

 "metrics-addr": "0.0.0.0:9323",

 "experimental": true,

 "storage-driver": "overlay2"

}

Trust an insecure image registry - Alauda Container Platform

3. Restart Docker on all nodes.

Notes:

All nodes that need to use images, including newly added nodes, must be configured and

have Containerd restarted.

The configuration differs slightly between Containerd v1.4/v1.5 and v1.6. Follow the

appropriate steps for your version.

1. Run the following on every node in the import cluster:

Back up the configuration file

Get the Containerd runtime version

Containerd v1.4 v1.5 configuration for insecure registries

Containerd runtime

jq . < /etc/docker/daemon.json

systemctl daemon-reload

systemctl restart docker

mkdir -p '/var/backup-containerd-confs/'

if ! [-f /etc/containerd/config.toml]; then

 echo 'Containerd config not found. Please check if containerd is correctly

installed. If you still cannot resolve the issue, contact technical support.'

 exit 1

else

 cp /etc/containerd/config.toml /var/backup-containerd-confs/config.toml_$(date

+%F_%T)

fi

Get the containerd version

Compare this version to v1.6. Choose steps accordingly

ctr --version | grep -Eo 'v[0-9]+\.[0-9]+\.[0-9]+'

Trust an insecure image registry - Alauda Container Platform

2. Run the following on every node in the import cluster:

Edit /etc/containerd/config.toml

Restart Containerd.

Containerd v1.6 configuration for insecure registries

2. Run the following on every node in the import cluster:

Check whether config_path exists in the config.

Example content to add to the config file

Lines in brackets are sections. If the file already has sections with the same

name, merge their contents.

[plugins."io.containerd.grpc.v1.cri".registry]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."<registry-address>"]

 endpoint = ["https://<registry-address>", "http://<registry-address>"]

 [plugins."io.containerd.grpc.v1.cri".registry.mirrors."192.168.134.43"]

 endpoint = ["https://192.168.134.43", "http://192.168.134.43"]

 [plugins."io.containerd.grpc.v1.cri".registry.configs]

 [plugins."io.containerd.grpc.v1.cri".registry.configs."<registry-

address>".tls]

 insecure_skip_verify = true

 [plugins."io.containerd.grpc.v1.cri".registry.configs."192.168.134.43".tls]

 insecure_skip_verify = true

systemctl daemon-reload && systemctl restart containerd

Trust an insecure image registry - Alauda Container Platform

Create the hosts.toml file.

If the previous command printed Follow the steps in "Containerd v1.4 v1.5 configuration

for insecure registries". , see Containerd v1.4 v1.5 configuration for insecure registries.

Restart Containerd.

if ! grep -qF 'config_path' /etc/containerd/config.toml; then

 if grep -qE '\[plugins."io.containerd.grpc.v1.cri".registry.(mirrors|configs)

(\.|\])' /etc/containerd/config.toml; then

 echo 'Follow the steps in "Containerd v1.4 v1.5 configuration for insecure

registries".'

 else

 cat >> /etc/containerd/config.toml << 'EOF'

[plugins."io.containerd.grpc.v1.cri".registry]

 config_path = "/etc/containerd/certs.d/"

EOF

 fi

fi

config_path_var=$(grep -F '/etc/containerd/certs.d' /etc/containerd/config.toml)

if [-z "$config_path_var"]; then

 echo 'The value of config_path in the file is unexpected. Please check!'

 exit 1

fi

REGISTRY='<registry address obtained in the "Get the registry address" section>'

mkdir -p "/etc/containerd/certs.d/$REGISTRY/"

cat > "/etc/containerd/certs.d/$REGISTRY/hosts.toml" << EOF

server = "$REGISTRY"

[host."http://$REGISTRY"]

 capabilities = ["pull", "resolve", "push"]

 skip_verify = true

[host."https://$REGISTRY"]

 capabilities = ["pull", "resolve", "push"]

 skip_verify = true

EOF

Trust an insecure image registry - Alauda Container Platform

systemctl daemon-reload && systemctl restart containerd

Trust an insecure image registry - Alauda Container Platform

Scenario Description

Procedure

After creating a workload cluster, the platform monitoring can only recognize network card

names matching patterns like eth.*|en.*|wl.*|ww.* by default. For user-defined network card

names, network traffic data cannot be viewed on the monitoring page. To address this, the

platform supports modifying relevant resource parameters to manually capture network card

traffic data.

1. Log in to the control node of the global cluster and execute the following commands using

kubectl.

2. First, find the moduleinfo resource name corresponding to the workload cluster in the

global cluster:

Collect Network Data from Custom Named
Network Cards

TOC

Scenario Description

Procedure

Menu ON THIS PAGE

Collect Network Data from Custom Named Network Cards - Alauda Container Platform

Example output:

3. Edit the moduleinfo resource of the workload cluster, replacing ovn-

0954f21f0359720e8c115804376b3e7e with the workload cluster moduleinfo resource name from

the previous step:

4. Add the valuesOverride field and modify the field and regular expression according to the

comment information:

5. Wait 10 minutes, then check the network-related charts on the node monitoring page to

ensure the changes take effect.

kubectl get moduleinfo | grep -E 'prometheus|victoriametrics'

global-6448ef7f7e5e3924c1629fad826372e7 global prometheus prometheus

Running v3.15.0-zz231204040711-9d1fc12474c2 v3.15.0-zz231204040711-9d1fc12474c2

v3.15.0-zz231204040711-9d1fc12474c2

ovn-0954f21f0359720e8c115804376b3e7e ovn prometheus prometheus

Running v3.15.0-zz231204040711-9d1fc12474c2 v3.15.0-zz231204040711-9d1fc12474c2

v3.15.0-zz231204040711-9d1fc12474c2

kubectl edit moduleinfo ovn-0954f21f0359720e8c115804376b3e7e

spec:

 valuesOverride: # If this field does not exist, you need to add the valuesOverride

field and the following parameters under spec

 ait/chart-cpaas-monitor:

 ovn: # Replace with the workload cluster name

 indicator:

 networkDevice: eth.*|em.*|en.*|wl.*|ww.*|[A-Z].*i|custom_interface # Replace

custom_interface with a custom regular expression to ensure correct network card name

matching

Collect Network Data from Custom Named Network Cards - Alauda Container Platform

Prerequisites

Node Requirements

Load Balancing

Connecting global Cluster and Workload Cluster

Image Registry

Container Networking

Creation Procedure

Basic Info

Container Network

Node Settings

Extended Parameters

Post-Creation Steps

Viewing Creation Progress

Associating with Projects

Creating an On-Premise Cluster

TOC

Prerequisites

Node Requirements

Menu ON THIS PAGE

Creating an On-Premise Cluster - Alauda Container Platform

1. If you downloaded a single-architecture installation package from Download Installation

Package, ensure your node machines have the same architecture as the package.

Otherwise, nodes won't start due to missing architecture-specific images.

2. Verify that your node operating system and kernel are supported. See Supported OS and

Kernels for details.

3. Perform availability checks on node machines. For specific check items, refer to Node

Preprocessing > Node Checks.

4. If node machine IPs cannot be directly accessed via SSH, provide a SOCKS5 proxy for the

nodes. The global cluster will access nodes through this proxy service.

For production environments, a load balancer is required for cluster control plane nodes to

ensure high availability. You can provide your own hardware load balancer or enable Self-

built VIP , which provides software load balancing using haproxy + keepalived. We

recommend using a hardware load balancer because:

Better Performance: Hardware load balancing performs better than software load

balancing.

Lower Complexity: If you're unfamiliar with keepalived, misconfigurations could make the

cluster unavailable, leading to lengthy troubleshooting and seriously affecting cluster

reliability.

When using your own hardware load balancer, you can use the load balancer's VIP as the IP

Address / Domain parameter. If you have a domain name that resolves to the load balancer's

VIP, you can use that domain as the IP Address / Domain parameter. Note:

The load balancer must correctly forward traffic to ports 6443 , 11780 , and 11781 on all

control plane nodes in the cluster.

If your cluster has only one control plane node and you use that node's IP as the IP

Address / Domain parameter, the cluster cannot be scaled from a single node to a highly

available multi-node setup later. Therefore, we recommend providing a load balancer even

for single-node clusters.

When enabling Self-built VIP , you need to prepare:

1. An available VRID

Load Balancing

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/install/prepare/download.html#download_core_package
http://localhost:4173/container_platform/install/prepare/download.html#download_core_package
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#supported_os_and_kernels
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#supported_os_and_kernels
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks
http://localhost:4173/container_platform/install/prepare/node_preprocessing.html#node_checks

2. A host network that supports the VRRP protocol

3. All control plane nodes and the VIP must be on the same subnet, and the VIP must be

different from any node IP.

The platform requires mutual access between the global cluster and workload clusters. If

they're not on the same network, you need to:

1. Provide External Access for the workload cluster to ensure the global cluster can access

it. Network requirements must ensure global can access ports 6443 , 11780 , and 11781

on all control plane nodes.

2. Add an additional address to global that the workload cluster can access. When creating

a workload cluster, add this address to the cluster's annotations with the key

cpaas.io/platform-url and the value set to the public access address of global .

Cluster images support Platform Built-in, Private Repository, and Public Repository options.

Platform Built-in: Uses the image registry provided by the global cluster. If the cluster

cannot access global , see Add External Address for Built-in Registry.

Private Repository: Uses your own image registry. For details on pushing required images

to your registry, contact technical support.

Public Repository: Uses the platform's public image registry. Before using, complete

Updating Public Repository Credentials.

If you plan to use Kube-OVN's Underlay for your cluster, refer to Preparing Kube-OVN

Underlay Physical Network.

Connecting global Cluster and Workload Cluster

Image Registry

Container Networking

Creation Procedure

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html
http://localhost:4173/container_platform/configure/networking/how_to/kubeovn_underlay_py.html

1. Enter the Administrator view, and click Clusters/Clusters in the left navigation bar.

2. Click Create Cluster.

3. Configure the following sections according to the instructions below: Basic Info, Container

Network, Node Settings, and Extended Parameters.

Parameter Description

Kubernetes

Version

All optional versions are rigorously tested for stability and

compatibility.

Recommendation: Choose the latest version for optimal features

and support.

Container

Runtime

Containerd is provided as the default container runtime.

If you prefer using Docker as the container runtime, please refer to

Choosing a Container Runtime.

Cluster

Network

Protocol

Supports three modes: IPv4 single stack, IPv6 single stack,

IPv4/IPv6 dual stack.

Note: If you select dual stack mode, ensure all nodes have correctly

configured IPv6 addresses; the network protocol cannot be

changed after setting.

Basic Info

Creating an On-Premise Cluster - Alauda Container Platform

Cluster

Endpoint

IP Address / Domain : Enter the pre-prepared domain name or VIP if

no domain name is available.

Self-Built VIP : Disabled by default. Only enable if you haven't

provided a LoadBalancer. When enabled, the installer will

automatically deploy keepalived for software load balancing

support.

External Access : Enter the externally accessible address prepared

for the cluster when it's not in the same network environment as the

global cluster.

Container Network

An enterprise-grade Cloud Native Kubernetes container network orchestration system

developed by Alauda. It brings mature networking capabilities from the OpenStack domain

to Kubernetes, supporting cross-cloud network management, traditional network

architecture and infrastructure interconnection, and edge cluster deployment scenarios,

while greatly enhancing Kubernetes container network security, management efficiency, and

performance.

Parameter Description

Subnet
Also known as Cluster CIDR, represents the default subnet segment.

After cluster creation, additional subnets can be added.

Transmit

Mode Overlay: A virtual network abstracted over the infrastructure that

doesn't consume physical network resources. When creating an

Kube-OVN

Creating an On-Premise Cluster - Alauda Container Platform

Overlay default subnet, all Overlay subnets in the cluster use the same

cluster NIC and node NIC configuration.

Underlay: This transmission method relies on physical network

devices. It can directly allocate physical network addresses to Pods,

ensuring better performance and connectivity with the physical

network. Nodes in an Underlay subnet must have multiple NICs, and

the NIC used for bridge networking must be exclusively used by

Underlay and not carry other traffic like SSH. When creating an

Underlay default subnet, the cluster NIC is actually a default NIC for

bridge networking, and the node NIC is the node NIC configuration in

the bridge network.

Default Gateway: The physical network gateway address, which is

the gateway address for the Cluster CIDR segment (must be within

the Cluster CIDR address range).

VLAN ID: Virtual LAN identifier (VLAN number), e.g., 0 .

Reserved IPs: Set reserved IPs that won't be automatically

allocated, such as IPs in the subnet that are already used by other

devices.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the default subnet range.

Join CIDR

In Overlay transmission mode, this is the IP address range used for

communication between nodes and pods. Cannot overlap with the

default subnet or Service CIDR.

Calico is a layer 3 networking solution that provides secure network connections for

containers.

Parameter Description

Calico

Creating an On-Premise Cluster - Alauda Container Platform

Default

Subnet

Also known as Cluster CIDR, represents the default subnet

segment. After cluster creation, additional subnets can be added.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the default subnet range.

Flannel provides a flat network environment for all containers in the cluster, giving

containers created on different node hosts a unique virtual IP address across the entire

cluster. The pod subnet is divided evenly among the cluster nodes according to the mask,

and pods on each node are assigned IP addresses from the segment allocated to that

node. This improves communication efficiency between containers without having to

consider IP translation issues.

Parameter Description

Cluster

CIDR

IP address range used by pods created when the cluster starts.

Supports setting the maximum number of IP addresses that can be

allocated to pods on each node under the current container network.

Note: The platform will automatically calculate the maximum number

of nodes the cluster can accommodate based on the above

configuration and display it in the hint below the input field.

Important: After cluster creation, the cluster network cannot be

changed, so please plan the network carefully.

Flannel

Creating an On-Premise Cluster - Alauda Container Platform

Parameter Description

Network

Interface

Card

The name of the host network interface device used by the cluster

network plugin.

Note:

When selecting Underlay transmission mode for the Kube-OVN

default subnet, you must specify the network interface name, which

will be the default NIC for bridge networking.

- The platform's network interface traffic monitoring by default

recognizes traffic on interfaces named like eth.|en.|wl.|ww. . If you

use interfaces with different naming conventions, please refer to

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the container subnet range.

If you need to install other network plugins, select Custom mode. You can manually install

network plugins after the cluster is successfully created.

Parameter Description

Cluster

CIDR
IP address range used by pods created when the cluster starts.

Service

CIDR

IP address range used by Kubernetes Services of type ClusterIP.

Cannot overlap with the container subnet range.

Custom

Node Settings

Creating an On-Premise Cluster - Alauda Container Platform

Collect Network Data from Custom-Named Network Interfaces after

cluster onboarding to modify the relevant resources and ensure the

platform can properly monitor network interface traffic.

Node Name

You can choose to use either the node IP or hostname as the node

name on the platform.

Note: When choosing to use hostname as the node name, ensure that

the hostnames of nodes added to the cluster are unique.

Nodes

Add nodes to the cluster, or Recovery from draft temporarily saved

node information. See the detailed parameter descriptions for adding

nodes below.

Monitoring

Type

Supports Prometheus and VictoriaMetrics.

When selecting VictoriaMetrics as the monitoring component, you

must configure the Deploy Type:

- Deploy VictoriaMetrics: Deploys all related components, including

VMStorage, VMAlert, VMAgent, etc.

- Deploy VictoriaMetrics Agent: Only deploys the log collection

component, VMAgent. When using this deployment method, you need

to associate with a VictoriaMetrics instance already deployed on

another cluster in the platform to provide monitoring services for the

cluster.

Monitoring

Nodes Select nodes for deploying cluster monitoring components. Supports

selecting compute nodes and control plane nodes that allow

application deployment.

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/observability/monitor/how_to/special_network_card_name.html

To avoid affecting cluster performance, it's recommended to prioritize

compute nodes. After the cluster is successfully created, monitoring

components with storage type Local Volume will be deployed on the

selected nodes.

Node Addition Parameters

Parameter Description

Type

Control Plane Node: Responsible for running components such

as kube-apiserver, kube-scheduler, kube-controller-manager, etcd,

container network, and some platform management components in

the cluster. When Application Deployable is enabled, control

plane nodes can also be used as compute nodes.

Worker Node: Responsible for hosting business pods running on

the cluster.

IPv4 Address
The IPv4 address of the node. For clusters created in internal

network mode, enter the node's private IP.

IPv6 Address
Valid when the cluster has IPv4/IPv6 dual stack enabled. The IPv6

address of the node.

Application

Deployable

Valid when Node Type is Control Plane Node. Whether to allow

business applications to be deployed on this control plane node,

scheduling business-related pods to this node.

Display Name The display name of the node.

Creating an On-Premise Cluster - Alauda Container Platform

SSH

Connection IP

The IP address that can connect to the node when accessing it via

SSH service.

If you can log in to the node using ssh <username>@<node's IPv4

address> , this parameter is not required; otherwise, enter the

node's public IP or NAT external IP to ensure the global cluster

and proxy can connect to the node via this IP.

Network

Interface Card

Enter the name of the network interface used by the node. The

priority of network interface configuration effectiveness is as follows

(from left to right, in descending order):

Kube-OVN Underlay: Node NIC > Cluster NIC

Kube-OVN Overlay: Node NIC > Cluster NIC > NIC corresponding

to the node's default route

Calico: Cluster NIC > NIC corresponding to the node's default

route

Flannel: Cluster NIC > NIC corresponding to the node's default

route

Associated

Bridge Network Note: When creating a cluster, bridge network configuration is not

supported; this option is only available when adding nodes to a

cluster that already has Underlay subnets created.

Creating an On-Premise Cluster - Alauda Container Platform

Select an existing Add Bridge Network. If you don't want to use the

bridge network's default NIC, you can configure the node NIC

separately.

SSH Port SSH service port number, e.g., 22 .

SSH Username SSH username, needs to be a user with root privileges, e.g., root .

Proxy

Whether to access the node's SSH port through a proxy. When the

global cluster cannot directly access the node to be added via

SSH (e.g., the global cluster and workload cluster are not in the

same subnet; the node IP is an internal IP that the global cluster

cannot directly access), this switch needs to be turned on and

proxy-related parameters configured. After configuring the proxy,

node access and deployment can be achieved through the proxy.

Note: Currently, only SOCKS5 proxy is supported.

Access URL: Proxy server address, e.g., 192.168.1.1:1080 .

Username: Username for accessing the proxy server.

Password: Password for accessing the proxy server.

SSH

Authentication Authentication method and corresponding authentication

information for logging into the added node. Options include:

Creating an On-Premise Cluster - Alauda Container Platform

http://localhost:4173/container_platform/configure/networking/functions/configure_subnet.html#kube-ovn_underlay_bridge_network

Password: Requires a username with root privileges and the

corresponding SSH password.

Key: Requires a private key with root privileges and the private

key password .

Save Draft

Saves the currently configured data in the dialog as a draft and

closes the Add Node dialog.

Without leaving the Create Cluster page, you can select Restore

from draft to open the Add Node dialog and restore the

configuration data saved as a draft.

Note: The data restored from the draft is the most recently saved

draft data.

Note:

Apart from required configurations, it's not recommended to set extended parameters, as

incorrect settings may make the cluster unavailable and cannot be modified after cluster

creation.

If a entered Key duplicates a default parameter Key, it will override the default

configuration.

Procedure

1. Click Extended Parameters to expand the extended parameter configuration area. You

can optionally set the following extended parameters for the cluster:

Parameter Description

Extended Parameters

Creating an On-Premise Cluster - Alauda Container Platform

Docker

Parameters

dockerExtraArgs , additional configuration parameters for Docker,

which will be written to /etc/sysconfig/docker . Modification is not

recommended. To configure Docker through the daemon.json file, it

must be configured as key-value pairs.

Kubelet

Parameters

kubeletExtraArgs , additional configuration parameters for Kubelet.

Note: When the Container Network's Node IP Count parameter is

entered, a default Kubelet Parameter configuration with the key

max-pods and a value of Node IP Count is automatically generated.

This sets the maximum number of pods that can run on any node in

the cluster. This configuration is not displayed in the interface.

Adding a new max-pods: maximum number of runnable pods key-value

pair in the Kubelet Parameters area will override the default value.

Any positive integer is allowed, but it's recommended to use the

default value (Node IP Count) or enter a value not exceeding 256 .

Controller

Manager

Parameters

controllerManagerExtraArgs , additional configuration parameters for

the Controller Manager.

Scheduler

Parameters

schedulerExtraArgs , additional configuration parameters for the

Scheduler.

APIServer

Parameters

apiServerExtraArgs , additional configuration parameters for the

APIServer.

Creating an On-Premise Cluster - Alauda Container Platform

APIServer

URL

publicAlternativeNames , APIServer access addresses issued in the

certificate. Only IPs or domain names can be entered, with a

maximum of 253 characters.

Cluster

Annotations

Cluster annotation information, marking cluster characteristics in

metadata in the form of key-value pairs for platform components or

business components to obtain relevant information.

4. Click Create. You'll return to the cluster list page where the cluster will be in the Creating

state.

On the cluster list page, you can view the list of created clusters. For clusters in the Creating
state, you can check the execution progress.

Procedure

1. Click the small icon View Execution Progress to the right of the cluster status.

2. In the execution progress dialog that appears, you can view the cluster's execution

progress (status.conditions).

Tip: When a certain type is in progress or in a failed state with a reason, hover your cursor

over the corresponding reason (shown in blue text) to view detailed information about the

reason (status.conditions.reason).

After the cluster is created, you can add it to projects in the project management view.

Post-Creation Steps

Viewing Creation Progress

Associating with Projects

Creating an On-Premise Cluster - Alauda Container Platform

Hosted Control Plane (HCP) is a lightweight multi-cluster management model that separates

the control plane from worker nodes. Each cluster's control plane is containerized and hosted

within a management cluster, reducing resource consumption, accelerating cluster creation

and upgrades, and improving scalability for multi-cluster operations.

Note

Because Hosted Control Plane releases on a different cadence from Alauda Container Platform, the

Hosted Control Plane documentation is now available as a separate documentation set at Hosted

Control Plane .

About Hosted Control Plane

↗

Menu

Hosted Control Plane - Alauda Container Platform

https://docs.alauda.io/hosted-control-plane/
https://docs.alauda.io/hosted-control-plane/
https://docs.alauda.io/hosted-control-plane/
https://docs.alauda.io/hosted-control-plane/

A cluster utilizes the Kubernetes node role labels node-role.kubernetes.io/<role> to assign

different roles to nodes. For convenience of description, we refer to this type of label as a role

label.

By default, a cluster contains two types of nodes: control plane nodes and worker nodes, used

to host control plane workloads and application workloads, respectively.

In a cluster:

The control plane nodes are labeled with the role label node-role.kubernetes.io/control-

plane .

Note:

Prior to Kubernetes v1.24, the community also used the label node-

role.kubernetes.io/master to mark control plane nodes. For backward compatibility, both

labels are considered valid for identifying control plane nodes.

The worker nodes, by default, have no role labels. However, you can explicitly assign the

role label node-role.kubernetes.io/worker to a worker node if desired.

In addition to these default role labels, you can also define custom role labels on worker

nodes to further classify them into different functional types. For example:

You can add the role label node-role.kubernetes.io/infra to designate a node as an infra

node, intended for hosting infrastructure components.

You can add the role label node-role.kubernetes.io/log to designate a node as a log node,

specialized for hosting logging components.

This document will guide you through creating infra nodes and custom role nodes, and

migrating workloads to those nodes.

Cluster Node Planning

Menu ON THIS PAGE

Cluster Node Planning - Alauda Container Platform

Creating Infra Nodes on Non-Immutable Cluster

Adding Infra Nodes

Step 1: Add the Infra Role Label to the Node resources

Step 2: Add a Taint to the Node resources

Step 3: Verify the Label and Taint

Migrating Pods to Infra Nodes

Custom Node Planning

General Steps for Defining Custom Role Nodes

Step 1: Add a Custom Role Label

Step 2: Add a Corresponding Taint

Step 3: Verify the Configuration

Example: Create A Node Dedicated To Logging Components

Step 1: Add the Log Role Label

Step 2: Add a Taint to the Node

Step 3: Verify the Label and Taint

By default, a cluster only includes control plane nodes and worker nodes. If you want to

designate certain worker nodes as infra nodes dedicated to hosting infrastructure

components, you need to manually add the appropriate role label and taint to those nodes.

Note:
The operations in this section are only applicable to non-immutable clusters. That is, the

following operations are not supported on cloud clusters (such as EKS managed clusters

deployed via the Alauda Container Platform EKS Provider Cluster Plugin), third-party

clusters, or clusters where the nodes use an immutable OS.

TOC

Creating Infra Nodes on Non-Immutable Cluster

Cluster Node Planning - Alauda Container Platform

This command adds the infra role label to the Node 192.168.143.133: node-

role.kubernetes.io/infra: "" , indicating that the node is an infra node.

Add a taint to prevent other workloads from being scheduled onto the infra node.

This command adds the taint node-role.kubernetes.io/infra=reserved:NoSchedule to Node

192.168.143.133, indicating that only applications that tolerate this taint can be scheduled

onto this node.

Check whether the node has been assigned the infra role label and taint:

The output indicates that the Node 192.168.143.133 has been configured as an infra node

and has been tainted with tainted with node-role.kubernetes.io/infra=reserved:NoSchedule .

Adding Infra Nodes

Step 1: Add the Infra Role Label to the Node resources

Step 2: Add a Taint to the Node resources

Step 3: Verify the Label and Taint

Migrating Pods to Infra Nodes

kubectl label nodes 192.168.143.133 node-role.kubernetes.io/infra="" --overwrite

kubectl taint nodes 192.168.143.133 node-role.kubernetes.io/infra=reserved:NoSchedule

kubectl describe node 192.168.143.133

Name: 192.168.143.133

Roles: infra

Labels: node-role.kubernetes.io/infra=reserved

 ...

Taints: node-role.kubernetes.io/infra=reserved:NoSchedule

Cluster Node Planning - Alauda Container Platform

If you want to schedule specific Pod onto infra nodes, you need to make the following

configurations:

A nodeSelector targeting the infra role label.

Corresponding tolerations for the infra node's taint.

Below is an example Deployment manifest configured to run on the infra node.

The nodeSelector ensures the Pod is only scheduled on nodes with the label node-

role.kubernetes.io/infra: "" , the toleration allows the Pod to tolerate the taint node-

role.kubernetes.io/infra=reserved:NoSchedule .

With these configurations, the Pod will be scheduled onto the infra node.

Note:
Moving pods installed via OLM Operators or Cluster Plugins to an infra node is not always

possible. The capability to move these pods is depends on the configuration of each

Operator or Cluster Plugin.

Custom Node Planning

apiVersion: apps/v1

kind: Pod

metadata:

 name: infra-pod-demo

 namespace: default

spec:

 ...

 nodeSelector:

 node-role.kubernetes.io/infra: ""

 tolerations:

 - effect: NoSchedule

 key: node-role.kubernetes.io/infra

 value: reserved

 operator: Equal

 ...

Cluster Node Planning - Alauda Container Platform

Beyond infra nodes, you may want to designate worker nodes for other specialized purposes

— such as hosting logging components, storage services, or monitoring agents.

You can achieve this by assigning more custom role labels and corresponding taints to worker

nodes, effectively turning them into custom role nodes.

The process is similar to creating infra nodes.

Replace <role> with your desired role name, such as monitoring, storage, or log.

Replace <role> with your custom role name and replace <value> with a meaningful descriptor,

such as reserved or dedicated. This value is optional but useful for documentation and clarity.

Ensure the Labels and Taints fields reflect your custom role configuration.

If you want to create a node specifically for installing logging components, you can add the log

role. In this case, create the log node as follows.

General Steps for Defining Custom Role Nodes

Step 1: Add a Custom Role Label

Step 2: Add a Corresponding Taint

Step 3: Verify the Configuration

Example: Create A Node Dedicated To Logging
Components

kubectl label nodes <node> node-role.kubernetes.io/<role>="" --overwrite

kubectl taint nodes <node> node-role.kubernetes.io/<role>=<value>:NoSchedule

kubectl describe node <node>

Cluster Node Planning - Alauda Container Platform

This label indicates that the node is designated for log-related workloads.

This taint prevents unscheduled workloads from being deployed to the node.

This confirms that the node has been successfully configured as a log node with the

appropriate label and taint.

By following the above practices, you can effectively partition your Kubernetes nodes based

on their intended purpose, improve workload isolation, and ensure that specific components

are deployed onto appropriately configured nodes.

Step 1: Add the Log Role Label

Step 2: Add a Taint to the Node

Step 3: Verify the Label and Taint

kubectl label nodes 192.168.143.133 node-role.kubernetes.io/log="" --overwrite

kubectl taint nodes 192.168.143.133 node-role.kubernetes.io/log=reserved:NoSchedule

Name: 192.168.143.133

Roles: log

Labels: node-role.kubernetes.io/log=reserved

 ...

Taints: node-role.kubernetes.io/log=reserved:NoSchedule

Cluster Node Planning - Alauda Container Platform

This guide helps you install, understand, and operate the etcd Encryption Manager in ACP to

automate etcd data encryption key rotation within your clusters.

It ensures that sensitive data stored in etcd, such as secrets and configmaps, is encrypted

using a secure algorithm, enhancing your cluster's security.

Installation

How it Works

Default Configuration

Operations Guide

Configuration Files

Checking Status

See Cluster Plugin for installation instructions.

Note:

Currently supported:

On-Premises clusters

etcd Encryption

TOC

Installation

Menu ON THIS PAGE

etcd Encryption - Alauda Container Platform

http://localhost:4173/container_platform/extend/cluster_plugin.html

DCS clusters

Not supported:

global cluster

Upon installation, an etcd-encryption-manager controller is deployed in the kube-system

namespace, which:

Periodically rotates etcd data encryption keys.

Retains the 8 most recent keys for rollback compatibility.

Updates encryption configurations on all control nodes.

Triggers kube-apiserver to hot reload new keys.

Automatically migrates resources to re-encrypt data with new keys.

Cluster stability is maintained throughout these operations.

Parameter Value

Encrypted resources secrets, configmaps

Encryption algorithm 256-bit AES-GCM

Rotation interval 168 hours (7 days)

How it Works

Default Configuration

Operations Guide

etcd Encryption - Alauda Container Platform

Path Content

/etc/kubernetes/encryption-provider.conf Current encryption configuration

/etc/kubernetes/encryption-provider-

history.bak
Historical key records (for recovery)

/etc/kubernetes/encryption-provider-bak/
Expired encryption configuration

versions

Run the following command to check the current rotation status:

Example output:

Configuration Files

Checking Status

kubectl get EtcdEncryptionConfig default -o yaml

etcd Encryption - Alauda Container Platform

apiVersion: cluster.alauda.io/v1alpha1

kind: EtcdEncryptionConfig

metadata:

 name: default

spec:

 resources:

 - secrets

 - configmaps

 rotationInterval: 168h0m0s

 type: aesgcm

status:

 deployStatus:

 192.168.100.1:

 revision: 3

 state: Success

 192.168.100.2:

 revision: 3

 state: Success

 192.168.100.3:

 revision: 3

 state: Success

 migration:

 completeTimestamp: "2025-05-27T05:47:01Z"

 resources:

 - secrets

 - configmaps

 revision: 3

 state: Success

 revision: 3

etcd Encryption - Alauda Container Platform

How to

Add External Address for Built-in Registry

Choosing a Container Runtime

Updating Public Repository Credentials

Menu

How to - Alauda Container Platform

Overview

Prerequisites

Procedure

Configure Certificate and Routing Rules for the Platform Registry

When the global cluster uses the Platform Built-in registry, workload clusters typically also

use this registry to pull images. The registry not only serves components within the global

cluster but must also be accessible to workload cluster nodes.

In certain scenarios, workload cluster nodes cannot directly access the global cluster's

registry address - for example, when the global cluster is in a private data center while

workload clusters are in public clouds or edge environments.

This guide explains how to configure an externally accessible address for the platform's

default registry to allow workload clusters to pull images.

Before you begin, prepare the following:

Add External Address for Built-in Registry

TOC

Overview

Prerequisites

Menu ON THIS PAGE

Add External Address for Built-in Registry - Alauda Container Platform

A domain name accessible by workload cluster nodes

The IP address that the domain name points to

A valid SSL certificate for the domain name

WARNING

The domain name must be different from the platform access address

Ensure the domain's IP address can forward traffic to all control plane nodes of the global

cluster

1. Copy the domain's valid certificate to any control plane node of the global cluster

2. Create a TLS secret containing the domain certificate:

Example:

Note: After creating the certificate, monitor the expiration date of the registry-address.tls

secret in the kube-system namespace of the global cluster. Replace the certificate

before it expires.

3. Create ingress rules on any control plane node of the global cluster:

Procedure

Configure Certificate and Routing Rules for the Platform
Registry

kubectl create secret tls registry-address.tls --cert=<certificate-filename> --key=

<key-filename> -n kube-system

kubectl create secret tls registry-address.tls --cert=custom.crt --key=custom.key -n

kube-system

Add External Address for Built-in Registry - Alauda Container Platform

REGISTRY_DOMAIN_NAME=<www.registry.com> # Replace with your accessible domain name

cat << EOF | kubectl create -f -

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 annotations:

 nginx.ingress.kubernetes.io/backend-protocol: HTTPS

 name: registry-address

 namespace: kube-system

 labels:

 service_name: registry

spec:

 rules:

 - host: $REGISTRY_DOMAIN_NAME

 http:

 paths:

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/_catalog

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/tags/list

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/manifests/[A-Za-z0-9_+.-:]+

Add External Address for Built-in Registry - Alauda Container Platform

A response similar to ... created indicates successful ingress creation.

4. Check if a Registry Service resource exists:

If the Service doesn't exist, create it with:

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/blobls/[A-Za-z0-9-:]+

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /v2/.+/blobls/uploads/[A-Za-z0-9-:]+

 pathType: ImplementationSpecific

 - backend:

 service:

 name: registry

 port:

 number: 443

 path: /auth/token

 pathType: ImplementationSpecific

 tls:

 - secretName: registry-address.tls

 hosts:

 - $REGISTRY_DOMAIN_NAME

EOF

kubectl -n kube-system get svc | grep registry

Add External Address for Built-in Registry - Alauda Container Platform

5. Test the configuration by pulling an image from the registry using the domain name:

Or

cat << EOF | kubectl create -f -

apiVersion: v1

kind: Service

metadata:

 labels:

 name: registry

 service_name: registry

 name: registry

 namespace: kube-system

spec:

 ports:

 - protocol: TCP

 port: 443

 targetPort: 60080

 selector:

 component: registry

 type: ClusterIP

EOF

crictl pull <registry-domain-name>/automation/qaimages:helloworld

docker pull <registry-domain-name>/automation/qaimages:helloworld

Add External Address for Built-in Registry - Alauda Container Platform

Overview

Quick Selection Guide

Differences Between Docker and Containerd

Common Commands

Call Chain Differences

Log and Parameter Comparison

CNI Network Comparison

Container Runtime is a core component of Kubernetes, responsible for managing the lifecycle

of images and containers.

When creating clusters through the platform, you can choose either Containerd or Docker as

your runtime component.

Note: Kubernetes version 1.24 and above no longer officially supports Docker runtime. The

officially recommended runtime is Containerd. If you still need to use Docker runtime, you

must first enable cri-docker in the feature gate before you can select Docker as the runtime

component when creating a cluster. For details on using feature gates, see Feature Gate

Configuration.

Choosing a Container Runtime

TOC

Overview

Menu ON THIS PAGE

Choosing a Container Runtime - Alauda Container Platform

http://localhost:4173/container_platform/configure/feature_toggles.html#feature_toggles
http://localhost:4173/container_platform/configure/feature_toggles.html#feature_toggles

Choose Containerd Choose Docker

Shorter call chain

Fewer components

More stable

Consumes fewer node

resources

Supports docker-in-docker

Allows use of docker build/push/save/load

commands on nodes

Can call Docker API

Supports docker compose or docker swarm

Containerd Docker Description

crictl ps docker ps View running containers

crictl inspect docker inspect View container details

crictl logs docker logs View container logs

crictl exec docker exec Execute commands in container

crictl attach docker attach Attach to container

crictl stats docker stats Display container resource usage

crictl create docker create Create container

crictl start docker start Start container

crictl stop docker stop Stop container

crictl rm docker rm Remove container

Quick Selection Guide

Differences Between Docker and Containerd

Common Commands

Choosing a Container Runtime - Alauda Container Platform

Containerd Docker Description

crictl images docker images View image list

crictl pull docker pull Pull image

None docker push Push image

crictl rmi docker rmi Delete image

crictl pods None View pod list

crictl inspectp None View pod details

crictl runp None Start pod

crictl stopp docker images View images

ctr images ls None Stop pod

crictl stopp docker load/save Import/export images

ctr images import/export None Stop pod

ctr images pull/push docker pull/push Pull/push images

ctr images tag docker tag Tag images

Docker as Kubernetes container runtime has the following call relationship:

kubelet > cri-dockerd > dockerd > containerd > runC

Containerd as Kubernetes container runtime has the following call relationship:

kubelet > cri plugin (in containerd process) > containerd > runC

Summary: Although dockerd adds features like swarm cluster, docker build, and Docker API,

it can introduce bugs and adds an extra layer in the call chain. Containerd has a shorter call

chain, fewer components, greater stability, and consumes fewer node resources.

Call Chain Differences

Choosing a Container Runtime - Alauda Container Platform

Comparison Docker Containerd

Storage Path

When Docker serves as the Kubernetes

container runtime, container logs are

stored by Docker in directories like

/var/lib/docker/containers/$CONTAINERID .

Kubelet creates symbolic links in

/var/log/pods and /var/log/containers

pointing to the container log files in this

directory.

When Containerd serves a

the Kubernetes container

runtime, container logs are

stored by Kubelet in the

/var/log/pods/$CONTAINER_NA

directory, with symbolic link

created in the

/var/log/containers directo

pointing to the log files.

Configuration

Parameters

Specified in the Docker configuration

file:

"log-driver": "json-file",

"log-opts": {"max-size": "100m","max-

file": "5"}

Method 1: Specified in kube

parameters:

--container-log-max-files=5

--container-log-max-

size="100Mi"

Method 2: Specified in

KubeletConfiguration:

"containerLogMaxSize":

"100Mi",

"containerLogMaxFiles": 5,

Saving

Container

Logs to Data

Disk

Mount the data disk to "data-root"

(default is /var/lib/docker).

Create a symbolic link

/var/log/pods pointing to a

directory under the data dis

mount point.

Comparison Docker Containerd

Who Calls CNI cri-dockerd
cri-plugin built into Containerd

(after containerd 1.1)

Log and Parameter Comparison

CNI Network Comparison

Choosing a Container Runtime - Alauda Container Platform

Comparison Docker Containerd

How to

Configure CNI

cri-dockerd parameters --cni-

conf-dir --cni-bin-dir --cni-

cache-dir

Containerd configuration file

(toml):

[plugins.cri.cni]

bin_dir = "/opt/cni/bin"

conf_dir = "/etc/cni/net.d"

Choosing a Container Runtime - Alauda Container Platform

Overview

Procedure

The Public Repository is a platform-provided image registry service available on the public

internet. When you want your clusters to use the Public Repository as their image registry,

you need to update the built-in public-registry-credential Cloud Credentials. This ensures

your platform has permission to pull images from the public registry.

1. Log in to the Customer Portal and download your organization's authentication file from

the Enterprise Management section located in the User Information dropdown in the

upper right corner.

2. Navigate to Clusters > Cloud Credential in the left navigation bar of the Administrator

console.

3. Locate the cloud credential named public-registry-credential and click Update from the

dropdown menu on the right.

Updating Public Repository Credentials

TOC

Overview

Procedure

Menu ON THIS PAGE

Updating Public Repository Credentials - Alauda Container Platform

4. In the Upload Public Repository Address section, upload the authentication file you

downloaded from the Customer Portal.

5. Click Update to apply the changes.

Updating Public Repository Credentials - Alauda Container Platform

	Clusters
	Clusters Overview
	TOC
	Platform-Provisioned Infrastructure
	User-Provisioned Infrastructure
	Connected Clusters
	Public Cloud Kubernetes
	CNCF-Compliant Kubernetes
	Tunnel-Based Connectivity

	Choosing the Right Model

	About Immutable Infrastructure
	Node Management
	Overview
	TOC
	Node Types
	Linux Node Availability Check
	Supported Operating Systems and CPU Models

	Add Nodes to On-Premises Clusters
	TOC
	Constraints and Limitations
	Prerequisites
	Procedure
	Follow-up Operations
	View Execution Progress
	Re-add Failed Nodes

	Manage Nodes
	TOC
	Update Node Labels
	Procedure

	Stop/Resume Node Scheduling
	Procedure

	Evict Pods
	Procedure

	Set Taints
	Procedure

	Label and Taint Management
	Constraints and Limitations
	Procedure

	Enable/Disable Virtualization Switch
	Delete On-Premises Cluster Nodes
	Constraints and Limitations
	Procedure

	Node Monitoring
	TOC
	Procedure

	Managed Clusters
	overview
	TOC
	What is a managed cluster?
	What's the difference between the two onboarding methods?

	Import Clusters
	Overview
	Import Standard Kubernetes Cluster
	TOC
	Terminology
	Prerequisites
	Notes
	Obtain Registry Address
	Check if Extra Registry Config is Needed
	Get Cluster Info
	Integrate Cluster
	Network Configuration
	FAQ
	Why is the "Add Node" button disabled?
	Which certificates are supported?
	Which features are unsupported?
	How to fix Containerd runtime causing distributed storage deployment failures?

	Import OpenShift Cluster
	TOC
	Prerequisites
	Obtain Registry Address
	Check if Extra Registry Config is Needed
	Trust Insecure Registry

	Configure DNS for the Cluster
	Get Cluster Info
	Method 1 (Recommended): Get the KubeConfig File
	Method 2: Use Token, API Server Address, and CA Certificate

	Import Cluster
	Network Configuration
	Deploy Add-ons
	Update Audit Policy
	FAQ
	Why is the "Add Node" button disabled?
	Which certificates are supported?
	Which features are unsupported for OpenShift clusters?

	Import Amazon EKS Cluster
	TOC
	Prerequisites
	Prepare the environment
	Get cluster information
	Get the import token

	Import the cluster
	Network configuration
	Next steps
	Initialize Ingress and storage

	FAQ
	The Add Node button is disabled after import. How can I add nodes?
	Which certificates are supported by certificate management for imported clusters?
	What features are not supported for imported AWS EKS clusters?

	Import GKE Cluster
	TOC
	Prerequisites
	Preparing the Operating Environment
	Obtaining Cluster Information
	Obtaining the API Server Address and CA Certificate of the Target Cluster
	Obtaining the Target Cluster Token

	Importing the Cluster
	Network Configuration
	Post-Import Operations
	Ingress and Storage Initialization

	Frequently Asked Questions
	How to add nodes when the "Add Node" button is grayed out after importing the cluster?
	What certificates are supported by the certificate management functionality for imported clusters?

	Import Huawei Cloud CCE Cluster (Public Cloud)
	TOC
	Prerequisites
	Obtain Image Registry Address
	Determine if Image Registry Requires Additional Configuration
	Obtain Cluster Information
	Obtain Import Cluster Token

	Import Cluster
	Network Configuration
	Follow-up Operations
	Ingress (Inbound Rules) and Storage Initialization

	FAQ
	After importing the cluster, the add node button is grayed out. How to add nodes?
	What certificates does the certificate management feature support for imported clusters?
	What other features are not supported for imported Huawei Cloud CCE clusters?

	Import Azure AKS Cluster
	TOC
	Prerequisites
	Prepare the Operating Environment
	Obtain Cluster Information
	Obtain Import Clusters Token

	Import Cluster
	Network Configuration
	Post-Import Operations
	Ingress (Inbound Rules) and Storage Initialization

	Frequently Asked Questions
	How to configure AKS node external IP security group rules
	How to access AKS node
	Azure ALB using internal load balancer
	Azure ALB using external load balancer
	The add node button is grayed out after importing the cluster. How to add nodes?
	What certificates are supported by the certificate management feature for imported clusters?
	What other features are not supported for imported AKS clusters?

	Import Alibaba Cloud ACK Cluster
	TOC
	Prerequisites
	Get Image Registry Address
	Determine if Image Registry Requires Additional Configuration
	Get KubeConfig
	Import Cluster
	Network Configuration
	FAQ
	How to handle port conflicts between Alibaba Cloud monitoring and platform monitoring components?
	How to use public network access for Alibaba Cloud clusters?
	After importing a cluster, the add node button is grayed out. How to add nodes?
	Which certificates are supported by the certificate management function for imported clusters?
	What other features are not supported for imported Alibaba Cloud ACK managed clusters and ACK dedicated clusters?

	Import Tencent Cloud TKE Cluster
	TOC
	Prerequisites
	Obtain Image Registry Address
	Determine if Image Registry Requires Additional Configuration
	Obtain KubeConfig
	Import Cluster
	Network Configuration
	FAQ
	After importing the cluster, the "Add Node" button is grayed out. How to add nodes?
	What certificates does the certificate management function for imported clusters support?
	What other features are not supported for imported TKE Managed clusters and TKE Dedicated clusters?

	Register Cluster
	TOC
	Prerequisites
	Important Notes
	Register Cluster
	View Registration Command
	FAQ
	How to Resolve Distributed Storage Deployment Failure When the Runtime Component of the Connected Cluster is Containerd?

	Public Cloud Cluster Initialization
	Network Initialization
	AWS EKS Cluster Network Initialization Configuration
	TOC
	Support Overview
	Prerequisites
	Configuration Steps
	Deploy AWS Load Balancer Controller
	Create Ingress and LoadBalancer Services

	Related Operations
	Test AWS CLI and eksctl Installation
	Get ACCOUNT_ID
	Kubeconfig Configuration File
	Add Tags to Subnets
	Create Certificate

	AWS EKS Supplementary Information
	TOC
	Terminology
	Important Notes
	EKS Using aws-lb to Provide External Access for Container Network Load Balancers
	Service Annotation Configuration Instructions
	Access Address Acquisition Method

	Huawei Cloud CCE Cluster Network Initialization Configuration
	TOC
	Support Overview
	Prerequisites
	Configuration Steps
	Create Ingress
	Create LoadBalancer Service

	Related Operations
	Create Certificate

	Azure AKS Cluster Network Initialization Configuration
	TOC
	Support Overview
	Prerequisites
	Configuration Steps
	Deploy Ingress Controller
	Create Ingress and LoadBalancer Services

	Related Operations
	Create Certificate

	Google GKE Cluster Network Initialization Configuration
	TOC
	Support Overview
	Prerequisites
	Configuration Steps
	Deploy Ingress Controller
	Create Ingress and LoadBalancer Services

	Related Operations
	View Ingress Resources in Google Cloud
	Create Certificate

	Storage Initialization
	Overview
	TOC
	Storage Class Support
	AWS EKS Clusters
	Huawei Cloud CCE Clusters
	Azure AKS Clusters
	Google GKE Clusters

	AWS EKS Cluster Storage Initialization Configuration
	TOC
	Constraints and Limitations
	Prerequisites
	Configuration Steps
	Create Storage Classes
	Modify Storage Class Project Assignment

	Related Operations
	Configure Available Storage Class Parameters

	Huawei Cloud CCE Cluster Storage Initialization Configuration
	TOC
	Constraints and Limitations
	Prerequisites
	Configuration Steps
	Default Storage Class Description
	Common Issues
	PVC Creation Failure
	Account Overdue

	Azure AKS Cluster Storage Initialization Configuration
	TOC
	Constraints and Limitations
	Prerequisites
	Configuration Steps
	Related Information
	Default Storage Class Description
	Available Storage Class Parameters

	Google GKE Cluster Storage Initialization Configuration
	TOC
	Constraints and Limitations
	Prerequisites
	Configuration Steps
	Related Information
	Default Storage Class Description
	Available Storage Class Parameters

	Common Issues
	File Storage Type Storage Class PVC Creation Failure
	Block Storage Type Storage Class PVC Cannot Bind Properly

	How to
	Network Configuration for Import Clusters
	TOC
	Scenario Description
	Prerequisites
	Adding Annotation Information for Imported Clusters

	How to fetch import cluster information?
	TOC
	Problem description
	Prerequisites
	Get cluster information
	Get cluster token
	Get the import cluster API server address and CA certificate

	How to trust an insecure image registry?
	TOC
	Problem description
	Configure trust for an insecure image registry
	Docker runtime
	Containerd runtime

	Collect Network Data from Custom Named Network Cards
	TOC
	Scenario Description
	Procedure

	Creating an On-Premise Cluster
	TOC
	Prerequisites
	Node Requirements
	Load Balancing
	Connecting global Cluster and Workload Cluster
	Image Registry
	Container Networking

	Creation Procedure
	Basic Info
	Container Network
	Node Settings
	Extended Parameters

	Post-Creation Steps
	Viewing Creation Progress
	Associating with Projects

	About Hosted Control Plane
	Cluster Node Planning
	TOC
	Creating Infra Nodes on Non-Immutable Cluster
	Adding Infra Nodes
	Step 1: Add the Infra Role Label to the Node resources
	Step 2: Add a Taint to the Node resources
	Step 3: Verify the Label and Taint

	Migrating Pods to Infra Nodes
	Custom Node Planning
	General Steps for Defining Custom Role Nodes
	Step 1: Add a Custom Role Label
	Step 2: Add a Corresponding Taint
	Step 3: Verify the Configuration

	Example: Create A Node Dedicated To Logging Components
	Step 1: Add the Log Role Label
	Step 2: Add a Taint to the Node
	Step 3: Verify the Label and Taint

	etcd Encryption
	TOC
	Installation
	How it Works
	Default Configuration

	Operations Guide
	Configuration Files
	Checking Status

	How to
	Add External Address for Built-in Registry
	TOC
	Overview
	Prerequisites
	Procedure
	Configure Certificate and Routing Rules for the Platform Registry

	Choosing a Container Runtime
	TOC
	Overview
	Quick Selection Guide
	Differences Between Docker and Containerd
	Common Commands
	Call Chain Differences
	Log and Parameter Comparison
	CNI Network Comparison

	Updating Public Repository Credentials
	TOC
	Overview
	Procedure

