
虚拟化

概览

安装

镜像

介绍

容器编排虚拟机解决方案

功能特点

产品功能

约束和限制

功能总览

虚拟机镜像

虚拟机

虚拟机网络

备份与恢复

安装

前提条件

操作步骤

资源配额说明

介绍 操作指南 实用指南

Alauda Container Platform

虚拟化 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

虚拟机

网络

存储

备份和恢复

优势

权限说明

介绍

优势

操作指南 实用指南

问题处理

介绍

优势

操作指南 实用指南

介绍

优势

操作指南

虚拟化 - Alauda Container Platform

介绍

应用场景

限制

操作指南

虚拟化 - Alauda Container Platform

概览

介绍

容器编排虚拟机解决方案

功能特点

产品功能

约束和限制

功能总览

虚拟机镜像

虚拟机

虚拟机网络

备份与恢复

Alauda Container Platform

概览 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍

对于使用基于虚拟机架构的企业而言，向基于 Kubernetes 和容器架构的转型不可避免地需要进

行应用现代化。然而，由于需要持续的业务在线或者改变开发习惯的困难等因素，企业往往无

法在短时间内完全脱离虚拟化架构。

因此，一个能够在同一平台上统一配置、管理和控制容器资源与虚拟机资源的解决方案变得尤

为重要。

目录

容器编排虚拟机解决方案

该平台基于开源组件 KubeVirt 实现了一种虚拟机（VMI，VirtualMachineInstance）解决方案，

使得创建容器编排的虚拟机和运行虚拟化应用程序变得更加简便和快速。

容器编排虚拟机解决方案

功能特点

产品功能

约束和限制

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

功能特点

快速转型

无需重写应用程序或修改镜像。只需将现有应用打包为 qcow2 或 raw 格式的虚拟机镜像，然后

在平台上使用该镜像创建虚拟机，从而将应用部署到容器平台。

保持行为习惯

容器化的虚拟机可以采用与传统虚拟机类似的管理方法，无需关注底层的容器实现，包括虚拟

机生命周期管理、磁盘和网络管理以及快照管理。

虚拟化与容器化的共存

统一平台支持管理虚拟化服务，同时能够实现基于 Kubernetes 的容器调度与管理。

在继续使用虚拟机工作负载的基础上，允许逐步实现容器化应用的现代化。

新开发的需要与虚拟化应用交互的容器化应用不受影响。

介绍 - Alauda Container Platform

产品功能

虚拟机：支持使用管理员分配的镜像创建虚拟机并进行管理，包括启动和停止虚拟机、管理

快照、远程登录虚拟机，以及修改虚拟机配置。

虚拟磁盘：支持查看和管理当前项目中创建的磁盘信息，包括创建磁盘、查看磁盘名称、存

储类、容量以及关联的虚拟机。

虚拟机快照：支持查看虚拟机快照的状态、关联的虚拟机以及最近的回滚时间等详细信息。

虚拟机镜像：支持查看当前项目下的虚拟机镜像信息，包括镜像提供方式和操作系统等。

密钥对：支持查看和管理当前项目中创建的密钥对，包括创建密钥对和查看关联的虚拟机列

表。

约束和限制

必须在物理机集群的基础上实现，并且 KubeVirt 组件必须在集群中部署并启用虚拟化。平台提

供通过 Operator 部署 KubeVirt 组件的能力，并具备启用虚拟化的接口，所有相关配置由平台

管理员完成。

介绍 - Alauda Container Platform

功能总览

目录

虚拟机镜像

管理虚拟机镜像

平台支持创建、更新及删除虚拟机镜像。

管理镜像凭据

支持创建、更新及删除镜像凭据。

虚拟机

创建虚拟机/虚拟机组

支持快速创建单个虚拟机，或创建多个配置相同的虚拟机（虚拟机组）。

管理虚拟机

虚拟机镜像

虚拟机

虚拟机网络

备份与恢复

Alauda Container Platform

功能总览 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

支持多种虚拟机管理操作，包括重置密码、更新密钥对、更新规格、更新标签及注解、重装

操作系统等。

管理虚拟机磁盘

支持虚拟机磁盘的管理操作，如创建、删除、挂载、卸载和扩容等。

管理密钥对

支持创建、删除和更新 SSH 密钥对。

虚拟机批量操作

支持对虚拟机进行启动、停止、重启及删除等批量操作。

VNC 登录虚拟机

支持通过 VNC 登录虚拟机。

快速定位虚拟机

允许按集群展示虚拟机列表，方便平台管理员快速找到虚拟机的命名空间。

监控与告警

对虚拟机的 CPU、内存、存储及网络使用情况进行监控与告警。

虚拟机网络

使用容器网络

支持为虚拟机配置使用容器网络，包括 NAT 和桥接模式。

配置内部路由

通过创建 Service 对象，允许在集群内或集群外公开虚拟机。

使用 SR-IOV

支持将虚拟机接入 SR-IOV（单根 I/O 虚拟化）以实现高性能网络接口。

功能总览 - Alauda Container Platform

备份与恢复

虚拟机快照

支持为虚拟机创建快照，并可以从快照中恢复虚拟机。

功能总览 - Alauda Container Platform

安装

为了让项目人员能够充分利用容器平台中的虚拟化功能，平台管理员必须执行以下操作以准备

虚拟化环境。

目录

前提条件

下载与您的平台架构对应的ACP Virtualization with KubeVirt安装包。

通过上传软件包机制上传该ACP Virtualization with KubeVirt安装包。

使用虚拟化功能时，需要提前规划和准备网络及存储环境。

注意：

前提条件

操作步骤

启用节点虚拟化

操作步骤

部署 Operator

创建 HyperConverged 实例

配置虚拟机超售比（可选）

重要说明

资源配额说明

Alauda Container Platform

安装 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

如果需要通过 IP 直接连接虚拟机，集群必须使用 Kube-OVN Underlay 网络模式。您可以

参考最佳实践准备 Kube-OVN Underlay 物理网络。

推荐结合使用 TopoLVM 和 Kubevirt，因为它能提供接近硬件级别的性能。如果性能要求

不高，也可以使用 Ceph 分布式存储。

TopoLVM
优点：相对轻量且性能良好。

缺点：不能跨节点使用，可靠性较低，无法提供冗余。

Ceph 分布式存储
优点：可跨节点使用，高可用且具备冗余能力。

缺点：磁盘副本冗余导致利用率较低，性能较差。

如果使用 TopoLVM 并配置了多块磁盘，请确保启用虚拟化的节点剩余存储容量能够满

足多块磁盘的总容量，否则虚拟机创建会失败。

如果使用 Ceph 分布式存储，请确保存储所在网络与虚拟机所在网络之间能够互通。

操作步骤

当自建集群的节点为物理机时，可以通过启用或禁用节点虚拟化开关来控制 Kubernetes

是否允许在该节点调度虚拟机实例（VMI）。

开启开关时，允许在该物理机节点上调度新的虚拟机；Windows 物理节点不支持开启

虚拟化。

关闭开关时，阻止在该物理机节点上调度新的虚拟机，但不影响已在该节点运行的虚

拟机。

操作步骤

1. 进入平台管理。

2. 在左侧导航栏点击集群管理 > 集群。

存储产品 描述

启用节点虚拟化1

安装 - Alauda Container Platform

http://localhost:4173/container_platform/zh/configure/networking/how_to/kubeovn_underlay_py.html

3. 点击自建集群名称。

4. 在节点标签页，点击目标节点右侧的 ⋮ > 启用虚拟化。

5. 点击确认。

1. 登录后，进入平台管理页面。

2. 点击Marketplace > OperatorHub进入OperatorHub页面。

3. 找到ACP Virtualization with KubeVirt，点击安装，进入安装 ACP Virtualization

with KubeVirt页面。

配置参数：

Channel 默认通道为 alpha 。

安装模

式

Cluster ：集群内所有命名空间共享单个 Operator 实例进行创建和管

理，资源占用较低。

安装位

置
选择 Recommended ，命名空间仅支持 kubevirt。

升级策

略

Manual ：当 Operator Hub 有新版本时，需要手动确认升级 Operator 到

最新版本。

1. 进入平台管理。

2. 点击Marketplace > OperatorHub。

3. 找到ACP Virtualization with KubeVirt，点击进入其详情页。

4. 点击所有实例

部署 Operator2

参数 推荐配置

创建 HyperConverged 实例3

安装 - Alauda Container Platform

5. 在HyperConverged实例卡片上点击创建实例。

注意：每个集群只需创建一个HyperConverged实例。

6. 切换到 YAML 视图，仅将示例中 spec.storageImport.insecureRegistries 字段

中的 placeholder 替换为正确的虚拟机镜像仓库地址，例如：

192.168.16.214:60080 ，其他参数保持默认值。

替换结果：

7. 点击创建，等待资源列表中自动创建 CDI 和 KubeVirt 类型的实例，同时确保 YAML 中

显示的 status.phase 为 deployed ，表示 HyperConverged 实例创建成功。

在集群管理 > 集群中配置虚拟机所在集群的超售比。

或在项目管理 > 命名空间中配置虚拟机所在命名空间的超售比。

重要说明

虚拟机仅支持 CPU 超售比，推荐配置值为 2 到 4 之间。

一旦为虚拟机启用超售比，创建虚拟机时容器的请求值（requests）固定为指定的限制

值（limits）/ 虚拟机超售比，用户通过 YAML 设置的请求值将无效。

例如：假设虚拟机的 CPU 资源超售比设置为 4，用户创建虚拟机时指定 CPU 限制值

为 4c，则 CPU 请求值为 4c/4 = 1c。

配置虚拟机超售比（可选）4

spec:

 storageImport:

 insecureRegistries:

 - placeholder

spec:

 storageImport:

 insecureRegistries:

 - "192.168.16.214:60080"

安装 - Alauda Container Platform

资源配额说明

虚拟机的内存资源配额受其所在命名空间的内存资源配额限制。由于承载虚拟机的 Pod 内存通

常大于虚拟机实际可用内存，建议预留 20% 的资源。当命名空间剩余可用资源低于 20% 时，

请及时扩容资源。

安装 - Alauda Container Platform

镜像

介绍

操作指南

实用指南

介绍

优势

添加虚拟机镜像

操作步骤

更新/删除虚拟机镜像 更新/删除镜像

使用 KubeVirt 基于 ISO 创建 Windows 镜像

前提条件

约束与限制

操作步骤

远程访问

使用 KubeVirt 基于 ISO 创建 Linux 镜像

前提条件

约束与限制

操作步骤

导出虚拟机镜

操作步骤

Alauda Container Platform

镜像 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

权限说明

权限说明

镜像 - Alauda Container Platform

介绍

Alauda Container Platform Virtualization with KubeVirt 利用 Kubernetes 扩展 API 能力将虚拟

机镜像抽象为一个 Custom Resource Definition (CRD)，并提供用户界面 (UI)，让用户可以

便捷地将存放在远端的虚拟机镜像导入到 ACP 中使用。

目录

优势

支持主流操作系统

支持各种常用的 Linux 发行版和 Windows 操作系统。

多架构支持

兼容 X86_64 和 ARM64 架构。

多来源支持

允许从以下来源导入虚拟机镜像：

镜像仓库

文件服务器

兼容 S3 的对象存储

优势

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

多格式支持

支持 QCOW2 和 RAW 格式的虚拟机镜像。

介绍 - Alauda Container Platform

操作指南

添加虚拟机镜像

操作步骤

更新/删除虚拟机镜像 更新/删除镜像

Alauda Container Platform

操作指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

添加虚拟机镜像

平台支持添加 X86_64 和 ARM64（Alpha） 架构的虚拟机镜像，方便开发人员快速创建已有

业务的虚拟机，便于业务系统的迁移。

目录

操作步骤

1. 进入 平台管理。

2. 在左侧导航栏中，单击 虚拟化管理 > 虚拟机镜像。

3. 单击 添加虚拟机镜像。

4. 参考以下说明配置相关参数。

提供

方式
目前仅支持 公共镜像 方式，即添加的镜像可在已分配的项目中使用。

操作

系统

支持的操作系统有： CentOS/Ubuntu/RedHat/Debian/TLinux/其他

Linux/Windows（Alpha）。

支持的系统架构有： X86_64 和 ARM64（Alpha）。

操作步骤

参数 说明

Alauda Container Platform

添加虚拟机镜像 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

来源

镜像仓库：存储于容器镜像仓库的虚拟机镜像。

HTTP：存储于 HTTP 协议的文件服务器中的虚拟机镜像。

对象存储（S3）：支持通过对象存储协议 (S3) 获取的虚拟机镜像，若是无需认

证的对象存储文件，请使用 HTTP 来源。

CPU

架构

标记 CPU 架构信息。当来源为镜像仓库时，CPU 架构支持多选；对于其他来源，

则仅支持单选。

镜像

地址

支持 KVM 的虚拟机镜像，包括 qcow2/raw 格式。

若来源于镜像仓库，输入 仓库地址:镜像版本 ，例如

index.docker.io/library/ubuntu:latest 。

若为 HTTP 来源，输入镜像文件 URL，必须以 http:// 或 https:// 开头，

例如 http://192.168.0.1/vm_image/centos_7.8.qcow2 。

若为对象存储 (S3)，请输入需通过对象存储协议（S3）获取的镜像地址，例如：

https://endpoint/bucket/centos.qcow2 。

认证

根据镜像仓库是否需要认证，可关闭或开启开关。开启后，您可以选择已有镜像凭

据或单击 添加凭据，仅支持使用 用户名/密码 类型的凭据。

提示：来源为对象存储 (S3) 时，认证不可关闭。

分配

项目

为项目分配该镜像的使用权限。

所有项目：将镜像的使用权限分配给所有项目。

指定项目：将镜像的使用权限分配给指定的项目。

不分配：暂不分配项目。镜像创建完成后，可通过 更新镜像 操作另行分配。

5. 单击 添加。

参数 说明

添加虚拟机镜像 - Alauda Container Platform

更新/删除虚拟机镜像

1. 进入 平台管理。

2. 在左侧导航栏中，单击 虚拟化管理 > 虚拟机镜像。

3. 单击 ⋮ > 更新/删除。

4. 确认后，单击 更新/删除。

Alauda Container Platform

更新/删除虚拟机镜像 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

更新/删除镜像凭据

1. 进入 平台管理。

2. 在左侧导航栏中，单击 虚拟化管理 > 虚拟机镜像。

3. 在 镜像凭据 页签下，单击 ⋮ > 更新/删除。

4. 确认后，单击 更新/删除。

Alauda Container Platform

更新/删除镜像凭据 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

实用指南

使用 KubeVirt 基于 ISO 创建 Windows 镜像

前提条件

约束与限制

操作步骤

远程访问

使用 KubeVirt 基于 ISO 创建 Linux 镜像

前提条件

约束与限制

操作步骤

导出虚拟机镜

操作步骤

Alauda Container Platform

实用指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

使用 KubeVirt 基于 ISO 创建 Windows 镜像

本文档介绍基于开源组件 KubeVirt 的虚拟机方案，利用 KubeVirt 虚拟化技术通过 ISO 镜像文

件创建 Windows 操作系统镜像。

目录

前提条件

集群中的所有组件均正常运行。

请提前准备好 Windows 镜像和最新的 virtio-win-tools 。

前提条件

约束与限制

操作步骤

创建镜像

创建虚拟机

安装 Windows 操作系统

安装 virtio-win-tools

导出自定义 Windows 镜像

使用 Windows 镜像

添加内部路由

远程访问

↗

Alauda Container Platform

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/
http://localhost:4173/container_platform/zh/

请准备好用于存储镜像的仓库，本文以 build-harbor.example.cn 仓库为例，请根据实际环境

替换。

约束与限制

启动 KubeVirt 时，自定义镜像的文件系统大小会影响将镜像写入 PVC 磁盘的速度，文件系

统过大可能导致创建时间延长。

建议保持 Linux 根分区或 Windows C 盘小于 100G，以减少初始大小，后续可通过 cloud-

init 扩容（Windows 系统需创建后手动扩容）。

操作步骤

通过准备好的 Windows 和 virtio-win ISO 镜像创建 Docker 镜像，并推送到仓库。本文以

Windows Server 2019 为例。

从 Windows ISO 创建 Docker 镜像

1. 进入存放 ISO 镜像的目录，在终端执行以下命令，将 ISO 镜像重命名为 win.iso。

2. 执行以下命令创建 Dockerfile。

3. 编辑 Dockerfile，添加以下内容并保存。

创建镜像1

mv <ISO image name> win.iso # 将 <ISO image name> 替换为实际镜像名称，

例如 mv en_windows_server_2019_x64_dvd_4cb967d8.iso win.iso

touch Dockerfile

FROM scratch

ADD --chown=107:107 win.iso /disk/

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

4. 执行以下命令构建 Docker 镜像。

5. 执行以下命令将镜像推送到仓库。

从 virtio-win ISO 创建 Docker 镜像

1. 进入存放 ISO 镜像的目录，执行以下命令创建 Dockerfile。

2. 编辑 Dockerfile，添加以下内容并保存。

3. 执行以下命令构建 Docker 镜像。

4. 执行以下命令将镜像推送到仓库。

1. 进入 容器平台。

创建虚拟机2

docker build -t build-harbor.example.cn/3rdparty/vmdisks/winiso:20

19 . # 根据实际环境替换仓库地址

docker push build-harbor.example.cn/3rdparty/vmdisks/winiso:2019

根据实际环境替换仓库地址

touch Dockerfile

FROM scratch

ADD --chown=107:107 virtio-win.iso /disk/

docker build -t build-harbor.example.cn/3rdparty/vmdisks/win-virti

o:latest . # 根据实际环境替换仓库地址

docker push build-harbor.example.cn/3rdparty/vmdisks/win-virtio:l

atest # 根据实际环境替换仓库地址

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击 创建虚拟机。

4. 在表单页面填写必要参数，如 名称、镜像 等。详细参数及配置请参考创建虚拟机。

5. 切换至 YAML。

6. 将 spec.template.spec.domain.devices.disks 字段下的配置替换为以下内容。

7. 在 spec.template.spec.volumes 字段下添加以下内容。

8. 检查 YAML 文件，完成配置后的完整 YAML 如下。

 domain:

 devices:

 disks:

 - disk:

 bus: virtio

 name: cloudinitdisk

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - cdrom:

 bus: sata

 name: virtio

 - disk:

 bus: sata

 name: rootfs

 bootOrder: 10

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/wini

so:2019 # 根据实际环境替换镜像地址

 name: containerdisk

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/win-

virtio # 根据实际环境替换镜像地址

 name: virtio

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

apiVersion: kubevirt.io/v1alpha3

kind: VirtualMachine

metadata:

 annotations:

 cpaas.io/creator: test@example.io

 cpaas.io/display-name: ""

 cpaas.io/updated-at: 2024-09-01T14:57:55Z

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 generation: 16

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa-test

 name: aa-test

 namespace: acp-service-self

spec:

 dataVolumeTemplates:

 - metadata:

 creationTimestamp: null

 labels:

 vm.cpaas.io/reclaim-policy: Delete

 vm.cpaas.io/used-by: aa-test

 name: aa-test-rootfs

 spec:

 pvc:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: vm-cephrbd

 volumeMode: Block

 source:

 http:

 url: http://192.168.254.12/kube-debian-12.2.0-x86-out.

qcow2

 running: true

 template:

 metadata:

 annotations:

i / @ l i

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

 cpaas.io/creator: test@example.io

 cpaas.io/display-name: ""

 cpaas.io/updated-at: 2024-09-01T14:55:44Z

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 creationTimestamp: null

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa-test

 spec:

 affinity:

 nodeAffinity: {}

 architecture: amd64

 domain:

 devices:

 disks:

 - disk:

 bus: virtio

 name: cloudinitdisk

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - cdrom:

 bus: sata

 name: virtio

 - disk:

 bus: sata

 name: rootfs

 bootOrder: 10

 interfaces:

 - bridge: {}

 name: default

 machine:

 type: q35

 resources:

 limits:

 cpu: "4"

 memory: 8Gi

 requests:

 cpu: "4"

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

9. 点击 创建。

10. 点击 操作 > VNC 登录。

11. 当出现提示 press any key boot from CD or DVD 时，按任意键进入 Windows 安装

程序；若未看到提示，请点击页面左上角的 发送远程命令，从下拉菜单选择 Ctrl-Alt-

Delete 重启服务器。

注意：若虚拟机详情页顶部出现提示 当前虚拟机有配置变更需重启生效，请重启，可

忽略该提示，无需重启。

 memory: 8Gi

 networks:

 - name: default

 pod: {}

 nodeSelector:

 kubernetes.io/arch: amd64

 vm.cpaas.io/baremetal: "true"

 volumes:

 - cloudInitConfigDrive:

 userData: >-

 #cloud-config

 disable_root: false

 ssh_pwauth: true

 users:

 - default

 - name: root

 lock_passwd: false

 hashed_passwd: $6$0vlhl57e$0rawYwaeu9jL6hBf3XP9l

k6XXaMUS9/W6LPbWRinUoXujo39lP3l98VOcOObtr.LDoAv/ylm85FLQmxwNlWFe/

 name: cloudinitdisk

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/wini

so:2019 # 根据实际环境替换镜像地址

 name: containerdisk

 - containerDisk

 image: registry.example.cn:60070/3rdparty/vmdisks/win

-virtio # 根据实际环境替换镜像地址

 name: virtio

 - dataVolume:

 name: aa-test-rootfs

 name: rootfs

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

1. 进入安装页面后，按照安装指引完成系统安装。

注意：分区选择步骤中，磁盘总线必须为 sata，系统才能正确识别磁盘。需依次选择

每个分区并点击 删除，清除所有分区，由系统自动处理。

2. 配置管理员账户密码后，点击页面左上角的 发送远程命令，选择下拉菜单中的 Ctrl-

Alt-Delete。

3. 出现提示 Ctrl+Alt+Delete 组合键将重启服务器，确认重启 时，点击 确定。

4. 输入密码进入 Windows 系统桌面，至此 Windows 操作系统安装完成。

该工具主要包含必要驱动。

1. 打开文件资源管理器。

2. 双击 CD 驱动器(E:) virtio-win-<version>，运行 virtio-win-guest-tools 目录进入安

装页面，按照安装指引完成安装。<version> 部分请根据实际情况替换。

3. 安装完成后，关闭 Windows 系统电源。

具体操作请参考导出虚拟机镜像。

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击列表中使用 Windows 镜像创建的虚拟机名称，进入详情页。

4. 点击 创建虚拟机。

安装 Windows 操作系统3

安装 virtio-win-tools4

导出自定义 Windows 镜像5

使用 Windows 镜像6

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

5. 在表单页面填写必要参数，镜像选择导出的 Windows 镜像。详细参数及配置请参考创

建虚拟机。

6. （可选）若使用较新操作系统，如 Windows 11，需启用时钟、UEFI、TPM 等功能。

切换至 YAML，替换原 YAML 文件为以下内容。

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

apiVersion: kubevirt.io/v1

kind: VirtualMachineInstance

metadata:

 labels:

 special: vmi-windows

 name: vmi-windows

spec:

 domain:

 clock:

 timer:

 hpet:

 present: false

 hyperv: {}

 pit:

 tickPolicy: delay

 rtc:

 tickPolicy: catchup

 utc: {}

 cpu:

 cores: 2

 devices:

 disks:

 - disk:

 bus: sata

 name: pvcdisk

 interfaces:

 - masquerade: {}

 model: e1000

 name: default

 tpm: {}

 features:

 acpi: {}

 apic: {}

 hyperv:

 relaxed: {}

 spinlocks:

 spinlocks: 8191

 vapic: {}

 smm: {}

 firmware:

 bootloader:

 efi:

 secureBoot: true

id d b f d f

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

7. 点击 创建。

通过配置 NodePort 类型的内部路由，暴露远程桌面连接端口。

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击列表中使用 Windows 镜像创建的虚拟机名称，进入详情页。

4. 在 登录信息 区域，点击 内部路由 旁的 添加 图标。

5. 按照以下说明配置参数。

类型 选择 NodePort。

添加内部路由7

参数 说明

 uuid: 5d307ca9-b3ef-428c-8861-06e72d69f223

 resources:

 requests:

 memory: 4Gi

 networks:

 - name: default

 pod: {}

 terminationGracePeriodSeconds: 0

 volumes:

 - name: pvcdisk

 persistentVolumeClaim:

 claimName: disk-windows

 - name: winiso

 persistentVolumeClaim:

 claimName: win11cd-pvc

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

端口

协议：选择 TCP。

服务端口：使用 3389。

虚拟机端口：使用 3389。

服务端口名称：使用 rdp。

6. 点击 确定 返回详情页。

7. 点击 登录信息 区域的 内部路由 链接。

8. 记录基本信息区域的 虚拟 IP 和端口区域的 主机端口 信息。

远程访问

本文以 Windows 操作系统远程连接为例，其他操作系统可使用支持 RDP 协议的软件进行连

接。

1. 打开 远程桌面连接。

2. 输入在 添加内部路由 步骤中保存的虚拟 IP 和主机端口，格式为 虚拟 IP:主机端口 ，例如：

192.1.1.1:3389 。

3. 点击 连接。

参数 说明

使用 KubeVirt 基于 ISO 创建 Windows 镜像 - Alauda Container Platform

使用 KubeVirt 基于 ISO 创建 Linux 镜像

本文档介绍了基于开源组件 KubeVirt 实现的虚拟机方案，利用 KubeVirt 虚拟化技术从 ISO 镜

像文件创建 Linux 操作系统镜像。

目录

前提条件

集群中的所有组件均正常运行。

需提前准备好 Linux 镜像，本文以 Ubuntu 操作系统 为例。

需提前准备好用于存储镜像的仓库，本文以 build-harbor.example.cn 仓库为例，请根据实际

环境替换。

前提条件

约束与限制

操作步骤

将 Linux ISO 镜像转换为 Docker 镜像

创建虚拟机

安装 Linux 操作系统

修改 YAML 文件

安装所需软件并修改配置

导出并使用自定义 Linux 镜像

↗

Alauda Container Platform

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
https://mirrors.tuna.tsinghua.edu.cn/ubuntu-releases/
http://localhost:4173/container_platform/zh/

约束与限制

启动 KubeVirt 时，自定义镜像的文件系统大小会影响写入镜像到 PVC 磁盘的速度，文件系

统过大可能导致创建时间过长。

建议 Linux 根分区大小保持在 100G 以下以减小初始大小，配置 cloud-init 后，创建虚拟机

时为根分区分配更大存储，系统会自动扩展。

操作步骤

1. 进入存放 ISO 镜像的目录，在终端执行以下命令，将 ISO 镜像重命名为 ubuntu.iso。

2. 执行以下命令创建 Dockerfile。

3. 编辑 Dockerfile，添加以下内容并保存。

4. 执行以下命令构建 Docker 镜像。

5. 执行以下命令将镜像推送到仓库。

将 Linux ISO 镜像转换为 Docker 镜像1

mv <ISO image name> ubuntu.iso # 将 <ISO image name> 替换为实际镜像名

称，例如 mv ubuntu-24.04-live-server-amd64.iso ubuntu.iso

touch Dockerfile

FROM scratch

ADD --chown=107:107 ubuntu.iso /disk/

docker build -t build-harbor.example.cn/3rdparty/vmdisks/ubuntu-is

o:24.04 . # 请根据实际环境替换仓库地址

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击 创建虚拟机。

4. 在表单页面填写参数，具体参数及配置请参考 创建虚拟机。

选择镜像 选择虚拟机的模板镜像。

IP 地址 保持默认，通过 DHCP 获取。

网络模式 使用 NAT 模式，此处不要使用 桥接 模式。

5. 切换到 YAML。

6. 将 spec.template.spec.domain.devices.disks 字段下的配置替换为以下内容。

创建虚拟机2

参数 说明

docker push build-harbor.example.cn/3rdparty/vmdisks/ubuntu-iso:2

4.04 # 请根据实际环境替换仓库地址

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

7. 在 spec.template.spec.volumes 字段下添加以下内容。

8. 审核 YAML 文件，完成后的完整 YAML 配置如下。

 domain:

 devices:

 disks:

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - disk:

 bus: virtio

 name: cloudinitdisk

 - disk:

 bus: virtio

 name: rootfs

 bootOrder: 10

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/ubun

tu-iso:24.04 # 请根据实际环境替换镜像地址

 name: containerdisk

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

apiVersion: kubevirt.io/v1alpha3

kind: VirtualMachine

metadata:

 annotations:

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa

 name: aa

spec:

 dataVolumeTemplates:

 - metadata:

 creationTimestamp: null

 labels:

 vm.cpaas.io/reclaim-policy: Delete

 vm.cpaas.io/used-by: aa

 name: aa-rootfs

 spec:

 pvc:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 100Gi

 storageClassName: vm-cephrbd

 volumeMode: Block

 source:

 http:

 url: http://192.168.254.12/kube-debian-12.2.0-x86-out.

qcow2

 running: true

 template:

 metadata:

 annotations:

 cpaas.io/creator: test@example.io

 cpaas.io/display-name: ""

 cpaas.io/updated-at: 2024-09-09T03:49:08Z

 kubevirt.io/latest-observed-api-version: v1

 kubevirt.io/storage-observed-api-version: v1

i i ll

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

 creationTimestamp: null

 labels:

 virtualization.cpaas.io/image-name: debian-2120-x86

 virtualization.cpaas.io/image-os-arch: amd64

 virtualization.cpaas.io/image-os-type: debian

 virtualization.cpaas.io/image-supply-by: public

 vm.cpaas.io/name: aa

 spec:

 accessCredentials:

 - sshPublicKey:

 propagationMethod:

 qemuGuestAgent:

 users:

 - root

 source:

 secret:

 secretName: test-xeon

 affinity:

 nodeAffinity: {}

 architecture: amd64

 domain:

 devices:

 disks:

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

 - disk:

 bus: virtio

 name: cloudinitdisk

 - disk:

 bus: virtio

 name: rootfs

 bootOrder: 10

 interfaces:

 - bridge: {}

 name: default

 machine:

 type: q35

 resources:

 limits:

 cpu: "1"

 memory: 2Gi

 requests:

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

9. 点击 创建。

10. 点击 操作 > VNC 登录。

11. 出现 press any key boot from CD or DVD 提示时，按任意键进入安装程序；若未出

现提示，点击页面左上角的 发送远程命令，然后从下拉菜单选择 Ctrl-Alt-Delete 重启

服务器。

注意：若虚拟机详情页顶部出现提示 当前虚拟机有配置变更需重启生效，请重启。，

可忽略该提示，无需重启。

安装 Linux 操作系统3

 cpu: "1"

 memory: 2Gi

 networks:

 - name: default

 pod: {}

 nodeSelector:

 kubernetes.io/arch: amd64

 vm.cpaas.io/baremetal: "true"

 volumes:

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/ubun

tu-iso:24.04 # 请根据实际环境替换镜像地址

 name: containerdisk

 - cloudInitConfigDrive:

 userData: |-

 #cloud-config

 disable_root: false

 ssh_pwauth: false

 users:

 - default

 - name: root

 lock_passwd: false

 hashed_passwd: ""

 name: cloudinitdisk

 - dataVolume:

 name: aa-rootfs

 name: rootfs

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

1. 进入安装页面后，按照安装向导进行操作。本文以安装 Ubuntu 操作系统为例，不同操

作系统安装过程中的配置项大致相同，故不再赘述。部分配置项说明如下。

安装类型 建议选择最小安装以减小镜像体积。

存储配置
选择自定义存储，格式化磁盘为 ext4 或 xfs 格式并挂载为根分区（/）。

注意：不要使用 LVM 分区（创建卷组 (LVM)）。

SSH 配置 选择安装 OpenSSH 工具以支持 SSH 访问。

2. 等待安装完成。

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击列表中的 虚拟机名称 进入详情页。

4. 点击 停止。

5. 点击右上角 操作 > 更新。

6. 切换到 YAML。

7. 确认 spec.template.spec.domain.devices.disks 下名为 rootfs 的磁盘的 bootOrder 为

1，若不是则修改为 1。

8. 删除 spec.template.spec.domain.devices.disks 下名为 containerdisk 的相关内容，

具体如下。

配置项 说明

修改 YAML 文件4

 - bootOrder: 1

 cdrom:

 bus: sata

 name: containerdisk

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

9. 删除 spec.template.spec.volumes 下名为 containerdisk 的相关内容，具体如下。

10. 点击 更新。

11. 点击 启动。

注意：以下命令及配置文件在不同操作系统间可能略有差异，请根据实际环境调整。

1. 输入用户名和密码登录操作系统。

2. 切换为 root 用户权限。

3. 安装软件包。

CentOS 系列执行：

Debian 系列执行：

4. 编辑 SSHD 配置文件。

1. 执行以下命令编辑 sshd_config 文件。

2. 添加以下配置。

安装所需软件并修改配置5

 - containerDisk:

 image: registry.example.cn:60070/3rdparty/vmdisks/ubun

tu-iso:24.04

 name: containerdisk

yum install cloud-utils cloud-init qemu-guest-agent vim

apt install cloud-init cloud-guest-utils qemu-guest-agent vim

vim /etc/ssh/sshd_config

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

3. 保存修改后的配置。

5. 执行以下命令删除 root 用户默认密码。

6. 修改源地址文件。

1. 执行以下命令修改系统源地址文件，替换为合适的镜像站地址。

2. 修改完成后保存配置。

7. 修改 cloud-init 配置，实现根目录自动扩容。

1. 执行以下命令编辑 cloud.cfg 配置文件。

2. 添加以下配置内容。

3. 修改完成后保存配置。

8. 配置完成后，关闭操作系统。

PermitRootLogin yes # 允许 root 用户密码登录

PubkeyAuthentication yes # 允许密钥登录

passwd -d root

vim /etc/apt/sources.list.d/ubuntu.sources

vim /etc/cloud/cloud.cfg

runcmd:

 - [growpart, /dev/vda, 1] # growpart 命令用于扩展磁盘分区，这里扩

展 /dev/vda1 分区。

 - [xfs_growfs, /dev/vda1] # xfs_growfs 命令用于扩展 XFS 文件系统

以占满分区空间。/dev/vda1 是待扩展文件系统所在分区。扩展分区后，使用 xfs_

growfs 确保文件系统也扩展到新分区大小。

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

具体操作请参考 导出虚拟机镜像。

导出并使用自定义 Linux 镜像6

使用 KubeVirt 基于 ISO 创建 Linux 镜像 - Alauda Container Platform

导出虚拟机镜像

该功能用于导出虚拟机的系统镜像并上传至对象存储，从而使对象存储中的文件可以作为平台

虚拟机镜像的来源添加。

目录

操作步骤

注意：以下所有操作均需在虚拟机所在集群的控制节点上执行。

1. 进入 平台管理。

2. 在左侧导航栏中，点击 虚拟化管理 > 虚拟机。

3. 点击需要导出系统镜像的虚拟机名称，跳转至容器平台中的虚拟机详情页。

操作步骤

停止虚拟机

创建 vmexport 资源

下载虚拟机镜像文件

上传虚拟机镜像文件至对象存储

创建虚拟机镜像

停止虚拟机1

Alauda Container Platform

导出虚拟机镜像 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

4. 点击 停止。

1. 打开 CLI 工具。

2. 执行以下命令设置变量。

参数说明：

NAMESPACE：虚拟机所在的命名空间名称，将 <namespace> 替换为该名称。

VM_NAME：需要导出系统镜像的虚拟机名称，将 <vm_name> 替换为该名称。

TTL_DURATION：导出任务的存活时间，默认为 2 小时，可根据需要调整。

3. 执行以下命令创建 vmexport 资源。

若出现类似回显信息，表示创建成功。

创建 vmexport 资源2

NAMESPACE=<namespace>

VM_NAME=<vm_name>

TTL_DURATION=2h

cat <<EOF | kubectl create -f -

apiVersion: export.kubevirt.io/v1alpha1

kind: VirtualMachineExport

metadata:

 name: export-$VM_NAME

 namespace: $NAMESPACE

spec:

 ttlDuration: $TTL_DURATION

 source:

 apiGroup: "kubevirt.io"

 kind: VirtualMachine

 name: $VM_NAME

EOF

virtualmachineexport.export.kubevirt.io/export-k1 created

导出虚拟机镜像 - Alauda Container Platform

4. 执行以下命令查看 vmexport 资源状态。

回显信息：

5. 当回显信息中的 PHASE 字段变为 Ready 时，按 ctrl（control）+ c 停止 watch 操作。

6. 执行以下命令获取 TOKEN。

1. 执行以下命令获取指定命名空间中虚拟机导出 Pod 的 IP 地址，并存入

EXPORT_SERVER_IP 环境变量。

2. 执行以下命令设置 URL 环境变量，指向虚拟机的磁盘镜像文件。

3. 执行以下命令下载镜像文件，下载后的文件名为 disk.img.gz。

下载虚拟机镜像文件3

上传虚拟机镜像文件至对象存储4

kubectl -n $NAMESPACE get vmexport export-$VM_NAME -w

NAME SOURCEKIND SOURCENAME PHASE

export-k1 VirtualMachine k1 Ready

TOKEN=$(kubectl -n $NAMESPACE get secret export-token-export-$VM_N

AME -o jsonpath={.data.token} | base64 -d)

EXPORT_SERVER_IP=$(kubectl -n $NAMESPACE get po virt-export-export

-$VM_NAME -o jsonpath='{.status.podIP}')

URL=https://$EXPORT_SERVER_IP:8443/volumes/$VM_NAME-rootfs/disk.im

g.gz

curl -k -O -H "x-kubevirt-export-token: $TOKEN" $URL

导出虚拟机镜像 - Alauda Container Platform

将下载的镜像文件上传至对象存储。上传可使用任意 S3 工具，本文以 mc（minio-

client）工具为例介绍。

1. 执行以下命令配置 mc 工具，连接指定的 S3 存储服务。

参数说明：

ENDPOINT：S3 存储服务地址，将 <ENDPOINT> 替换为该地址。

ACCESSKEY、SECRETKEY：用于认证的 S3 存储服务用户 ak 和 sk，相关信息

请参考 MinIO Object Storage 。

2. 执行以下命令创建存储虚拟机镜像文件的桶。

3. 执行以下命令将导出的虚拟机镜像文件 disk.img.gz 上传至创建的桶中。

1. 进入 平台管理。

2. 在左侧导航栏中，点击 虚拟化管理 > 虚拟机镜像。

3. 点击 添加虚拟机镜像。

4. 在镜像地址中填写 <ENDPOINT>/vmdisks/disk.img.gz，将 <ENDPOINT> 替换为 S3

存储服务地址。其他参数说明请参考 添加虚拟机镜像。

5. 点击 添加。

↗

创建虚拟机镜像5

mc alias set minio <ENDPOINT> <ACCESSKEY> <SECRETKEY>

mc mb minio/vmdisks

mc put disk.img.gz minio/vmdisks

导出虚拟机镜像 - Alauda Container Platform

https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect
https://min.io/docs/minio/kubernetes/upstream/index.html?ref=docs-redirect

权限说明

虚拟机镜像

acp-

virtualmachineimagetemplates

查看 ✓ ✓ ✓ ✓ ✓

创建 ✓ ✕ ✕ ✕ ✕

更新 ✓ ✕ ✕ ✕ ✕

删除 ✓ ✕ ✕ ✕ ✕

功能 操作

平

台

管

理

员

平

台

审

计

人

员

项

目

管

理

员

命名

空间

管理

员

开

发

人

员

Alauda Container Platform

权限说明 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

虚拟机

介绍

操作指南

介绍

优势

创建虚拟机/虚拟机组

前提条件

注意事项

创建虚拟机

创建虚拟机组

虚拟机批量操作

操作步骤

使用 VNC 登

操作步骤

管理密钥对

创建密钥对

更新密钥对

删除密钥对

管理虚拟机

重置密码

更新密钥

更新规格

热迁移

更新 NAT 网络配

更新标签和注释

添加服务

重装操作系统

配置 IP

监控与告警

监控

告警

快速定位虚拟机

前提条件

操作步骤

Alauda Container Platform

虚拟机 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

实用指南

问题处理

配置 USB 主机直通

功能概述

使用场景

前提条件

操作步骤

操作结果

了解更多

虚拟机热迁移

Overview

约束与限制

前提条件

操作步骤

虚拟机恢复

操作步骤

虚拟机克隆

前提条件

操作步骤

相关操作物理 GPU 直通环境准备

约束与限制

前提条件

操作步骤

结果验证

相关操作

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题

问题描述

原因分析

解决方法

热迁移错误信息及解决方案

虚拟机 - Alauda Container Platform

虚拟机 - Alauda Container Platform

介绍

KubeVirt 提供了诸如 VirtualMachine 和 VirtualMachineInstance 等 CRD（Custom

Resource Definitions，自定义资源定义）来抽象虚拟机（VM）资源。基于这些 CRD，用户可

以获得全面的虚拟机管理能力。在此基础上，ACP Virtualization With KubeVirt 通过提供

Web Console 进一步提升了易用性，使用户能够更轻松地执行各种操作。

目录

优势

全面的虚拟机管理

创建/删除虚拟机，重装操作系统，重置密码，更新 SSH 密钥，调整资源分配，访问

VNC 控制台。

导出/克隆虚拟机，执行实时迁移等。

用户友好的操作

大多数虚拟机操作均可通过直观的 Web UI 轻松完成。

可视化监控与告警

通过 Web UI 监控关键虚拟机指标（如 CPU、内存、磁盘使用情况）。

配置告警，主动发现潜在的运行时问题（如资源耗尽、性能下降）。

优势

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍 - Alauda Container Platform

操作指南

创建虚拟机/虚拟机组

前提条件

注意事项

创建虚拟机

创建虚拟机组

虚拟机批量操作

操作步骤

使用 VNC 登

操作步骤

管理密钥对

创建密钥对

更新密钥对

删除密钥对

管理虚拟机

重置密码

更新密钥

更新规格

热迁移

更新 NAT 网络配

更新标签和注释

添加服务

重装操作系统

配置 IP

监控与告警

监控

告警

快速定位虚拟机

前提条件

操作步骤

Alauda Container Platform

操作指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

创建虚拟机/虚拟机组

使用镜像创建虚拟机（VirtualMachineInstance），并将虚拟机调度到安装了 Kubevirt 组件且开

启虚拟化的物理机节点上。

您可以通过 创建虚拟机 创建单个虚拟机，您也可以通过 创建虚拟机组

（virtualMachinePool），快速创建出多个相同配置的虚拟机（VirtualMachineInstance）。

目录

前提条件

使用镜像创建虚拟机前，请与平台管理员确认以下事项：

目标集群为自建集群，且已部署 Kubevirt 组件。

目标节点需为物理机节点，并开启虚拟化。

前提条件

注意事项

创建虚拟机

操作步骤

相关操作

创建虚拟机组

操作步骤

Alauda Container Platform

创建虚拟机/虚拟机组 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

平台中已添加虚拟机镜像。

若需使用虚拟机物理 GPU 直通功能，请联系平台管理员进行如下配置：

1. 获取 GPU 直通环境准备方案，并准备相关环境。

2. 准备所需物理 GPU，并开启虚拟机物理 GPU 直通相关功能。

注意事项

使用 Windows 虚拟机时，仅支持通过虚拟机镜像中设置的 账号/密码 登录，请事先联系平台管

理员获取。

创建虚拟机

操作步骤

说明：下述内容以表单方式创建虚拟机为例，您也可切换至 YAML 方式完成操作。

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 单击 创建虚拟机。

4. 在 基本信息 区域填写虚拟机的名称和显示名称，设置标签或注解。

标

签

用来选择对象和查找满足某些条件的对象集合。需为键值对，例如：

app.kubernetes.io/name: hello-app。

注

解
用于向开发和运维团队提供任何信息。需为键值对，例如：cpaas.io/maintainer: kim。

参

数
说明

创建虚拟机/虚拟机组 - Alauda Container Platform

5. 设置机型并选择虚拟机镜像。

规格 可根据需求选择平台推荐的使用场景或自定义资源限额。

物理 GPU

（Alpha）

选择物理 GPU 的型号，仅可为每个虚拟机分配一张物理 GPU。

说明：虚拟机物理 GPU 直通是指在虚拟化环境中，将实际的图形处理单元

（GPU）直接分配给虚拟机，使其能够直接访问和利用物理 GPU，从而达到

在虚拟机中却可以获得与在物理机上直接运行的同等图形性能，避免虚拟图

形适配器引起的性能瓶颈，从而提升整体性能。

镜像
选择平台管理员已分配至平台项目中的公共镜像。

说明：仅支持选择与集群架构相同的 CPU 架构。

6. 在 存储 区域，参考以下说明配置相关信息。

磁盘名 存储磁盘的名称，系统盘名不支持修改。

类型

根磁盘：系统默认创建一个 VirtIO 类型的 rootfs 系统盘，用于存放操作系统

和数据。

数据盘：单击添加，添加多块数据盘，可用于持久化存储数据。默认为

VirtIO 设备。

注意：数据盘名称不得与已有磁盘名称重复。

卷模式
文件系统：以挂载文件目录的方式挂载磁盘。

块设备：以挂载块设备的方式挂载磁盘。

存储类 平台通过创建和管理持久卷声明来维护虚拟机磁盘。此处需要指定动态创建持

久卷声明所需的存储类。

参数 说明

参数 说明

创建虚拟机/虚拟机组 - Alauda Container Platform

各存储类支持的卷模式不同，如果所选卷模式下无可用存储类，请联系管理员

进行添加。

容量 虚拟机存储所需的容量，系统盘最小为 20 G。

随虚拟机

删除
默认开启，不支持修改，表示删除虚拟机的同时也会删除磁盘数据。

7. 在 网络 区域，参考以下说明配置相关信息。

IP 地

址

默认采用 动态获取方式（DHCP），启动虚拟机时为其动态分配 IP，停止虚拟机

后释放 IP。

若绑定 固定 IP，即使重启，虚拟机也始终使用此 IP 地址。如果当前项目中无可

用 IP，请先适当释放 IP。

网络

模式

桥接：虚拟机与容器组使用相同 IP 地址，并通过此 IP 地址与外部通信。

NAT：虚拟机将被分配内部 IP 地址，但会转换为容器组 IP 地址与外部通信。开放

端口表示虚拟机的暴露端口，例如 SSH 服务 22 端口，不填写 开放端口 则表示开

放所有端口。

辅助

网卡

按需添加辅助网卡。

注意：

若需使用辅助网卡相关功能或无可用的辅助网卡网络类型，请联系平台管理员配

置。

SR-IOV 类型仅支持 x86_64 架构的 Linux 操作系统使用。

默认使用 DHCP 获取 IP 地址。

SR-IOV 虚拟机多次重启后会出现两个不同的 VF 但是 MAC 地址相同的情况。

参数 说明

参数 说明

创建虚拟机/虚拟机组 - Alauda Container Platform

8. 在 初始化设置 区域，参考以下说明配置相关信息。

密钥

始终使用 SSH 密钥进行远程登录验证。此方式无需校验密码，推荐使用密钥方式登

录虚拟机。

您可使用平台中已有密钥，也可当即创建新密钥，相关密钥均可在 虚拟化 > 密钥

对 页面查看。

仅拥有私钥的人员可通过 SSH 方式访问虚拟机。如需多人共同维护虚拟机，可关

联多个密钥，并将私钥分配给不同的使用人员。一旦发生密钥泄露，可及时取消

关联该密钥以减少损失。

SSH 密钥的公钥以保密字典的形式存储于平台中，平台不会存储您的私钥，请自

行妥善保管。

请查阅操作系统相关文档获取 root 用户密码。

密码

使用操作系统用户及密码进行登录验证，后续仍可更新为密钥方式。

用户仅为初始帐号，虚拟机创建成功后，您也可在虚拟机中创建其他操作系统用

户用于登录。

平台会加密存储您的 root 用户密码，您将无法再次看见其明文密码，请自行妥善

保管。

立即

启动
默认开启。开启此项，创建完毕后会立即启动虚拟机，否则将仅创建虚拟机。

9. （可选）在 高级配置 区域，参考以下说明配置相关信息。

健康

检查
存活性健康检查：检查虚拟机是否处于健康状态，如果检测结果为非正常时，会

根据健康检查的配置决定是否重启实例。

可用性健康检查：检查虚拟机是否启动完成并处于正常服务状态，如果检测到虚

拟机实例的健康状态为非正常时，虚拟机状态会被更新。

参数 说明

参数 说明

创建虚拟机/虚拟机组 - Alauda Container Platform

。

节点

亲和

Preferred：虚拟机将被尽量调度到符合亲和要求的节点上。系统将结合亲和性权

重与其它调度需求（例如计算资源需求）确定可运行虚拟机的节点。

Required：虚拟机只会被调度到完全符合亲和要求的节点上。

10. 确认信息无误后，单击 创建。

等待虚拟机由 创建中 变为 运行中 状态。

相关操作

您可以在列表页面单击右侧的 ⋮ 或在详情页面单击右上角的 操作，按需更新或删除虚拟机。重

置密码、更新密钥等其它相关操作，请参见 管理虚拟机 。

注意：

仅当虚拟机为 异常、未知、已停止 状态时可执行更新操作。

更新时不支持展示虚拟机创建完成后单独挂载或创建的磁盘。

更新时 立即启动 默认为关闭状态，您可以按需开启。

创建虚拟机组

操作步骤

说明：下述内容以表单方式创建虚拟机组为例，您也可切换至 YAML 方式完成操作。

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机组。

参数 说明

创建虚拟机/虚拟机组 - Alauda Container Platform

3. 单击 创建虚拟机组。

4. 在 基本信息 区域，参考以下说明配置虚拟机组的信息。

实例数 通过虚拟机组创建的虚拟机的个数。

实例间

反亲和

启用后，调度多个虚拟机至节点时，会尽量让虚拟机分布到不同的节点上，可提升

一组虚拟机的高可用性。

标签
可为虚拟机组添加标签。标签可用于选择对象和查找满足某些条件的对象集合。需

为键值对，例如：app.kubernetes.io/name: hello-app。

5. 在 虚拟机模板 区域，参考 创建虚拟机 为组中的所有虚拟机配置统一的标签、注解、规格、

镜像、存储等信息。

6. 确认信息无误后，单击 创建。

提示：创建成功后，可前往 虚拟机 的列表页面查看通过虚拟机组创建出的虚拟机的信息。

参数 说明

创建虚拟机/虚拟机组 - Alauda Container Platform

虚拟机批量操作

批量进行启动、停止、重启和删除虚拟机操作。

目录

操作步骤

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 找到目标虚拟机，单击 ⋮ 可对单个虚拟机进行操作，或参考下图进行虚拟机的批量操作。

注意：

当虚拟机处于休眠或已停止状态时，可以执行 启动/批量启动 操作；当虚拟机处于准备

中、启动中、运行中、休眠、未知或异常状态时，可以执行 停止/批量停止 操作；当虚拟

机处于运行中状态时，可以执行 重启/批量重启 操作。

对虚拟机进行强制 重启/停止 操作，相当于对虚拟机断电，这可能会导致未写入磁盘的数

据丢失。

4. 根据界面提示完成操作。当虚拟机变为如下状态时，操作成功。

操作步骤

Alauda Container Platform

虚拟机批量操作 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

启动虚拟机 运行中

停止虚拟机 已停止

重启虚拟机 运行中

操作 状态

虚拟机批量操作 - Alauda Container Platform

使用 VNC 登录虚拟机

使用 Web 控制台（VNC）登录虚拟机，作为应急操作手段。

目录

操作步骤

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 单击 ⋮ > VNC 登录。

4. 控制台窗口将自动打开；您需要输入用户名和密码进行登录。

操作步骤

Alauda Container Platform

使用 VNC 登录虚拟机 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

说明：

支持发送常用键盘命令。

支持复制和粘贴命令和参数。

使用 VNC 登录虚拟机 - Alauda Container Platform

管理密钥对

创建、更新或删除密钥对。

目录

创建密钥对

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 密钥对。

3. 单击 创建密钥对。

当前仅支持 SSH 类型的密钥对。您可以手动导入密钥或让系统自动生成密钥对。使用系统

生成的密钥对时，平台支持自动将私钥下载到您的本地机器。平台不会保存私钥。

4. 单击 创建。

更新密钥对

1. 进入 Container Platform。

创建密钥对

更新密钥对

删除密钥对

Alauda Container Platform

管理密钥对 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

2. 在左侧导航栏中，单击 虚拟化 > 密钥对。

3. 找到 密钥对名称，单击 ⋮ > 更新。

4. 重新导入或让系统生成新的密钥对后，单击 更新。

删除密钥对

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 密钥对。

3. 找到 密钥对名称，单击 ⋮ > 删除，并确认。

管理密钥对 - Alauda Container Platform

管理虚拟机

目录

重置密码

重置 root 用户密码。该密码同时作为使用密码登录虚拟机时的登录密码。

操作步骤

重置密码

操作步骤

更新密钥

操作步骤

更新规格

热迁移

更新 NAT 网络配置

操作步骤

更新标签和注释

添加服务

重装操作系统

操作步骤

配置 IP

操作步骤

Alauda Container Platform

管理虚拟机 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 找到虚拟机并选择 ⋮ > Reset Password。

4. 设置密码。

5. 点击 Reset。

注意：请妥善保管您的密码。为保障环境安全，平台会对密码进行加密存储，您将无法再次

查看明文密码。

更新密钥

更新 SSH 密钥。

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 找到虚拟机并选择 ⋮ > Update Key。

4. 选择一个或多个关联密钥，或点击 Create Key 创建密钥。

5. 选择是否立即重启；更新密钥需要重启虚拟机后生效。

6. 点击 Update。

更新规格

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 找到目标虚拟机并点击 ⋮ > Update Specifications。

管理虚拟机 - Alauda Container Platform

4. 根据平台推荐场景或自定义需求修改相关资源。

5. 选择是否 Restart Immediately；配置将在重启后生效。

6. 点击 Update。

热迁移

注意：如需热迁移操作相关文档，请联系管理员协助。

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 找到目标虚拟机并点击 ⋮ > Live Migration。

4. 点击 Confirm。

更新 NAT 网络配置

使用 NAT 网络模式时，平台默认开放端口 22 用于 SSH 服务，您可根据需要开放其他端口。

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 点击 虚拟机名称。

4. 在 Basic Information 区域，点击 Open Port 右侧的图标。

5. 输入端口号并按回车键确认。

6. 选择是否 Restart Immediately；配置将在重启后生效。

7. 点击 Update。

管理虚拟机 - Alauda Container Platform

更新标签和注释

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 点击 虚拟机名称。

4. 在 Basic Information 区域，点击 Tags 或 Annotations 右侧的图标。

5. 按需配置并点击 Update。

添加服务

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 点击 虚拟机名称。

4. 在 Login Information 区域，点击 Internal Route 右侧的图标。

5. 参考 Create Service 页面快速添加虚拟机内部路由。

6. 点击 Confirm。

重装操作系统

强烈建议在重装操作系统前备份数据，以防数据丢失。

注意：此操作将清除虚拟机 系统盘 中的所有数据及所有 快照，且不可恢复，请谨慎操作！

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

管理虚拟机 - Alauda Container Platform

http://localhost:4173/container_platform/zh/configure/networking/functions/configure_service.html

3. 找到虚拟机并选择 ⋮ > Reinstall Operating System。

4. 在 Reinstall Operating System 窗口中配置以下参数。

Provisioning Method：当前支持公有镜像。

Select Image：默认使用当前操作系统镜像进行重装。如需重装新操作系统，先选择虚拟

机镜像的操作系统，再选择该操作系统下的虚拟机镜像。

5. 点击 Reinstall。

配置 IP

为虚拟机分配动态分配（DHCP）IP，或绑定固定 IP，虚拟机重启后新 IP 生效。

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏，点击 Virtualization > Virtual Machines。

3. 找到目标虚拟机并点击 ⋮ > Configure IP。

4. 配置 IP Address。

填写可用 IP：绑定固定 IP 表示即使重启，虚拟机也会一直使用该 IP 地址。

留空：使用动态分配（DHCP）获取 IP，虚拟机启动时分配，停止时释放。

5. 选择是否 Restart Immediately；配置将在重启后生效。

6. 点击 Configure。

管理虚拟机 - Alauda Container Platform

监控与告警

针对虚拟机的 CPU、内存、存储和网络进行监控和告警。为了便于及时告警，还可以配置通知

策略。

直观呈现的监控数据可用于为运维巡检或性能调优提供决策支持，而完善的告警和通知机制则

有助于保障虚拟机的稳定运行。

目录

监控

平台默认采集虚拟机常用的性能监控指标，包括 CPU、内存、存储和网络。进入

Virtualization > Virtual Machines，在虚拟机详情的 Monitoring 标签页中，可以查看各指标

的实时监控数据。

监控

告警

配置告警策略

处理告警

绑定通知策略

Alauda Container Platform

监控与告警 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

告警

配置告警策略

启用告警前，需先创建告警策略。告警策略描述了您希望监控的对象、触发告警的条件，以及

如何接收相关告警通知。进入 Container Platform > Virtualization > Virtual Machines，在

虚拟机详情的 Alerts 标签页点击 Create Alert Policy 完成配置。

Alert Type
- Metric Alert：监控对象为平台预定义的指标，如 Memory Usage Rate。

- Event Alert：监控对象为事件的原因，即虚拟机转变到当前状态的原因，例

如 BackOff、Pulling、Failed。

Trigger
Condition

由比较运算符、告警阈值和持续时间组成。通过将实时监控结果与设置的阈值

进行比较，判断是否触发告警。

若设置了持续时间，平台还会比较监控对象处于告警状态的持续时长。

Alert Level

- Hint：监控对象存在预期问题，暂时不会影响业务运行，但存在潜在风险。

例如 CPU 使用率超过 70% 持续 3 分钟。

- Warning：监控对象存在可能影响正常业务运行的风险，需及时处理。例如

CPU 使用率超过 80% 持续 3 分钟。

- Serious：监控对象存在已知问题，可能导致平台功能异常，影响正常业务运

行。

- Disaster：监控对象已发生故障，导致平台服务中断、数据丢失，影响严

重。

参数 说明

监控与告警 - Alauda Container Platform

提示：虚拟机告警功能与平台通用告警功能类似，详细配置指导请参见通用 Alerts 文档。

处理告警

进入 Alerts 标签页，如有告警状态策略提示，请及时处理。

绑定通知策略

除了在 Alerts 标签页实时告警外，平台还支持通过邮件、短信等方式将告警信息发送给相关人

员，通知其采取必要措施解决问题或防止故障。通知策略需联系管理员进行设置。

监控与告警 - Alauda Container Platform

快速定位虚拟机

平台支持按集群展示虚拟机列表，方便平台管理员快速定位虚拟机所在命名空间，完成虚拟机

扩容或排障等操作，以提升运维效率。

目录

前提条件

使用前需确保当前集群已开启虚拟化功能，请参考 安装。

操作步骤

1. 进入 平台管理。

2. 在左侧导航栏中，单击 虚拟化管理 > 虚拟机。

3. 选择 集群，即可查看该集群的虚拟机列表。

4. 您可以根据虚拟机名称、IP 地址或创建人快速定位虚拟机。

前提条件

操作步骤

Alauda Container Platform

快速定位虚拟机 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

5. 单击虚拟机 名称 链接，可进入该虚拟机的详情页面，对虚拟机进行扩容或排障等操作。

快速定位虚拟机 - Alauda Container Platform

实用指南

配置 USB 主机直通

功能概述

使用场景

前提条件

操作步骤

操作结果

了解更多

虚拟机热迁移

Overview

约束与限制

前提条件

操作步骤

虚拟机恢复

操作步骤

虚拟机克隆

前提条件

操作步骤

相关操作物理 GPU 直通环境准备

约束与限制

前提条件

操作步骤

结果验证

相关操作

Alauda Container Platform

实用指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

配置 USB 主机直通

目录

功能概述

USB（通用串行总线）直通功能使您能够从虚拟机访问和管理 USB 设备。

使用场景

某些运行在虚拟机（VM）中的应用程序具有加密需求，需要与专用的 USB 设备交互。在这种

情况下，需要将 USB 设备从主机直通到虚拟机。

功能概述

使用场景

前提条件

操作步骤

暴露 USB 设备

将 USB 设备分配给虚拟机

操作结果

了解更多

暴露多个 USB 设备

将 USB 设备分配给虚拟机

Alauda Container Platform

配置 USB 主机直通 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

前提条件

平台版本必须至少为 v3.18。

操作步骤

要将 USB 设备分配给虚拟机，必须通过 ResourceName 暴露该 USB 设备。可以通过编

辑 kubevirt 命名空间下的 HyperConverged CR 中的

spec.permittedHostDevices.usbHostDevices 部分来配置。

以下是一个 USB 设备的示例配置，ResourceName 为 kubevirt.io/storage，厂商 ID 为

0bda ，产品 ID 为 8812 ：

USB 设备的厂商和产品标识符可以通过 lsusb 命令获取。 例如：

该命令列出所有连接的 USB 设备，其中 ID 显示厂商 :产品对 。

暴露 USB 设备1

提示

将 USB 设备分配给虚拟机2

spec:

 permittedHostDevices:

 usbHostDevices:

 - resourceName: kubevirt.io/storage

 selectors:

 - vendor: '0bda'

 product: '8812'

lsusb

Bus 001 Device 007: ID 0bda:8812 Realtek Semiconductor Corp. RT

L8812AU 802.11a/b/g/n/ac 2T2R DB WLAN Adapter

配置 USB 主机直通 - Alauda Container Platform

现在，在虚拟机配置中，可以添加 spec.domain.devices.hostDevices.deviceName

来引用上一步中提供的 ResourceName ，并为其指定本地名称。 例如：

编辑配置前请确保虚拟机已停止。

操作结果

完成配置后，在虚拟机内执行 lsusb 命令。如果输出中列出了主机节点的 USB 设备，则表示

直通成功。 例如：

了解更多

您可能希望将多个 USB 设备直通到虚拟机，例如键盘、鼠标或智能卡设备。我们支持在同一个

resourceName 下分配多个 USB 设备。配置方法如下：

提示

暴露多个 USB 设备1

spec:

 domain:

 devices:

 hostDevices:

 - deviceName: kubevirt.io/storage

 name: usb-storage

lsusb

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 001 Device 002: ID 0bda:8812 Realtek Semiconductor Corp. RTL8812AU 80

2.11a/b/g/n/ac 2T2R DB WLAN Adapter

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

配置 USB 主机直通 - Alauda Container Platform

注意：所有 USB 设备必须物理连接并被主机检测到，才能确保成功分配给虚拟机。

提示

将 USB 设备分配给虚拟机2

spec:

 permittedHostDevices:

 usbHostDevices:

 - resourceName: kubevirt.io/peripherals

 selectors:

 - vendor: '0bda'

 product: '8812'

 - vendor: '062a'

 product: '4102'

 - vendor: '072f'

 product: 'b100'

spec:

 domain:

 devices:

 hostDevices:

 - deviceName: kubevirt.io/peripherals

 name: local-peripherals

配置 USB 主机直通 - Alauda Container Platform

虚拟机热迁移

目录

Overview

虚拟机热迁移技术允许在不关闭或中断虚拟机的情况下，将虚拟机从一台物理服务器迁移到另

一台物理服务器。平台的虚拟机解决方案基于开源组件 KubeVirt 实现，默认采用一种称为

ProCopy 的模式进行热迁移。

ProCopy

ProCopy（预拷贝内存迁移）是一种常用的虚拟机迁移技术，通过预先拷贝虚拟机的内存数

据，确保迁移过程中的服务连续性。具体流程如下：

Overview

ProCopy

约束与限制

前提条件

操作步骤

部署 kubevirt-operator

创建 HyperConverged 实例

准备虚拟机

启动热迁移

Alauda Container Platform

虚拟机热迁移 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

1. 初始阶段：迁移开始时，源主机在虚拟机继续运行的同时，将虚拟机的内存页拷贝到目标主

机。由于虚拟机持续运行，部分内存页可能在拷贝过程中被修改。

2. 迭代拷贝：源主机反复将被修改的内存页拷贝到目标主机，直到被修改的内存页数量降至可

接受的水平。每轮拷贝称为一次迭代，经过多次迭代后未修改的内存页数量逐渐减少。

3. 停止并拷贝：当剩余未拷贝的内存页足够少时，虚拟机会短暂暂停（通常仅几秒到十几

秒），在此期间将最后的内存页拷贝到目标主机，并将虚拟机的 CPU 和设备状态同步到目

标主机。

4. 恢复运行：虚拟机在目标主机上恢复运行。

约束与限制

建议参与热迁移操作的两台物理机使用相同的硬件配置。如果配置不一致（例如 CPU 型号不

同），迁移可能失败。

前提条件

请提前启用相关的虚拟机热迁移功能。

操作步骤

部署 kubevirt-operator

注意：详细步骤及参数说明，请参考 Deploy Operator。

1. 进入 平台管理。

2. 在左侧导航栏点击 应用商店管理 > Operators。

3. 点击页面顶部的 集群，切换到需要部署 Operator 的集群。

4. 在 OperatorHub 标签页中，点击 KubeVirt HyperConverged Cluster Operator 卡片上的

部署。

虚拟机热迁移 - Alauda Container Platform

5. 根据需要配置参数，点击 部署。可在 已部署 标签页查看 Operator 部署状态。

创建 HyperConverged 实例

具体创建步骤请参考 Create HyperConverged Instance。

准备虚拟机

注意：建议使用 Kube-OVN Underlay 网络。相关配置请参考 Create Subnet (Kube-OVN

Underlay Network)。

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击 创建虚拟机。

4. 在 基本信息 区域点击 更多 展开更多配置选项，点击 Annotations 对应的 添加，根据下表

添加注解。如果网络插件是 Kube-OVN，则无需手动填写此注解。

注意：由于表单限制，请先输入注解的 值，再输入注解的 键。

值 true

键 kubevirt.io/allow-pod-bridge-network-live-migration

5. 根据需要配置其他虚拟机参数。具体参数说明请参考相关产品文档。

卷模式 必须使用 块模式。

存储类 必须使用 CephRBD 块存储类型存储类。

网络模式 推荐使用 桥接模式。

注解

参数 说明

虚拟机热迁移 - Alauda Container Platform

http://localhost:4173/container_platform/zh/configure/networking/functions/configure_subnet.html#kube_ovn_underlay_network
http://localhost:4173/container_platform/zh/configure/networking/functions/configure_subnet.html#kube_ovn_underlay_network

6. 点击 创建。

启动热迁移

注意：虚拟机状态为 运行中 时，方可启动热迁移。

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 启动热迁移，有两种方式：

在列表中需要迁移的虚拟机右侧点击 ⋮ > 热迁移。

点击列表中需要迁移的虚拟机名称进入详情页，点击 操作 > 热迁移。

4. 点击 确认。可通过 虚拟机状态 或 实时事件 查看迁移进度。当状态由 迁移中 变为 运行中，

或实时事件出现类似 Migrated: The VirtualMachineInstance migrated to node 10.1.1.1.

的信息时，表示迁移成功。

虚拟机热迁移 - Alauda Container Platform

虚拟机恢复

在某些场景中，例如错误修改 fstab 或文件系统错误需要执行 fsck，虚拟机可能无法正常启

动。在这种情况下，您可以利用救援模式来修复根文件系统（rootfs）或从系统中检索数据。

目录

操作步骤

获取镜像地址

1. 在左侧导航栏中，单击 虚拟化管理 > 虚拟机镜像。

2. 选择平台提供的 来源 为 镜像仓库，并将 操作系统 选择为 CentOS 或 Ubuntu。然后单击右

侧的 ⋮ > 更新。

3. 复制并保存 镜像地址。本文档以 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9 为

例。

4. 单击 取消。

操作步骤

获取镜像地址

修改虚拟机 YAML 文件

挂载原有 rootfs 并进行修复

还原虚拟机 YAML 文件

Alauda Container Platform

虚拟机恢复 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

修改虚拟机 YAML 文件

1. 访问 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 单击需要修复的虚拟机右侧的 ⋮ > 停止，将虚拟机 停止 或 强制停止。

4. 单击虚拟机右侧的 ⋮ > 更新。

5. 切换至 YAML 并修改以下字段。

在 spec.template.spec.domain.devices.disks 字段下增加以下内容。增加

bootOrder 参数可以控制虚拟机启动时的磁盘优先级；bootOrder 数值越小表示优先级越

高。

注意：如果原 spec.template.spec.domain.devices.disks 字段中已有 bootOrder:

1 ，请增大原数值，以确保新增的 bootOrder 值小于原值。

修改后的 YAML 示例：

disks:

 - bootOrder: 1

 disk:

 bus: virtio

 name: containerdisk

虚拟机恢复 - Alauda Container Platform

在 spec.template.spec.volumes 字段下增加以下内容。

注意：请用在 获取镜像地址 中获取的镜像地址替换下述 image 字段的镜像地址。

修改后的 YAML 示例：

domain:

 devices:

 disks:

 - bootOrder: 1 # 增加的字段

 disk:

 bus: virtio

 name: containerdisk

 - disk:

 bus: virtio

 name: cloudinitdisk

 - disk: # 增大原 bootOrder: 1 的数值

 bus: virtio

 name: rootfs

 bootOrder: 10

 - disk:

 bus: virtio

 name: "1"

- containerDisk:

 image: 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9

 name: containerdisk

volumes:

 - containerDisk: # 增加的字段

 image: 192.168.1.1:11443/3rdparty/vmdisks/centos:7.9

 name: containerdisk

 - dataVolume:

 name: k2-rootfs

 name: rootfs

 - dataVolume:

 name: k2-1

 name: "1"

虚拟机恢复 - Alauda Container Platform

6. 单击 更新。

注意：修改 YAML 文件后，请勿切换至 表单，直接单击 更新 即可。

7. 单击虚拟机右侧的 ⋮ > 启动。

挂载原有 rootfs 并进行修复

1. 使用原密码或密钥登录虚拟机，输入 df -h / 命令，发现 rootfs 文件系统已被替换。您可

以使用与挂载相关的命令进行挂载，或使用 fsck 相关命令检查和修复原文件系统。

2. 完成后关闭虚拟机。

还原虚拟机 YAML 文件

按照 修改虚拟机 YAML 文件 的步骤，将虚拟机 YAML 文件恢复至原始状态，此时虚拟机应能

正常启动。

虚拟机恢复 - Alauda Container Platform

虚拟机克隆

虚拟机克隆是指在某一特定时间点创建虚拟机的副本。克隆的虚拟机包含原虚拟机的所有配

置、操作系统、应用程序和数据。

目录

前提条件

要使用虚拟机克隆功能，其磁盘必须使用支持快照功能的存储类。虚拟机快照保存虚拟机的

当前状态，可用于在发生意外故障时将虚拟机恢复到该时间点。

需要在执行脚本的节点上安装 jq 包。jq 是一个轻量级的命令行 JSON 处理工具，用于解析

和处理 JSON 数据。

操作步骤

注意：以下所有操作必须在虚拟机所在集群的主节点上执行。

1. 打开 CLI 工具。

前提条件

操作步骤

相关操作

查看并启动克隆的虚拟机

Alauda Container Platform

虚拟机克隆 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

2. 执行以下命令创建并打开 vm-clone.sh 文件。

3. 按 i 并将以下内容复制到 vm-clone.sh 文件中。

vi vm-clone.sh

虚拟机克隆 - Alauda Container Platform

虚拟机克隆 - Alauda Container Platform

#!/bin/bash

vm_clone() {

 NAMESPACE=$1

 VM_NAME=$2

 VM_CLONE_NAME=$3

 cat <<EOF | kubectl create -f -

kind: VirtualMachineClone

apiVersion: clone.kubevirt.io/v1alpha1

metadata:

 name: clone-$VM_NAME

 namespace: $NAMESPACE

spec:

 source:

 apiGroup: kubevirt.io

 kind: VirtualMachine

 name: $VM_NAME

 target:

 apiGroup: kubevirt.io

 kind: VirtualMachine

 name: $VM_CLONE_NAME

 labelFilters:

 - "*"

 - "!ovn.kubernetes.io/*"

 annotationFilters:

 - "*"

 - "!ovn.kubernetes.io/*"

 template:

 labelFilters:

 - "*"

 - "!ovn.kubernetes.io/*"

 annotationFilters:

 - "*"

 - "!ovn.kubernetes.io/*"

EOF

 if [$? -eq 0]; then

 echo "Create vmclone resource Succeeded"

 else

 echo "Create vmclone resource failed"

 exit 1

 fi

虚拟机克隆 - Alauda Container Platform

 echo "Waiting for vm clone completion"

 while true; do

 phase=$(kubectl -n $NAMESPACE get vmclone clone-$VM_NAME -o jsonpat

h='{.status.phase}')

 if ["$phase" == "Succeeded"]; then

 break

 elif ["$phase" == "Failed"]; then

 echo "VirtualMachineClone resource phase is Failed"

 exit 1

 fi

 sleep 5

 done

 echo "vm clone completion"

 dvList=$(kubectl -n $NAMESPACE get vm $VM_CLONE_NAME -o jsonpath='{.s

pec.template.spec.volumes}' | jq . | grep restore- | grep name | awk

'{print $2}')

 for dv in $dvList; do

 kubectl -n $NAMESPACE label --overwrite dv $(echo $dv | sed 's/"//

g') vm.cpaas.io/used-by=$VM_CLONE_NAME

 if [$? -ne 0]; then

 echo "update DV label failed"

 exit 1

 fi

 done

 pvcList=$(kubectl -n $NAMESPACE get vm $VM_CLONE_NAME -o jsonpath='{.

spec.template.spec.volumes}' | jq . | grep restore- | grep claimName |

awk '{print $2}')

 for pvc in $pvcList; do

 kubectl -n $NAMESPACE label --overwrite pvc $(echo $pvc | sed

's/"//g') vm.cpaas.io/used-by=$VM_CLONE_NAME

 if [$? -ne 0]; then

 echo "update PVC label failed"

 exit 1

 fi

 done

}

if [$# -ne 3]; then

 echo "error: parameters error"

虚拟机克隆 - Alauda Container Platform

4. 按 shift+:wq 保存文件。

5. 执行以下命令为 vm-clone.sh 文件添加执行权限。

6. 执行以下命令运行脚本文件。{#clone}

参数说明：

NAMESPACE：指定要克隆的虚拟机所在的命名空间，替换 <NAMESPACE> 部分为该

命名空间。

VM_NAME：指定要克隆的虚拟机名称，替换 <VM_NAME> 部分为该名称。

VM_CLONE_NAME：指定克隆虚拟机的名称，替换 <VM_CLONE_NAME> 部分为该名

称。

7. 当出现如下类似信息时，表示克隆完成。

 echo "Usage: ./vm-clone.sh NAMESPACE VM_NAME VM_CLONE_NAME"

 exit 1

fi

exec vm clone

vm_clone "$1" "$2" "$3"

chmod +x vm-clone.sh

./vm-clone.sh <NAMESPACE> <VM_NAME> <VM_CLONE_NAME>

virtualmachineclone.clone.kubevirt.io/clone-k1 created

Create vmclone resource Succeeded

Waiting for vm clone completion

vm clone completion

datavolume.cdi.kubevirt.io/restore-e8ff0e7b-dc7e-4140-aec7-8556cfcf4533

-rootfs labeled

datavolume.cdi.kubevirt.io/restore-e8ff0e7b-dc7e-4140-aec7-8556cfcf4533

-1 labeled

虚拟机克隆 - Alauda Container Platform

相关操作

查看并启动克隆的虚拟机

1. 进入 平台管理。

2. 在左侧导航栏点击 虚拟化管理 > 虚拟机镜像。

3. 可看到在运行脚本步骤中指定名称的克隆虚拟机，克隆虚拟机的默认状态为 已停止。

4. 点击该虚拟机名称，页面将跳转至容器平台中的虚拟机详情页。

5. 点击 启动，即可成功启动虚拟机。

虚拟机克隆 - Alauda Container Platform

物理 GPU 直通环境准备

虚拟机物理 GPU 直通是指在虚拟化环境中，将实际的图形处理单元（GPU）直接分配给虚拟

机，使其能够直接访问和利用物理 GPU，从而达到在虚拟机中获得与在物理机上直接运行的同

等图形性能，避免虚拟图形适配器引起的性能瓶颈，从而提升整体性能。

目录

约束与限制

约束与限制

前提条件

Chart 及镜像准备

开启 IOMMU

操作步骤

创建命名空间

部署 gpu-operator

配置 Kubevirt

结果验证

相关操作

删除直通 GPU 的虚拟机

将 GPU 相关配置从 KubeVirt 配置中删除

卸载 gpu-operator

Alauda Container Platform

物理 GPU 直通环境准备 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

物理 GPU 直通功能需使用 kubevirt-gpu-device-plugin，但目前没有适用于 ARM64 CPU 架构

的 kubevirt-gpu-device-plugin 镜像，因此无法在 ARM64 架构的操作系统中使用此功能。

前提条件

Chart 及镜像准备

获取下述 Chart 及镜像并上传至镜像仓库中，本文档以 build-harbor.example.cn 仓库地址

为例进行介绍，具体 Chart 及镜像的获取方式请联系相关人员。

Chart

build-harbor.example.cn/example/chart-gpu-operator:v23 .9.1

镜像

build-harbor.example.cn/3rdparty/nvidia/gpu-operator:v23 .9.0

build-harbor.example.cn/3rdparty/nvidia/cloud-native/gpu-operator-validator:v23 .9.0

build-harbor.example.cn/3rdparty/nvidia/cuda:12 .3.1-base-ubi8

build-harbor.example.cn/3rdparty/nvidia/kubevirt-gpu-device-plugin:v1 .2.4

build-harbor.example.cn/3rdparty/nvidia/nfd/node-feature-discovery:v0 .14.2

开启 IOMMU

在不同操作系统开启 IOMMU 的操作会有所区别，请参考对应操作系统文档，本文以 CentOS

为例进行介绍，所有命令均在终端中执行。

1. 编辑 /etc/default/grub 文件，在 GRUB_CMDLINE_LINUX 配置项中增加

intel_iommu=on iommu=pt 。

2. 执行下述命令生成 grub.cfg 文件。

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=centos/root rhgb quiet i

ntel_iommu=on iommu=pt"

物理 GPU 直通环境准备 - Alauda Container Platform

3. 重新启动服务器。

4. 执行下述命令确认 IOMMU 是否开启成功。若回显信息中显示 IOMMU enabled ，则表示开

启成功。

操作步骤

注意：下述所有命令如无特殊说明均需在对应集群 Master 节点上的 CLI 工具中执行。

创建命名空间

执行下述命令创建名称为 gpu-system 的命名空间，若出现 namespace/gpu-system

created 回显信息则表示已创建成功。

部署 gpu-operator

1. 执行下述命令部署 gpu-operator。

grub2-mkconfig -o /boot/grub2/grub.cfg

dmesg | grep -i iommu

kubectl create ns gpu-system

物理 GPU 直通环境准备 - Alauda Container Platform

2. 执行下述命令检查 gpu-operator 是否已同步，若 SYNC 显示为 Synced 表示已同步。

回显信息：

export REGISTRY=<registry> # 将 <registry> 部分替换成 gpu-operator 镜像所

在的仓库地址，例如：export REGISTRY=build-harbor.example.cn

cat <<EOF | kubectl create -f -

apiVersion: operator.alauda.io/v1alpha1

kind: AppRelease

metadata:

 annotations:

 auto-recycle: "true"

 interval-sync: "true"

 name: gpu-operator

 namespace: gpu-system

spec:

 destination:

 cluster: ""

 namespace: "gpu-operator"

 source:

 charts:

 - name: <chartName> # 需使用实际的 chart 路径替换 <chartName> 部分，例

如：name = example/chart-gpu-operator

 releaseName: gpu-operator

 targetRevision: v23.9.1

 repoURL: $REGISTRY

 timeout: 120

 values:

 global:

 registry:

 address: $REGISTRY

 nfd:

 enabled: true

 sandboxWorkloads:

 enabled: true

 defaultWorkload: "vm-passthrough"

EOF

kubectl -n gpu-system get apprelease gpu-operator

物理 GPU 直通环境准备 - Alauda Container Platform

3. 执行下述命令获取所有节点名称，并找到 GPU 节点名称。

4. 执行下述命令查看 GPU 节点是否已有可直通的 GPU，若回显信息中出现类似于

nvidia.com/GK210GL_TESLA_K80 的 GPU 信息，则表示已有可直通的 GPU。

回显信息：

5. 至此 gpu-operator 已经成功部署。

配置 Kubevirt

1. 执行下述命令开启 DisableMDEVConfiguration 特性，若返回类似

hyperconverged.hco.kubevirt.io/kubevirt-hyperconverged patched 的回显信息，

则表示开启成功。

2. 在 GPU 节点的终端中执行下述命令，获取 pciDeviceSelector。回显信息中的 10de:102d

部分即为 pciDeviceSelector 的值。 {#pciDeviceSelector}

NAME SYNC HEALTH MESSAGE UPDATE AGE

gpu-operator Synced Ready chart synced 28s 32s

kubectl get nodes -o wide

kubectl get node <gpu-node-name> -o jsonpath='{.status.allocatable}' #

使用步骤 3 中获取到的 GPU 节点名称替换 <gpu-node-name> 部分

{"cpu":"39","devices.kubevirt.io/kvm":"1k","devices.kubevirt.io/tun":"1

k","devices.kubevirt.io/vhost-net":"1k","ephemeral-storage":"4265627841

65","hugepages-1Gi":"0","hugepages-2Mi":"0","memory":"122915848Ki","nvi

dia.com/GK210GL_TESLA_K80":"8","pods":"256"}

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p

='[{"op": "add", "path": "/spec/featureGates/disableMDevConfiguration",

"value": true }]'

物理 GPU 直通环境准备 - Alauda Container Platform

回显信息：

3. 执行下述命令获取所有节点名称，并找到 GPU 节点名称。

4. 执行下述命令获取 resourceName。回显信息中的 nvidia.com/GK210GL_TESLA_K80 部分

即为 resourceName 的值。

回显信息：

lspci -nn | grep -i nvidia

04:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

05:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

08:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

09:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

85:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

86:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

89:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

8a:00.0 3D controller [0302]: NVIDIA Corporation GK210GL [Tesla K80] [1

0de:102d] (rev a1)

kubectl get nodes -o wide

kubectl get node <gpu-node-name> -o jsonpath='{.status.allocatable}' #

使用步骤 3 中获取到的 GPU 节点名称替换 <gpu-node-name> 部分

{"cpu":"39","devices.kubevirt.io/kvm":"1k","devices.kubevirt.io/tun":"1

k","devices.kubevirt.io/vhost-net":"1k","ephemeral-storage":"4265627841

65","hugepages-1Gi":"0","hugepages-2Mi":"0","memory":"122915848Ki","nvi

dia.com/GK210GL_TESLA_K80":"8","pods":"256"}

物理 GPU 直通环境准备 - Alauda Container Platform

5. 执行下述命令添加直通 GPU。

注意：使用 步骤 2 中获取的 pciDeviceSelector 值替换下述命令中的 <pci-devices-id> 部分

时，pciDeviceSelector 中的 所有英文字母全部需要转换为大写。例如：获取到的

pciDeviceSelector 的值为 10de:102d ，则应替换为 export DEVICE=10DE:102D 。

添加单块 GPU 卡

添加多块 GPU 卡

注意：添加多块 GPU 卡时，每个用来替换 <pci-devices-id> 的 pciDeviceSelector 值必须

不相同。

export DEVICE=<pci-devices-id> # 使用步骤 2 中获取的 pciDeviceSelector

替换 <pci-devices-id> 部分。例如：export DEVICE=10DE:102D

export RESOURCE=<resource-name> # 使用步骤 4 中获取的 resourceName 替换

<resource-name> 部分。例如：export RESOURCE=nvidia.com/GK210GL_TESLA_K8

0

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -

p='

[

 {

 "op": "add",

 "path": "/spec/permittedHostDevices",

 "value": {

 "pciHostDevices": [

 {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE"'",

 "resourceName": "'"$RESOURCE"'"

 }

]

 }

 }

]'

物理 GPU 直通环境准备 - Alauda Container Platform

已经添加过 GPU 卡，再次添加新的 GPU 卡

export DEVICE1=<pci-devices-id1> # 使用步骤 2 中获取的 pciDeviceSelecto

r 替换 <pci-devices-id1> 部分

export RESOURCE1=<resource-name1> # 使用步骤 4 中获取的 resourceName 替

换 <resource-name1> 部分

export DEVICE2=<pci-devices-id2> # 使用步骤 2 中获取的 pciDeviceSelecto

r 替换 <pci-devices-id2> 部分

export RESOURCE2=<resource-name2> # 使用步骤 4 中获取的 resourceName 替

换 <resource-name2> 部分

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -

p='

[

 {

 "op": "add",

 "path": "/spec/permittedHostDevices",

 "value": {

 "pciHostDevices": [

 {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE"'",

 "resourceName": "'"$RESOURCE"'"

 },

 {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE2"'",

 "resourceName": "'"$RESOURCE2"'"

 }

]

 }

 }

]'

物理 GPU 直通环境准备 - Alauda Container Platform

结果验证

上述步骤配置完成后，若在创建虚拟机时能够选择到对应物理 GPU，则表示物理 GPU 直通环

境已经准备完成。

注意：若需配置物理 GPU 直通，请提前开启相关功能。

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 单击 创建虚拟机。

4. 配置虚拟机 物理 GPU（Alpha） 参数。

export DEVICE=<pci-devices-id> # 使用步骤 2 中获取的 pciDeviceSelector

替换 <pci-devices-id> 部分

export RESOURCE=<resource-name> # 使用步骤 4 中获取的 resourceName 替换

<resource-name> 部分

export INDEX=<index> # index 是从 0 开始的数组编号，使用编号替换 <index>

部分。例如：已经添加过一块 GPU 卡，现在要新增一块 GPU 卡，那么 index 应该为 1，

即 export INDEX=1

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -

p='

[

 {

 "op": "add",

 "path": "/spec/permittedHostDevices/pciHostDevices/'"${INDEX}"'",

 "value": {

 "externalResourceProvider": true,

 "pciDeviceSelector": "'"$DEVICE"'",

 "resourceName": "'"$RESOURCE"'"

 }

 }

]'

物理 GPU 直通环境准备 - Alauda Container Platform

物理 GPU

（Alpha）

选择配置的物理 GPU 的型号，仅可为每个虚拟机分配一张物理

GPU。

5. 至此，物理 GPU 直通环境已经准备完成。

相关操作

删除直通 GPU 的虚拟机

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 在列表页中单击需要删除的虚拟机右侧的 ⋮ > 删除，或单击需要删除的虚拟机名称进入详情

信息页面，单击 操作 > 删除。

4. 输入确认信息，删除直通 GPU 的虚拟机。

将 GPU 相关配置从 KubeVirt 配置中删除

1. 在 GPU 对应的集群 Master 节点上，使用 CLI 工具执行下述命令，将 GPU 相关配置从

KubeVirt 配置中删除。

2. 删除后，通过 Container Platform 创建虚拟机时，无法选择对应的物理 GPU 型号，则表示

删除成功，具体创建虚拟机的步骤请参考 选择物理 GPU 型号。

卸载 gpu-operator

1. 在 GPU 对应的集群 Master 节点上，使用 CLI 工具执行下述命令，卸载 gpu-operator。

参数 说明

kubectl patch hco kubevirt-hyperconverged -n kubevirt --type='json' -p

='[{"op": "remove", "path": "/spec/permittedHostDevices"}]'

物理 GPU 直通环境准备 - Alauda Container Platform

回显信息：

2. 执行命令，若出现类似下述回显信息，则表示 gpu-operator 已卸载成功。

回显信息：

kubectl -n gpu-system delete apprelease gpu-operator

apprelease.operator.alauda.io "gpu-operator" deleted

kubectl -n gpu-system get apprelease gpu-operator

Error from server (NotFound): appreleases.operator.alauda.io "gpu-opera

tor" not found

物理 GPU 直通环境准备 - Alauda Container Platform

问题处理

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题

问题描述

原因分析

解决方法

热迁移错误信息及解决方案

Alauda Container Platform

问题处理 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

虚拟机节点正常关机下的 Pod 迁移及异常宕机

恢复问题

目录

问题描述

无论节点是 正常关机 还是 异常宕机，运行在该节点上的虚拟机 Pods 都不会自动迁移至其他健

康节点。

原因分析

平台基于开源组件 KubeVirt 实现了虚拟机解决方案。然而，从 KubeVirt 的角度来看，无法区

分虚拟机是实际宕机还是由于网络或其他原因导致的连接失败。若不加区分地将虚拟机迁移至

其他节点，可能导致同一虚拟机的多个实例同时存在。

问题描述

原因分析

解决方法

正常关机下的虚拟机 Pods 迁移

异常宕机恢复

Alauda Container Platform

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

解决方法

在维护虚拟机节点时，需要根据此文档进行手动操作。针对 正常关机 和 异常宕机 两种情况，

需手动驱逐或强制删除虚拟机 Pods。

注意：下述命令均需在对应集群的 Master 节点上执行。

正常关机下的虚拟机 Pods 迁移

1. 在 CLI 工具中，执行下述命令获取节点信息。其中，回显信息中的 NAME 字段即为 Node-

Name 。

回显信息：

2. （可选）执行下述命令查看节点下的虚拟机实例。

回显信息：

3. 正常关机前，执行下述命令驱逐需关机节点上的所有虚拟机 Pods，若出现如下回显信息，

则表示已成功驱逐。

kubectl get nodes

NAME STATUS ROLES AGE VERSION

1.1.1.211 Ready control-plane,master 99d v1.28.8

kubectl get vmis --all-namespaces -o wide | grep <Node-Name> # 使用步骤

1 中获取的 Node-Name 替换命令中的 <Node-Name> 部分

test-test vm-t-export-clone 13d Running 1.1.1.1 1.

1.1.211 True False

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题 - Alauda Container Platform

回显信息：

4. 等所有虚拟机在其他节点上启动后，将节点关闭。

5. 节点关机并重新开启后，执行下述命令将该节点标记为可调度。

回显信息：

6. 至此，该节点上的原虚拟机实例已迁移至其他健康节点，该节点重启后已允许新的 Pods 调

度。

异常宕机恢复

1. 在 CLI 工具中，执行下述命令获取节点信息。其中，回显信息中的 NAME 字段即为 Node-

Name 。

回显信息：

kubectl drain <Node-Name> --delete-local-data --ignore-daemonsets=true

--force --pod-selector=kubevirt.io=virt-launcher # 使用需关机节点的 Node

-Name 替换命令中的 <Node-Name> 部分

Flag --delete-local-data has been deprecated, This option is deprecated

and will be deleted. Use --delete-emptydir-data.

node/1.1.1.211 cordoned

evicting pod test-test/virt-launcher-vm-t-export-clone-hmnkk

pod/virt-launcher-vm-t-export-clone-hmnkk evicted

node/1.1.1.211 drained

kubectl uncordon <Node-Name> # 使用关机并重启节点的 Node-Name 替换命令中的 <

Node-Name> 部分

node/1.1.1.211 uncordoned

kubectl get nodes

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题 - Alauda Container Platform

2. 执行下述命令，强制删除该节点上的所有虚拟机 Pods。

3. 执行下述命令删除该节点上的 volume attachments。

4. 执行下述命令查询异常宕机节点上是否存在具有标签 kubevirt.io=virt-api 的 Pods。

若存在则执行下述命令删除 Pods。

5. 执行下述命令查询异常宕机节点上是否存在具有标签 kubevirt.io=virt-controller 的 Pods。

若存在则执行下述命令删除 Pods。

NAME STATUS ROLES AGE VERSION

1.1.1.211 Ready control-plane,master 99d v1.28.8

kubectl get po -A -l kubevirt.io=virt-launcher -o wide | grep <Node-Nam

e> | awk '{print "kubectl delete pod --force -n " $1, $2}' | bash #

需使用异常宕机节点的 Node-Name 替换命令中的 <Node-Name> 部分

kubectl get volumeattachments.storage.k8s.io | grep <Node-Name> | awk

'{print $1}' | xargs kubectl delete volumeattachments.storage.k8s.io #

需使用异常宕机节点的 Node-Name 替换命令中的 <Node-Name> 部分

kubectl -n kubevirt get po -l kubevirt.io=virt-api -o wide | grep <Node

-Name> # 需使用异常宕机节点的 Node-Name 替换命令中的 <Node-Name> 部分

kubectl -n kubevirt get po -l kubevirt.io=virt-api -o name | xargs kube

ctl -n kubevirt delete --force --grace-period=0

kubectl -n kubevirt get po -l kubevirt.io=virt-controller -o wide | gre

p <Node-Name> # 需使用异常宕机节点的 Node-Name 替换命令中的 <Node-Name> 部分

kubectl -n kubevirt get po -l kubevirt.io=virt-controller -o name | xar

gs kubectl -n kubevirt delete --force --grace-period=0

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题 - Alauda Container Platform

6. 至此，节点异常宕机后，虚拟机实例将迁移至其他健康节点。

虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题 - Alauda Container Platform

热迁移错误信息及解决方案

cannot migrate VMI

which does not use

masquerade, bridge

with <annotation> VM

annotation or a

migratable plugin to

connect to the pod

network

虚拟机的

网络配置

不支持热

迁移。

请依次检查如下配置：

检查当前集群使用的 CNI 网络插件，推荐使用

Kube-OVN。

检查虚拟机对应 YAML 文件中的

metadata.annotations 和

spec.template.metadata.annotations 字段

中是否存在 "kubevirt.io/allow-pod-bridge-

network-live-migration": "true" 注解信息，若不

存在需手动添加。

cannot migrate VMI:

Unable to determine

if PVC <pvc name>

is shared, live

migration requires

that all PVCs must

be shared (using

ReadWriteMany

access mode)

cannot migrate VMI:

PVC <pvc name> is

not shared, live

migration requires

that all PVCs must

be shared (using

虚拟机的

存储类型

不支持多

节点读写

（RWX）

访问模

式。

虚拟机在创建后不支持修改相关参数，因此请重新

创建虚拟机并选择支持多节点读写（RWX）的存储

类型，推荐使用 CephRBD 块存储；若重新创建后

依然存在问题，请联系相关人员处理。

错误信息 错误原因 解决方案

Alauda Container Platform

热迁移错误信息及解决方案 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

ReadWriteMany

access mode)

cannot migrate VMI:

Backend storage

PVC is not RWX

cannot migrate VMI

with non-shared

HostDisk

其他错误信息

虚拟机不

支持热迁

移。

请联系相关人员处理。

错误信息 错误原因 解决方案

热迁移错误信息及解决方案 - Alauda Container Platform

网络

介绍

操作指南

实用指南

介绍

优势

配置网络

配置 IP

通过 IP 直接连接到虚拟机

添加内部路由

通过网络策略实现虚拟机网络请求控制

操作步骤

结果验证

配置 SR-IOV

术语

约束与限制

前提条件

配置虚拟机使

前提条件

操作步骤

Alauda Container Platform

网络 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

操作步骤

结果验证

相关说明

网络 - Alauda Container Platform

介绍

ACP Virtualization With KubeVirt 与 Kube-OVN 进行了深度集成，同时扩展了对传统虚拟机

(VM) 网络需求的支持，并优化了特定场景的性能。

目录

优势

IPv6 支持

完整的 IPv6 支持。

静态 IP 保留

确保虚拟机在重启后保留相同的 IP 地址，符合传统虚拟机的使用模式。

多网络模式支持

支持多种网络模式，如容器网络和 SR-IOV，以满足不同用户场景的需求。

优势

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

操作指南

配置网络

配置 IP

通过 IP 直接连接到虚拟机

添加内部路由

Alauda Container Platform

操作指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

配置网络

目录

配置 IP

参考 配置 IP

通过 IP 直接连接到虚拟机

参考 准备 Kube-OVN Underlay 物理网络

添加内部路由

参考 添加内部路由

配置 IP

通过 IP 直接连接到虚拟机

添加内部路由

Alauda Container Platform

配置网络 - Alauda Container Platform

http://localhost:4173/container_platform/zh/configure/networking/how_to/kubeovn_underlay_py.html
http://localhost:4173/container_platform/zh/

实用指南

通过网络策略实现虚拟机网络请求控制

操作步骤

结果验证

配置 SR-IOV

术语

约束与限制

前提条件

操作步骤

结果验证

相关说明

配置虚拟机使

前提条件

操作步骤

Alauda Container Platform

实用指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

通过网络策略实现虚拟机网络请求控制

平台基于开源组件 KubeVirt 实现的虚拟机方案，而 KubeVirt 实际上运行在 Pods 中，使用网络

策略（Network Policy）的功能，可以实现对虚拟机进出请求的控制。

目录

操作步骤

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 网络 > 网络策略。

3. 单击 创建网络策略。

4. 按需配置如下参数。

操作步骤

结果验证

步骤一：创建虚拟机和允许所有流量通过的网络策略

步骤二：更新网络策略，将 www.example.com 从白名单去除

Alauda Container Platform

通过网络策略实现虚拟机网络请求控制 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

关联

方式

计算组件：按需选择目标计算组件，建议目标计算组件选择 全部。

标签选择器：根据标签匹配 Pods。

方向

入站：外部发送到 Pod 的请求。

出站：由 Pod 发送到外部的请求，若需禁止虚拟机请求某个外部地址可以选择

此项。

协议

选择 TCP 或 UDP 协议。

注意：

在虚拟机中使用域名请求外部服务时，由于 DNS 协议使用的是 UDP 协议，因

此需要添加 UDP 协议白名单。

表单页面不支持配置 ICMP 协议，当开启白名单规则后，会禁用 ICMP 协议，导

致无法进行 Ping 操作。

访问

端口

指定哪些端口的流量可以入站或出站。若不填写此项，则默认允许所有端口的流量

通过。

注意：此处需要放通 UDP 和 TCP 协议的 1053、53 两个端口，以允许 DNS 流量

出站；否则，域名解析将失败。

远端

类型
指定允许访问的远端类型。可选项包括：计算组件、命名空间、IP 段。

排除

远端

当远端类型为 IP 段 时，将指定的 IP 从白名单中移除（即禁止访问）。当输入形式

如 IP/32 的 IP 时可以移除单个 IP。

注意：此处仅支持输入 IP，若不清楚域名对应的 IP，可以使用命令 curl -vvv <

域名> 来获取。

参数 说明

通过网络策略实现虚拟机网络请求控制 - Alauda Container Platform

5. 单击 创建。

结果验证

本文档以使用虚拟机访问 www.example.com 为例进行验证。

步骤一：创建虚拟机和允许所有流量通过的网络策略

1. 创建虚拟机，具体创建步骤请参考 创建虚拟机。

2. 在虚拟机所在的命名空间配置网络策略，添加 TCP 及 UDP 协议的白名单规则，配置参数如

下：

TCP 协议的白名单：

关联方式 选择 计算组件。

目标计算组件 选择 全部。

方向 选择 出站。

协议 选择 TCP。

远端类型 选择 IP 段。

远端 输入 0.0.0.0/0，表示允许所有流量出站。

UDP 协议的白名单规则：

方向 选择 出站。

协议 选择 UDP。

↗

参数 说明

参数 说明

通过网络策略实现虚拟机网络请求控制 - Alauda Container Platform

http://www.example.com/
http://www.example.com/
http://www.example.com/

远端类型 选择 IP 段。

远端 输入 0.0.0.0/0，表示允许所有流量出站。

3. 网络策略创建完成后，登录虚拟机，在虚拟机中执行下述命令请求 www.example.com 。

4. 请求成功。

步骤二：更新网络策略，将 www.example.com 从白名单去

除

1. 执行下述命令获取 www.example.com 的 IP 地址，可以得到 IP 地址为 93.184.215.14。

2. 更新 步骤一 中创建的网络策略，更新的参数如下：

排除

远端

在 TCP 协议的白名单规则中，排除远端参数中填写 93.184.215.14/32，表示将 IP

地址 93.184.215.14 从白名单中移除。

3. 网络策略更新完成后，登录虚拟机，在虚拟机中执行下述命令请求 www.example.com 。

4. 请求超时，排除远端功能生效。

参数 说明

↗

↗

↗

参数 说明

↗

curl www.example.com

curl -vvv www.example.com

curl www.example.com

通过网络策略实现虚拟机网络请求控制 - Alauda Container Platform

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

配置 SR-IOV

通过配置物理服务器节点支持创建带有 SR-IOV（Single Root I/O Virtualization）网卡的虚拟

机，实现虚拟机的更低延迟，同时支持独立 IPv6 以及双栈 IPv4/IPv6 功能。

目录

术语

约束与限制

前提条件

Chart

镜像

操作步骤

在物理机 BIOS 中启用 SR-IOV

启用 IOMMU

在系统内核加载 VFIO 模块

创建 VF 设备

绑定 VFIO 驱动

部署 Multus CNI 插件

部署 sriov-network-operator

为物理节点设置节点角色标识标签

检查资源是否创建成功

为物理节点设置 SR-IOV 节点特性标签

检查 NIC 设备支持情况

配置 IP 地址

结果验证

Alauda Container Platform

配置 SR-IOV - Alauda Container Platform

http://localhost:4173/container_platform/zh/

术语

Multus

CNI
作为其他 CNI 插件的中间件，使 Kubernetes 支持 Pod 多网卡。

SR-IOV
允许对节点上的物理 NIC 进行虚拟化，将其拆分为多个 VF 供 Pod 或虚拟机使用，

提供更优异的网络性能。

VF
从物理 PCI 设备创建的虚拟设备；VF 可以直接分配给虚拟机或容器，类似独立的

物理 PCI 设备，显著提升 I/O 性能。

约束与限制

SR-IOV 功能依赖 glibc，仅支持 glibc 2.34 及以上版本。但 Kylin V10 和 CentOS 7.x 操作系统

均不支持该版本，因此这两个操作系统上无法使用 SR-IOV 功能。

前提条件

获取以下 charts 和镜像并上传至镜像仓库。本文档以仓库地址 build-harbor.example.cn

为例，具体获取 charts 和镜像的方法请联系相关人员。

Chart

build-harbor.example.cn/example/chart-sriov-network-operator:v3.15.0

镜像

相关说明

CentOS 虚拟机内核参数配置

术语 定义

配置 SR-IOV - Alauda Container Platform

build-harbor.example.cn/3rdparty/sriov/sriov-network-operator:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-network-operator-config-

daemon:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-cni:4.13

build-harbor.example.cn/3rdparty/sriov/ib-sriov-cni:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-network-device-plugin:4.13

build-harbor.example.cn/3rdparty/sriov/network-resources-injector:4.13

build-harbor.example.cn/3rdparty/sriov/sriov-network-operator-webhook:4.13

build-harbor.example.cn/3rdparty/kubectl:v3.15.1

操作步骤

注意：以下所有命令均在终端执行。

配置前，使用以下命令查看主板信息。

BIOS 中启用 SR-IOV 的操作因服务器厂商不同而异，请参考对应厂商文档。一般步骤如

下：

在物理机 BIOS 中启用 SR-IOV1

dmidecode -t 1

dmidecode 3.3

Getting SMBIOS data from sysfs.

SMBIOS 2.7 present.

Handle 0x0100, DMI type 1, 27 bytes

System Information

 Product Name: PowerEdge R620

 Version: Not Specified

 Serial Number: 7SJNF62

 UUID: 4c4c4544-0053-4a10-804e-b7c04f463632

 Wake-up Type: Power Switch

 SKU Number: SKU=NotProvided;ModelName=PowerEdge R620

 Family: Not Specified

配置 SR-IOV - Alauda Container Platform

1. 重启服务器。

2. BIOS POST 期间屏幕显示品牌 Logo 时，按 F2 键进入系统设置。

3. 点击 Processor Settings > Virtualization Technology，将 Virtualization

Technology 设置为 Enabled 。

4. 点击 Settings > Integrated devices，将 SR-IOV Global Enable 设置为

Enabled 。

5. 保存配置并重启服务器。

启用 IOMMU 的操作因操作系统不同而异，请参考对应操作系统文档。本文档以 CentOS

为例。

1. 编辑 /etc/default/grub 文件，在 GRUB_CMDLINE_LINUX 配置项中添加

intel_iommu=on iommu=pt 。

2. 执行以下命令生成 grub.cfg 文件。

3. 重启服务器。

4. 执行以下命令，若输出包含 IOMMU enabled ，表示启用成功。

1. 执行以下命令加载 vfio-pci 模块。

启用 IOMMU2

在系统内核加载 VFIO 模块3

GRUB_CMDLINE_LINUX="crashkernel=auto rd.lvm.lv=centos/root rhgb qu

iet intel_iommu=on iommu=pt"

grub2-mkconfig -o /boot/grub2/grub.cfg

dmesg | grep -i iommu

配置 SR-IOV - Alauda Container Platform

2. 加载后执行以下命令，若能正常显示配置信息，则 VFIO 内核模块加载成功。

1. 执行以下命令查看当前支持的 VF 设备。

输出信息说明：

0000:05:00 .1：SR-IOV 物理 NIC enp5s0f1 的 PCI 地址。

0000:05:00 .0：SR-IOV 物理 NIC enp5s0f0 的 PCI 地址。

sriov_totalvfs：支持的 VF 数量。

创建 VF 设备4

modprobe vfio-pci

CentOS 下检查 VFIO 加载状态

lsmod | grep vfio

vfio_pci 41993 0

vfio_iommu_type1 22440 0

vfio 32657 2 vfio_iommu_type1, vfio_pci

irqbypass 13503 2 kvm, vfio_pc

Ubuntu 下检查 VFIO 加载状态

cat /lib/modules/$(uname -r)/modules.builtin | grep vfio

kernel/drivers/vfio/vfio.ko

kernel/drivers/vfio/vfio_virqfd.ko

kernel/drivers/vfio/vfio_iommu_type1.ko

kernel/drivers/vfio/pci/vfio-pci-core.ko

kernel/drivers/vfio/pci/vfio-pci.ko

find /sys -name *vfs*

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_totalvfs

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.0/sriov_totalvfs

/sys/devices/pci0000:00/0000:00:03.0/0000:05:00.0/sriov_numvfs

配置 SR-IOV - Alauda Container Platform

sriov_numvfs：当前 VF 数量。

2. 执行以下命令查看物理机的 NIC 信息。

3. 执行命令 ethtool -i <NIC 名称> 获取对应物理 NIC 的 PCI 地址，如下所示。

ifconfig

enp5s0f0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.66.213 netmask 255.255.255.0 broadcast 192.

168.66.255

 inet6 1066::192:168:66:213 prefixlen 112 scopeid 0x0<glo

bal>

 inet6 fe80::a236:9fff:fe29:6c00 prefixlen 64 scopeid 0x2

0<link>

 ether a0:36:9f:29:6c:00 txqueuelen 1000 (Ethernet)

 RX packets 13889 bytes 1075801 (1.0 MB)

 RX errors 0 dropped 1603 overruns 0 frame 0

 TX packets 5057 bytes 440807 (440.8 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

enp5s0f1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet6 fe80::a236:9fff:fe29:6c02 prefixlen 64 scopeid 0x2

0<link>

 ether a0:36:9f:29:6c:02 txqueuelen 1000 (Ethernet)

 RX packets 1714 bytes 227506 (227.5 KB)

 RX errors 0 dropped 1604 overruns 0 frame 0

 TX packets 70 bytes 19241 (19.2 KB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

配置 SR-IOV - Alauda Container Platform

4. 执行以下命令创建 VF。本文档以配置 enp5s0f1 NIC 为例，若需虚拟化多个 NIC，需

全部配置。

5. 执行以下命令检查 VF 是否创建成功。

ethtool -i enp5s0f0

driver: ixgbe

version: 5.15.0-76-generic

firmware-version: 0x8000030d, 14.5.8

expansion-rom-version:

bus-info: 0000:05:00.0 ## enp5s0f0 NIC 的 PCI 地址

supports-statistics: yes

supports-test: yes

supports-eeprom-access: yes

supports-register-dump: yes

supports-priv-flags: yes

ethtool -i enp5s0f1

driver: ixgbe

version: 5.15.0-76-generic

firmware-version: 0x8000030d, 14.5.8

expansion-rom-version:

bus-info: 0000:05:00.1 ## enp5s0f1 NIC 的 PCI 地址

supports-statistics: yes

supports-test: yes

supports-eeprom-access: yes

supports-register-dump: yes

supports-priv-flags: yes

cat /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_totalv

fs ## 查看支持的 VF 数量

63

echo 8 > /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_n

umvfs ## 设置当前 VF 数量

cat /sys/devices/pci0000:00/0000:00:03.0/0000:05:00.1/sriov_numvfs

查看当前 VF 数量

8

配置 SR-IOV - Alauda Container Platform

注意：可看到配置的 8 个 VF 地址，如 05:10.1 ，这些 VF 地址需补充 域标识符，

最终格式为： 0000:05:10.1 。

1. 下载 绑定脚本，执行 python3 dpdk-devbind.py -b vfio-pci <带域标识符的 VF 地

址> 命令，将 enp5s0f1 NIC 的 8 个 VF 绑定到 vfio-pci 驱动，示例如下。

2. 绑定成功后，执行以下命令检查绑定结果。在输出结果的 Network devices using

DPDK-compatible driver 区域查找已绑定的 VF，其中 VF 设备 ID 为 10ed 。

绑定 VFIO 驱动5

lspci | grep Virtual

00:11.0 PCI bridge: Intel Corporation C600/X79 series chipset PCI

Express Virtual Root Port (rev 05)

05:10.1 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:10.3 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:10.5 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:10.7 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:11.1 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:11.3 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:11.5 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

05:11.7 Ethernet controller: Intel Corporation 82599 Ethernet Cont

roller Virtual Function (rev 01)

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.1

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.3

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.5

python3 dpdk-devbind.py -b vfio-pci 0000:05:10.7

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.1

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.3

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.5

python3 dpdk-devbind.py -b vfio-pci 0000:05:11.7

配置 SR-IOV - Alauda Container Platform

http://localhost:4173/container_platform/scripts/dpdk-devbind.py

配置 SR-IOV - Alauda Container Platform

python3 dpdk-devbind.py --status

Network devices using DPDK-compatible driver

==

0000:05:10.1 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:10.3 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:10.5 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:10.7 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:11.1 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:11.3 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:11.5 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

0000:05:11.7 '82599 Ethernet Controller Virtual Function 10ed' drv

=vfio-pci unused=ixgbevf

Network devices using kernel driver

===================================

0000:01:00.0 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno

1 drv=tg3 unused=vfio-pci

0000:01:00.1 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno

2 drv=tg3 unused=vfio-pci

0000:02:00.0 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno

3 drv=tg3 unused=vfio-pci

0000:02:00.1 'NetXtreme BCM5720 Gigabit Ethernet PCIe 165f' if=eno

4 drv=tg3 unused=vfio-pci

0000:05:00.0 'Ethernet 10G 2P X520 Adapter 154d' if=enp5s0f0 drv=i

xgbe unused=vfio-pci *Active*

0000:05:00.1 'Ethernet 10G 2P X520 Adapter 154d' if=enp5s0f1 drv=i

xgbe unused=vfio-pci

No 'Baseband' devices detected

==============================

No 'Crypto' devices detected

============================

No 'DMA' devices detected

配置 SR-IOV - Alauda Container Platform

1. 进入 平台管理。

2. 在左侧导航栏点击 集群管理 > 集群。

3. 点击虚拟机集群名称，切换到 插件 标签页。

部署 Multus CNI 插件。

执行以下命令部署 sriov-network-operator。

部署 Multus CNI 插件6

部署 sriov-network-operator7

=========================

No 'Eventdev' devices detected

==============================

No 'Mempool' devices detected

=============================

No 'Compress' devices detected

==============================

No 'Misc (rawdev)' devices detected

===================================

No 'Regex' devices detected

===========================

配置 SR-IOV - Alauda Container Platform

注意：执行此操作前，确保 sriov-network-operator 的 Pod 正常运行。

1. 进入 平台管理。

为物理节点设置节点角色标识标签8

REGISTRY=<$registry> # 将 <$registry> 替换为 sriov-network-operator

镜像所在仓库地址，例如：REGISTRY=build-harbor.example.cn

NICSELECTOR=["<nics>"] # 将 <nics> 替换为 NIC 名称，例如：NICSELECTOR=

["ens802f1","ens802f2"]，多个用逗号分隔

NUMVFS=<numVfs> # 将 <numVfs> 替换为 VF 数量，例如：NUMVFS=8

cat <<EOF | kubectl create -f -

apiVersion: operator.alauda.io/v1alpha1

kind: AppRelease

metadata:

 annotations:

 auto-recycle: "true"

 interval-sync: "true"

 name: sriov-network-operator

 namespace: cpaas-system

spec:

 destination:

 cluster: ""

 namespace: "kube-system"

 source:

 charts:

 - name: <chartName> # 将 <chartName> 替换为实际 chart 路径，例如：nam

e = example/chart-sriov-network-operator

 releaseName: sriov-network-operator

 targetRevision: v3.15.0

 repoURL: $REGISTRY

 timeout: 120

 values:

 global:

 registry:

 address: $REGISTRY

 networkNodePolicy:

 nicSelector: $NICSELECTOR

 numVfs: $NUMVFS

EOF

配置 SR-IOV - Alauda Container Platform

2. 在左侧导航栏点击 集群管理 > 集群。

3. 点击集群名称，切换到 节点 标签页。

4. 点击支持 SR-IOV 的物理节点 ⋮ > 更新节点标签。

5. 设置节点标签如下：

node-role.kubernetes.io/worker: ""

6. 点击 更新。

在 CLI 工具中执行命令 kubectl -n cpaas-system get sriovnetworknodestates ，

检查是否成功创建 sriovnetworknodestates 资源。若看到如下类似输出，表示创建成

功。若资源创建失败，请检查 Multus CNI 插件和 sriov-network-operator 是否部署成功。

注意：执行此操作前，确保 sriovnetworknodestates 资源已成功创建。

1. 进入 平台管理。

2. 在左侧导航栏点击 集群管理 > 集群。

3. 点击集群名称，切换到 节点 标签页。

4. 点击支持 SR-IOV 的物理节点 ⋮ > 更新节点标签。

5. 设置节点标签如下：

feature.node.kubernetes.io/network-sriov.capable: "true"

检查资源是否创建成功9

为物理节点设置 SR-IOV 节点特性标签10

检查 NIC 设备支持情况11

kubectl -n cpaas-system get sriovnetworknodestates

NAME SYNC STATUS AGE

192.168.254.88 Succeeded 5d22h

配置 SR-IOV - Alauda Container Platform

1. 执行命令 lspci -n -s <带域标识符的 VF 地址> ，获取当前 NIC 设备的厂商 ID 和设

备 ID，如下所示。

输出说明：

8086：厂商 ID。

154d：设备 ID。

2. 执行命令 lspci -s <带域标识符的 VF 地址> -vvv | grep Ethernet ，获取当前

NIC 名称，如下所示。

3. 在 cpaas-system 命名空间中，找到名为 supported-nic-ids 的 ConfigMap 类型配

置文件，检查其 data 部分是否包含当前 NIC 的配置信息。

注意：若当前 NIC 不在支持列表中，需要参考步骤 4将 NIC 添加到配置文件；若已在

支持列表中，则跳过步骤 4。

lspci -n -s 0000:05:00.1

05:00.1 0200: 8086:154d (rev 01)

lspci -s 0000:05:00.1 -vvv | grep Ethernet

05:00.1 Ethernet controller: Intel Corporation Ethernet 10G 2P X52

0 Adapter (rev 01)

配置 SR-IOV - Alauda Container Platform

4. 以 <NIC 名称>: <厂商 ID> <设备 ID> <VF 设备 ID> 格式将当前 NIC 添加到支持列

表的 data 部分，如下所示。

kind: ConfigMap

apiVersion: v1

metadata:

 name: supported-nic-ids

 namespace: cpaas-system

data:

 Broadcom_bnxt_BCM57414_2x25G: 14e4 16d7 16dc

 Broadcom_bnxt_BCM75508_2x100G: 14e4 1750 1806

 Intel_i40e_10G_X710_SFP: 8086 1572 154c

 Intel_i40e_25G_SFP28: 8086 158b 154c

 Intel_i40e_40G_XL710_QSFP: 8086 1583 154c

 Intel_i40e_X710_X557_AT_10G: 8086 1589 154c

 Intel_i40e_XXV710: 8086 158a 154c

 Intel_i40e_XXV710_N3000: 8086 0d58 154c

 Intel_ice_Columbiaville_E810: 8086 1591 1889

 Intel_ice_Columbiaville_E810-CQDA2_2CQDA2: 8086 1592 1889

 Intel_ice_Columbiaville_E810-XXVDA2: 8086 159b 1889

 Intel_ice_Columbiaville_E810-XXVDA4: 8086 1593 1889

配置 SR-IOV - Alauda Container Platform

参数配置说明：

Intel_Corporation_X520：NIC 名称，可自定义。

8086：厂商 ID。

154d：设备 ID。

10ed：VF 设备 ID，可在绑定结果中查看。

登录交换机配置 DHCP（动态主机配置协议）。

注意：若无法使用 DHCP，请在虚拟机中手动配置 IP 地址。

结果验证

配置 IP 地址12

kind: ConfigMap

apiVersion: v1

metadata:

 name: supported-nic-ids

 namespace: cpaas-system

data:

 Broadcom_bnxt_BCM57414_2x25G: 14e4 16d7 16dc

 Broadcom_bnxt_BCM75508_2x100G: 14e4 1750 1806

 Intel_Corporation_X520: 8086 154d 10ed ## 新增 NIC 信

息

 Intel_i40e_10G_X710_SFP: 8086 1572 154c

 Intel_i40e_25G_SFP28: 8086 158b 154c

 Intel_i40e_40G_XL710_QSFP: 8086 1583 154c

 Intel_i40e_X710_X557_AT_10G: 8086 1589 154c

 Intel_i40e_XXV710: 8086 158a 154c

 Intel_i40e_XXV710_N3000: 8086 0d58 154c

 Intel_ice_Columbiaville_E810: 8086 1591 1889

 Intel_ice_Columbiaville_E810-CQDA2_2CQDA2: 8086 1592 1889

 Intel_ice_Columbiaville_E810-XXVDA2: 8086 159b 1889

 Intel_ice_Columbiaville_E810-XXVDA4: 8086 1593 1889

配置 SR-IOV - Alauda Container Platform

1. 进入 容器平台。

2. 在左侧导航栏点击 虚拟化 > 虚拟机。

3. 点击 创建虚拟机，添加辅助网卡时，选择 SR-IOV 作为 网络类型。

4. 完成虚拟机创建。

5. 通过 VNC 访问虚拟机，应该能看到 eth1 成功获取 IP 地址，表示配置成功。

相关说明

CentOS 虚拟机内核参数配置

CentOS 虚拟机使用 SR-IOV 网卡后，需要修改对应 NIC 的内核参数，具体步骤如下。

1. 打开终端，执行以下命令修改对应 NIC 的内核参数。将命令中的 <NIC 名称> 替换为实际

NIC 名称。

2. 执行以下命令加载并应用 /etc/sysctl.conf 文件中的所有内核参数命令，使内核配置生效。输

出信息中值为 2 表示修改成功。

sysctl -w net.ipv4.conf.<NIC Name>.rp_filter=2

echo "net.ipv4.conf.<NIC Name>.rp_filter=2" >> /etc/sysctl.conf

配置 SR-IOV - Alauda Container Platform

输出信息：

sysctl -p

net.ipv4.conf.<NIC Name>.rp_filter = 2

配置 SR-IOV - Alauda Container Platform

配置虚拟机使用网络绑定模式以支持 IPv6

网络绑定模式是虚拟机网络的一种插件扩展机制。平台默认使用一个名为 ManagedTap 的插件

来启用虚拟机的 IPv6 支持。该插件允许虚拟机通过 CNI 的 DHCP Server 获取 IP 地址。因

此，只要 CNI 的 DHCP Server 支持 IPv6，虚拟机也将获得 IPv6 功能。

目前，我们使用 Kube-OVN 作为 CNI。由于 Kube-OVN 的 DHCP Server 完全支持 IPv6，虚拟

机可以通过 ManagedTap 和 Kube-OVN 的组合实现强大的 IPv6 功能。

目录

前提条件

ACP 版本必须是 v4.0.0 或更高版本。

CNI 使用 Kube-OVN，且虚拟机子网配置为 Underlay。

操作步骤

前提条件

操作步骤

为虚拟机子网添加 IPv6 配置

在网页控制台使用网络绑定模式创建虚拟机

通过 VNC 访问虚拟机并配置网络接口

配置 IPv6 默认路由

Alauda Container Platform

配置虚拟机使用网络绑定模式以支持 IPv6 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

在 spec 下添加以下参数：

创建虚拟机时，选择 网络绑定 作为网络模式。

对于 CentOS 系统，编辑 /etc/sysconfig/network-scripts/ifcfg-enp1s0 文件，并

添加以下配置：

重启网络

如果交换机配置为发送路由公告（RA）消息，则不需要手动配置路由。可以通过交换机

的 RA 消息自动学习到默认路由。

为虚拟机子网添加 IPv6 配置1

在网页控制台使用网络绑定模式创建虚拟机2

通过 VNC 访问虚拟机并配置网络接口3

配置 IPv6 默认路由4

kubectl edit subnet <subnet-name>

spec:

 enableDHCP: true

 enableIPv6RA: true

 u2oInterconnection: true

IPV6INIT=yes

DHCPV6C=yes

IPV6_AUTOCONF=yes

systemctl restart network

ip r r default via <subnet-v6-gateway>

配置虚拟机使用网络绑定模式以支持 IPv6 - Alauda Container Platform

配置虚拟机使用网络绑定模式以支持 IPv6 - Alauda Container Platform

存储

介绍

操作指南

介绍

优势

管理虚拟磁盘

创建虚拟磁盘

挂载虚拟磁盘

扩容虚拟磁盘

卸载虚拟磁盘

删除虚拟磁盘

Alauda Container Platform

存储 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍

ACP 虚拟化与 KubeVirt 存储提供了虚拟机 (VM) 的持久化存储能力，通过无缝集成

Kubernetes 原生的存储机制。它利用 PersistentVolumeClaim（PVC）来存储虚拟机磁盘数

据，并使用 Container Storage Interface（CSI）与各种存储系统集成。此外，Containerized

Data Importer（CDI）被用于初始化虚拟机磁盘数据。在这些基础上，该平台扩展了虚拟机磁

盘管理的高级功能，实现全面的生命周期控制。

目录

优势

用户友好的操作

大多数虚拟机磁盘操作可以通过 Web UI 轻松完成，减少了对命令行界面的依赖。

虚拟机磁盘生命周期管理

可以配置虚拟机磁盘是否在相关虚拟机终止时被自动删除。

优势

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

操作指南

管理虚拟磁盘

创建虚拟磁盘

挂载虚拟磁盘

扩容虚拟磁盘

卸载虚拟磁盘

删除虚拟磁盘

Alauda Container Platform

操作指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

管理虚拟磁盘

数据盘可用于满足业务的数据持久化需求。

目录

创建虚拟磁盘

为虚拟机创建 数据盘，仅支持添加 一个 虚拟磁盘，若需多个，请重复此操作。

注意：虚拟机处于 运行中 状态时，可以在线挂载虚拟磁盘。

操作步骤

创建虚拟磁盘

操作步骤

挂载虚拟磁盘

操作步骤

扩容虚拟磁盘

操作步骤

卸载虚拟磁盘

操作步骤

删除虚拟磁盘

操作步骤

Alauda Container Platform

管理虚拟磁盘 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟磁盘。

3. 单击 创建虚拟磁盘。

4. 根据以下说明配置相关信息。

卷模式
- 文件系统：以挂载文件目录的形式挂载磁盘。

- 块设备：以块设备的形式挂载磁盘。

存储类

平台通过自动创建和管理持久卷声明来维护虚拟机磁盘。您需要指定动态创建

持久卷声明所需的存储类。

不同存储类支持不同的卷模式。如果所选卷模式下没有可用的存储类，请联系

管理员进行添加。

随虚拟机

删除
若启用，则在删除虚拟机时也会删除该磁盘的数据。

是否挂载
- 暂不挂载：仅创建虚拟磁盘；需要时可后续挂载。

- 挂载到虚拟机：选择需要挂载虚拟盘的目标虚拟机。

5. 单击 创建。

挂载虚拟磁盘

将 数据盘 挂载到虚拟机，连接已创建的虚拟磁盘到目标虚拟机。

注意：虚拟机处于 运行中 状态时，可以在线挂载虚拟磁盘。

操作步骤

1. 进入 Container Platform。

参数 说明

管理虚拟磁盘 - Alauda Container Platform

2. 在左侧导航栏中，单击 虚拟化 > 虚拟磁盘。

3. 在待挂载的虚拟磁盘旁单击 ⋮ > 挂载。

4. 选择目标虚拟机并单击 挂载。

扩容虚拟磁盘

扩展已挂载到虚拟机的 系统盘 和 数据盘。

操作步骤

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟机。

3. 单击虚拟机名称以进入 详细信息 页面。

4. 在 虚拟磁盘 区域，找到需要扩展的磁盘，并单击 ⋮ > 扩容。

5. 输入新容量并单击 扩容。

卸载虚拟磁盘

从虚拟机卸载 数据盘，仅支持 已停止 状态的虚拟机进行卸载。

操作步骤

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟磁盘。

3. 在待卸载的虚拟磁盘旁单击 ⋮ > 卸载 并确认。

删除虚拟磁盘

管理虚拟磁盘 - Alauda Container Platform

仅在虚拟磁盘处于卸载状态时支持删除。

注意：系统盘无法删除。

操作步骤

1. 进入 Container Platform。

2. 在左侧导航栏中，单击 虚拟化 > 虚拟磁盘。

3. 在待删除的虚拟磁盘旁单击 ⋮ > 删除 并确认。

管理虚拟磁盘 - Alauda Container Platform

备份和恢复

介绍

操作指南

介绍

应用场景

限制

使用快照

前提条件

注意事项

创建快照

回滚快照

删除快照

Alauda Container Platform

备份和恢复 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍

ACP Virtualization With Kubevirt 提供虚拟机快照能力，通过快照可以对虚拟机进行备份和恢

复。

目录

应用场景

灾难恢复与故障回退

虚拟机因硬件故障、人为误操作（如误删文件）或恶意攻击（如勒索软件）导致数据丢失

时，快照可作为最后一道防线恢复业务。

限制

创建快照需要先停止虚拟机。

虚拟机磁盘使用的 PVC 需要配置为多节点共享访问模式。

应用场景

限制

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

操作指南

使用快照

前提条件

注意事项

创建快照

回滚快照

删除快照

Alauda Container Platform

操作指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

使用快照

虚拟机快照保存了虚拟机的当前状态，可在发生意外故障时将虚拟机恢复到该状态。

目录

前提条件

管理员已在平台管理中部署了 卷快照。

虚拟机快照基于卷快照。请确保至少有一个磁盘绑定到支持卷快照的存储类，例如 CephFS

内置存储。

仅支持虚拟机的离线快照。请在创建或回滚快照前，先 停止虚拟机。

前提条件

注意事项

创建快照

操作步骤

回滚快照

注意事项

操作步骤

删除快照

注意事项

操作步骤

Alauda Container Platform

使用快照 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

注意事项

如果集群中存在多个相同类型的存储，例如多个不同来源的 Ceph RBD 存储，在虚拟机使用此

类存储时，磁盘快照功能可能无法正常工作。

创建快照

虚拟机快照包含以下内容：虚拟机设置以及支持卷快照的磁盘状态。

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏，点击 虚拟化 > 虚拟机。

3. 找到虚拟机，点击 ⋮ > 创建快照。

4. 填写快照描述。描述可以帮助您记录虚拟机当前的状态，例如 初始安装 、 应用升级前 。

5. 点击 创建。快照所需时间取决于网络状况和工作负载，请耐心等待。

6. 检查快照状态。

当快照变为 就绪 ，表示创建成功。

如果快照长时间处于 未就绪 状态，请点击

> 查看原因并进行故障排除，然后重新创建快照。

回滚快照

将虚拟机的设置和支持卷快照的磁盘回滚到创建快照时的状态。例如，在创建快照后添加的磁

盘将被移除；修改过的磁盘数据将被恢复。

注意事项

使用快照 - Alauda Container Platform

如果有磁盘绑定到支持 LVM 机制的存储类（例如 TopoLVM），请与管理员确认该存储类的回

收策略已设置为 保留（ reclaimPolicy: Retain ），以便正确使用快照回滚功能。

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏中，点击 虚拟化 > 虚拟机。

3. 点击 虚拟机名称。

4. 在 快照 标签页中，找到快照并点击 ⋮ > 回滚。

5. 阅读界面上的提示信息，确认无误后点击 回滚。

注意：回滚操作无法中止或撤销，请谨慎进行。

6. 点击快照名称，在“快照回滚记录”中查看回滚是否已完成。回滚所需时间取决于网络状况和

工作负载，请耐心等待。

说明

如果回滚失败，虚拟机状态保持不变。您可以正常启动虚拟机，或再次尝试回滚快照。

如果在回滚过程中启动虚拟机，虚拟机将恢复至停止前的状态，在再次停止虚拟机后将继续

回滚至快照创建时的状态。

为避免操作冲突，请确保最近的回滚记录已完成后，再对该虚拟机执行其他操作。

删除快照

删除不再需要的虚拟机快照，以释放磁盘资源。

注意事项

删除已回滚的虚拟机快照时，如果虚拟机磁盘需要基于快照进行数据复制（例如 TopoLVM），

必须等待基于回滚版本的虚拟机启动后再进行删除，否则虚拟机将无法启动。

使用快照 - Alauda Container Platform

操作步骤

1. 访问 Container Platform。

2. 在左侧导航栏中，点击 虚拟化 > 虚拟机。

3. 点击 虚拟机名称。

4. 在 快照 标签页中，找到目标快照并点击 ⋮ > 删除。

5. 阅读提示信息，确认无误后点击 删除。

使用快照 - Alauda Container Platform

	虚拟化
	概览
	安装
	镜像
	虚拟机
	网络
	存储
	备份和恢复

	概览
	介绍
	容器编排虚拟机解决方案
	功能特点
	产品功能
	约束和限制

	功能总览
	虚拟机镜像
	虚拟机
	虚拟机网络
	备份与恢复

	安装
	前提条件
	操作步骤
	启用节点虚拟化
	操作步骤

	部署 Operator
	创建 HyperConverged 实例
	配置虚拟机超售比（可选）
	重要说明

	资源配额说明

	镜像
	介绍
	操作指南
	实用指南
	权限说明

	介绍
	优势

	操作指南
	添加虚拟机镜像
	操作步骤

	更新/删除虚拟机镜像
	更新/删除镜像凭据
	实用指南
	使用 KubeVirt 基于 ISO 创建 Windows 镜像
	前提条件
	约束与限制
	操作步骤
	创建镜像
	创建虚拟机
	安装 Windows 操作系统
	安装 virtio-win-tools
	导出自定义 Windows 镜像
	使用 Windows 镜像
	添加内部路由

	远程访问

	使用 KubeVirt 基于 ISO 创建 Linux 镜像
	前提条件
	约束与限制
	操作步骤
	将 Linux ISO 镜像转换为 Docker 镜像
	创建虚拟机
	安装 Linux 操作系统
	修改 YAML 文件
	安装所需软件并修改配置
	导出并使用自定义 Linux 镜像

	导出虚拟机镜像
	操作步骤
	停止虚拟机
	创建 vmexport 资源
	下载虚拟机镜像文件
	上传虚拟机镜像文件至对象存储
	创建虚拟机镜像

	权限说明
	虚拟机
	介绍
	操作指南
	实用指南
	问题处理

	介绍
	优势

	操作指南
	创建虚拟机/虚拟机组
	前提条件
	注意事项
	创建虚拟机
	操作步骤
	相关操作

	创建虚拟机组
	操作步骤

	虚拟机批量操作
	操作步骤

	使用 VNC 登录虚拟机
	操作步骤

	管理密钥对
	创建密钥对
	更新密钥对
	删除密钥对

	管理虚拟机
	重置密码
	操作步骤

	更新密钥
	操作步骤

	更新规格
	热迁移
	更新 NAT 网络配置
	操作步骤

	更新标签和注释
	添加服务
	重装操作系统
	操作步骤

	配置 IP
	操作步骤

	监控与告警
	监控
	告警
	配置告警策略
	处理告警
	绑定通知策略

	快速定位虚拟机
	前提条件
	操作步骤

	实用指南
	配置 USB 主机直通
	功能概述
	使用场景
	前提条件
	操作步骤
	暴露 USB 设备
	将 USB 设备分配给虚拟机

	操作结果
	了解更多
	暴露多个 USB 设备
	将 USB 设备分配给虚拟机

	虚拟机热迁移
	Overview
	ProCopy

	约束与限制
	前提条件
	操作步骤
	部署 kubevirt-operator
	创建 HyperConverged 实例
	准备虚拟机
	启动热迁移

	虚拟机恢复
	操作步骤
	获取镜像地址
	修改虚拟机 YAML 文件
	挂载原有 rootfs 并进行修复
	还原虚拟机 YAML 文件

	虚拟机克隆
	前提条件
	操作步骤
	相关操作
	查看并启动克隆的虚拟机

	物理 GPU 直通环境准备
	约束与限制
	前提条件
	Chart 及镜像准备
	开启 IOMMU

	操作步骤
	创建命名空间
	部署 gpu-operator
	配置 Kubevirt

	结果验证
	相关操作
	删除直通 GPU 的虚拟机
	将 GPU 相关配置从 KubeVirt 配置中删除
	卸载 gpu-operator

	问题处理
	虚拟机节点正常关机下的 Pod 迁移及异常宕机恢复问题
	问题描述
	原因分析
	解决方法
	正常关机下的虚拟机 Pods 迁移
	异常宕机恢复

	热迁移错误信息及解决方案
	网络
	介绍
	操作指南
	实用指南

	介绍
	优势

	操作指南
	配置网络
	配置 IP
	通过 IP 直接连接到虚拟机
	添加内部路由

	实用指南
	通过网络策略实现虚拟机网络请求控制
	操作步骤
	结果验证
	步骤一：创建虚拟机和允许所有流量通过的网络策略
	步骤二：更新网络策略，将 www.example.com 从白名单去除

	配置 SR-IOV
	术语
	约束与限制
	前提条件
	Chart
	镜像

	操作步骤
	在物理机 BIOS 中启用 SR-IOV
	启用 IOMMU
	在系统内核加载 VFIO 模块
	创建 VF 设备
	绑定 VFIO 驱动
	部署 Multus CNI 插件
	部署 sriov-network-operator
	为物理节点设置节点角色标识标签
	检查资源是否创建成功
	为物理节点设置 SR-IOV 节点特性标签
	检查 NIC 设备支持情况
	配置 IP 地址

	结果验证
	相关说明
	CentOS 虚拟机内核参数配置

	配置虚拟机使用网络绑定模式以支持 IPv6
	前提条件
	操作步骤
	为虚拟机子网添加 IPv6 配置
	在网页控制台使用网络绑定模式创建虚拟机
	通过 VNC 访问虚拟机并配置网络接口
	配置 IPv6 默认路由

	存储
	介绍
	操作指南

	介绍
	优势

	操作指南
	管理虚拟磁盘
	创建虚拟磁盘
	操作步骤

	挂载虚拟磁盘
	操作步骤

	扩容虚拟磁盘
	操作步骤

	卸载虚拟磁盘
	操作步骤

	删除虚拟磁盘
	操作步骤

	备份和恢复
	介绍
	操作指南

	介绍
	应用场景
	限制

	操作指南
	使用快照
	前提条件
	注意事项
	创建快照
	操作步骤

	回滚快照
	注意事项
	操作步骤

	删除快照
	注意事项
	操作步骤

