Q Alauda Container Platform

Observability

Overview

Introduction

Product Introduction

Product Advantages

Product Application Scenarios

Monitoring

Introduction

Module Overview
Module Advantages
Application Scenarios

Usage Limitations

Guides

Observability - Alauda Container Platform

Features

Monitoring

Alert Notifications
Distributed Tracing
Logs

Events

Inspection

Install

Overview
Installation Preparation
Install the ACP Monitoring with Prometheu

Install the ACP Monitoring with VictoriaMe!

How To

Architectur

Concepts

Monitoring
Alarms

I\Ir\fifir\afinns

Das

http://localhost:4173/container_platform/

Observability - Alauda Container Platform

Permissions

Distributed Tracing

Introduction Install Architectur
Advantages Installing the Jaeger Operator Core Compone
Application Scenarios Deploying a Jaeger Instance Data Flow
Usage Limitations Installing the OpenTelemetry Operator

Deploying OpenTelemetry Instances

T otg
Guides

upell ieiemetry
How To

Troubleshooting
Jaeger
Logs
Introduction Install Architectur:
Module Overview Install ACP Log Storage with ElasticSearch
Module Advantages Install ACP Log Storage with Clickhouse
, Concepts

Module Use Cases Install ACP Log Collector Plugin
Module Usage Limitations Open Source C

Core Functiona

Observability - Alauda Container Platform

Guides ~al 1
How To
Permissions
Events
Introduction Events Permission
Module Overview Operation Procedures
Functionality Overview Event Overview
Use Cases

Usage Limitations

Inspection
Introduction Architecture Guides
Module Introduction Inspection
Module Advantages Component Health Status

Permission
Module Use Cases

Usage Limitations

Q Alauda Container Platform

Overview

Introduction

Product Introduction
Product Advantages

Product Application Scenarios

Overview - Alauda Container Platform

Features

Monitoring

Alert Notifications
Distributed Tracing
Logs

Events

Inspection

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Product Introduction
Product Advantages

Product Application Scenarios

Product Introduction

The observability module is an application-centric, out-of-the-box cloud-native observability
platform that provides comprehensive monitoring solutions tailored for enterprises. It enables
real-time monitoring of applications and their resources, collecting various metrics, logs, and
event data to help analyze the health status of applications. This module not only features
powerful alerting capabilities but also offers comprehensive and clear multi-dimensional data
visualization, is compatible with mainstream open-source components, and supports rapid

fault localization and one-click monitoring diagnostics.

Product Advantages

The core advantages of the observability module are as follows:

e Unified Data Collection

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Achieves unified collection of metrics, logs, and traces, providing a comprehensive system

view and simplifying management processes.
e Multi-Dimensional Alerting Mechanism

Supports multi-dimensional alerting settings for metrics and logs, ensuring users are

promptly informed of potential issues.
« Intuitive Visualization Interface

Provides a simple and clear visual management interface, allowing users to quickly access

key information and enhance decision-making efficiency.
e Strong Compatibility

Perfectly compatible with mainstream open-source components, allowing users to easily

integrate and enhance system flexibility.
¢ QOut-of-the-Box

Offers pre-configured templates and best practices, enabling users to get started quickly

without complex configurations.

Product Application Scenarios

The main application scenarios of the observability module include:
o Microservices Architecture Monitoring

In a cloud-native microservices architecture, applications consist of multiple independent
services. The observability module can monitor the performance and health status of each
microservice in real-time, helping development teams quickly identify and resolve inter-

service dependency issues, ensuring overall system stability.
e Container and Kubernetes Monitoring

For container applications installed in Kubernetes environments, the observability module

can monitor resource usage, status, and logs of the containers, providing lifecycle

Introduction - Alauda Container Platform

management and troubleshooting for containers, ensuring high availability of containerized

applications.

Dynamic Resource Management

In cloud environments, resource usage may fluctuate with business demand changes. The
observability module can monitor resource usage in real-time and support dynamic

adjustment of resource allocation, optimizing cost and performance.

Multi-Cloud Environment Monitoring

For enterprises adopting multi-cloud strategies, the observability module can unify
management and monitoring of applications and resources across different cloud

platforms, ensuring visibility and consistency across cloud environments.

Features - Alauda Container Platform

Q Alauda Container Platform Q

Features

TOC

Monitoring

Alert Notifications
Distributed Tracing
Logs

Events

Inspection

Monitoring

¢ Probes

The platform provides Probe capabilities (black-box monitoring) based on the Blackbox
Exporter, enabling network service checks through protocols such as ICMP, TCP, and
HTTP. Unlike white-box monitoring, which relies on internal system metrics, Probe
evaluates services externally from the user's perspective, rapidly identifying failures that

impact user experience.

For example, if a business interface fails to respond (e.g. HTTP 5xx errors) or a critical
service becomes unavailable, Probe immediately detects the anomaly, generates alerts,

and streamlines troubleshooting for operations teams.

¢ Monitoring Dashboard

http://localhost:4173/container_platform/

Features - Alauda Container Platform

The platform features a modernized monitoring dashboard management function, providing
a more user-friendly visual configuration experience compared to traditional Grafana. By
offering a unified monitoring view, it aggregates and displays various monitoring metric

data, helping users quickly build the required monitoring dashboards.

Alert Notifications

o Alert Strategies

The platform provides comprehensive alerting capabilities, supporting the configuration of
alert rules based on metrics, logs, and events. With a rich set of built-in monitoring metrics
and alert templates, users can rapidly configure alert strategies that align with business

needs, enabling timely detection and resolution of issues.
¢ Alert Templates

Alert templates standardize and encapsulate alert rules and notification strategies,
supporting rapid reuse across multiple monitoring targets. Template-based configuration
significantly reduces the management costs of alert strategies and enhances operational

efficiency.
e Alert History

The system fully records the lifecycle of alerts, including trigger time, recovery time, alert
status, alert level, and alert content. Users can trace and analyze issues through alert

history, continuously optimizing alert configurations.
» Notifications

The platform supports multiple alert notification channels, including email, DingTalk,
WeChat Work, Feishu, and Webhook, ensuring that alert information reaches the relevant
personnel promptly. Users can flexibly configure notification strategies based on actual

needs.

Distributed Tracing

Features - Alauda Container Platform

The distributed tracing provides full-link tracing capabilities for microservice architectures. By
collecting metadata of inter-service calls, it helps users quickly locate issues in cross-service

calls.

Logs

The platform automatically collects and centrally manages standard output and file logs from
clusters, nodes, and containers. It provides powerful log storage, retrieval, and analysis
capabilities, supporting multi-dimensional log queries and visual displays, helping users

quickly pinpoint issues.

Events

The platform collects critical event information in real-time from Kubernetes clusters, recording
the complete process of resource state changes. When exceptions occur in clusters, nodes,
Pods, etc., events can be traced to pinpoint root causes, significantly enhancing issue

resolution efficiency.

Inspection

» Inspection

Drawing on extensive enterprise-level operational experience, the platform offers
automated inspection capabilities. Through multi-dimensional health checks, it helps users
monitor resource operational statuses in real-time, detect potential risks early, and reduce

manual inspection costs.
+ Platform Health Status

An intuitive overview of the platform's functional health status is provided, supporting the
view of deployment conditions and component operational statuses. Users with platform
management permissions can delve into detailed health check data, quickly locating and

resolving platform-level issues.

Monitoring - Alauda Container Platform

0 Alauda Container Platform

Monitoring

Introduction

Introduction

Module Overview
Module Advantages
Application Scenarios

Usage Limitations

Install

Install

Overview
Installation Preparation
Install the ACP Monitoring with Prometheus Plugin

Install the ACP Monitoring with VictoriaMetrics Plugin

Architecture

http://localhost:4173/container_platform/

Monitoring - Alauda Container Platform

Monitoring Module Architecture Monitoring Component Selection Guide

Overall Architecture Explanation Important Notes
Monitoring System Component List

Alerting System Architecture Comparison
Notification System Feature Comparison

Installation Scheme Suggestions

Concepts

Concepts

Monitoring
Alarms
Notifications

Monitoring Dashboard

Guides

Management of Metrics Management of Alert Managemel

Viewing Metrics Exposed by Platform Con Function Overview Feature Overvit

Viewing All Metrics Stored by Prometheus Key Features Key Features

Viewing All Built-in Metrics Defined by the Functional Advantages Notification Ser

Integrating External Metrics Creating Alert Policies via Ul Notification Cor
Creating Resource Alerts via CLI Notification Ten
Creating Event Alerts via CLI Notification rule

Creating Alert Policies via alert Templates

Monitoring - Alauda Container Platform

Manage Dashboards

Function Overview

Manage Dashboards

Manage Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

How To

Backup and Restore of Promet|

Feature Overview

Use Cases
Prerequisites
Procedures to Operate
Operation Results
Learn More

Next Procedures

Permissions

Setting Silence for Alerts

VictoriaMetrics Backup and Re«

Function Overview
Use Cases
Prerequisites
Procedures
Operation Result
Learn More

Follow-up Actions

Set Notification

Managemet

Function Overv
Blackbox Monit
Blackbox Alerts
Customizing Bl
Create Blackbo

Reference Infor

Collect Net\

Function Overv
Use Case
Prerequisites
Procedures to (
Operation ResL
Learn More

Subsequent Ac

Monitoring - Alauda Container Platform

Permissions

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Module Overview
Module Advantages
Application Scenarios

Usage Limitations

Module Overview

The Monitoring Module provides operational capabilities such as metrics, dashboards, alerts,

and notifications for platform administrators and operations personnel.

The platform integrates open-source components like Prometheus / VictoriaMetrics and
monitoring dashboards, enabling real-time monitoring of clusters, nodes, components, custom

applications, Pods, containers, and more, managed by the platform.

It supports quick setup for monitoring metrics alerts at the cluster, node, and computing
component levels, log alerts (for computing components only), and event alerts. Additionally, it
allows for custom monitoring metric algorithms based on actual requirements, increasing the
necessary alert metrics and rules. Notification strategies can be configured to send alert
information promptly to operations personnel, helping to avoid system failures or to address

issues swiftly, reducing system operation costs and ensuring system stability.

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Module Advantages

The Monitoring Module has the following core advantages:
o Comprehensive Monitoring Coverage

Supports extensive monitoring across multiple levels such as clusters, nodes, components,
and containers, achieving an end-to-end monitoring chain from infrastructure to

applications.
o Flexible Alert Configuration

Offers a rich set of preset alert rules, while also supporting custom alert rules and

algorithms to meet different monitoring scenarios.
¢ Diverse Visualization Displays

Integrates professional monitoring dashboards that support multiple data visualization

methods, providing an intuitive representation of system operational status.
 Efficient Alert Notifications

Supports multi-channel alert notifications, including email, SMS, webhook, etc., ensuring

timely delivery of alert information.
¢ Scalable Monitoring Architecture

Based on the industry-leading Prometheus / VictoriaMetrics technology stack, it possesses

excellent scalability and compatibility.

Application Scenarios

The Monitoring Module is applicable in the following scenarios:
o Cluster Health Monitoring

Real-time monitoring of resource usage, node status, and component operation conditions

within the cluster to promptly detect potential issues.

Introduction - Alauda Container Platform

¢ Application Performance Analysis

Monitoring running metrics of applications and resource usage of containers to optimize

application performance.
¢ Fault Early Warning and Diagnosis

By setting reasonable alert rules, system anomalies can be detected in advance, facilitating

rapid problem identification and resolution.
¢ Capacity Planning

Conducting trend analysis based on historical monitoring data to provide a basis for

resource expansion and optimization.

Usage Limitations

When using the Monitoring Module, please note the following limitations:

¢ The storage duration of monitoring data depends on the storage capacity configuration,

with a default retention period of 7 days.

+ Prometheus and VictoriaMetrics cannot be installed simultaneously in the same cluster,

please make a selection plan and choose one for installation.

¢ The minimum support for the collection interval of custom monitoring metrics is 60

seconds.

« Alert notification channels need to have the corresponding services pre-configured (such

as email servers, SMS gateways, WeChat/DingTalk bots, etc.).

Install - Alauda Container Platform

Q Alauda Container Platform Q

Install

TOC

Overview

Installation Preparation

Install the ACP Monitoring with Prometheus Plugin
Installation Procedures
Access Method

Install the ACP Monitoring with VictoriaMetrics Plugin
Prerequisites

Installation Procedures

Overview

The monitoring component serves as the infrastructure for monitoring, alerting, inspection,
and health checking functions within the observability module. This document describes how
to install the ACP Monitoring with Prometheus plugin or the ACP Monitoring with

VictoriaMetrics plugin within a cluster.

Installation Preparation

Before install the monitoring components, please ensure the following conditions are met:

http://localhost:4173/container_platform/

Install - Alauda Container Platform

* The appropriate monitoring component has been selected by referring to the Monitoring

Component Selection Guide.

* When install in a workload cluster, ensure that the global cluster can access port 11780

of the workload cluster.

» If you need to use storage classes or persistent volume storage for monitoring data, please

create the corresponding resources in the Storage section in advance.

Install the ACP Monitoring with Prometheus

Plugin

Installation Procedures

1. Navigate to App Store Management > Cluster Plugins and select the target cluster.
2. Locate the ACP Monitoring with Prometheus plugin and click Install.

3. Configure the following parameters:

Parameter Description

Supports three configurations: Small Scale, Medium Scale, and
Large Scale:

- Default values are set based on the recommended load test values

Scale of the platform
Configuration - You can choose or customize quotas based on the actual cluster
scale

- Default values will be updated with platform versions; for fixed

configurations, custom settings are recommended

- LocalVolume: Local storage with data stored on specified nodes

- StorageClass: Automatically generates persistent volumes using a
Storage Type storage class

- PV: Utilizes existing persistent volumes

Note: Storage configuration cannot be modified after Installation

Install - Alauda Container Platform

Parameter Description

Sets the number of monitoring component pods
Replica Count
Note: Prometheus supports only single-node installation

Parameter Data parameters for the monitoring component can be adjusted as

Configuration needed

4. Click Install to complete the installation.

Access Method

Once installation is complete, the components can be accessed at the following addresses

(replace <> with actual values):

Component Access Address

Thanos <platform_access_address>/clusters/<cluster>/prometheus
Prometheus <platform_access_address>/clusters/<cluster>/prometheus-0
Alertmanager <platform_access_address>/clusters/<cluster>/alertmanager

Install the ACP Monitoring with VictoriaMetrics
Plugin

Prerequisites

« If only install the VictoriaMetrics agent, ensure that the VictoriaMetrics Center has been

installed in another cluster.

Installation Procedures

1. Navigate to App Store Management > Cluster Plugins and select the target cluster.

Install - Alauda Container Platform

2. Locate the ACP Monitoring with VictoriaMetrics plugin and click Install.

3. Configure the following parameters:

Parameter Description

Supports three configurations: Small Scale, Medium Scale, and
Large Scale:
- Default values are set based on the recommended load test
values of the platform

Scale Configuration
- You can choose or customize quotas based on the actual cluster
scale

- Default values will be updated with platform versions; for fixed

configurations, custom settings are recommended

- Off: Install the complete VictoriaMetrics component suite
Install Agent Only - On: Install only the VMAgent collection component, which relies

on the VictoriaMetrics Center

VictoriaMetrics Select the cluster where the complete VictoriaMetrics component

Center has been installed

- LocalVolume: Local storage with data stored on specified nodes

- StorageClass: Automatically generates persistent volumes using
Storage Type
a storage class

- PV: Utilizes existing persistent volumes

Sets the number of monitoring component pods:

- LocalVolume storage type does not support multiple replicas
Replica Count
- For other storage types, please refer to on-screen prompts for

configuration

Data parameters for the monitoring component can be adjusted
Parameter

Note: Data may temporarily exceed the retention period before
Configuration

being deleted

4. Click Install to complete the installation.

Install - Alauda Container Platform

Architecture - Alauda Container Platform

Q Alauda Container Platform

Architecture

Monitoring Module Architecture

Overall Architecture Explanation
Monitoring System
Alerting System

Notification System

Monitoring Component Selection Guide

Important Notes
Component List
Architecture Comparison
Feature Comparison

Installation Scheme Suggestions

http://localhost:4173/container_platform/

Monitoring Module Architecture - Alauda Container Platform

Alauda Container Platform

Monitoring Module Architecture

Global
CURD for alert rules ALB «
=~ Message Server Courier
v (Advanced API)
Email/SMS Send Message—]|
Erebus Wechat/DingDing
Webhook
Record alert history Query alert history
CURD for alert rules
ElasticSearch |
ClickHouse |
Query monitor data
Cluster
Y Load h 4
. Rule Prometheus/VM | monitoring collection
kube-apiserver < qcation Operator and alarm rule ALB
configuration
Query
— —>
Operate the prometheusrule rue—— Nervermore [«-Collect log indicators Pron\]lel\;heus
rometheu
P s pct monitoring indicators
exporters

TOC

Overall Architecture Explanation

Trigger alarm————>»{AlertManager

Collect event indicators.

Send Message

Synchronize silence and
alarm interval configuration

Y
Warlock

http://localhost:4173/container_platform/

Monitoring Module Architecture - Alauda Container Platform

Monitoring System

Data Collection and Storage

Data Query and Visualization
Alerting System

Alert Rule Management

Alert Processing Workflow

Real-time Alert Status
Notification System

Notification Configuration Management

Notification Server Management

Overall Architecture Explanation

The monitoring system consists of the following core functional modules:

1. Monitoring System
o Data Collection and Storage: Collecting and persisting monitoring metrics from multiple
sources

o Data Query and Visualization: Providing flexible query and visualization capabilities for

monitoring data
2. Alerting System

e Alert Rule Management: Configuring and managing alert policies

» Alert Triggering and Notification: Evaluating alert rules and dispatching notifications

» Real-time Alert Status: Providing a real-time view of the current alert status of the
system

3. Notification System

» Notification Configuration: Managing notification templates, contact groups, and policies

» Notification Server: Managing the configuration of various notification channels

Monitoring Module Architecture - Alauda Container Platform

Monitoring System

Data Collection and Storage

1. Prometheus/VictoriaMetrics Operator Responsibilities:

e Load and validate monitoring collection configurations
¢ Load and validate alert rule configurations

e Synchronize configurations to Prometheus/VictoriaMetrics instances
2. Sources of Monitoring Data:

o Nevermore: Generates log-related metrics
o Warlock: Generates event-related metrics

e Prometheus/VictoriaMetrics: Discovers and collects various exporters' metrics via

ServiceMonitor

Data Query and Visualization

1. Monitoring Data Query Process:

The browser initiates a query request (Path:

/platform/monitoring.alauda.io/vibetal)

ALB forwards the request to the Courier component

Courier API processes the query:

 Built-in Metrics: Obtains PromQL through the indicators interface and queries

e Custom Metrics: Directly forwards PromQL to the monitoring component

The monitoring dashboard retrieves data and displays it

2. Monitoring Dashboard Management Process:

e Users access the global cluster ALB (Path:

/kubernetes/cluster_name/apis/ait.alauda.io/vlalpha2/MonitorDashboard)

e ALB forwards the request to the Erebus component

Monitoring Module Architecture - Alauda Container Platform

o Erebus routes the request to the target monitoring cluster
e The Warlock component is responsible for:

¢ Validating the legality of the monitoring dashboard configuration

¢ Managing the MonitorDashboard CR resource

Alerting System

Alert Rule Management

The alert rule configuration process:

1. Users access the global cluster ALB (Path:

/kubernetes/cluster_name/apis/monitoring.coreos.com/vl/prometheusrules)

2. The request passes through ALB -> Erebus -> target cluster kube-apiserver

3. Responsibilities of each component:
o Prometheus/VictoriaMetrics Operator:

» Validating the legality of alert rules

e Managing PrometheusRule CR

* Nevermore: Listening for and processing log alert metrics

e Warlock: Listening for and processing event alert metrics

Alert Processing Workflow

1. Alert Evaluation:

o PrometheusRule/VMRule defines alert rules

e Prometheus/VictoriaMetrics evaluates rules periodically

2. Alert Notification:

o Alerts are sent to Alertmanager once triggered

e Alertmanager -> ALB -> Courier API

Monitoring Module Architecture - Alauda Container Platform
o Courier API is responsible for dispatching notifications

3. Alert Storage:

e Alert history is stored in ElasticSearch/ClickHouse

Real-time Alert Status

1. Status Collection:
e The global cluster Courier generates metrics:

e cpaas_active_alerts: Current active alerts

e cpaas_active_silences: Current silence configurations
» Global Prometheus collects every 15 seconds
2. Status Display:

e The front-end queries and displays real-time status via Courier API

Notification System

Notification Configuration Management

The management process for notification templates, notification contact groups, and

notification policies is as follows:

1. Users access the standard API of the global cluster via a browser
e Access path: /apis/ait.alauda.io/vibetal/namespaces/cpaas-system
2. Managing related resources:

¢ Notification Template: apiVersion: "ait.alauda.io/vlbetal”, kind: "NotificationTemplate"
» Notification Contact Group: apiVersion: "ait.alauda.io/vlbetal”, kind: "NotificationGroup”

+ Notification Policy: apiVersion: "ait.alauda.io/vlbetal”, kind: "Notification"

3. Courier is responsible for:

Monitoring Module Architecture - Alauda Container Platform
 Validating the legality of notification templates
¢ Validating the legality of notification contact groups

» Validating the legality of notification policies

Notification Server Management

1. Users access the global cluster's ALB via a browser

o Access path: /kubernetes/global/api/vi/namespaces/cpaas-system/secrets
2. Managing and submitting notification server configurations

o Resource name: platform-email-server
3. Courier is responsible for:

» Validating the legality of the notification server configuration

Monitoring Component Selection Guide - Alauda Container Platform

Q Alauda Container Platform Q

Monitoring Component Selection Guide

When installing cluster monitoring, the platform provides two monitoring components for you
to choose from: VictoriaMetrics and Prometheus. This article will detail the characteristics and

applicable scenarios of these two components, helping you make the most suitable choice.

TOC

Important Notes
Component List
Prometheus Related Components
VictoriaMetrics Related Components
Architecture Comparison
Prometheus Architecture
VictoriaMetrics Architecture
Feature Comparison
Installation Scheme Suggestions
Monitoring Installation Architecture Overview
Prometheus Installation Method
VictoriaMetrics Installation Method
Selection Recommendations
Scenarios Suitable for Using VictoriaMetrics

Scenarios Suitable for Using Prometheus

http://localhost:4173/container_platform/

Monitoring Component Selection Guide - Alauda Container Platform

Important Notes

e Only one of VictoriaMetrics or Prometheus can be selected when installing cluster

monitoring components.

o Starting from version 3.18, VictoriaMetrics has been upgraded to Beta status, which meets

production environment usage conditions.

 VictoriaMetrics is suitable for scenarios with high availability requirements and multi-cluster

monitoring.

o Prometheus is suitable for single-cluster monitoring scenarios, especially for smaller

scales.

Component List

Prometheus Related Components

Component . o

Function Description
Name
Prometheus Core server responsible for collecting, storing, and querying monitoring
Server data

Monitoring data collection components that expose monitoring metrics via
Exporters i

HTTP interfaces
AlertManager Alert management center, handling alert rules and notifications

Supports push mode for monitoring data, used for data transfer in special
PushGateway

network environments

VictoriaMetrics Related Components

Component Name Function Description

VMStorage Monitoring data storage engine

Component Name

VMiInsert

VMSelect

VMAlert

VMAgent

Monitoring Component Selection Guide - Alauda Container Platform

Function Description

Data writing component responsible for data distribution and storage

Query service component providing data querying capabilities

Alert rule evaluation and handling component

Monitoring metric collection component

Architecture Comparison

Prometheus Architecture

| Short-lived
jobs

push metrics
at exit

v

Pushgateway

pull
metrics

Jobs/
exporters

Prometheus
targets

Service discovery Prometheus ————————
alerting .« pagerduty
kubernetes file sd D —
. Alertmanager Email
discover - —
targets * notify‘__)
‘ o etc
——————————
Prometheus server s
push
alerts
Retrieval TSDB HTTP
server
PromQL
9 Prometheus
web Ul
"""""""""" N visualization
and export
API clients

Prometheus is a mature open-source monitoring system and is the second graduated project

of CNCF after Kubernetes. It has the following characteristics:

o Powerful data collection capabilities.

¢ Flexible query language PromQL.

¢ A comprehensive ecosystem.

Monitoring Component Selection Guide - Alauda Container Platform

e Supports cluster monitoring at a thousand-node scale.

VictoriaMetrics Architecture

Clients
Grafana Prometheus
vmselect fully supports PromQL and can API clients

be used as Prometheus datasource in —
Grafana

Load balancer

VictoriaMetrics cluster

~Stateless 1 """""""""""" i — r a

vmselect fetches and merges data from

vmstorage during queries vmselect 1 vmselect M

Statefull

vmstorage stores time series data vmstorage N

Stateless

vminsert spreads time series across . .
available vmstorage nodes vminsert 1 L vminsert P

Load balancer

Writers

-

Multiple Prometheus instances may write

data to VictoriaMetrics cluster Prometheus Influx Graphite OpenTSDB
There is support for other ingestion remote_write API Line Protocol Plaintext Protocol Put Protocol
protocols

VictoriaMetrics is a next-generation high-performance time series database and monitoring

solution with the following advantages:

Higher data compression ratio.

Lower resource consumption.

Native support for cluster high availability.

Simpler operation and maintenance management.

Feature Comparison

Feature Prometheus VictoriaMetrics Description

High) ¢ V| VictoriaMetrics supports true
Availability cluster high availability with

Feature

Installation

Single Node

Installation

Long-term

Data Storage

Resource

Efficiency

Community

Support

Installation Scheme Suggestions

Monitoring Component Selection Guide - Alauda Container Platform

Prometheus

Requires

remote storage

Higher

Very mature

VictoriaMetrics

Natively
supported

Better

Rapidly

developing

Description

better data consistency

Both support single-node

installation mode

VictoriaMetrics is more suitable

for long-term data storage

VictoriaMetrics has better

resource utilization

Prometheus has a larger

community ecosystem

Monitoring Installation Architecture Overview

Monitoring Component Selection Guide - Alauda Container Platform

Apollo
Query
e ’L R
Cluster1/Cluster2/Cluster3 Cluster4

Query Query
D Do v

VMAgent VictoriaMetrics Wr_ite VMAgent Prometheus
Write Query !
Collect ‘ m Collect Collect
P Collect Send P o
Y v 'L L v 4
Exporter b Exporter lertmanager| : ! Exporter : : Exporter
Cluster1 Cluster2 Cluster3 Cluster4

The above diagram shows the installation architecture and data flow of the monitoring
components supported by the platform. The platform provides the following two installation

methods for selection:

Note: When replacing monitoring components, please ensure that existing components are

completely uninstalled, and monitoring data does not support cross-component migration.

Prometheus Installation Method

This method corresponds to the architecture of cluster4 in the above diagram:

* Uses Prometheus components to collect and process monitoring data.
¢ Queries and displays data through the monitoring panel.

¢ Suitable for single-cluster scenarios.

Monitoring Component Selection Guide - Alauda Container Platform

VictoriaMetrics Installation Method

VictoriaMetrics supports the following two installation modes:

1. Single Cluster Installation Mode

» Corresponds to the architecture of cluster2 in the above diagram.
 All VictoriaMetrics components are installed in the same cluster.

e Uses VMAgent to collect data and write to VictoriaMetrics.

o VMAlert is responsible for alert rule evaluation.

¢ Queries and displays data through the monitoring panel. Tip: It is recommended to use

this mode when data scale is below 1 million per second.

2. Multi-Cluster Installation Mode

Corresponds to the architecture of clusterl/cluster2/cluster3 in the above diagram.

Installs VMAgent in the workload cluster as a data collection agent.

VMAgent writes data into VictoriaMetrics in the central monitoring cluster.

Supports unified monitoring management across multiple clusters. Tip: Ensure that

VictoriaMetrics services are installed in the monitoring cluster before installing VMAgent.

Selection Recommendations

Scenarios Suitable for Using VictoriaMetrics
+ High Performance and Scalability Needs: Suitable for monitoring scenarios that handle
high-throughput data and long-term storage.

+ Cost-Effectiveness Considerations: Need to optimize storage and computing resource

costs.

+ High Availability Requirements: Requires high availability assurance for monitoring

components.

* Multi-Cluster Management: Requires unified management of monitoring data across

multiple clusters.

Scenarios Suitable for Using Prometheus

Monitoring Component Selection Guide - Alauda Container Platform

Single Cluster with Small Scale: Monitoring scale is small, with no high availability

requirements.
Existing Prometheus Users: Already have a complete Prometheus monitoring system.
Simple Stability Requirements: Pursuing a simple and reliable monitoring solution.

Deep Ecosystem Integration: Closely integrated with the Prometheus ecosystem, with

high migration costs.

0 Alauda Container Platform

Concepts

TOC

Monitoring

Metrics

PromQL

Built-in Indicators

Exporter

ServiceMonitor
Alarms

Alarm Rules

Alarm Policies
Notifications

Notification Policies

Notification Templates
Monitoring Dashboard

Dashboard

Panels

Data Sources

Variables

Monitoring

Concepts - Alauda Container Platform

http://localhost:4173/container_platform/

Concepts - Alauda Container Platform

Metrics

Metrics are used to quantitatively describe the operating status of a system, and each metric
consists of four basic elements:

* Metric Name: Used to identify the monitored object, such as cpu_usage

e Metric Value: Specific measurement value, such as 85.5

o Timestamp: Records the time of measurement

o Labels: Used for multidimensional data classification, such as {pod="nginx-1",

namespace="default"}

PromQL

PromQL is the query language for Prometheus, used to query and aggregate metric data from

the monitoring system.

Built-in Indicators

The platform has preset a series of commonly used monitoring metrics based on long-term
operational experience. You can directly use these metrics when configuring alarm rules or

creating monitoring dashboards without additional configuration.

EXxporter

The Exporter is a component for collecting monitoring data, with primary responsibilities

including:

¢ Collecting raw monitoring data from the target system
o Transforming data into a standard time-series metric format

e Providing metric data for querying via HTTP interface

ServiceMonitor

Concepts - Alauda Container Platform

ServiceMonitor is used to declaratively manage monitoring configurations and primarily

defines:

e The selection criteria for monitoring targets
« Configuration of metric collection interfaces

o Execution parameters for collection tasks (intervals, timeouts, etc.)

Alarms

Alarm Rules

Alarm rules define the specific conditions for triggering alarms:

Alarm Expression: Describes the conditions for triggering an alarm using PromQL

statements

Alarm Threshold: Explicit boundary values for trigger

Duration: Duration for which the conditions must be continuously met

Alarm Level: Distinguishes the severity of alarms (e.g., PO/P1/P2)

Alarm Policies

Alarm policies organize multiple alarm rules together for unified configuration:

o Alarm Targets: The target scope of the rules
+ Notification Method: The channels for sending alarms

e Sending Interval: The time interval for repeated alarm notifications

Notifications

Notification Policies

Notification policies manage the rules for sending alarm messages:

Concepts - Alauda Container Platform
« Recipients: Target users for alarm notifications
 Notification Channels: Supported message sending methods

« Notification Templates: Definition of message content format

Notification Templates

Notification templates customize the display format of alarm messages:

o Title Template: Format of the alarm message title
o Content Template: Organization of alarm details

» Variable Replacement: Supports dynamic data filling

Monitoring Dashboard

Dashboard

A dashboard is a collection of multiple related panels, providing an overall view of the system

status. It supports flexible layout arrangements and can organize panels in rows or columns.

Panels

Panels are visual representations of monitoring data, supporting various display types.

Data Sources

The configuration of monitoring data sources. Currently, only the monitoring components of
the current cluster are supported as data sources, and custom data sources are not supported

for now.

Variables

Variables serve as placeholders for values and can be used in metric queries. Through the

variable selector at the top of the dashboard, you can dynamically adjust query conditions,

Concepts - Alauda Container Platform

allowing chart content to update in real-time.

Guides - Alauda Container Platform

0 Alauda Container Platform

Guides

Management of Metrics

Viewing Metrics Exposed by Platform Con
Viewing All Metrics Stored by Prometheus
Viewing All Built-in Metrics Defined by the

Integrating External Metrics

Manage Dashboards

Function Overview

Manage Dashboards

Manage Panels

Create Monitoring Dashboards via CLI

Common Functions and Variables

Management of Alert

Function Overview

Key Features

Functional Advantages

Creating Alert Policies via Ul

Creating Resource Alerts via CLI
Creating Event Alerts via CLI

Creating Alert Policies via alert Templates

Setting Silence for Alerts

Managemel

Feature Overvit
Key Features

Notification Ser
Notification Cor
Notification Ten
Notification rule

Set Notification

Managemel

Function Overv
Blackbox Monit
Blackbox Alerts
Customizing Bl
Create Blackbo

Reference Infor

http://localhost:4173/container_platform/

Management of Metrics - Alauda Container Platform

Q Alauda Container Platform Q

Management of Metrics

The platform's monitoring system is based on the metrics collected by Prometheus /

VictoriaMetrics. This document will guide you on how to manage these metrics.

TOC

Viewing Metrics Exposed by Platform Components
Viewing All Metrics Stored by Prometheus / VictoriaMetrics
Prerequisites
Procedures
Viewing All Built-in Metrics Defined by the Platform
Prerequisites
Procedures
Integrating External Metrics
Prerequisites

Procedures

Viewing Metrics Exposed by Platform

Components

The monitoring method for the cluster components within the platform is to extract metrics

exposed via ServiceMonitor . Metrics in the platform are publicly available through the

http://localhost:4173/container_platform/

Management of Metrics - Alauda Container Platform

/metrics endpoint. You can view the exposed metrics of a specific component in the

platform using the following example command:

curl -s http://<Component IP>:<Component metrics port>/metrics | grep 'TY
PE\ |HELP'

Sample Output:

Viewing All Metrics Stored by Prometheus /
VictoriaMetrics

You can view the list of available metrics in the cluster to help you write the PromQL you need
based on these metrics.

Prerequisites

1. You have obtained your user Token

2. You have obtained the platform address

Procedures

Run the following command to get the list of metrics using the curl command:

Management of Metrics - Alauda Container Platform

curl -k -X 'GET' -H 'Authorization: Bearer <Your token>' 'https://<Yo
ur platform access address>/v2/metrics/<Your cluster name>/prometheu

s/label/__name__/values'

Sample Output:

"status": "success",
"data": [

"ALERTS",
"ALERTS_FOR_STATE",
"advanced_search_cached_resources_count",
"alb_error",
"alertmanager_alerts",
"alertmanager_alerts_invalid_total",
"alertmanager_alerts_received_total",
"alertmanager_cluster_enabled"]

Viewing All Built-in Metrics Defined by the

Platform
To simplify user usage, the platform has built in a large number of commonly used metrics.

You can directly use these metrics when configuring alerts or monitoring dashboards without

needing to define them yourself. The following will introduce you to how to view these metrics.

Prerequisites

1. You have obtained your user Token

2. You have obtained the platform address

Procedures

Run the following command to get the list of metrics using the curl command:

Management of Metrics - Alauda Container Platform
curl -k -X 'GET' -H 'Authorization: Bearer <Your token>' 'https://<Yo

ur platform access address>/v2/metrics/<Your cluster name>/indicator

IS 1

Sample Output:

Management of Metrics - Alauda Container Platform

Management of Metrics - Alauda Container Platform

{
"alertEnabled": true, e
"annotations": {

"cn": "CPU utilization of containers in the compute component",

"descriptionEN": "Cpu utilization for pods in workload",

"descriptionzH": "CPU utilization of containers in the compute com
ponent",

"displayNameEN": "CPU utilization of the pods",

"displayNamezZH": "CPU utilization of containers in the compute com
ponent",

"en": "Cpu utilization for pods in workload",

"features": "SupportDashboard", (9

"summaryEN": "CPU usage rate {{.externalLabels.comparison}}{{.exte
rnalLabels.threshold}} of Pod ({{.labels.pod}})",

"summaryZH": "CPU usage rate {{.externalLabels.comparison}}{{.exte
rnalLabels.threshold}} of pod ({{.labels.pod}})"

3

"displayName": "CPU utilization of containers in the compute compon
ent",

"kind": "workload",

"multipleEnabled": true, (@

"name": "workload.pod.cpu.utilization",

"query": "avg by (kind, name, namespace,pod) (avg by (kind,name, names
pace, pod, container) (cpaas_advanced_container_cpu_usage_seconds_total_
iratesm{kind=~\"{{.kind}}\", name=~\"{{.name}}\", namespace=~\"{{.names
pace}}\",container!=\"\", container!=\"POD\"}) / avg by (kind,name, nam
espace, pod, container) (cpaas_advanced_kube_pod_container_resource_limi
ts{kind=~\"{{.kind}}\", name=~\"{{.name}}\", namespace=~\"{{.namespac
e}}I\", resource=\"cpul\"}))", ‘a

"summary": "CPU usage rate {{.externallLabels.comparison}}{{.externa
lLabels.threshold}} of pod ({{.labels.pod}})",

"type": "metric",

"unit": "%",

"legend": "{{.namespace}}/{{.pod}}",
"variables": [e

"namespace",

"name",

"kind"

Management of Metrics - Alauda Container Platform

1. Whether this metric supports being used for configuring alerts
2. Whether this metric supports being used in monitoring dashboards

3. Whether this metric supports being used when configuring alerts for multiple

resources
4. The PromQL statement defined for the metric

5. The variables that can be used in the PromQL statement of the metric

Integrating External Metrics

In addition to the built-in metrics of the platform, you can also integrate metrics exposed by
your applications or third-party applications via ServiceMonitor or PodMonitor . This
section uses the Elasticsearch Exporter installed in pod form in the same cluster as an

example for explanation.

Prerequisites

You have installed your application and exposed metrics through specified interfaces. In this
document, we assume your application is installed in the cpaas-system namespace and
has exposed the http://<elasticsearch-exporter-ip>:9200/_prometheus/metrics

endpoint.

Procedures

1. Create a Service/Endpoint for the Exporter to expose metrics

Management of Metrics - Alauda Container Platform

apiVersion: vi
kind: Service
metadata:
labels:
chart: elasticsearch
service_name: cpaas-elasticsearch
name: cpaas-elasticsearch
namespace: cpaas-system
spec:
clusterIP: 10.105.125.99
ports:
- name: cpaas-elasticsearch
port: 9200
protocol: TCP
targetPort: 9200
selector:
service_name: cpaas-elasticsearch
sessionAffinity: None
type: ClusterIP

2. Create a ServiceMonitor objectto describe the metrics exposed by your

application:

Management of Metrics - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1l
kind: ServiceMonitor
metadata:
labels:
app: cpaas-monitor
chart: cpaas-monitor
heritage: Helm
prometheus: kube—prometheusa
release: cpaas-monitor
name: cpaas-elasticsearch-Exporter
namespace: cpaas-systeme
spec:

jobLabel: service_namee
namespaceSelector: e

any: true
selector: @

matchExpressions:

- key: service_name
operator: Exists

endpoints:

- port: Cpaas-elasticsearch@
path: /_prometheus/metricse
interval: 603@
honorLabels: true
basicAuth: e

password:

key: ES_PASSWORD

name: acp-config-secret
username:

key: ES_USER

name: acp-config-secret

1. To which Prometheus should the ServiceMonitor be synchronized; the operator will
listen to the corresponding ServiceMonitor resource based on the
serviceMonitorSelector configuration of the Prometheus CR. If the
ServiceMonitor's labels do not match the serviceMonitorSelector configuration of

the Prometheus CR, this ServiceMonitor will not be monitored by the operator.

2. The operator will listen to which namespaces of ServiceMonitor based on the

serviceMonitorNamespaceSelector configuration of the Prometheus CR; if the

Management of Metrics - Alauda Container Platform

ServiceMonitor is not in the serviceMonitorNamespaceSelector of the Prometheus

CR, this ServiceMonitor will not be monitored by the operator.

3. Metrics collected by Prometheus will add a job label, with the value being the

service label value corresponding to jobLabel.

4. The ServiceMonitor matches the corresponding Service based on the

namespaceSelector configuration.
5. The ServiceMonitor matches the Service based on the selector configuration.
6. The ServiceMonitor matches the Service's port based on port configuration.
7. The access path to the Exporter, default is /metrics.
8. The interval at which Prometheus scrapes the Exporter metrics.

9. If authentication is required to access the Exporter path, authentication information
needs to be added; it also supports bearer token, tls authentication, and other

methods.

. Check if the ServiceMonitor is being monitored by Prometheus

Access the Ul of the monitoring component to check if the job cpaas-

elasticsearch-exporter exists.

¢ Prometheus Ul address: https://<Your platform access

address>/clusters/<Cluster name>/prometheus-0/targets

e VictoriaMetrics Ul address: https://<Your platform access

address>/clusters/<Cluster name>/vmselect/vmui/?#/metrics

Management of Alert - Alauda Container Platform

0 Alauda Container Platform

Management of Alert

TOC

Function Overview
Key Features
Functional Advantages
Creating Alert Policies via Ul
Prerequisites
Procedures
Selecting Alert Type
Configuring Alert Rules
Other Configurations
Additional Notes
Creating Resource Alerts via CLI
Prerequisites
Procedures
Creating Event Alerts via CLI
Prerequisites
Procedures
Creating Alert Policies via alert Templates
Prerequisites
Procedures
Creating Alert Template
Creating Alert Policies Using alert Templates

Setting Silence for Alerts

http://localhost:4173/container_platform/

Management of Alert - Alauda Container Platform
Setting via Ul
Setting via CLI

Recommendations for Configuring Alert Rules

Function Overview

The alert management function of the platform aims to help users comprehensively monitor
and promptly detect system anomalies. By utilizing pre-installed system alerts and flexible
custom alert capabilities, combined with standardized alert templates and a tiered
management mechanism, it provides a complete alert solution for operation and maintenance

personnel.

Whether it's platform administrators or business personnel, they can conveniently configure
and manage alert policies within their respective permission scopes for effective monitoring of

platform resources.

Key Features

* Built-in System Alert Policies: Rich alert rules are preset based on common fault

diagnosis ideas for global clusters and workload clusters.

¢ Custom Alert Rules: Supports the creation of alert rules based on various data sources,
including preset monitoring indicators, custom monitoring indicators, black-box monitoring

items, platform log data, and platform event data.

+ Alert Template Management: Supports the creation and management of standardized

alert templates for quick application to similar resources.

« Alert Notification Integration: Supports the push of alert information to operation and

maintenance personnel through various channels.

+ Alert View Isolation: Distinguishes between platform management alerts and business

alerts, ensuring that personnel in different roles focus on their respective alert information.

+ Real-time Alert Viewing: Provides real-time alerts, offering concentrated displays of the

number of resources currently experiencing alerts and detailed alert information.

Management of Alert - Alauda Container Platform

» Alert History Viewing: Supports the viewing of historical alert records over a period,
facilitating the analysis of recent monitoring alert conditions by operation and maintenance

personnel and administrators.

Functional Advantages

o Comprehensive Monitoring Coverage: Supports monitoring of various resource types
such as clusters, nodes, and computing components, and comes with rich built-in system

alert policies that can be used without additional configuration.

» Efficient Alert Management: Standardized configurations through alert templates enhance
operational efficiency, and the separation of alert views makes it easier for personnel in

different roles to quickly locate relevant alerts.

o Timely Problem Detection: alert notifications are automatically triggered to ensure timely

problem detection, supporting multi-channel alert pushing for proactive problem avoidance.

» Robust Permission Management: Strict access control for alert policies ensures that alert

information is secure and manageable.

Creating Alert Policies via Ul

Prerequisites

e A notification policy is configured (if you need to configure automatic alert notifications).

e Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

e Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Procedures

1. Navigate to Operation and Maintenance Center > alerts > alert Policies.
2. Click Create Alert Policy.

3. Configure basic information.

Management of Alert - Alauda Container Platform

Selecting Alert Type
Resource Alert

o Alert types categorized by resource type (e.g., deployment status under a namespace).

* Resource selection description:

o Defaults to "Any" if no parameter is selected, supporting automatic association with

newly added resources.
* When "Select All" is chosen, it only applies to the current resource.

* When multiple namespaces are selected, resource names support regular expressions

(e.g., cert.*).
Event Alert

o Alert types categorized by specific events (e.g., abnormal Pod status).

o By default, selects all resources under the specified resource and supports automatic

association with newly added resources.

Configuring Alert Rules
Click Add Alert Rule and configure the following parameters based on the alert type:

Resource Alert Parameters

Parameter Description

Monitoring metric algorithm in Prometheus format, e.qg.,
Expression rate(node_network_receive_bytes{instance="$server",6 device!~"10"}

[5m])

Custom monitoring metric unit, can be entered manually or selected from

Metric Unit]
platform preset units
Legend Controls the name corresponding to the curve in the chart, formatted as
Parameter {{.LabelName}} , e.g., {{.hostname}}
Time

Time window for log/event queries
Range

Parameter

Log
Content

Event

Reason

Trigger
Condition

alert Level

Management of Alert - Alauda Container Platform

Description

Query fields for log content (e.g., Error), where multiple query fields are linked by
OR

Query fields for event reasons (Reason, e.g., BackOff, Pulling, Failed, etc.),

where multiple query fields are linked by OR

Condition consisting of comparison operators, alert thresholds, and duration
(optional). Determines if an alert is triggered based on the comparison of real-
time values/log count/event count against the alert threshold, as well as the
duration of real-time values within the alert threshold range.

Divided into four levels: Critical, Serious, Warning, and Info. You can set a
reasonable alert level according to the impact of the alert rules on business for

the corresponding resources.

Event Alert Parameters

Parameter

Time Range

Event Monitoring

Iltem

Trigger Condition

alert Level

Description

Time window for event queries

Supports monitoring event levels or event reasons, where multiple fields
are linked by OR

Based on event count for comparison judgement

Same definition as resource alert levels

Other Configurations

1. Select one or more created notification policies.

2. Configure alert sending intervals.

¢ Global: Use platform default configuration.

o Custom: Different sending intervals can be set based on alert levels.

 When "Do Not Repeat" is selected, notifications will only be sent when the alert is

triggered and recovered.

Management of Alert - Alauda Container Platform

Additional Notes

1. In the "More" options of the alert rule, labels and annotations can be set.

2. Please refer to the Prometheus Alerting Rules Documentation - for configuring labels and

annotations.

3. Note: Do not use the s$value variable in labels, as this may cause alert exceptions.

Creating Resource Alerts via CLI

Prerequisites

* A natification policy is configured (if you need to configure automatic alert notifications).

+ Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

e Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Procedures

1. Create a new YAML configuration file named example-alerting-rule.yaml .

2. Add PrometheusRule resources to the YAML file and submit it. The following example

creates a new alert policy called policy:

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/

Management of Alert - Alauda Container Platform

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1l
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global # The name of the cluster where the
alert is located
alert.cpaas.io/kind: Cluster # The type of resource,
alert.cpaas.io/name: global # The resource object, supporting singl
e, multiple (separated by [), or any (.%*)
alert.cpaas.io/namespace: cpaas-system # The namespace where the al
ert object is located, supporting single, multiple (separated by |), or
any (.%)
alert.cpaas.io/notifications: '["test"]'
alert.cpaas.io/repeat-config: '{"Critical":"never","High":"5m", "Med
ium":"5m", "Low" :"5m"}'
alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'
alert.cpaas.io/subkind: "'
cpaas.io/description: ''

cpaas.io/display-name: policy # The display name of the alert polic

labels:
alert.cpaas.io/owner: System
alert.cpaas.io/project: cpaas-system
cpaas.io/source: Platform
prometheus: kube-prometheus
rule.cpaas.io/cluster: global
rule.cpaas.io/name: policy
rule.cpaas.io/namespace: cpaas-system
name: policy
namespace: cpaas-system
spec:
groups:
- name: general # alert rule name
rules:
- alert: cluster.pod.status.phase.not.running-tx1ob-e998f0b9485
deeleade5ae79279e005a
annotations:
alert_current_value: '{{ $value }}' # Notification of the c
urrent value, keep as default
expr: (count(min by(pod)(kube_pod_container_status_ready{}) !
=1) or on() vector(0))>2
for: 30s # Duration

Management of Alert - Alauda Container Platform

labels:

alert_cluster: global # The name of the cluster where the a
lert is located

alert_for: 30s # Duration

alert_indicator: cluster.pod.status.phase.not.running # The
name of the alert rule indicator (custom alert indicator name as custo
m)

alert_indicator_aggregate_range: '30' # The aggregation tim
e for the alert rule, in seconds

alert_indicator_blackbox_name: '' # Black-box monitoring it
em name

alert_indicator_comparison: '>' # The comparison method for
the alert rule

alert_indicator_query: '' # Query for the logs of the alert
rule (only for log alerts)

alert_indicator_threshold: '2' # The threshold for the aler
t rule

alert_indicator_unit: '' # The indicator unit for the alert
rule

alert_involved_object_kind: Cluster # The type of the objec
t to which the alert rule belongs: Cluster|Node|Deployment|Daemonset|St
atefulset |Middleware|Microservice|Storage|VirtualMachine

alert_involved_object_name: global # The name of the object
to which the alert rule belongs

alert_involved_object_namespace: '' # The namespace of the
object to which the alert rule belongs

alert_name: cluster.pod.status.phase.not.running-tx1ob # Th
e name of the alert rule

alert_namespace: cpaas-system # The namespace where the ale
rt rule is located

alert_project: cpaas-system # The project name of the objec
t to which the alert rule belongs

alert_resource: policy # The name of the alert policy where
the alert rule is located

alert_source: Platform # The data type of the alert policy
where the alert rule is located: Platform-Platform Data Business-Busine
ss Data

severity: High # The severity level of the alert rule: Crit

ical-Critical, High-Serious, Medium-Warning, Low-Info

Creating Event Alerts via CLI

Management of Alert - Alauda Container Platform

Prerequisites

» A notification policy is configured (if you need to configure automatic alert notifications).

* Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

* Log storage components and log collection components are installed in the target cluster

(required when creating alert policies using logs and events).

Procedures

1. Create a new YAML configuration file named example-alerting-rule.yaml .

2. Add PrometheusRule resources to the YAML file and submit it. The following example

creates a new alert policy called policy2:

Management of Alert - Alauda Container Platform

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1l
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global
alert.cpaas.io/events.scope:

"[{"names":["argocd-gitops-redis-ha-haproxy"], "kind":"Deploymen
t","operator":"=", "namespaces":["*"]}]"

names: The resource name for the event alert; operator is ineff
ective if name is empty.

kind: The type of resource that triggers the event alert.

namespace: The namespace where the resource that triggers the e
vent alert belongs. An empty array indicates a non-namespaced resource;
when ns is ['*'], it indicates all namespaces.

operator: Selector =, !=, =~, I~

alert.cpaas.io/kind: Event # The type of alert, Event (event alert)

alert.cpaas.io/name: '' # Used for resource alerts; remains empty f
or event alerts

alert.cpaas.io/namespace: cpaas-system

alert.cpaas.io/notifications: '["acp-qwtest"]'

alert.cpaas.io/repeat-config: '{"Critical":"never","High":"5m", "Med
ium":"5m", "Low":"5m"}'

alert.cpaas.io/rules.description: '{}'

alert.cpaas.io/rules.disabled: '[]'

cpaas.io/description: ''

cpaas.io/display-name: policy2

labels:

alert.cpaas.io/owner: System

alert.cpaas.io/project: cpaas-system

cpaas.io/source: Platform

prometheus: kube-prometheus

rule.cpaas.io/cluster: global

rule.cpaas.io/name: policy?2

rule.cpaas.io/namespace: cpaas-system

name: policy2

namespace: cpaas-system

spec:
groups:
- name: general
rules:
- alert: cluster.event.count-6sial-34c9a378e3b6dda8401c2d728994
ce2f

6sial-34c9a378e3b6dda8401c2d728994ce2f can be customized to

Management of Alert - Alauda Container Platform

ensure uniqueness
annotations:
alert_current_value: '{{ $value }}' # Notification of the c
urrent value, keep as default
expr: round(((avg
by(kind, namespace, name, reason) (increase(cpaas_event_count{n
amespace=~".*" id="policy2-cluster.event.count-6sial"}[300s])))
+ (avg
by(kind, namespace, name, reason) (abs(increase(cpaas_event_cou
nt{namespace=~".*", id="policy2-cluster.event.count-6sial"}[300s])))))
/ 2)>2
The id in the policy2 needs to be the name of the alert pol
icy; 6sial must match the preceding alert rule name
for: 15s # Duration
labels:
alert_cluster: global # The name of the cluster where the a
lert is located
alert_for: 15s # Duration
alert_indicator: cluster.event.count # The name of the aler
t rule indicator (custom alert indicator name as custom)
alert_indicator_aggregate_range: '300' # The aggregation ti
me for the alert rule, in seconds
alert_indicator_blackbox_name: ''
alert_indicator_comparison: '>' # The comparison method for
the alert rule
alert_indicator_event_reason: ScalingReplicaSet # Event rea
son.
alert_indicator_threshold: '2' # The threshold for the aler
t rule
alert_indicator_unit: pieces # The indicator unit for the a
lert rule; remains unchanged for event alerts
alert_involved_object_kind: Event
alert_involved_object_options: Single
alert_name: cluster.event.count-6sial # The name of the ale
rt rule
alert_namespace: cpaas-system # The namespace where the ale
rt rule is located
alert_project: cpaas-system # The project name of the objec
t to which the alert rule belongs
alert_repeat_interval: 5m
alert_resource: policy2 # The name of the alert policy wher
e the alert rule is located
alert_source: Platform # The data type of the alert policy

where the alert rule is located: Platform-Platform Data Business-Busine

Management of Alert - Alauda Container Platform

severity: High

Creating Alert Policies via alert Templates

alert templates are a combination of alert rules and notification policies targeted at similar
resources. Through alert templates, it is easy and quick to create alert policies for clusters,

nodes, or computing components on the platform.

Prerequisites

» A natification policy is configured (if you need to configure automatic alert notifications).

e Monitoring components are installed in the target cluster (required when creating alert

policies using monitoring indicators).

Procedures

Creating Alert Template

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert
Templates.

2. Click Create alert Template.

3. Configure the basic information of the alert template.

4. In the alert Rules section, click Add alert Rule, and follow the parameter descriptions

below to add alert rules:

Parameter Description

Monitoring metric algorithm in Prometheus format, e.g.,

Expression rate(node_network_receive_bytes{instance="$server",6 device!~"10"}

[5m])

)) Custom monitoring metric unit, can be entered manually or selected from
Metric Unit]
platform preset units

Management of Alert - Alauda Container Platform

Parameter Description
Legend Controls the name corresponding to the curve in the chart, formatted as
Parameter {{.LabelName}} , e.g., {{.hostname}?}
Time)))

Time window for log/event queries
Range
Log Query fields for log content (e.g., Error), where multiple query fields are linked by
Content OR
Event Query fields for event reasons (Reason, e.g., BackOff, Pulling, Failed, etc.),
Reason where multiple query fields are linked by OR
Trigger Condition consisting of comparison operators, alert thresholds, and duration
Condition (optional).

Divided into four levels: Critical, Serious, Warning, and Info. You can set a
alert Level reasonable alert level according to the impact of the alert rules on business for

the corresponding resources.
5. Click Create.

Creating Alert Policies Using alert Templates

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Policies. Tip: You can switch the target cluster through the top navigation bar.

2. Click the expand button next to the Create alert Policy button > Template Create alert

Policy.

3. Configure some parameters, referring to the descriptions below:

Parameter Description

The name of the alert template to use. The templates are categorized by cluster,

Template node, and computing component. Upon selecting a template, you can view the

Name alert rules, notification policies, and other information set within the alert
template.

Resource Select whether the template is an alert policy template for Cluster, Node, or

Type Computing Component; the corresponding resource name will be displayed.

Management of Alert - Alauda Container Platform

4. Click Create.

Setting Silence for Alerts

Supports silencing alerts for clusters, nodes, and computing components. By setting silence
for specific alert policies, you can control that all rules under the alert policy do not send
notification messages when triggered during the set silence period. Permanent silence and

custom time silence can be set.

For example: When the platform is upgraded or maintained, many resources may show
abnormal statuses, leading to numerous triggered alerts, which cause operation and
maintenance personnel to frequently receive alert notifications before the upgrade or

maintenance is completed. Setting silence for the alert policy can prevent this situation.
Note: When the silence status persists until the silence end time, the silence setting will be

automatically cleared.

Setting via Ul

1. In the left navigation bar, click Operation and Maintenance Center > alerts > alert

Policies.
2. Click the operation button on the right side of the alert policy to be silenced > Set Silence.
3. Toggle alert Silence switch to open it.

Tip: This switch controls whether the silence setting takes effect. To cancel silence, simply

turn off the switch.
4. Configure relevant parameters according to the descriptions below:

Tip: If no silence range or resource name is selected, it defaults to Any, meaning that
subsequent Delete/Add resource actions will correspond to Delete Silence/Add Silence
alert policies; if "Select All" is chosen, it will only apply to the currently selected resource

range, and subsequent Delete/Add resource actions will not be processed.

Management of Alert - Alauda Container Platform

Parameter Description

Silence
The scope of resources where the silence setting takes effect.

Range

Resource
The name of the resource object targeted by the silence setting.

Name
The time range for alert silence. The alert will enter silence state at the start
of the silence time, and if the alert policy remains in an alert state or triggers

Silence alerts after the silence end time, alert notifications will resume. Permanent:

Time The silence setting will last until the alert policy is deleted. Custom: Custom
settings for the start time and end time of silence, with the time interval not
less than 5 minutes.

5. Click Set.

Tip: From the moment silence is set until the start of silence, the silence status of the alert
policy is considered Silence Waiting. During this period, when rules in the policy trigger

alerts, notifications will be sent normally; after silence starts until it ends, the silence status
of the alert policy is Silencing, and when rules in the policy trigger alerts, notifications will

not be sent.

Setting via CLI

1. Specify the resource name of the alert policy you want to set silence for and execute the

following command:

kubectl edit PrometheusRule <TheNameOfThealertPolicyYouwWantToSet>

2. Modify the resource as shown in the example to add silence annotations and submit.

Management of Alert - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:

annotations:

alert.cpaas.io/cluster: global

alert.cpaas.io/kind: Node

alert.cpaas.io/name: 0.0.0.0

alert.cpaas.io/namespace: cpaas-system

alert.cpaas.io/notifications: '[]'

alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'

alert.cpaas.io/rules.version: '23'

alert.cpaas.io/silence.config:

"{"startsAt":"2025-02-08T08:01:37Z", "endsAt" :"2025-02-22T08:01:37
Z","creator":"leizhu@alauda.io", "resources":{"nodes":[{"name":"192.168.
36.11","ip":"192.168.36.11"}, {"name":"192.168.36.12", "ip":"192.168.36.1
2"}, {"name":"192.168.36.13", "ip":"192.168.36.13"}]}}"

The silence configuration for node-level alert policies, includ
ing start time, end time, creator, etc.; if the silence range includes
specific nodes, please append the resources.node information as shown a
bove. If you need silence for all resources, you do not need the resour
ces field.

alert.cpaas.io/silence.config: '{"startsAt":"2025-02-08T08:04:50
Z","endsAt":"2199-12-31T00:00:00Z", "creator":"leizhu@alauda.io", "name":
["alb-operator-ctl", "apollo"], "namespace":["cpaas-system"]}"'

The silence configuration for workload-level alert policies, incl
uding start time, end time, creator, etc.; if the silence range include
s specific workloads, please append name and namespace information as s
hown above. If you need silence for all resources, you do not need the
name and namespace fields.

Setting the endsAt field to 2199-12-31T00:00:00Z indicates perman
ent silence.

alert.cpaas.io/subkind: "'

cpaas.io/creator: leizhu@alauda.io

cpaas.io/description: ''

cpaas.io/display-name: policy3

cpaas.io/updated-at: 2025-02-08T08:01:42Z

labels:

Exclude irrelevant information

Management of Alert - Alauda Container Platform

Recommendations for Configuring Alert Rules

More alert rules do not always equate to better outcomes. Redundant or complex alert rules
can lead to alert storms and increase your maintenance burden. It is recommended that you
read the following guidelines before configuring alert rules to ensure that custom rules can

achieve their intended purposes while remaining efficient.

+ Use the Fewest New Rules Possible: Create only those rules that meet your specific
requirements. By using the fewest number of rules, you can create a more manageable

and centralized alert system in the monitoring environment.

e Focus on Symptoms Rather than Causes: Create rules that notify users of symptoms
rather than the root causes of those symptoms. This ensures that when relevant symptoms
occur, users can receive alerts and may investigate the root causes that triggered the
alerts. Using this strategy can significantly reduce the total number of rules you need to

create.

+ Plan and Assess Your Needs Before Making Changes: First, clarify which symptoms are

important and what actions you want users to take when these symptoms occur. Then
evaluate existing rules to decide if you can modify them to achieve your objectives without
creating new rules for each symptom. By modifying existing rules and carefully creating

new ones, you can help simplify the alert system.

e Provide Clear Alert Messages: When you create alert messages, include descriptions of
symptoms, possible causes, and recommended actions. The information included should
be clear, concise, and provide troubleshooting procedures or links to additional relevant

information. Doing so helps users quickly assess situations and respond appropriately.

o Set Severity Levels Reasonably: Assign severity levels to your rules to indicate how
users should respond when symptoms trigger alerts. For instance, classify alerts with a
severity level of Critical, signaling that immediate action is required from relevant
personnel. By establishing severity levels, you can help users decide how to respond upon

receiving alerts and ensure prompt responses to urgent issues.

Management of Notification - Alauda Container Platform

0 Alauda Container Platform

Management of Notification

TOC

Feature Overview
Key Features
Notification Server
Corporate Communication Tool Server
Email Server
Webhook Type Server
Notification Contact Group
Notification Template
Create Notification Template
Reference Variables
Special Formatting Markup Language in Emails
Notification rule
Prerequisites
Operation Procedures
Set Notification Rule for Projects
Prerequisites

Operation Procedures

Feature Overview

http://localhost:4173/container_platform/

Management of Notification - Alauda Container Platform

With notifications, you can integrate the platform’'s monitoring and alerting features to promptly
send pre-warning information to notification recipients, reminding relevant personnel to take

necessary measures to resolve issues or avoid failures.

Key Features

+ Notification Server: The notification server provides services for sending notification

messages to notification contact groups on the platform, such as an email server.

+ Notification Contact Group: A notification contact group is a set of notification recipients
with similar logical characteristics, which can reduce your maintenance burden by allowing

a categorization of entities that receive notification messages.

* Notification Template: A notification template is a standardized structure composed of
custom content, content variables, and content format parameters. It is used to standardize
the content and format of alert notification messages for notification strategies. For

example, customizing the subject and content of email notifications.

e Notification rule: A notification rule is a collection of rules defining how to send notification
messages to specific contacts. It is essential to use a notification rule for scenarios such as

alerts, inspections, and login authentication that require notifying external services.

Notification Server

The notification server provides services for sending notification messages to recipients on the

platform. The platform currently supports the following notification servers:

o Corporate Communication Tool Server: Supports integration with WeChat Work,

DingTalk, and Feishu built-in applications for sending notifications to individuals.
o Email Server: Sends notifications via email using an email server.

 Webhook Type Server: Supports integration with corporate WeChat group bots, DingTalk

group bots, Feishu group bots, or sending WebHooks to your designated server.

I WARNING

Only one corporate communication tool server can be added.

Management of Notification - Alauda Container Platform

Corporate Communication Tool Server

WeChat Work

1. Configure the notification server parameters as per the example below. Once parameters
are filled in, switch to the global clusterin Cluster Management > Resource

Management and create the resource object.

apiVersion: vi
kind: Secret
type: NotificationServer
metadata:
labels:
cpaas.io/notification.server.type: CorpWeChat
cpaas.io/notification.server.category: Corp
name: platform-corp-wechat-server
namespace: cpaas-system
data:
displayNamezh: Mi#{s

displayNameEn: WeChat
corpIld:
corpSecret:

agentId:

2. After the creation, you need to update the user's WeChat Work ID in the platform's User
Role Management > User Management or in the user's Personal Information to ensure

the user can receive messages normally.
DingTalk

1. Configure the notification server parameters as per the example below. Once parameters

are filled in, switch to the global clusterin Cluster Management > Resource

Management of Notification - Alauda Container Platform

Management and create the resource object.

apiVersion: vi1i
kind: Secret
type: NotificationServer
metadata:
labels:
cpaas.io/notification.server.type: CorpDingTalk
cpaas.io/notification.server.category: Corp
name: platform-corp-dingtalk-server
namespace: cpaas-system
data:
displayNamezh: £T4T

displayNameEn: DingTalk

appKey:

appSecret:

agentId:

2. After the creation, you need to update the user's DingTalk ID in the platform's User Role
Management > User Management or in the user's Personal Information to ensure the

user can receive messages normally.

Feishu

1. Configure the notification server parameters as per the example below. Once parameters
are filled in, switch to the global cluster in Cluster Management > Resource

Management and create the resource object.

Management of Notification - Alauda Container Platform

apiVersion: vi
kind: Secret
type: NotificationServer
metadata:
labels:
cpaas.io/notification.server.type: CorpFeishu
cpaas.io/notification.server.category: Corp
name: platform-corp-feishu-server
namespace: cpaas-system
data:
displayNamezh: K$

displayNameEn: Feishu
appId:

appSecret:

2. After the creation, you need to update the user's Feishu ID in the platform's User Role
Management > User Management or in the user's Personal Information to ensure the

user can receive messages normally.

Email Server

1. In the left navigation bar, click Platform Settings > Notification Server.
2. Click Configure Now.

3. Refer to the following instructions to configure the relevant parameters.

Parameter Description

Service The address of the notification server supporting the SMTP protocol,

Address e.g., smtp.yeah.net .

Management of Notification - Alauda Container Platform

Parameter Description

The port number for the notification server. When Use SSL is checked,

Port
the SSL port number must be entered.
Use SSL: Secure Socket Layer (SSL) is a standard security technology.
The SSL switch is used to control whether to establish an encrypted link
between the server and client.

Server

Skip Insecure Verification: The insecureSkipVerify switch is used to
Configuration

control whether to verify the client certificate and server hostname. If
enabled, certificates and the consistency between the hostname in the

certificate and the server hostname will not be verified.

The sender's email account in the notification server, used for sending
Sender Email

notification emails.

Enable If authentication is required, please configure the username and
Authentication authorization code for the email server.
4. Click OK.

Webhook Type Server

Supports integration with corporate WeChat group bots, DingTalk group bots, Feishu group
bots, or sending HTTP requests to your designated Webhook server.

Corporate WeChat Group Bot
1. In the left navigation bar, click Cluster Management > Cluster.
2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-wechat-server -p '{"dat
a":{"enable":"dHJ1ZQo="}}"

Management of Notification - Alauda Container Platform

Tip: dHJ1zQo= is the base64 encoded value of true; to disable, replace dHJ1zQo= with

ZmFsc2UK , which is the base64 encoded value of false.
DingTalk Group Bot
1. In the left navigation bar, click Cluster Management > Cluster.
2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-dingtalk-server -p '{"dat
a":{"enable":"dHJ1ZQo="1}}"

Tip: dHJ1zQo= is the base64 encoded value of true; to disable, replace dHJ1zQo= with

ZmFsc2UK , which is the base64 encoded value of false.
Feishu Group Bot
1. In the left navigation bar, click Cluster Management > Cluster.
2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

kubectl patch secret -n cpaas-system platform-feishu-server -p '{"dat
a":{"enable":"dHJ1zQo="}}"

Tip: dHJ1zQo= is the base64 encoded value of true; to disable, replace dHJ1ZQo= with

ZmFsc2UK , which is the base64 encoded value of false.
Webhook Server
1. In the left navigation bar, click Cluster Management > Cluster.
2. Click the operation button next to the global cluster > CLI Tool.

3. Execute the following command on the master node of the global cluster:

Management of Notification - Alauda Container Platform

kubectl patch secret -n cpaas-system platform-webhook-server -p '{"dat

a":{"enable":"dHJ1ZQo="}}"

Tip: dHJ1zQo= is the base64 encoded value of true; to disable, replace dHJ1zQo= with

ZmFsc2UK , which is the base64 encoded value of false.

Notification Contact Group

A notification contact group is a set of notification recipients with similar logical characteristics.
For example, you can set an operations and maintenance team as a notification contact group

for easy selection and management when configuring notification strategies.

I INFO

1. The platform supports various natification servers, and the corresponding configuration options

for notification types will be displayed based on the notification server configuration.

2. If you need to use a Webhook type server as a natification recipient, you must configure the

relevant URL in the notification contact group.

1. In the left navigation bar, click Operations Center > Notifications.
2. Switch to the Notification Contact Group tab.

3. Click Create Notification Contact Group and configure the relevant parameters as per

the instructions below.

Parameter Description

Add an email to the entire notification contact group. The
Email platform will send notifications to this email and all contacts'

emails in the group.

Webhook URL/WeChat Please fill in the corresponding notification method URL

Group Bot/DingTalk Group based on the configured notification server. Once

Management of Notification - Alauda Container Platform

Parameter Description
Bot/Feishu Group Bot configured, contacts in this group will be notified using this
method.

Click Add Contact to add existing platform users to the

contact group. Ensure the accuracy of the selected
Contact Configuration
contacts' contact information (phone, email, interface

callback) to avoid missing message notifications.

4. Click Add.

Notification Template

A notification template is a standardized structure composed of custom content, content
variables, and content format parameters. It is used to standardize the content and format of

alert notification messages for notification strategies.

Platform administrators or operations personnel can set notification templates to customize
the content and format of notification messages based on different alert notification methods,

helping users quickly get critical alert information and improve operational efficiency.

I INFO

The platform supports various notification servers, and the corresponding notification type
templates will be displayed according to the notification server configuration. If no notification server

is configured, the corresponding notification templates will not be displayed by default.

Create Notification Template

1. In the left navigation bar, click Operations Center > Notifications.
2. Switch to the Notification Template tab.

3. Click Create Notification Template.

Management of Notification - Alauda Container Platform

4. In the Basic Information section, configure the following parameters.

Parameter Description

Select the type of message according to the purpose of the notification.
Alert Message: Sends alert messages triggered by alert rules, in

Message
conjunction with the platform's alerting functionality;
Type
Component Exception Message: Sends natification information triggered

by exceptions in certain components.

5. In the Template Configuration section, reference different template types to configure

variables and content formatting parameters.

I INFO

1. The content of the template can only consist of variables, variable display names, and special
formatting markup language supported by the platform. Variables and other elements can be

freely combined as long as they comply with the syntax rules.

2. Only variables supported by the platform can be used in the template. You can modify variable
display names and content formats, but you cannot modify the variable itself. Refer to Reference

Variables, and Special Formatting Markup Language in Emails.

3. The platform provides default notification template content for various notification types based
on actual operational scenarios, which can meet most notification message setting needs. If

there are no special requirements, you may directly use the default template content.

6. Click Create.

Reference Variables

Variables are the keys of labels or annotations in notification messages (NotificationMessage),
formatted as {{.labelkey}} . To facilitate users in quickly obtaining key information, custom
display names can be assigned to variables; for example: Alert Level: {{

.externallLabels.severity }} .

Management of Notification - Alauda Container Platform

When a notification rule sends notification messages to users based on a notification
template, the variables in the template will reference the corresponding label values in the
notification message (actual monitoring data). Ultimately, monitoring data will be sent to users

in a standardized content format.

The platform provides the following basic variables by default:

Display . .
Variable Description
Name
Alert Status {{ .externalLabels.status }} For example: Alerting.
Alert Level {{ .externalLabels.severity }} For example: Critical.
Alert For example: Cluster 1
{{ .labels.alert_cluster }}
Cluster where the alert occurred.
The type and name of the
. resource where the alert
Alert Object {{ .externalLabels.object }}
occurred, e.g., hode
192.168.16.53.
The name of the alert rule,
rule Name {{ .labels.alert_resource }}
e.g., cpaas-node-rules.
Alert .
o {{ .externalLabels.summary }} Description of the alert rule.
Description
Trigger The monitored value that
{{ .externalLabels.currentValue }})
Value triggered the alert.
{{ dateFormatwWithZone .startsAt
Alert Time "2006-01-02 15:04:05" The start time of the alert.
"Asia/Chongqing" }}
Recovery {{ dateFormatwWithZone .endsAt "2006-)
i The end time of the alert.
Time 01-02 15:04:05" "Asia/Chongqing" }}
. Name of the monitoring
Metric Name {{ .labels.alert_indicator }}

metric.

Management of Notification - Alauda Container Platform

Special Formatting Markup Language in Emails

In email notifications, common HTML format tags and their instructions are referenced in the

table below:
Content o
Tag Description
Element
Supports input of
Text - Chinese/English text
content.
Set Font
Font Color Set font format.
Bold Font
) <hi>Level 1 Title</h1> , supports up to h6)
Title Set title level.
(header 6).
Insert regular
Paragraph <p>Paragraph</p>
paragraph text.
Insert short quoted
Quote <g>Quote</g>
content.
- <a .
Hyperlink Insert a hyperlink.

href="//www.example.com">Hyper link

Notification rule

A notification rule is a collection of rules defining how to send notification messages to specific
contacts. It is essential to use notification strategies for scenarios requiring notification to

external services, such as alerts, inspections, and login authentication.

I INFO

The platform supports various notification servers, and the notification modes corresponding to

notification types will be displayed based on the notification server configuration. If no notification

Management of Notification - Alauda Container Platform

server is configured, the corresponding notification modes will not be displayed by default.

Prerequisites

To use the Corporate Communication Tool Server to notify contacts, users must first modify

their contact information in Personal Information by entering their weChat Work ID .

Operation Procedures

1. In the left navigation bar, click Operations Center > Notifications.

2. Click Create Notification rule and configure the relevant parameters as per the following

instructions.

Parameter Description
Notification A notification contact group is a logical set of notification recipients,
Contact Group which the platform will notify using the specified notification method.

Choose to add one or more notification recipients, and the platform will

Notification
send natifications according to the recipients' Personal Information
Recipients
contact methods.
Supports multiple methods including WeChat Work, DingTalk, Feishu,
Corporate WeChat Group Bot, DingTalk Group Bot, Feishu Group
Notification
Bot, WebHook URL, and supports multiple selections.
Method
Note: Some parameters will be displayed after configuring the
notification server.
Notification
Select the notification template to display notification information.
Template

3. Click Create.

Set Notification Rule for Projects

Management of Notification - Alauda Container Platform

The platform's notification strategies, notification templates, and notification contact groups
are tenant-isolated. As a project administrator, you will not be able to view or use notification
strategies, notification templates, or notification contact groups configured by other projects or
platform administrators. Therefore, you need to refer to this document to configure suitable

notification strategies for your project.

Prerequisites

1. You have contacted the platform administrator to complete the notification server setup.

2. If you need to notify through corporate communication tools, you also need to ensure that
the contacts to be notified have correctly configured their communication tool IDs in

Personal Information.

Operation Procedures

1. In the Project Management view, click Project Name.
2. In the left navigation bar, click Notifications.

3. Switch to the Notification Contact Group tab, refer to Notification Contact Group to create

a notification contact group.

l TIP

If you do not need to manage notification contacts through a notification contact group or do not

need to notify a webhook type notification server, you can skip this step.

4. Switch to the Notification Template tab, refer to Notification Template to create a

notification template.

5. Switch to the Notification rule tab, refer to Notification rule to create a notification rule.

Manage Dashboards - Alauda Container Platform

0 Alauda Container Platform

Management of Monitoring Dashboards

TOC

Function Overview
Main Features
Advantages
Use Cases
Prerequisites
Relationship Between Monitoring Dashboards and Monitoring Components
Manage Dashboards
Create a Dashboard
Import Dashboard
Add Variables
Add Pannels
Add Groups
Switch Dashboards
Other Operations
Manage Panels
Panel Description
Panel Configuration Description
General Parameters
Special Parameters for Panels
Create Monitoring Dashboards via CLI
Common Functions and Variables

Common Functions

http://localhost:4173/container_platform/

Manage Dashboards - Alauda Container Platform
Common Variables
Variable Use Case One
Variable Use Case Two

Notes When Using Built-in Metrics

Function Overview

The platform provides powerful dashboard management functionality designed to replace
traditional Grafana tools, offering users a more comprehensive and flexible monitoring
experience. This feature aggregates various monitoring data from within the platform,

presenting a unified monitoring view that significantly enhances your configuration efficiency.

Main Features

¢ Supports configuring custom monitoring dashboards for both business views and platform

views.

+ Enables viewing publicly shared dashboards configured in platform views from business

views, with data isolated based on the hamespace to which the business belongs.

¢ Supports managing panels within the dashboard, allowing users to add, delete, modify

panels, zoom in/out panels, and move panels through drag-and-drop.
» Allows setting custom variables within the dashboard for filtering query data.

e Supports configuring groups within the dashboard for managing the panels. Groups can be

displayed repeatedly based on custom variables.

e Supported panel types include: trend, step line chart, bar chart, horizontal bar chart,

bar gauge chart, gauge chart, table, statchart, XY chart, pie chart, text.

e One-click import feature for Grafana dashboards.

Advantages

e Supports user-customized monitoring scenarios without being constrained by predefined

templates, truly achieving a personalized monitoring experience.

Manage Dashboards - Alauda Container Platform

Provides a rich array of visualization options, including line charts, bar charts, pie charts,

and flexible layout and styling options.

Integrates seamlessly with the platform’s role permissions, allowing business views to

define their own monitoring dashboards while ensuring data isolation.

Deep integration with various functionalities of the container platform, enabling instant
access to monitoring data for containers, networks, storage, etc., providing users with

comprehensive performance observation and fault diagnosis.

Fully compatible with Grafana dashboard JSON, allowing easy migration from Grafana for

continued use.

Use Cases

IT Operations Management: As part of the IT operations team, you can use the
monitoring dashboards to unify the display and management of various performance
metrics of the container platform, such as CPU, memory, network traffic, etc. By
customizing monitoring reports and alert rules, you can promptly detect and pinpoint

system issues, enhancing operational efficiency.

Application Performance Analysis: For application developers and testers, monitoring
dashboards offer various rich visualization options to intuitively display application running
states and resource consumption. You can customize dedicated monitoring views tailored
to different application scenarios to deeply analyze application performance bottlenecks

and provide a basis for optimization.

Multi-Cluster Management: For users managing multiple container clusters, monitoring
dashboards can aggregate monitoring data from disparate clusters, allowing you to grasp

the overall operational state of the system at a glance.

Fault Diagnosis: When a system issue occurs, monitoring dashboards provide you with
comprehensive performance data and analytical tools to quickly pinpoint the root cause of
the problem. You can swiftly view fluctuations in relevant monitoring metrics based on alert

information for in-depth fault analysis.

Prerequisites

Currently, monitoring dashboards only support viewing monitoring data collected by

monitoring components installed in the platform. Therefore, you should prepare as follows

Manage Dashboards - Alauda Container Platform

before configuring a monitoring dashboard:

o Ensure that the cluster for which you want to configure the monitoring dashboard has
monitoring components installed, specifically the ACP Monitor with Prometheus or ACP

Monitor with VictoriaMetrics plugin.

e Ensure that the data you wish to display on the dashboard has been collected by the

monitoring components.

Relationship Between Monitoring Dashboards and

Monitoring Components

* Monitoring dashboard resources are stored in the Kubernetes cluster. You can switch views

between different clusters using the Cluster tab at the top.

¢ Monitoring dashboards depend on the monitoring components in the cluster for querying
data sources. Therefore, before using monitoring dashboards, ensure that the current
cluster has successfully installed monitoring components and that they are operating

normally.

¢ The monitoring dashboard will default to requesting monitoring data from the corresponding
cluster. If you install the VictoriaMetrics plugin in proxy mode in the cluster, we will request
the storage cluster for you to query the corresponding data for this cluster without the need

for special configuration.

Manage Dashboards

A dashboard is a collection composed of one or more panels, organized and arranged in one
or more rows to provide a clear view of relevant information. These panels can query raw data

from data sources and transform it into a series of visual effects supported by the platform.

Create a Dashboard

1. Click Create Dashboard, reference the following instructions to configure relevant

parameters.

Parameter

Folder

Label

Set as Main
Dashboard

Variables

Manage Dashboards - Alauda Container Platform

Description

The folder where the dashboard resides; you can input or select an existing

folder.

Label for the monitoring dashboard; you can quickly find existing
dashboards by filtering through the top labels during the switch.

If enabled, this will set the current dashboard as the main dashboard upon
successful creation; when re-entering the monitoring dashboard feature, the

main dashboard data will be displayed by default.

Add variables when creating the dashboard to reference as metric
parameters in the added panels, which can also be used as filters on the

dashboard homepage.

2. After adding, click Create to finish creating the dashboard. Next, you need to add

variables, add panels, and add groups to complete the overall layout design.

Import Dashboard

The platform supports direct import of Grafana JSON to convert it into a monitoring dashboard

for display.

e Currently, only Grafana JSON of version V8+ is supported; lower versions will be prohibited

from being imported.

 If any panels within the imported dashboard are not within the platform's supported scope,

they may be displayed as unsupported panel types, but you can modify the panel's

settings to achieve normal display.

o After importing the dashboard, you can perform any management actions as usual, which

will not differ from panels created in the platform.

Add Variables

1. In the variable form area, click Add.

Manage Dashboards - Alauda Container Platform

Parameter Description

Currently only supports Query type variables, which allow you to filter data
Type based on the feature dimensions of time series. The query expression can

be specified to dynamically calculate and generate query results.

Default value for displaying drop-down filter options on the dashboard

D-|splay homepage; supports showing the name and value, value only, or no display
Filter (hiding the filter box).

Using Query type variables allows you to filter data based on the feature
Query dimensions of time series. When defining query settings, besides using
Settings PromQL to query time series, the platform also provides some common

variables and functions. Reference Common Functions and Variables.

By using regular expressions, you can filter out the desired values from the
Regular content returned by the variable queries. This makes each option name in
Expression the variable more expected. You can preview if the filtered values meet

expectations in Variable Value Preview.

- Multiple Selection: When selected from the top filters on the dashboard

homepage, allows the selection of multiple options simultaneously. You
Selection need to reference this variable in the query expression of the panels to
Settings view the data corresponding to the variable value.

- All: If checked, an option containing All will be enabled in the filter options

to select all variable data.

2. Click OK to add one or more variables.

Add Pannels

Tip: You can customize the size of a panel by clicking the lower right corner; click anywhere

on the panel to rearrange the order of the panels.

1. Click Add Panel, reference the following instructions to configure relevant parameters.

Manage Dashboards - Alauda Container Platform

Panel Preview: The area will dynamically display the data information corresponding to the

added metrics.
Add Metric: Configure the panel title and monitoring metrics in this area.

Adding Method: Supports using built-in metrics or using natively customized metrics. Both

methods will take the union and be effective simultaneously.

o Built-in Metrics: Select commonly used metrics and legend parameters built into the

platform to display the data information under the current panel.

* Note: All metrics added to the panel must have a unified unit; it is not possible to add

metrics with multiple units to one panel.

» Native: Customize the metric unit, metric expression, and legend parameters. The
metric expression follows PromQL syntax; for details, please refer to PromQL Official

Documentation .

Legend Parameters: Control the names corresponding to the curves in the panels. Text or

templates can be used:

¢ Rule: The input value must be in the format {{.xxxx}} ; for example, {{.hostname}}
will replace it with the value corresponding to the hostname label returned by the

expression.

o Tip: If you input an incorrectly formatted legend parameter, the names corresponding to

the curves in the panel will be displayed in their original format.

Instant Switch: When the Instant switch is turned on, it will query instant values through
Prometheus's Query interface and sort them, as in statistical charts and gauge charts. If off,
it will use the query_range method to calculate, querying a series of data over a specific

time period.

Panel Settings: Supports selecting different panel types for visualizing metric data. Please

refer to Manage Panels.
. Click Save to complete adding the panels.

. You can add one or more panels within the dashboard.

https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/
https://prometheus.io/docs/prometheus/latest/querying/basics/

Manage Dashboards - Alauda Container Platform

4. After adding the panels, you can use the following operations to ensure the display and

size of the panels meet your expectations.

¢ Click the lower right corner of the panel to customize its size.

¢ Click anywhere on the panel to rearrange the order of the panels.

5. After adjusting, click the Save button on the dashboard page to save your modifications.

Add Groups

Groups are logical dividers within the dashboard that can group panels together.

1. Click the Add Panel drop-down menu > Add Group, and reference the following
instructions to configure relevant parameters.
¢ Group: The name of the group.

e Repeat: Supports disabling repeats or selecting variables for the current panels.

» Disable Repeat: Do not select a variable, and use the default created group.

o Parameter Variables: Select the variables created in the current panels, and the
monitoring dashboard will generate a row of identical sub-groups for each corresponding
value of the variable. Sub-groups do not support modifications, deletions, or moving of

the panels.

2. After adding the group, you can perform the following operations on the group to manage
the panel display within the dashboard.

¢ Groups can be collapsed or expanded to hide part of the content in the dashboard.
Panels within collapsed groups will not send queries.

e Move the panel into the group to allow that panel to be managed by that group. The

group will manage all panels between it and the next group.
e When a group is folded, you can also move all panels managed by that group together.

o The folding and unfolding of groups also constitutes an adjustment to the dashboard. If
you want to maintain this state when reopening this dashboard next time, please click

the Save button.

Switch Dashboards

Manage Dashboards - Alauda Container Platform

Set the created custom monitoring dashboard as the main dashboard. When re-entering the

monitoring dashboard feature, the main dashboard data will be displayed by default.

1. In the left navigation bar, click Operations Center > Monitoring > Monitoring

Dashboards.
2. By default, the main monitoring dashboard is entered. Click Switch Dashboard.

3. You can find dashboards by filtering through labels or searching by name, and switch main

dashboards via the Main Dashboard switch.

Other Operations

You can click the operation button on the right side of the dashboard page to perform actions

on the dashboard as needed.

Operation Description

Opens the actual CR resource code of the dashboard stored in the
YMAL Kubernetes cluster. You can modify all content in the dashboard by editing

parameters in the YAML.

Export You can export the metrics and corresponding query expressions used in the
Expression current dashboard in CSV format.

Copies the current dashboard; you can edit the panels as needed and save it

Co
Py as a new dashboard.
] Modifies the basic information of the current dashboard, such as changing
Settings] .
labels and adding more variables.
Delete Deletes the current monitoring dashboard.

Manage Panels

The platform provides various visualization methods to support different use cases. This

chapter will mainly introduce these panel types, configuration options, and usage methods.

Manage Dashboards - Alauda Container Platform

Panel Description

No.

Panel

Name

Trend
Chart

Step Line
Chart

Bar Chart

Horizontal
Bar Chart

Gauge
Chart

Description

Displays the trend of
data over time via one

or more line segments.

Builds on the line chart
by connecting data
points with horizontal
and vertical segments
to form a step-like

structure.

Uses vertical
rectangular bars to
represent the
magnitude of data,
where the height of the

bars represents value.

Similar to the bar chart
but uses horizontal
rectangular bars to

represent data.

Uses half or ring
shapes to represent the
current value of an
indicator and its

proportion of the total.

Suggested Use Cases

Shows trends over time, such as
changes in CPU utilization, memory

usage, etc.

Suitable for displaying the timestamps of
discrete events, such as the number of

alerts.

Bar charts are intuitive for comparing
value differences, beneficial for
discovering patterns and anomalies,
suitable for scenarios focusing on value
changes, such as the number of pods,

number of nodes, etc.

When there are many data dimensions,
horizontal bar charts can better utilize

spatial layout and improve readability.

Intuitively reflects the current status of
key monitoring indicators, such as
system CPU utilization and memory
usage. It is recommended to use alert
thresholds with color changes to indicate

abnormal conditions.

Panel
No.
Name
6 Gauge Bar
Chart
7 Pie Chart
8 Table
9 Stat Chart
Scatter
10
Plot
11 Text Card

Manage Dashboards - Alauda Container Platform

Description

Uses vertical
rectangular bars to
display the current
value of indicators and

their proportion.

Uses sectors to display
the proportional
relationship of parts to
the whole.

Organizes data in a
row-column format,
making it easy to view
and compare specific
values.

Displays the current
value of a single key
indicator, typically
requiring textual

explanation.

Uses Cartesian
coordinates to plot a
series of data points,
reflecting the
correlation between

two variables.

Displays key textual
information in a card
format, usually
containing a title and a

brief description.

Suggested Use Cases

Intuitively reflects the current status of
key indicators, such as target completion
progress and system load. When
multiple categories of the same indicator
exist, the gauge bar chart is more
recommended, such as available disk
space or utilization.

Suitable for demonstrating the
composition of overall data across
different dimensions, such as the
proportions of 4XX, 3XX, and 2XX
response codes over a period.

Suitable for displaying structured multi-
dimensional data, such as detailed
information of nodes, detailed
information of pods, etc.

Suitable for showing real-time values of
important monitoring indicators, such as
numbers of pods, number of nodes,
current alert count, etc.

Suitable for analyzing relationships
between two indicators, discovering
patterns such as linear correlation and
clustering through the distribution of data
points, helping unearth relationships

between metrics.

Suitable for presenting textual
information, such as panel descriptions
and troubleshooting explanations.

Manage Dashboards - Alauda Container Platform

Panel Configuration Description

General Parameters

Parameter

Basic

Information

Standard
Settings

Tooltips

Threshold

Parameters

Value

Value Mapping

Description

Select the appropriate panel type based on the selected metric data and add
titles and descriptions; you can add one or more links, which can be quickly

accessed by selecting the corresponding link name next to the title.

Units used for native metric data. Additionally, gauge charts and gauge bars
also support configuring the Total Value field, which will display as the

percentage of Current Value/Total Value in the chart.

Tooltips are the display switch for real-time data when hovering over the

panels and support selected sorting.

Configure the threshold switch for the panels; when enabled, the threshold

will be shown in selected colors in the panels, allowing for threshold sizing.

Set the calculation method for values, such as the most recent value or
minimal value. This configuration option is only applicable to stat charts and

gauge charts.

Redefine specified values or value ranges, such as defining 100 as full load.
This configuration option is only applicable to stat charts, tables, and gauge

charts.

Special Parameters for Panels

Pannel

Parameter Description

Type

Trend

You can choose between a line chart or an area chart as the

display style; line charts focus more on reflecting the trend

Graph Style changes of indicators, while area charts draw more attention to

Chart

changes in total and partial proportions. Choose based on your

actual needs.

Pannel

Type

Gauge
Chart

Pie
Chart

Pie
Chart

Table

Text
Card

Parameter

Gauge
Chart
Settings

Pie Chart
Settings

Graph Style

Table
Settings

Graph Style

Manage Dashboards - Alauda Container Platform

Description

Display Direction: When you need to view multiple metrics in a
single chart, you can set whether these metrics are arranged
horizontally or vertically.

Unit Redefinition: You can set independent units for each
metric; if not set, the platform will display units from the
Standard Settings.

Maximum Number of Slices: You can set this parameter to
reduce the number of slices in the pie chart to lessen the
interference of categories with comparatively low proportions
but high quantities. Excess slices will be merged and displayed
as Others.

Label Display Fields: You can set the fields displayed in the

pie chart labels.

You can choose either pie or donut as the display style.

Hide Columns: You can reduce the number of columns in the
table with this parameter to focus on some primary column
information.

Column Alignment: You can modify the alignment of data
within the column using this parameter.

Display Name and Unit: You can modify the column names

and units used through this parameter.

Style: You can choose to edit the content you wish to display in

the text card in either a rich-text editing box or HTML.

Create Monitoring Dashboards via CLI

1. Create a new YAML configuration file named example-dashboard.yaml .

Manage Dashboards - Alauda Container Platform

2. Add the MonitorDashboard resource to the YAML file and submit it. The following example

creates a monitoring dashboard named demo-v2-dashboardl:

Manage Dashboards - Alauda Container Platform

Manage Dashboards - Alauda Container Platform

kind: MonitorDashboard
apiVersion: ait.alauda.io/vlalpha2
metadata:
annotations:
cpaas.io/dashboard.version: '3'

cpaas.io/description: '{"zh":"{#®R{FE","en":""}' # Description fiel

cpaas.io/operator: admin
labels:
cpaas.io/dashboard.folder: demo-v2-folderl # Folder
cpaas.io/dashboard.is.home.dashboard: 'False' # Is it the main dash
board?
name: demo-v2-dashboardl # Name
namespace: cpaas-system # Namespace (all management view creations wi
11 occur in this ns)
spec:
body: # ALl information fields
titlezh: EHE/REF # Built-in field for Chinese display name (this
field is created under the Chinese language)
title: english_display_name # Built-in field for English display na
me (this field is created under the English language) Built-in dashboar
ds can set bilingual translations.
templating: # Custom variables
list:
- hide: @ # 0 means not hidden; 1 means only the label is hidde
n; 2 means both label and value are hidden
label: &% # Built-in variable display name (label is set to
the appropriate name based on the language, e.g., cluster in English)
name: cluster # Built-in variable name (unique)
options: # Define dropdown options; if a query retrieves dat
a, it will use requested data; otherwise, it will use options. A defaul
t value can be set (generally only used for setting default values)
- selected: false # Whether to default select
text: global
value: global
type: custom # Custom variable type; currently, only built-in
(custom) and query are supported (Importing Grafana will support consta
nt custom interval (after import, it will be changed to a custom variab

le and will not support auto))

- allvalue: '' # Select all, passing options with the format xx
X|xxx|xxx; can set allValue for conversion (Grafana retrieves all data

for the current variable as xxx|xxx|xxx, adjustments will ensure consis

Manage Dashboards - Alauda Container Platform

tency)
current: null # Current value of the variable; if not set, de
faults to the first in the list
definition: query_result(kube_namespace_labels) # Query expre
ssion for data retrieval
hide: © # © means not hidden; 1 means only the label is hidde
n; 2 means both label and value are hidden
includeAll: true # Whether to select all
label: ns # Built-in variable display name
multi: true # Whether multiple selections are allowed
name: ns # Variable name (unique)
options: []
query: ''
regex: /.*namespace=\"(.*?)\".*/ # Regex expression for extra
cting variable values
sort: 2 # Sorting: 1 - ascending alphabetical order; 2 - desc
ending alphabetical order (only these two support temporarily); 3 - asc
ending numerical order; 4 - descending numerical order
type: query # Custom variable type
time: # Dashboard time
from: now-30m # Start time
to: now # End time
repeat: '' # Row repeat configuration; chooses custom variable
collapsed: 'false' # Row collapsed or expanded configuration
description: '123' # Description (tooltip after title)
targets: # Data sources
- indicator: cluster.node.ready # Metric

expr: sum (cpaas_pod_number{cluster=\"\"}>0) # PromQL expressio

n
instant: false # Query mode true retrieves data at a specific t
ime
legendFormat: '' # Legend
range: true # Default querying range when retrieving data
refId: #8451 # Unique identifier for display name of data sourc
e

gridPos: # Information on the dashboard's positional layout
h: 8 # Height
w: 12 # Width (width corresponds to 24 grid units)
X: O # Horizontal position
y: 0 # Vertical position
panels: # Panel data
title: EFXFrE tab # Panel name
type: table # Panel type; currently supports timeseries, barchar

t, stat, gauge, table, bargauge, row, text, pie (step chart, scatter pl

Manage Dashboards - Alauda Container Platform

ot, bar chart, configurable through drawStyle attribute)
id: a2239830-492f-4d27-98f3-ch7ech77c56f # Unique identifier
links: # Links
- targetBlank: true # Open in a new tab
title: '1' # Name
url: '1' # URL address
transformations: # Data transformations
- id: 'organize' # Type organize; used for sorting, rearranging
order, showing fields, whether to display
options:
excludeByName: # Hidden fields
cluster_cpu_utilization: true
indexByName: # Sort
cluster_cpu_utilization: 0,
Time: 1
renameByName: # Rename
Time: "'
cluster_cpu_utilization: '222'
- id: 'merge' # Merging data
options:
fieldConfig: # For defining panel properties and appearance
defaults: # Default configuration
custom: # Custom graphic attributes
align: 'left' # Table alignment: left, center, right
celloptions: # Table threshold configuration
type: color-text # Only supports text for threshold color
settings
spanNulls: false # true connects null values; false does no
t connect; number == 0 connects null values according to 0
drawStyle: line # Panel types: line, bars for bar charts, p
oints for point charts
fillOpacity: 20 # Exists when drawStyle is area (currently
does not support configuration, area defaults to 20)
thresholdsStyle: # Configures how to display thresholds (cu
rrently only supports line)
mode: line # Threshold display format (area not supported
currently)
lineInterpolation: 'stepBefore' # Step chart configuration;
defaults to only supporting stepBefore (stepAfter will be supported lat
er)
decimals: 3 # Decimal points
min: @ # Minimum value (currently not supported for page conf
iguration, only supports imports that have been adapted)

max: 1 # Maximum value (page configuration only applies to st

Manage Dashboards - Alauda Container Platform

at gauge barGauge pie)
unit: '%' # Unit
mappings: # Value mapping configuration (currently only suppo
rts value and range types; special types supported on data)
- options: # Value mapping rules
'1': # Corresponding value
index: 0

text: 'Running' # Displayed as Running when value is

type: value # Value mapping type
- options: # Range mapping rules
from: 2 # Range start value
to: 3 # Range end value
result: # Mapping result
index: 1
text: 'Error' # Values from 2 to 3 will display as Er
ror
type: range # Mapping type for range
- type: special # Mapping type for special scenarios
options:
match: null # nan null null+nan empty true false

result:
text: xxx
index: 2

thresholds: # Threshold configuration
mode: absolute # Threshold configuration mode, absolute val
ue mode (currently only supports absolute and percentage mode; percenta
ge mode is not supported yet)
steps: # Threshold steps
- color: '#a7772f' # Threshold color
value: '2' # Threshold value
- color: '#GOT7AF5' # Default value with no value is the B
ase
overrides: # Override configuration
- matcher:
id: byName # Match based on field name
options: node # Corresponding name
properties: # Override configuration; id currently only sup
ports displayName unit
- id: displayName # Display name override
value: '1' # Overridden display name
- id: unit # Unit override
value: GB/s # Unit value
- id: novalue # No value display

Manage Dashboards - Alauda Container Platform

value: No value display
options:
orientation: horizontal # Control the layout direction of panel
s; applies to gauge and barGauge (stat will be supported later)
legend: # Legend configuration
calcs: # Calculating methods (only displays when the 1legend p
osition is on the right)
- latest # Currently only supports most recent value
placement: right # Legend position (right or bottom; defaults
to bottom)
placementRightTop: '' # Configuration for the upper right
showLegend: true # Whether to display the legend
tooltip: # Tooltips
mode: multi # Mode dual selection (only multi-mode supported)
All data displayed when the mouse hovers over
sort: asc # Sorting: asc or desc
reduceOptions: # Value calculating method (used for aggregating
data)
calcs: # Calculating methods (latest, minimum, maximum, avera
ge, sum)
- latest
limit: 3 # Pie 1limits the number of slices
textMode: 'value' # Stat configuration; defines style for displ
aying metric value; options are auto, value, value_and_name, name, none
(currently not supported in the page configuration, but supported in im
ports)
colorMode: 'value' # Stat configuration; defines color mode for
displaying metric values; options are none, value, background (defaults
to value; not supported in configuration but adapted in import)
displayLabels: ['name', 'value', 'percent'] # Fields displayed
in pie chart labels
pieType: 'pie' # Pie chart type; options are pie and donut
mode: 'html' # Text chart type mode; options are html and richT
ext
content: '<div>xxx</div>' # Content for text chart type
footer:

enablePagination: true # Table pagination enabled

Common Functions and Variables

Common Functions

Manage Dashboards - Alauda Container Platform

When defining query settings, besides using PromQL to set queries, the platform provides

some common functions as follows for your reference in customizing query settings.

Function

label_names()

Purpose

Returns all labels in Prometheus, e.g., label_names().

Returns all selectable values for the label name in all monitored

label_values(label)

metrics in Prometheus, e.g., label_values(job).

label_values(metric, Returns all selectable values for the label name in the specified

label)

metrics(metric)

metric in Prometheus, e.g., label_values(up, job).

Returns all metric names that satisfy the defined regex pattern in

the metric field, e.g., metrics(cpaas_active).

Returns the query result for the specified Prometheus query, e.g.,

query_result(query)

query_result(up).

Common Variables

While defining query settings, you can combine common functions into variables to quickly

define custom variables. Here are some common variable definitions available for your

reference:

Variable

Name

cluster

node

namespace

deployment

Query Function

label_values(cpaas_cluster_info,cluster)

label_values(node_loadl, instance)

query_result(kube_namespace_labels)

label_values(kube_deployment_spec_replicas{namespace="$namespace"},

deployment)

Variable

Name

daemonset

statefulset

pod

vimcluster

daemonset

Manage Dashboards - Alauda Container Platform

Query Function

label_values(kube_daemonset_status_number_ready{namespace="$namespace"}

daemonset)

label_values(kube_statefulset_replicas{namespace="$namespace"},

statefulset)

label_values(kube_pod_info{namespace=~"$namespace"}, pod)

label_values(up, vmcluster)

label_values(kube_daemonset_status_number_ready{namespace="$namespace"}

daemonset)

Variable Use Case One

Using the query_result(query) function to query the value: node_load5 , and extract the IP.

1. In Query Settings, fill in query_result(node_load5) .

2. In the Variable Value Preview area, the preview example is

node_load5{container="node-

exporter", endpoint="metrics", host_ip="192.168.178.182", instance="192.168.178.

182:9100"} .

3. In Regular Expression, fill in /.*instance="(.*?):.*/ to filter the value.

4. In the Variable Value Preview area, the preview example is 192.168.176.163 .

Variable Use Case Two

1. Add the first variable: namespace, using the query_result(query) function to query the

value: kube namespace_labels , and extract the namespace.

¢ Query Settings: query_result(kube_namespace_labels) .

Manage Dashboards - Alauda Container Platform

e Variable Value Preview: kube_namespace_labels{container="exporter-kube-
state", endpoint="kube-state-metrics", instance="12.3.188.121:8080",
job="kube-state", label_cpaas_io_project="cpaas-system", namespace='"cert-
manager", pod="kube-prometheus-exporter-kube-state-55bb6bc67f-1pgtx",

project="cpaas-system", service="kube-prometheus-exporter-kube-state"} .
+ Regular Expression: /.+namespace=\"(.*?)\".*/ .

¢ In the Variable Value Preview area, the preview example includes multiple

namespaces such as argocd , cpaas-system , and more.
2. Add the second variable: deployment, and reference the variable created earlier:
e Query Settings: kube_deployment_spec_replicas{namespace=~"$namespace"} .
e Regular Expression: /.+deployment="(.*?2)",.*/ .

3. Add a panel to the current dashboard and reference the previously added variables, for
example:

e Metric Name: pod Memory Usage under Compute Components.

o Key-Value Pair: kind : Deployment , name : $deployment , namespace :

$namespace .

4. Once you have added the panels and saved them, you can view the corresponding panel

information on the dashboard homepage.

Notes When Using Built-in Metrics

I WARNING

The following metrics use custom variables namespace , name ,and kind , which do not

support multiple selections or selecting all.

e namespace only supports selecting a specific namespace;

e name only supports three types of computing components: deployment , daemonset ,

statefulset ;

Manage Dashboards - Alauda Container Platform

e kind only supports specifying one of the types: Deployment , DaemonSet , StatefulSet .

workload.cpu.utilization

workload.memory.utilization

workload.network.receive.bytes.rate

workload.network.transmit.bytes.rate

workload.gpu.utilization

workload.gpu.memory.utilization

workload.vgpu.utilization

workload.vgpu.memory.utilization

Management of Probe - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Management of Probe

TOC

Function Overview
Blackbox Monitoring
Prerequisites
Procedures for Operation
Blackbox Alerts
Prerequisites
Procedures for Operation
Customizing BlackboxExporter Monitoring Module
Procedures for Operation
Create Blackbox Monitoring Items and Alerts via CLI
Prerequisites
Procedures for Operation

Reference Information

Function Overview

The probe feature of the platform is realized based on Blackbox Exporter, allowing users to

probe the network via ICMP, TCP, or HTTP to quickly identify faults occurring on the platform.

Unlike white-box monitoring systems, which rely on various monitoring metrics already

available on the platform, blackbox monitoring focuses on the outcomes. When white-box

http://localhost:4173/container_platform/

Management of Probe - Alauda Container Platform

monitoring cannot cover all factors affecting service availability, blackbox monitoring can
swiftly detect faults and issue alerts based on those faults. For example, if an API endpoint is

abnormal, blackbox monitoring can promptly expose such issues to users.

I WARNING

The probe function does not support using ICMP to detect IPv6 addresses on nodes with kernel
versions 3.10 and below. To use this scenario, please upgrade the kernel version on the node to

3.11 or higher.

Blackbox Monitoring

To create a blackbox monitoring item, you can choose the ICMP, TCP, or HTTP probing

method to periodically probe the specified target address.

Prerequisites

The monitoring components must be installed in the cluster, and the monitoring components

must be functioning properly.

Procedures for Operation

1. In the left navigation bar, click Operations Center > Monitoring > Blackbox Monitoring.

Tip: Blackbox monitoring is a cluster-level feature. Click on the top navigation bar to switch

between clusters.
2. Click Create Blackbox Monitoring Item.

3. Refer to the following instructions to configure the relevant parameters.

Parameter Description

Probing ICMP: Probes by pinging the domain name or IP address entered in the

Method Target Address to check the server's availability.

Management of Probe - Alauda Container Platform

Parameter Description

TCP: Probes the business port of the host by listening on the
<domain:port> or <IP:port> specifiedinthe Target Address.

HTTP: Probes the URL entered in Target Address to check website

connectivity.

Tip: The HTTP probing method only supports GET requests by default; for

POST requests, please refer to Customizing the BlackboxExporter

Monitoring Module.

Probing
The interval time for probing.
Interval
The target address for probing, with a maximum of 128 characters.
The input format for the target address varies by probing method:
Target
9 ICMP: A domain name or IP address, e.g., 10.165.94.31 .
Address

TCP: <domain:port> or <IP:port> ,e.g.,, 172.19.155.133:8765 .

HTTP: A URL that starts with http or https, e.g., http://alauda.cn/ .

4. Click Create.

Once created successfully, you can view the latest probing results in real time on the list
page, and based on the blackbox monitoring items, you can create alert policies. When a
fault is detected, an alert will be automatically triggered to notify the relevant personnel for

resolution.

I WARNING

After successfully creating the blackbox monitoring items, the system requires about 5 minutes to
synchronize the configuration. During this synchronization period, probing will not occur and

probing results cannot be viewed.

Blackbox Alerts

Management of Probe - Alauda Container Platform

Prerequisites

e The monitoring components must be installed in the cluster, and the monitoring

components must be functioning properly.

¢ The blackbox monitoring item must have been successfully created, and the system must
have finished synchronizing the configuration so that probing results are visible on the

blackbox monitoring page.

Procedures for Operation

1. In the left navigation bar, click Operations Center > Alerts > Alert Policies.

Tip: Alert policies are a cluster-level feature. Click on the top navigation bar to switch
between clusters. Please ensure you switch to the cluster where the blackbox monitoring

item has just been configured.
2. Click Create Alert Policy.

3. Refer to the following instructions to configure the relevant parameters; for more parameter

information, please refer to Create Alert Policies.
o Alert Type: Please select Resource Alert.
e Resource Type: Please select Cluster.
o Click Add Alert Rule.
e Alert Type: Please select Blackbox Alert.
« Blackbox Monitoring Item: Please select the desired blackbox monitoring item.

o Metric Name: Please select the metric you wish to monitor and alert on. The current

supported metrics by the platform are Connectivity and HTTP Status Code.

¢ Connectivity: This metric can be selected for all blackbox monitoring items, where
the trigger condition “!= 1" indicates that the target address of the blackbox

monitoring item is unreachable.

Management of Probe - Alauda Container Platform

o HTTP Status Code: This metric can be selected when the probing method of the
chosen blackbox monitoring item is HTTP. You can input a three-digit positive integer
as the value for the trigger condition, for example, if the condition is set to “> 299", it

means alerts are fired when the response codes are 3XX, 4XX, or 5XX.
¢ Notification Policy: Please select your pre-configured policy.

e Click Add.

4. Click Create. After the alert policy submission, you can see this alert policy in the alert

policy list.

Customizing BlackboxExporter Monitoring
Module

You can also enhance the functionalities of blackbox monitoring by adding customized
monitoring modules to the BlackboxExporter configuration file. For example, by adding the
http_post_2xx module to the configuration file, when the probing method of blackbox
monitoring is setto HTTP , it would then be able to probe the status of POST request

methods.

The configuration file for blackbox monitoring is located within the namespace where the
Prometheus component of the cluster is installed, with the default name being cpaas-
monitor-prometheus-blackbox-exporter , which can be modified as needed based on the

actual name.

l TIP

This configuration file is a ConfigMap resource related to the namespace, which can be quickly
viewed and updated through the platform’'s management feature, Cluster Management >

Resource Management.

Procedures for Operation

Management of Probe - Alauda Container Platform

1. Update the configuration file of blackbox monitoring by adding customizable monitoring
modules to key modules .

Taking the addition of the http_post_2xx module as an example:

blackbox.yaml: |

modules:

http_post_2xx: # HTTP POST probing module
prober: http

timeout: 5s
http:

method: POST # Request method for probing
headers:

Content-Type: application/json

body: '{}' # Body content sent with the probe

For complete YAML examples of the blackbox monitoring configuration file, please refer to
Reference Information.

2. Activate the configuration by choosing one of the following methods.

o Restart the Blackbox Exporter Component cpaas-monitor-prometheus-blackbox-
exporter by deleting its Pod.

o Execute the following command to call the reload API and refresh the configuration file:

curl -X POST -v <Pod IP>:9115/-/reload

Create Blackbox Monitoring Items and Alerts via
CLI

Prerequisites

+ Notification policies must be configured (if you require alert automatic notifications).

¢ The target cluster must have monitoring components installed.

Management of Probe - Alauda Container Platform

Procedures for Operation

1. Create a new YAML configuration file named example-probe.yaml .

2. Add the PrometheusRule resource to the YAML file and submit it. The following example

creates a new alert policy named prometheus-1liveness :

apiVersion: monitoring.coreos.com/v1l
kind: Probe
metadata:
annotations:
cpaas.io/creator: jhshi@alauda.io
cpaas.io/updated-at: '2021-05-25T08:08:45Z'

cpaas.io/display-name: 'Prometheus prober'
creationTimestamp: '2021-05-10T02:04:33Z'

labels:

prometheus: kube-prometheus

name: prometheus-1liveness

namespace: cpaas-system

spec:
jobName: prometheus-liveness
prober:
url: cpaas-monitor-prometheus-blackbox-exporter:9115

module: http_2xx
targets:
staticConfig:
static:
- http://www.prometheus.io
labels:
module: http_2xx
prober: http
interval: 30s

scrapeTimeout: 10s

3. Create a new YAML configuration file named example-alerting-rule.yaml .

Management of Probe - Alauda Container Platform

4. Add the PrometheusRule resource to the YAML file and submit it. The following example

creates a new alert policy named policy :

Management of Probe - Alauda Container Platform

Management of Probe - Alauda Container Platform

apiVersion: monitoring.coreos.com/v1l
kind: PrometheusRule
metadata:
annotations:
alert.cpaas.io/cluster: global # Name of the cluster where the aler
t resides
alert.cpaas.io/kind: Cluster # Resource type
alert.cpaas.io/name: global # Name of the cluster where the blackbo
X monitoring item resides
alert.cpaas.io/namespace: cpaas-system # Namespace used for the pro
metheus's namespace, keep defaults
alert.cpaas.io/notifications: '["test"]'
alert.cpaas.io/repeat-config: '{"Critical":"never","High":"5m", "Med
ium":"5m", "Low" :"5m"}'
alert.cpaas.io/rules.description: '{}'
alert.cpaas.io/rules.disabled: '[]'
alert.cpaas.io/subkind: "'
cpaas.io/description: ''
cpaas.io/display-name: policy # Display name of the alert policy
labels:
alert.cpaas.io/owner: System
alert.cpaas.io/project: cpaas-system
cpaas.io/source: Platform
prometheus: kube-prometheus
rule.cpaas.io/cluster: global
rule.cpaas.io/name: policy
rule.cpaas.io/namespace: cpaas-system
name: policy
namespace: cpaas-system
spec:
groups:
- name: general # Name of the alert rules
rules:
- alert: cluster.blackbox.probe.success-y97ah-9833444d918cab96c
43e9ab6efc172cf
annotations:
alert_current_value: '{{ $value }}' # Current value for not
ification, keep default
expr:
max by (job, instance) (probe_success{job=~"test",
instance=~"https://demo.at-servicecenter.com/"})!=1
Connectivity alert scenario, be sure to modify the blackb

ox monitoring item name and target address

Management of Probe - Alauda Container Platform

for: 30s # Duration
labels:
alert_cluster: global # Name of the cluster where the alert
resides
alert_for: 30s # Duration
alert_indicator: cluster.blackbox.probe.success # Keep unch
anged
alert_indicator_aggregate_range: 'Q' # Keep unchanged
alert_indicator_blackbox_instance: https://demo.at-servicec
enter.com/ # Blackbox monitoring target address
alert_indicator_blackbox_name: test # Blackbox monitoring i
tem name
alert_indicator_comparison: '!=' # Keep configuration uncha
nged for connectivity alerts
alert_indicator_query: '' # Used for log alerts, no need to
configure this parameter
alert_indicator_threshold: '1' # Threshold for the alert ru
le, 1 indicates connectivity, keep unchanged
alert_indicator_unit: '' # Unit of the alert rule's metrics
alert_involved_object_kind: Cluster # Keep unchanged for bl
ackbox alerts
alert_involved_object_name: global # Cluster where the blac
kbox monitoring item resides
alert_involved_object_namespace: '' # Namespace of the obje
ct to which the alert rule belongs
alert_name: cluster.blackbox.probe.success-y97ah # Name of
the alert rule
alert_namespace: cpaas-system # Namespace where the alert r
ule resides
alert_project: cpaas-system # Name of the project of the ob
ject to which the alert rule belongs
alert_resource: policy # Name of the alert policy where the
alert rule resides
alert_source: Platform # Type of data for the alert rule: P
latform- platform data, Business- business data
severity: High # Alert rule level: Critical- disaster, High
- serious, Medium- warning, Low- tip
- alert: cluster.blackbox.http.status.code-235e1-99b0095b6b6669
415043e14ae84f43bc
annotations:
alert_current_value: '{{ $value }}'
alert_notifications: '["message"]'
expr:

max by(job, instance) (probe_http_status_code{job=~"test",

Management of Probe - Alauda Container Platform

instance=~"https://demo.at-servicecenter.com/"})>200

for: 30s

labels:
alert_cluster: global
alert_for: 30s
alert_indicator: cluster.blackbox.http.status.code
alert_indicator_aggregate_range: '0Q'
alert_indicator_blackbox_instance: https://demo.at-servicec

enter.com/

alert_indicator_blackbox_name: test
alert_indicator_comparison: '>'
alert_indicator_query: "'
alert_indicator_threshold: '299'

alert_indicator_unit: ''
alert_involved_object_kind: Cluster
alert_involved_object_name: global
alert_involved_object_namespace: "'
alert_involved_object_options: Single

alert_name: cluster.blackbox.http.status.code-235el
alert_namespace: cpaas-system

alert_project: cpaas-system

alert_resource: policy33

alert_source: Platform

severity: High

Reference Information

A complete example of the YAML configuration file for blackbox monitoring is as follows:

Management of Probe - Alauda Container Platform

Management of Probe - Alauda Container Platform

apiVersion: vi

data:
blackbox.yaml: |
modules:
http_2xx_example: # Example of HTTP probing
prober: http
timeout: 5s # Timeout for probing
http:

valid_http_versions: ["HTTP/1.1", "HTTP/2.0"]
The Version in the returned information, generally defaults
valid_status_codes: [] # Defaults to 2xx
Range of valid response codes; if the returned code is within this rang
e, it is considered a successful probe
method: GET # Request method
headers: # Request headers
Host: vhost.example.com
Accept-Language: en-US
Origin: example.com
no_follow_redirects: false # Indicates whether to allow redire

ction
fail_if_ssl: false
fail_if_not_ssl: false
fail_if_body_matches_regexp:
"Could not connect to database"
fail_if_body_not_matches_regexp:
"Download the latest version here"
fail_if_header_matches: # Verifies that no cookies are set
- header: Set-Cookie
allow_missing: true
regexp: '.*!
fail _if_header_not_matches:
- header: Access-Control-Allow-0rigin
regexp: '(*|example\.com)'
tls_config: # TLS configuration for https requ
ests

insecure_skip_verify: false
preferred_ip_protocol: "ip4" # defaults to "ip6"
Preferred IP protocol version
ip_protocol_fallback: false # No fallback to "ip6"
http_post_2xx: # Example of HTTP probing with Bod

How To - Alauda Container Platform

0 Alauda Container Platform Q

How To

Backup and Restore of Promet|

Feature Overview

Use Cases
Prerequisites
Procedures to Operate
Operation Results
Learn More

Next Procedures

VictoriaMetrics Backup and Re«

Function Overview
Use Cases
Prerequisites
Procedures
Operation Result
Learn More

Follow-up Actions

Collect Net\

Function Overv
Use Case
Prerequisites
Procedures to (
Operation ResL
Learn More

Subsequent Ac

http://localhost:4173/container_platform/

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

Q Alauda Container Platform Q

Backup and Restore of Prometheus

Monitoring Data

TOC

Feature Overview
Use Cases
Prerequisites
Procedures to Operate
Backup Data
Method 1: Backup Storage Directory (Recommended)
Method 2: Snapshot Backup
Restore Data
Operation Results
Learn More
TSDB Data Format Description
Data Backup Considerations

Next Procedures

Feature Overview

Prometheus monitoring data is stored in TSDB (Time Series Database) format, supporting

backup and restore functionalities. The monitoring data is stored in a designated path within

http://localhost:4173/container_platform/

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

the Prometheus container (specified by the configuration storage.tsdb.path , which

defaults to /prometheus).

template:
spec:
containers:
- args:
- '--storage.tsdb.path=/prometheus'

Use Cases

¢ Retaining historical monitoring data during system migration
¢ Preventing data loss due to unexpected incidents

* Migrating monitoring data to a new Prometheus instance

Prerequisites

o The ACP Monitoring with Prometheus plugin has been installed (the name of the compute

component is prometheus-kube-prometheus-0 , and the type is StatefulSet)
o Administrator privileges for the cluster

+ Ensure there is sufficient storage space at the target storage location

Procedures to Operate

Backup Data

Before starting the backup, please note: When Prometheus stores monitoring data, it first
places the collected data into a cache and then periodically writes it to the storage directory.
The following backup methods use the storage directory as the data source, so they do not

include the data in the cache at the time of backup.

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

Method 1: Backup Storage Directory (Recommended)

1. Use the kubectl cp command to back up:

kubectl cp -n cpaas-system prometheus-kube-prometheus-0-0:/prometheus -
c prometheus <target storage path>

2. Backup from the storage backend (based on the type of storage selected during

installation):

¢ LocalVolume: Copy from the /cpaas/monitoring/prometheus directory

¢ PV: Copy from the PV mount directory (it is recommended to set the PV's

persistentVolumeReclaimPolicy to Retain)

+ StorageClass: Copy from the PV mount directory

Method 2: Snapshot Backup

1. Enable Admin API:

kubectl edit -n cpaas-system prometheus kube-prometheus-0

Add the configuration:

spec:
enableAdminAPI: true

Note: After updating and saving the configuration, the Prometheus Pod (Pod name:
prometheus-kube-prometheus-0-0) will restart. Wait until all Pods are in Running status

before proceeding with subsequent operations.

2. Create a snapshot:

curl -XPOST <Prometheus Pod IP>:9090/api/v1/admin/tsdb/snapshot

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

Restore Data

1. Copy the backup data to the Prometheus container:

kubectl cp ./prometheus-backup cpaas-system/prometheus-kube-prometheus-
0-0:/prometheus/

2. Move data into the specified directory:

kubectl exec -it -n cpaas-system prometheus-kube-prometheus-0-0 -c prom
etheus sh

mv /prometheus/prometheus-backup/* /prometheus/

Shortcut: When the storage type is LocalVolume during plugin installation, simply copy
the backup data directly to the /cpaas/monitoring/prometheus/prometheus-db/

directory of the node where the plugin is installed.

Operation Results

o After backup is complete, the complete TSDB format monitoring data can be seen at the

target storage path

» After restoration is complete, Prometheus will automatically load the historical monitoring

data

Learn More

TSDB Data Format Description

Example of TSDB format data structure:

Backup and Restore of Prometheus Monitoring Data - Alauda Container Platform

01FXP317QBANGAX1XQAXCJIKODB
— chunks

| — 000001
F— index

— meta.json
L— tombstones

T

F— queries.active
L— wal

F—— 00000020

F—— 00000021

F—— 00000022

F—— 00000023

L— checkpoint.00000019
L— 00000000

Data Backup Considerations

o Backup data does not include the cached data at the time of backup
¢ Itis recommended to perform data backups regularly

* When using PV storage, it is advisable to set the persistentVolumeReclaimPolicy to

Retain

Next Procedures

+ Verify whether the monitoring data has been correctly restored
¢ Regularly schedule data backup plans

¢ If using the snapshot backup method, you may opt to disable the Admin API

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Q Alauda Container Platform Q

VictoriaMetrics Backup and Recovery of

Monitoring Data

TOC

Function Overview

Use Cases

Prerequisites

Procedures
1. Confirm Storage Path
2. Execute Data Backup
3. Execute Data Recovery

Operation Result

Learn More

Follow-up Actions

Function Overview

The backup and recovery feature for VictoriaMetrics monitoring data allows you to perform
regular backups of monitoring data and recover data when necessary, ensuring the safety and

availability of monitoring data.

Use Cases

http://localhost:4173/container_platform/

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Regularly backing up monitoring data to prevent data loss

Data migration during system migration

Disaster recovery

Reconstructing test environment data

Prerequisites

¢ The ACP Monitoring with VictoriaMetrics plugin has been installed in the cluster
o Ensure there is sufficient storage space for backups

¢ Have access to the VictoriaMetrics storage path

Procedures

1. Confirm Storage Path

The monitoring data of VictoriaMetrics is stored in the specified path of the container, which is

indicated by the -storageDataPath parameter, defaultingto /vm-data .

Configuration example:

spec:
template:
spec:
containers:
- args:

- '-storageDataPath=/vm-data'

Note: The name of the computing component in the ACP Monitoring with VictoriaMetrics

pluginis vmstorage-cluster , and its type is StatefulSet

2. Execute Data Backup

VictoriaMetrics Backup and Recovery of Monitoring Data - Alauda Container Platform

Use vmbackup tool to perform data backup; please refer to the vmbackup official

documentation ~ for detailed operations.

3. Execute Data Recovery

Use vmrestore tool to restore backup data; please refer to the vmrestore official

documentation - for detailed operations.

Operation Result

After completing the backup, you will receive a complete backup file of the monitoring data.
After executing the recovery operation, your monitoring data will be restored to the state it was

in at the time of backup.

Learn More

¢ VictoriaMetrics official documentation ~
¢ Best Practices for Data Backup ~

e Troubleshooting Data Recovery ~

Follow-up Actions

Verify the integrity of the backup data

Set up a regular backup schedule

Periodically test the recovery process

Monitor the execution status of backup tasks

https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmbackup.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/vmrestore.html
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmbackup.html#best-practices
https://docs.victoriametrics.com/vmrestore.html#troubleshooting
https://docs.victoriametrics.com/vmrestore.html#troubleshooting
https://docs.victoriametrics.com/vmrestore.html#troubleshooting

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

Q Alauda Container Platform Q

Collect Network Data from Custom-Named

Network Interfaces

TOC

Function Overview
Use Case
Prerequisites
Procedures to Operate
Operation Results
Learn More

Subsequent Actions

Function Overview

The platform supports collecting network data from custom-named network interfaces by
modifying the configuration of the monitoring component, enabling you to view the network

traffic information for these interfaces on the monitoring page.

Use Case

This is applicable when your nodes use custom-named network interfaces (not following the

eth.|en.|wl.* |ww.* naming conventions) and require monitoring of these interfaces'

http://localhost:4173/container_platform/

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

network traffic data in the platform.

Prerequisites

+ A workload cluster has been created
¢ You have platform administrator permissions

¢ The naming conventions for the custom network interfaces are known

Procedures to Operate

1. Click the CLI tool icon in the top navigation bar of the platform.
2. Click global.

3.Inthe global cluster, find the moduleinfo resource name corresponding to your workload

cluster:
kubectl get moduleinfo | grep -E 'prometheus]|victoriametrics'

Example output:

global-6448ef7f7e5e3924c1629fad826372e7 global prometheus
prometheus Running v3.15.0-2z2231204040711-9d

1fc12474c2 v3.15.0-2z231204040711-9d1fc12474c2 v3.15.0-222312040407
11-9d1fcl2474c2

ovn-0954f21f0359720e8c115804376b3e7e ovn prometheus
prometheus Running v3.15.0-22231204040711-9d
1fc12474c2 v3.15.0-2z231204040711-9d1fc12474c2 v3.15.0-222312040407
11-9d1fcl12474c2

4. Edit the moduleinfo resource of the workload cluster:

kubectl edit moduleinfo <moduleinfo resource name of the workload clust
er>

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

5. Add or modify the valuesOverride field:

spec:
valuesOverride:# If this field does not exist, you need to add the va
luesOverride field under spec along with the parameters below
ait/chart-cpaas-monitor:
global:
indicator:
networkDevice: eth.*|em.*|en.*|wl.* |ww.*|[A-Z].*1|custom_inte
rface

6. After waiting for 10 minutes, check the network-related charts on the node's monitoring

page to ensure the changes have taken effect.

Operation Results

Once the configuration is effective, you can view the following data of the custom-named

network interfaces on the platform's monitoring page:

¢ Network traffic data
¢ Network throughput

* Network packet statistics

Learn More

o For more information on network monitoring, please refer to the Monitoring Architecture

Documentation

Subsequent Actions

« Monitor the performance metrics of the custom network interfaces

o Set alert rules based on the monitoring data

Collect Network Data from Custom-Named Network Interfaces - Alauda Container Platform

Permissions - Alauda Container Platform

Q Alauda Container Platform

Permissions

The permission points available in the monitoring module and the permissions of the built-in

roles in the platform are as follows:

Function

alerts

aiops-alerts

alerttemplate
aiops-

alerttemplate

alerthistories
aiops-

alerthistories

Monitoring Metrics
aiops-monitoring-

metrics

Action

View

Create

Update

Delete

View

Create

Update

Delete

View

Create

Update

Delete

View

Create

Platform Platform Project Names;
Administrator auditors Manager Admini
v v v v
v X v v
v X v v
v X v v
v v v v
v X X x
v X X X
v X X X
v v v v
v X X X
v X X X
v X X X
v v v v
v X X X

http://localhost:4173/container_platform/

Function

Monitoring Dashboard
aiops-monitoring-

dashboard

notifications
aiops-

notifications

notificationsmanage
aiops-

notificationsmanage

Permissions - Alauda Container Platform

Action

Update

Delete

View

Create

Update

Delete

View

Create

Update

Delete

View

Create

Update

Delete

Platform Platform Project Names;
Administrator auditors Manager Admini
v X X X
v X X X
v v v v
v X v v
v X v v
v X v v
v v X X
v X X X
v X X x
v X X x
v v v v
v X v X
v X v X
v X v X

Distributed Tracing - Alauda Container Platform

0 Alauda Container Platform

Distributed Tracing

Introduction

Introduction

Advantages
Application Scenarios

Usage Limitations

Install

Install

Installing the Jaeger Operator
Deploying a Jaeger Instance

Installing the OpenTelemetry Operator
Deploying OpenTelemetry Instances
Enable Feature Switch

Uninstall Tracing

http://localhost:4173/container_platform/

Distributed Tracing - Alauda Container Platform

Architecture

Architecture

Core Components

Data Flow

Concepts

Concepts

Telemetry
OpenTelemetry
Span

Trace
Instrumentation

OpenTelemetry Collector

Jaeger
Guides
Query Tracing Query Trace Logs
Feature Overview Feature Overview
Main Features Core Features
Feature Advantages Prerequisites

Tracing Query Log Query Operations

Distributed Tracing - Alauda Container Platform

Query Result Analysis

How To

Non-Intrusive Integration of Tra Business Log Associated with the TracelD

Feature Overview Background

Use Cases Adding TracelD to Java Application Logs
Prerequisites Adding TracelD to Python Application Logs
Steps to Operate Verification Method

Operation Results

Troubleshooting

Unable to Query the Required T Incomplete Tracing Data

Problem Description Problem Description
Root Cause Analysis Root Cause Analysis
Solution for Root Cause 1 Solution for Root Cause 1

Solution for Root Cause 2 Solution for Root Cause 2

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

Distributed Tracing is a key module in the observability system of container platforms, used
for achieving end-to-end tracing and analysis of distributed systems. This module is built
based on the OpenTelemetry (OTel) standard, providing a complete solution from data
collection, storage to visual analysis, helping developers and operations personnel to quickly
locate service call anomalies, analyze performance bottlenecks, and trace the entire lifecycle

behavior of requests.

By integrating with open-source technology stacks and self-developed components, this
module supports end-to-end tracing capabilities: applications generate tracing data through
0Tel automatic injection or SDK integration methods, which are then uniformly
collected and stored in Elasticsearch, ultimately realized through a customized Ul for multi-
dimensional visual analysis. Users can conduct precise searches using rich conditions such

as TracelD , service name, tags, and more.

TOC

Advantages
Application Scenarios

Usage Limitations

Advantages

The core advantages of tracing are as follows:

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

¢ End-to-End Tracing Capability
Supports complete tracing restoration across services, processes, and container

boundaries, accurately presenting complex call relationships in microservice architectures.

+ Flexible Data Collection Methods
Provides dual modes of automatic injection (no code modification) and SDK integration,

compatible with mainstream language applications such as Java/Python/Go.

+ High-Performance Storage Solutions
Utilizes Elasticsearch as the storage backend, supporting the writing and fast retrieval of

massive span data.

* Flexible Querying and Analysis Capabilities
The self-developed Ul integrates with the jaeger-query API, supporting flexible queries
based on multi-dimensional conditions such as TracelD, service affiliation, tags, and span

types, facilitating users in quickly pinpointing root causes of issues.

» Standardized Protocol Support
Built on the OpenTelemetry standard, it can integrate tracing data generated by other OTel

cloud-native components.

Application Scenarios

The main application scenarios of tracing are as follows:

o Distributed System Fault Diagnosis
In microservice architectures, complete tracing enable quick identification of service faults

and anomalous calls, reducing fault diagnosis time.

e Performance Bottleneck Analysis
By examining the latency between service calls, performance bottlenecks can be identified,

guiding system optimization and resource adjustments.

e Service Dependency Analysis
A time-series waterfall diagram clearly shows the call paths and dependencies between

services, assisting architects in system design and improvement.

Introduction - Alauda Container Platform

Usage Limitations

When using tracing, the following constraints should be noted:

« Balancing Sampling Strategies and Performance

 In high-load scenarios, the collection of tracing data may exert certain pressure on
Elasticsearch's performance and storage; it is recommended to configure the sampling

rate reasonably based on business conditions.

Install - Alauda Container Platform

Q Alauda Container Platform Q

Install

I WARNING

This deployment document is only applicable to scenarios involving the integration of the

container platform with the tracing system.

The Tracing component and the Service Mesh component are mutually exclusive. If you have

already deployed the Service Mesh component, please uninstall it first.

This guide provides cluster administrators with the process of installing the tracing system on
the Alauda Container Platform cluster.

Prerequisites:

¢ You have access to the Alauda Container Platform cluster with an account that has

platform-admin-system permissions.

¢ You have the kubectl CLI installed.

e The Elasticsearch component is set up to store tracing data, including the access URL

and Basic Auth information.

TOC

Installing the Jaeger Operator

Install the Jaeger Operator using the Web Console
Deploying a Jaeger Instance
Installing the OpenTelemetry Operator

Install the OpenTelemetry Operator using the Web Console

http://localhost:4173/container_platform/

Install - Alauda Container Platform
Deploying OpenTelemetry Instances
Enable Feature Switch
Uninstall Tracing
Deleting OpenTelemetry Instance
Uninstalling OpenTelemetry Operator
Deleting Jaeger Instance

Uninstalling Jaeger Operator

Installing the Jaeger Operator

Install the Jaeger Operator using the Web Console

You can install the Jaeger Operator from the Alauda Container Platform Marketplace -

OperatorHub section where the available Operators are listed.

Steps

In the Platform Management view of the Web Console, select the cluster where you want

to deploy the Jaeger Operator, then navigate to Marketplace - OperatorHub.

e Use the search box to search for Alauda build of Jaeger in the catalog. Click on the

Alauda build of Jaeger title.

+ Read the introductory information about the Operator on the Alauda build of Jaeger page.

Click Install.

¢ On the Install page:

» Select Manual for the Upgrade Strategy. For the Manual approval strategy, OLM will
create update requests. As a cluster administrator, you must manually approve the OLM

update requests to upgrade the Operator to the new version.
o Select the stable (Default) channel.

e Choose Recommended for Installation Location. Install the Operator in the

recommended jaeger-operator namespace, so the Operator can monitor and be

Install - Alauda Container Platform

available in all namespaces within the cluster.

¢ Click Install.

+ \erify that the Status displays as Succeeded to confirm the Jaeger Operator was installed

correctly.

¢ Check that all components of the Jaeger Operator were successfully installed. Log into the

cluster via terminal, and run the following command:

kubectl -n jaeger-operator get csv

Example output

NAME DISPLAY VERSION REPLACES PHASE
jaeger-operator.vx.x.0 Jaeger Operator X.X.0 Succeed
ed

If the PHASE field shows Succeeded , it means the Operator and its components were

installed successfully.

Deploying a Jaeger Instance

A Jaeger instance and its related resources can be installed with the install-jaeger.sh

script, which takes three parameters:

e --es-url : The access URL for Elasticsearch.

--es-user-base64 : The Basic Auth username for Elasticsearch, encoded in base64.

e --es-pass-base64 : The Basic Auth password for Elasticsearch, encoded in base64.

Copy the installation script from DETAILS, log into the cluster where you want to install it,

saveitas install-jaeger.sh , and execute it after granting execute permissions:

l » DETAILS

Install - Alauda Container Platform

Script execution example:

./install-jaeger.sh --es-url='https://xxx"' --es-user-base64="'xxx' --es-pa

ss-base64="xxx"

Script output example:

ES_URL: https://xxx

ES_USER_BASE64: XXX

ES_PASS_BASE64: xXxX

CLUSTER_NAME: cluster-xxx

PLATFORM_URL: https://xxx

INSTALLED_CSV: jaeger-operator.vX.X.Xx

OAUTH2_PROXY_IMAGE: build-harbor.alauda.cn/3rdparty/oauth2-proxy/oauth2-p
roxy:vX.X.X

configmap/jaeger-oauth2-proxy created
secret/jaeger-oauth2-proxy created
secret/jaeger-elasticsearch-basic-auth created
serviceaccount/jaeger-prod-acp created
role.rbac.authorization.k8s.io/jaeger-prod-acp created
rolebinding.rbac.authorization.k8s.io/jaeger-prod-acp created
jaeger.jaegertracing.io/jaeger-prod created
podmonitor.monitoring.coreos.com/jaeger-monitor created
ingress.networking.k8s.1i0/jaeger-query created

Jaeger installation completed

Installing the OpenTelemetry Operator

Install the OpenTelemetry Operator using the Web

Console

You can install the OpenTelemetry Operator from the Alauda Container Platform Marketplace

- OperatorHub section where the available Operators are listed.

Steps

Install - Alauda Container Platform

In the Platform Management view of the Web Console, select the cluster where you want

to deploy the OpenTelemetry Operator, then navigate to Marketplace - OperatorHub.

Use the search box to search for Alauda build of OpenTelemetry in the catalog. Click

on the Alauda build of OpenTelemetry title.

Read the introductory information about the Operator on the Alauda build of

OpenTelemetry page. Click Install.

On the Install page:

¢ Select Manual for the Upgrade Strategy. For the Manual approval strategy, OLM will
create update requests. As a cluster administrator, you must manually approve the OLM

update requests to upgrade the Operator to the new version.
o Select the alpha (Default) channel.

e Choose Recommended for Installation Location. Install the Operator in the
recommended opentelemetry-operator namespace, so the Operator can monitor

and be available in all namespaces within the cluster.

Click Install.

Verify that the Status displays as Succeeded to confirm the OpenTelemetry Operator was

installed correctly.

Check that all components of the OpenTelemetry Operator were successfully installed. Log

into the cluster via terminal, and run the following command:

kubectl -n opentelemetry-operator get csv

Example output

NAME DISPLAY VERSION REPL
ACES PHASE
openTelemetry-operator.vx.x.® OpenTelemetry Operator x.x.0

Succeeded

If the PHASE field shows Succeeded , it means the Operator and its components were

installed successfully.

Deploying OpenTelemetry Instances

OpenTelemetry instances and their related resources can be installed using the install-

otel.sh script.

Copy the installation script from DETAILS, log into the cluster where you want to install it,

save itas install-otel.sh , and execute it after granting execute permissions:

l » DETAILS

Script execution example:

./install-otel.sh

Script output example:

CLUSTER_NAME: cluster-xxx

serviceaccount/otel-collector created
clusterrolebinding.rbac.authorization.k8s.io/otel-collector:cpaas-system:
cluster-admin created

opentelemetrycollector.opentelemetry.io/otel created
instrumentation.opentelemetry.io/acp-common-java created
servicemonitor.monitoring.coreos.com/otel-collector-monitoring created
servicemonitor.monitoring.coreos.com/otel-collector created

OpenTelemetry installation completed

Enable Feature Switch

The tracing system is currently in the Alpha phase and requires you to manually enable the

acp-tracing-ui feature switch in the Feature Switch view.

Then, navigate to the Container Platform view, and go to Observability — Tracing, to view

the tracing feature.

Uninstall Tracing

Install - Alauda Container Platform

Deleting OpenTelemetry Instance

Log into the installed cluster and execute the following commands to delete the

OpenTelemetry instance and its related resources.

kubectl -n cpaas-system
kubectl -n cpaas-system
kubectl -n cpaas-system

kubectl -n cpaas-system

delete
delete
delete
delete

servicemonitor otel-collector-monitoring
servicemonitor otel-collector
instrumentation acp-common-java

opentelemetrycollector otel

kubectl delete clusterrolebinding otel-collector:cpaas-system:cluster-adm

in

kubectl -n cpaas-system delete serviceaccount otel-collector

Uninstalling OpenTelemetry Operator

You can uninstall the OpenTelemetry Operator using the Platform Management view in the

Web Console.

Steps

+ From Marketplace — OperatorHub - use the search box to search for Alauda build

of OpenTelemetry .

¢ Click on the Alauda build of OpenTelemetry title to enter its details.

¢ On the Alauda build of OpenTelemetry details page, click the Uninstall button in the

upper right corner.

¢ In the Uninstall "opentelemetry-operator”? window, click Uninstall.

Deleting Jaeger Instance

Log into the installed cluster and execute the following commands to delete the Jaeger

instance and its related resources.

Install - Alauda Container Platform

kubectl -n cpaas-system delete ingress jaeger-query

kubectl -n cpaas-system delete podmonitor jaeger-monitor

kubectl -n cpaas-system delete jaeger jaeger-prod

kubectl -n cpaas-system delete rolebinding jaeger-prod-acp

kubectl -n cpaas-system delete role jaeger-prod-acp

kubectl -n cpaas-system delete serviceaccount jaeger-prod-acp

kubectl -n cpaas-system delete secret jaeger-oauth2-proxy

kubectl -n cpaas-system delete secret jaeger-elasticsearch-basic-auth

kubectl -n cpaas-system delete configmap jaeger-oauth2-proxy

Uninstalling Jaeger Operator

You can uninstall the Jaeger Operator using the Platform Management view in the Web

Console.
Steps

+ From Marketplace —» OperatorHub - use the search box to search for Alauda build

of Jaeger .
¢ Click on the Alauda build of Jaeger title to enter its details.

¢ On the Alauda build of Jaeger details page, click the Uninstall button in the upper right

corner.

¢ In the Uninstall "jaeger-operator"? window, click Uninstall.

Architecture - Alauda Container Platform

Jo
1l

0 Alauda Container Platform

Architecture

This architecture is built on the OpenTelemetry and Jaeger technology stack, achieving the full
lifecycle management of distributed tracing. The system comprises five core modules: data

collection, transmission, storage, querying, and visualization.

Business Cluster
OTel App
auto-instrumentation
y —
< opentelemetry-operator races
X/ L0 o/
install Vs —\
otel-collectar ;
embedded
N
W iz 77 0 traces
_jaeger—nperatnr p
query trace (XX install -
P 7 P
K jaeger-collector
install '+,II
User [Tracing UI] \«
.
jaeger-query > !
/

TOC

Core Components

http://localhost:4173/container_platform/

Architecture - Alauda Container Platform

Data Flow

Core Components

1. OpenTelemetry System

o opentelemetry-operator
A cluster-level Operator responsible for deploying and managing the otel-collector

component, providing OTel automatic injection capability.

« otel-collector
Receives tracing data from applications, filters and batches it, and then forwards it to the

jaeger-collector.

e Tracing Ul
A self-developed visualization interface that integrates with the jaeger-query API,

supporting multi-dimensional query conditions.
2. Jaeger System

* jaeger-operator

Deploys and manages the jaeger-collector and jaeger-query components.

» jaeger-collector
Receives tracing data forwarded and processed by the otel-collector, performs format

conversion, and writes it to Elasticsearch.
e jaeger-query
Provides a tracing query API, supporting multi-condition retrieval including TracelD and

labels.
3. Storage Layer

» Elasticsearch
A distributed storage engine that supports efficient writing and retrieval of massive Span

data.

Architecture - Alauda Container Platform

Data Flow

¢ Writing Process

Application -> otel-collector -> jaeger-collector -> Elasticsearch

The application generates Span data via SDK or automatic injection, which is standardized

by the otel-collector and subsequently persisted to Elasticsearch by the jaeger-collector.

e Query Process

User -> Tracing UI -> jaeger-query -> Elasticsearch

The user submits query conditions through the Ul, and jaeger-query retrieves data from

Elasticsearch; the Ul visualizes the results based on the return data.

Concepts - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Concepts

TOC

Telemetry
OpenTelemetry

Span

Trace

Instrumentation
OpenTelemetry Collector

Jaeger

Telemetry

Telemetry refers to the data emitted by systems and their behaviors, including traces, metrics,

and logs.

OpenTelemetry

OpenTelemetry is an observability ~ framework and toolkit designed to create and manage
telemetry data such as traces -, metrics ', and logs ~. Importantly, OpenTelemetry is vendor-
agnostic, meaning it can work with various observability backends, including open-source

tools like Jaeger ~ and Prometheus ~ as well as commercial products.

https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/observability-primer/#what-is-observability
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
http://localhost:4173/container_platform/

Concepts - Alauda Container Platform

Span is the fundamental building block of distributed tracing, representing a specific operation
or work unit. Each span records specific actions within a request, helping us understand the

details of what occurred during the operation's execution.

A span contains a name, time-related data, structured log messages, and other metadata

(attributes) that collectively illustrate the complete picture of the operation.

Trace

Trace records the path of a request (whether from an application or end-user) as it
propagates through a multi-service architecture (such as microservices and serverless

applications).

A trace consists of one or more spans. The first span is known as the root span, which
represents the entire lifecycle of a request from start to finish. Child spans beneath the root
span provide more detailed contextual information about the request process (or the various

steps that constitute the request).

Without traces, identifying the root cause of performance issues in distributed systems would
be quite challenging. Traces make it easier to debug and understand distributed systems by

breaking down the flow of requests through them.

Instrumentation

To enable observability, a system needs to undergo Instrumentation: that is, the component

code of the system must emit traces -, metrics ', and logs .
With OpenTelemetry, you can instrument your code in two primary ways:

1. Code-based solutions - : Using the official APIs and SDKs for most languages ~

2. Zero-instrumentation solutions ~

https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/traces/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/metrics/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/signals/logs/
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/concepts/instrumentation/code-based
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/languages/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/
https://opentelemetry.io/docs/concepts/instrumentation/zero-code/

Concepts - Alauda Container Platform

Code-based solutions provide deeper insights and richer telemetry data from within your
application. You can generate telemetry data in your application using the OpenTelemetry API,
which is an important complement to the telemetry data generated by zero-instrumentation

solutions.

Zero-instrumentation solutions are great for quickly getting started or when you cannot
modify the application from which you need telemetry data. They can provide rich telemetry
data via the libraries or runtime environment you are using. Another way to understand them
is that they deliver information about events occurring at the boundaries (Edges) of the

application.

These two solutions can be used simultaneously.

OpenTelemetry Collector

OpenTelemetry Collector is a vendor-agnostic agent that can receive, process, and export
telemetry data. It supports receiving telemetry data in various formats (such as OTLP, Jaeger,
Prometheus, and many commercial/proprietary tools) and sending that data to one or more

backends. It also supports processing and filtering telemetry data before exporting.

For more information, see Collector .

Jaeger

Jaeger is an open-source distributed tracing system. It is designed to monitor and diagnose
complex distributed systems based on microservices architecture, helping developers
visualize request traces, analyze performance bottlenecks, and troubleshoot anomalies.
Jaeger is compatible with the OpenTracing standard (now part of OpenTelemetry), supports
multiple programming languages and storage backends, and is a key observability tool in the

cloud-native space.

https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/

Q Alauda Container Platform

Guides

Query Tracing

Feature Overview
Main Features
Feature Advantages
Tracing Query

Query Result Analysis

Guides - Alauda Container Platform

Query Trace Logs

Feature Overview
Core Features
Prerequisites

Log Query Operations

http://localhost:4173/container_platform/

Query Tracing - Alauda Container Platform

Q Alauda Container Platform Q

Query Tracing

TOC

Feature Overview
Main Features
Feature Advantages
Tracing Query
Step 1: Combine Query Conditions
Step 2: Execute Query
Query Result Analysis
Span List
Time-Series Waterfall Chart

Span Details

Feature Overview

The distributed tracing query feature provides full-link tracing capabilities for microservices
architecture by collecting metadata information of inter-service calls, helping users quickly

locate cross-service call issues. This feature mainly addresses the following problems:

* Request Link Tracing: Restoring the complete request path in complex distributed

systems.

+ Performance Bottleneck Analysis: Identifying abnormal call nodes in terms of time

consumption within the link.

http://localhost:4173/container_platform/

Query Tracing - Alauda Container Platform

+ Fault Root Cause Location: Quickly locating the point of issue occurrence through error

marking.
Applicable scenarios include:

o Rapidly locating abnormal services during production environment fault troubleshooting.
« Identifying high-latency call links during performance tuning.

e Validating inter-service call relationships after a new version release.
Core values:

e Enhancing observability of distributed systems.
¢ Reducing Mean Time to Recovery (MTTR).

e Optimizing inter-service call performance.

Main Features

o Multi-dimensional Querying: Supports 6 combinations of query conditions such as TracelD,

service name, labels, etc.

e Visual Analysis: Intuitively displays call hierarchy and time distribution through time-series

waterfall charts.

e Precise Location: Supports error Span filtering and secondary searches with labels.

Feature Advantages

¢ Quick Problem Identification: Narrowing down the inspection range through multi-

dimensional query conditions accelerates problem location.

¢ Visual Presentation: Using time-series waterfall charts to intuitively display call

relationships reduces complexity and enhances fault analysis efficiency.

* Flexibility and Variety: Supports both simple queries and complex combinations, adapting

to various operation and development scenarios.

Query Tracing - Alauda Container Platform

Tracing Query

1) Step 1: Combine Query Conditions

Tip: Query conditions can be combined for use. You can refine your query by adding

multiple query conditions.

Query o
. Description
Condition
The unique identifier for the complete link, which can be used to query
TracelD -)
the specified tracing.
) The service that initiates/receives the call request (needs to be
Service)
selected or input).
Label You can filter the query results by entering labels (Tag), supported Tags
abe
include those in the Span details.
Span
Duration Spans that have a duration greater than or equal to input value (ms).

Greater Than

Only Search)
Error Spans refer to Spans whose Tag value of erroris true .
Error Spans

Root Span: Searches for root Spans initiated by the configured

service. This search mode is used when the configured service is the
Span Type initiator of the entire call request.

Service Entry Span: Searches for the first Span generated when the

configured service is called as a server.

The maximum number of Spans that can be queried, with a default of

200.
Maximum Tip: For performance reasons, the platform can display a maximum of
Query Count 1000 Spans at a time. If the number of Spans that meet the query

conditions exceeds the maximum query count, you can refine the

guery conditions or narrow the time range for phased queries.

2) Step 2: Execute Query

Query Tracing - Alauda Container Platform

e Once you select the query conditions and enter the respective values, click the Add
to Query Conditions button, and the current conditions will be displayed in the

Query Conditions result area, triggering the query.

¢ You can also expand Common Query Conditions to quickly add recently used

search conditions.

Query Result Analysis

After entering the query conditions and searching, a query results area will be generated on

the page.

Span List

The left side of the query results area displays a list of Spans that meet the conditions along
with basic information about the Spans, including: service name, called interface or request

processing method, duration, and start time.

Time-Series Waterfall Chart

The time-series waterfall chart on the right side of the query results area clearly displays the
call relationships between Spans in a single tracing. The main features of using time-series

waterfall charts in tracing analysis are as follows:

1. Top-to-bottom expansion: In the time-series waterfall chart, various call events (Spans)
typically expand downwards from the top of the chart, with each horizontal bar representing
a service call or process. The position generally reflects the logical calling order of

operations.

2. Time axis alignment: The horizontal axis of the time-series waterfall chart represents time.
The length of each bar indicates the duration of that call, allowing for an intuitive

comparison of the time relationships between different calls.

3. Indentation description: Indentation indicates the hierarchical relationship of calls, with

deeper indentation denoting greater call depth within that link.

4. Interactivity and detailed data display: Clicking on the bars in the time-series waterfall chart

can display more detailed information about that call.

Query Tracing - Alauda Container Platform

Span Details

By clicking on the row of the Span in the time-series waterfall chart, you can expand and view

detailed information about the Span, including:

Service: The service within the Span.
Span Duration (ms): The duration of the Span.
URL: The URL accessed by the service, corresponding to http.url in Span Tags.

Tag: The label information of the Span composed of key-value pairs, which can be used for
advanced search tag query conditions. By clicking the button next to the tag, you can add

the current Tag condition to the query conditions for more precise query results.

JSON: The original JSON structure of the Span, allowing for further inspection of its

internal information.

Query Trace Logs - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Query Trace Logs

TOC

Feature Overview
Core Features
Prerequisites
Log Query Operations
Access Trace Logs
Filter Logs
By Pod Name
By Time Range
By Query Conditions
Contain Trace ID
Advanced Operations
Export Logs
Customize Display Fields

View Log Context

Feature Overview

Trace Logs enable users to query and analyze logs associated with a specific distributed trace
using its unique TracelD. This feature helps developers and operators quickly locate issues,

understand request flows, and correlate business logs with trace contexts.

http://localhost:4173/container_platform/

Query Trace Logs - Alauda Container Platform

Key Benefits:

+ Root Cause Analysis: Identify errors and latency issues across microservices in

distributed systems.
+ Context Correlation: Link business logs to trace spans for end-to-end visibility.

« Efficient Filtering: Filter logs by Pods or TracelD to focus on relevant data.
Applicable Scenarios:

¢ Debugging cross-service transaction failures.
¢ Analyzing performance bottlenecks in complex workflows.

¢ Auditing request processing flows for compliance.

Core Features

TracelD-Based Query: Retrieve all logs associated with a specific trace using its TracelD.

Pod-Centric Filtering: View logs from specific Pods involved in the trace.

Log Export: Export filtered log data in customizable formats.

Contextual Log Viewing: Examine log records before/after a target entry for deeper

analysis.

Prerequisites

l TIP

Before querying trace logs by TracelD, you must first instrument your services to include TracelD in

business logs. Follow the Business Log Correlation with TracelD Guide for configuration details.

Default Behavior:

¢ Displays logs from the entire trace duration.

o For traces shorter than 1 minute, queries logs within 1 minute after the trace start time.

Query Trace Logs - Alauda Container Platform

Log Query Operations

17 Access Trace Logs

1. After querying traces, click on a specific trace to view its details.

2. Click the View Log tab in the trace visualization panel.

2) Filter Logs

By Pod Name

In the Pod Name selector, choose target Pod from the participating services list.

By Time Range

In the Time Range selector, choose target time range.

By Query Conditions

Enter keywords in the Query Conditions text box to filter logs based on specific

content.

Contain Trace ID

Select the Contain Trace ID checkbox.

3/ Advanced Operations

Export Logs

1. Click Export.
2. Select fields to include using column checkboxes.

3. Choose export format (JSON/CSV).

Customize Display Fields

Click Set. Toggle visibility of log fields in the display panel.

Query Trace Logs - Alauda Container Platform

View Log Context

1. Click Insight next to any log entry.
2. Explore 5 preceding and succeeding logs around the target timestamp.

3. Scroll up/down with mouse to load more logs.

How To - Alauda Container Platform

Q Alauda Container Platform

How To

Non-Intrusive Integration of Tra

Feature Overview
Use Cases
Prerequisites
Steps to Operate

Operation Results

Business Log Associated with the TracelD

Background
Adding TracelD to Java Application Logs
Adding TracelD to Python Application Logs

Verification Method

http://localhost:4173/container_platform/

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

Q Alauda Container Platform Q

Non-Intrusive Integration of Tracing in Java

Applications

I INFO

The automatically injected OpenTelemetry Java Agent ~ supports Java 8+ versions.

TOC

Feature Overview
Use Cases
Prerequisites
Steps to Operate

Operation Results

Feature Overview

Tracing is a core capability of observability in distributed systems, which can fully record the
call paths and performance data of requests within the system. This article describes how to
achieve non-intrusive integration of tracing in Java applications using the automatic injection

of the OpenTelemetry Java Agent.

https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
http://localhost:4173/container_platform/

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

Use Cases

Java applications can be integrated for the following scenarios:

Quickly adding tracing capabilities to Java applications

Avoiding modifications to the application source code

Deploying services with Kubernetes

Visualizing service inter-call relationships and analyzing performance bottlenecks

Prerequisites

Before using this feature, ensure that:

The target service is deployed on the Alauda Container Platform

The service is using JDK version Java 8 or higher

You have editing permissions for the Deployment in the target namespace

The platform has completed tracing deployment

Steps to Operate

For a Java application that needs to be integrated into the Alauda Container Platform tracing,

the following adaptations are required:

o Configure automatic injection annotations for the Java Deployment.
e Setthe SERVICE NAME environment variable.

e Setthe SERVICE_NAMESPACE environment variable.

Example of Deployment adaptation:

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:
name: my-java-deploy
spec:
template:
metadata:
annotations:
instrumentation.opentelemetry.io/inject-java: cpaas-system/acp-co
mmon-javae
labels:
app.kubernetes.io/name: my-java-app
spec:
containers:
- env:
- name: SERVICE_NAME @
valueFrom:
fieldRef:
apiVersion: vi1
fieldPath: metadata.labels['app.kubernetes.io/name']
- name: SERVICE_NAMESPACE @
valueFrom:
fieldRef:
apiversion: vi

fieldPath: metadata.namespace

1. Choose cpaas-system/acp-common-java Instrumentation as the configuration for

injecting the Java Agent.

2. Configure the SERVICE_NAME environment variable, which can be associated through

labels or fixed values.

3. Configure the SERVICE_NAMESPACE environment variable, with its value as

metadata.namespace .

Operation Results

After adapting the Java application:

Non-Intrusive Integration of Tracing in Java Applications - Alauda Container Platform

If the newly started Java application pod contains the opentelemetry-auto-

instrumentation-java Init container, it indicates that the injection was successful.

Send test requests to the Java application.

In the Container Platform view, select the project, cluster, and nhamespace where the

Java application resides.

Navigate to the Observability -> Tracing page to view the tracing data and timeline

waterfall diagram of the Java application.

Business Log Associated with the TracelD - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

l TIP

This article will guide developers on how to integrate methods for getting TracelD and adding
TracelD to application logs in the application code, suitable for backend developers with some

development experience.

Business Log Associated with the TracelD

TOC

Background
Adding TracelD to Java Application Logs
Adding TracelD to Python Application Logs

Verification Method

Background

» To correctly associate multiple automatically sent spans (different modules/nodes/services
called during a single request) into a single trace, the service's HTTP request headers will

include TracelD and other information used for associating the trace.

o Atrace represents the call process of a single request, and TracelD is the unique ID
identifying this request. With the TracelD in the logs, the traceing can be associated with

the application logs.

http://localhost:4173/container_platform/

Business Log Associated with the TracelD - Alauda Container Platform

Based on the above background, this article will explain how to obtain the TracelD from the
HTTP request headers and add it to application logs, allowing you to accurately query log data

on the platform using TracelD.

Adding TracelD to Java Application Logs

l TIP

» The following examples are based on the Spring Boot framework and use Log4j and Logback

for illustration.

» Your application must meet the following prerequisites:

» The type and version of the logging library must meet the following requirements:

Logging Library Version Requirement
Log4j 1 1.2+
Log4j 2 2.7+
Logback 1.0+

» The application has been injected with a Java Agent.

Method 1: Configure logging.pattern.level

Modify the logging.pattern.level parameter in your application configuration as follows:

logging.pattern.level = trace_id=%mdc{trace_id}

Method 2: Configure CONSOLE_LOG_PATTERN

1. Modify the logback configuration file as follows.

TIP

Business Log Associated with the TracelD - Alauda Container Platform

The console output is used as an example here, where %x{trace_id} indicates the value of

the key trace_id retrieved from MDC.

<property name="CONSOLE_LOG_PATTERN"
value="${CONSOLE_LOG_PATTERN: -%clr (%d{yyyy-MM-dd HH:mm:ss.SSS}){fai

nt} [trace_id=%X{trace_id}] %clr (${LOG_LEVEL_PATTERN:-%5p}) %clr (${PID:

- }){magenta} %clr(---){faint} %clr([%15.15t]){faint} %clr(%-40.401logge

r{39}){cyan} %clr(:){faint} %m%n${LOG_EXCEPTION_CONVERSION_WORD: -%wE
X}}"/>

2. In the class where logs need to be output, add the @s1f4j annotation and use the log

object to output logs, as shown below:

@RestController
@S1f4j

public class ProviderController {

@GetMapping("/hello")

public String hello(HttpServletRequest request) {
log.info("request /hello");
return "hello world";

Adding TracelD to Python Application Logs

1. In the application code, add the following code to retrieve the TracelD from the request

headers. The example code is as follows and can be adjusted as needed:

TIP

The getForwardHeaders function retrieves trace information from the request headers, where

the value of x-b3-traceid is the TracelD.

Business Log Associated with the TracelD - Alauda Container Platform

def getForwardHeaders()
headers = {3}
incoming_headers = [
'X-request-id',

'X-b3-traceid’,
'X-b3-spanid',
'X-b3-parentspanid’,
'X-b3-sampled’,
'x-b3-flags',

for ihdr in incoming_headers:
val = request.headers.get(ihdr)
if val is not None:

headers[ihdr] = val

return headers

2. In the application code, add the following code to include the retrieved TracelD in the logs.

The example code is as follows and can be adjusted as needed:

headers = getForwardHeaders(request)
tracing_section = ' [%(x-b3-traceid)s,%(x-b3-spanid)s] ' % headers

logging.info(tracing_section + "Oops, unexpected error happens.")

Verification Method

1. Click on Tracing in the left navigation bar.
2. In the query criteria, select TracelD, enter the TracelD to query, and click Add to query.
3. In the displayed trace data below, click View Log next to the TracelD.

4. On the Log Query page, check Contain Trace ID; the system will only display log data

containing the TracelD.

Troubleshooting - Alauda Container Platform

Q Alauda Container Platform

Troubleshooting

Unable to Query the Required 1

Problem Description
Root Cause Analysis
Solution for Root Cause 1

Solution for Root Cause 2

Incomplete Tracing Data

Problem Description
Root Cause Analysis
Solution for Root Cause 1

Solution for Root Cause 2

http://localhost:4173/container_platform/

Unable to Query the Required Tracing - Alauda Container Platform

Q Alauda Container Platform Q

Unable to Query the Required Tracing

TOC

Problem Description
Root Cause Analysis
1. Tracing Sampling Rate Configured Too Low
2. Elasticsearch Real-Time Limitations
Solution for Root Cause 1

Solution for Root Cause 2

Problem Description

When querying the tracing in a service mesh, you may encounter situations where the target

tracing cannot be retrieved.

Root Cause Analysis

1. Tracing Sampling Rate Configured Too Low

When the sampling rate parameter for the tracing is set too low, the system will only collect
tracing data proportionally. During times of insufficient request volume or low-peak periods,

this may lead to the sampled data being below the visibility threshold.

http://localhost:4173/container_platform/

Unable to Query the Required Tracing - Alauda Container Platform

2. Elasticsearch Real-Time Limitations

The default configuration for Elasticsearch index is "refresh_interval": "10s" , which
results in a delay of 10 seconds before data is refreshed from the memory buffer to a
searchable state. When querying recently generated tracing, the results may be missing

because the data has not yet been persisted.

This index configuration can effectively reduce the data merge pressure on Elasticsearch,
improving indexing speed and the speed of the first query, but it also reduces the real-time

nature of the data to some extent.

Solution for Root Cause 1

o Appropriately increase the sampling rate according to requirements.

» Use richer sampling methods, such as tail sampling.

Solution for Root Cause 2

Adjust the refresh interval through the --es.asm.index-refresh-interval startup

parameter of jaeger-collector , with a default value of 16s .

If the value of this parameteris "null" , there will be no configuration for the index's

refresh_interval .

Note: Setting itto "null" will affect the performance and query speed of Elasticsearch.

Incomplete Tracing Data - Alauda Container Platform

Q Alauda Container Platform Q

Incomplete Tracing Data

TOC

Problem Description
Root Cause Analysis
1. Data Persistence Delay
2. Time Range Limitation
Solution for Root Cause 1

Solution for Root Cause 2

Problem Description

The tracing query results exhibit the following issues of incomplete data:

¢ Recent queries (within the last 30 minutes) are missing some spans.

¢ Tracing older than 1 hour are experiencing disconnections.

Root Cause Analysis

1. Data Persistence Delay

The writing process in Elasticsearch requires a sequence of steps involving memory buffer -

translog —» segment files, which can result in visibility delays for the most recently written

http://localhost:4173/container_platform/

Incomplete Tracing Data - Alauda Container Platform

data.

2. Time Range Limitation

By default, when jaeger-query queries spans corresponding to tracing, the time range

extends one hour before and after the start time of the span.

For instance, if a span starts at 08:12:30 and ends at 08:12:32 , the time range for

guerying that tracing would be from 07:12:30 to 09:12:32 .

Therefore, if the tracing spans over 1 hour, querying through this span may not yield a

complete tracing.

Solution for Root Cause 1

Wait a moment and refresh the page to try the query again.

Solution for Root Cause 2

If the tracing span in your environment is lengthy, you can adjust the query time range for a
single tracing using the --es.asm.span-trace-query-time-adjustment-hours startup

parameter in jaeger-query .

The default value of this parameter is 1 hour, and you can increase this value as needed.

Logs - Alauda Container Platform

0 Alauda Container Platform

Logs

Introduction

Introduction

Module Overview
Module Advantages
Module Use Cases

Module Usage Limitations

Install

Install

Install ACP Log Storage with ElasticSearch
Install ACP Log Storage with Clickhouse

Install ACP Log Collector Plugin

Architecture

http://localhost:4173/container_platform/

Logs - Alauda Container Platform

Log Module Architecture Log Component Selection Guid Log Compa
Overall Architecture Description Architecture Comparison ElasticSearch
Log Collection Function Comparison Clickhouse

Log Consumption and Storage Selection Recommendations

Log Visualization

Concepts

Concepts

Open Source Components
Core Functionality Concepts
Key Technical Terms

Data Flow Model

Guides

Logs

Log Query Analysis
Manage Application Log Retention Time

Configure Partial Application Log Exclusion from Collection

How To

Logs - Alauda Container Platform

How to Archive Logs to Third-P

Transfer to External NFS

Transfer to External S3 Storage

Permissions

Permissions

How to Interface with External ES Storage Clu

Resource Preparation

Operating Procedures

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Module Overview
Module Advantages
Module Use Cases

Module Usage Limitations

Module Overview

The logging module is an efficient and reliable log management solution provided by ACP,
designed to offer users comprehensive log collection, storage, querying, and analysis
capabilities. Based on powerful open-source components, the system utilizes Filebeat for log
collection, and ElasticSearch and Clickhouse as log storage backends, ensuring users can

easily handle large volumes of log data and obtain key business insights in real time.

Module Advantages

« High Performance: With the robust performance of ElasticSearch and Clickhouse, the

system can handle massive amounts of data and support fast querying and analysis.

» Flexibility: It supports the collection of various log sources, meeting the needs of different
business scenarios.

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

+ Real-time Capability: It provides real-time log processing capabilities, allowing users to

quickly identify and respond to system failures or security incidents.

o Scalability: The system architecture is designed to support horizontal scaling, enabling

easy resource expansion according to business growth.

o User-friendly: It offers a visual interface and simple query language, making it easy for

users to get started.

Module Use Cases

o System Monitoring: Real-time monitoring of application and server operating statuses,

allowing for the timely detection and handling of anomalies.

o Security Auditing: Collecting and analyzing security logs to help enterprises identify

potential security threats and violations.

o Fault Troubleshooting: Quickly locating the root cause of faults through log analysis, thus

improving system recovery efficiency.

e Business Analysis: Assisting in decision-making and optimizing business processes

through the analysis of user behavior and system performance logs.

Module Usage Limitations

o Capacity Planning: Large-scale log data storage requires adequate resource planning;
please assess your log scale in advance and prepare according to the Capacity Planning

document.

o Port Access: If installing log storage components in a workload cluster, ensure that the

global cluster can access port 11780 of the workload cluster.

o Component Selection: The platform offers two different log storage components,
ElasticSearch and Clickhouse; please make your component selection based on your

needs in advance.

¢ Installation Planning: The platform supports the installation of log storage components in
any cluster; logs from any cluster can be collected in advance to the log storage

components of a designated cluster. Please plan the installation of log-related components

Introduction - Alauda Container Platform

based on your data center layout to avoid excessive bandwidth costs due to cross-domain

traffic.

Install - Alauda Container Platform

Q Alauda Container Platform Q

Install

The platform's logging system consists of two plugins: ACP Log Collector and ACP Log

Storage. This chapter will introduce you to the installation of these two plugins.

I WARNING

1. After the successful installation of the ACP Log Storage plugin, the cluster where the component
is installed can be used as the storage cluster for various clusters in the platform (optional
during the installation of the ACP Log Collector plugin) to provide log storage services for all

clusters in the platform.
2. The global cluster can query the log data stored on any workload cluster within the platform.

Ensure that the global -cluster can access port 11780 of the workload cluster.

3. The ACP Log Storage with Clickhouse plugin and the ACP Log Storage with ElasticSearch

plugin cannot be installed in the same cluster. Please read the Selection Suggestions and

choose to install one of the log storage plugins.

TOC

Install ACP Log Storage with ElasticSearch
Install ACP Log Storage with Clickhouse

Install ACP Log Collector Plugin

Install ACP Log Storage with ElasticSearch

http://localhost:4173/container_platform/

Install - Alauda Container Platform

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of ACP Log Storage with

ElasticSearch > Install.

3. Refer to the following instructions to configure relevant parameters.

Parameter

Connect
External

Elasticsearch

Component
installation

Settings

Retention

Period

4. Click Install.

Description

Keep closed to install the log storage plugin within the platform.

LocalVolume: Local storage, log data will be stored in the local storage
path of the selected node. The advantage of this method is that the log
component is directly bound to local storage, eliminating the need to
access storage over the network and providing better storage
performance.

StorageClass: Dynamically create storage resources using storage
classes to store log data. The advantage of this method is a higher
degree of flexibility; when multiple storage classes are defined for the
entire cluster, administrators can select the corresponding storage class
for the log components based on usage scenarios, reducing the impact
of host malfunction on storage. However, the performance of
StorageClass may be affected by factors such as network bandwidth and
latency, and it relies on the redundancy mechanisms provided by the

storage backend to achieve high availability of storage.

The maximum time logs, events, and audit data can be retained on the
cluster. Data exceeding the retention period will be automatically cleaned
up.

Tip: You may back up data that needs to be retained for a long time. If

you need assistance, please contact technical support personnel.

Install - Alauda Container Platform

Install ACP Log Storage with Clickhouse

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.

2. In the Plugins tab, click the action button to the right of ACP Log Storage with

Clickhouse > Install.

3. Refer to the following instructions to configure relevant parameters.

Parameter

Component
installation

Settings

Retention

Period

4. Click Install.

Description

LocalVolume: Local storage, log data will be stored in the local storage
path of the selected node. The advantage of this method is that the log
component is directly bound to local storage, eliminating the need to
access storage over the network and providing better storage
performance.

StorageClass: Dynamically create storage resources using storage
classes to store log data. The advantage of this method is a higher degree
of flexibility; when multiple storage classes are defined for the entire
cluster, administrators can select the corresponding storage class for the
log components based on usage scenarios, reducing the impact of host
malfunction on storage. However, the performance of StorageClass may
be affected by factors such as network bandwidth and latency, and it relies
on the redundancy mechanisms provided by the storage backend to

achieve high availability of storage.

The maximum time logs, events, and audit data can be retained on the
cluster. Data exceeding the retention period will be automatically cleaned
up.

Tip: You may back up data that needs to be retained for a long time. If you

need assistance, please contact technical support personnel.

Install ACP Log Collector Plugin

Install - Alauda Container Platform

1. Navigate to App Store Management > Cluster Plugin and select the target cluster.
2. In the Plugins tab, click the action button to the right of ACP Log Collector > Install.

3. Select the Storage Cluster (where ACP Log Storage has been installed) and click

Select/Deselect log types to set the scope of log collection in the cluster.

4. Click Install.

Q Alauda Container Platform

Architecture

Log Module Architecture

Overall Architecture Description
Log Collection
Log Consumption and Storage

Log Visualization

Architecture - Alauda Container Platform

Log Component Selection Guid

Architecture Comparison
Function Comparison

Selection Recommendations

Log Compc

ElasticSearch

Clickhouse

http://localhost:4173/container_platform/

Log Module Architecture - Alauda Container Platform

0 Alauda Container Platform Q

Log Module Architecture

Query Data

e e

Send audit/event/lo Query audit/eventlog message
g message cluster with

Auth and forward auditeventlog message

o) cnonn

http://localhost:4173/container_platform/

Log Module Architecture - Alauda Container Platform

TOC

Overall Architecture Description
Log Collection
Component Installation Method
Data Collection Process
Log Consumption and Storage
Razor
Lanaya
Vector

Log Visualization

Overall Architecture Description

The logging system consists of the following core functional modules:

1. Log Collection

» Provided based on the open-source component filebeat
¢ Log collection: Supports the collection of standard output logs, file logs, Kubernetes

events, and audits.

2. Log Storage

o Two different log storage solutions are provided based on the open-source components
Clickhouse and ElasticSearch.

» Log Storage: Supports long-term storage of log files.
e Log Storage Time Management: Supports management of log storage duration at the

project level.

3. Log Visualization

Log Module Architecture - Alauda Container Platform

e Provides convenient and reliable log querying, log exporting, and log analysis

capabilities.

Log Collection

Component Installation Method

nevermore is installed as a daemonset in the cpaas-system namespace of each cluster. This

component consists of 4 containers:

Name Function

audit Collects audit data

event Collects event data

log Collects log data (including standard output and file logs)
node-problem-detector Collects abnormal information on nodes

Data Collection Process

After nevermore collects audit/event/log information, it sends the data to the log storage
cluster, undergoing authentication by Razor before being ultimately stored in ElasticSearch or

ClickHouse.

Log Consumption and Storage

Razor

Razor is responsible for authentication and receiving and forwarding log messages.

o After Razor receives requests sent by nevermore from various workload clusters, it first

authenticates using the Token in the request. If authentication fails, the request is denied.

Log Module Architecture - Alauda Container Platform

 If the installed log storage component is ElasticSearch, it writes the corresponding logs into

the Kafka cluster.

 If the installed log storage component is Clickhouse, it passes the corresponding logs to

Vector, which are ultimately written into Clickhouse.

Lanaya

Lanaya is responsible for consuming and forwarding log data in the ElasticSearch log storage
link.

o Lanaya subscribes to topics in Kafka. After receiving the messages from the subscription, it

decompresses the messages.

o After decompression, it preprocesses the messages by adding necessary fields,

transforming fields, and splitting data.

+ Finally, it stores the messages in the corresponding index of ElasticSearch based on the

message's time and type.

Vector

Vector is responsible for processing and forwarding log data in the Clickhouse log storage

link, ultimately storing the logs in the corresponding table in Clickhouse.

Log Visualization

1. Users can query the audit/event/log query URLs from the product Ul interface for display:

e Log Query /platform/logging.alauda.io/v1l
¢ Event Query /platform/events.alauda.io/vl
e Audit Query /platform/audits.alauda.io/v1l

2. The requests are processed by the advanced APl component Courier, which queries the

log data from the log storage clusters ElasticSearch or Clickhouse and returns it to the

page.

Log Component Selection Guide - Alauda Container Platform

Q Alauda Container Platform Q

Log Component Selection Guide

When installing cluster monitoring, the platform provides two log storage components for your
choice: ElasticSearch and Clickhouse. This article will detail the features and applicable

scenarios of these two components to help you make the most suitable choice.

I WARNING

» You can only choose one of ElasticSearch or Clickhouse for the cluster log storage component

installation.

» Any cluster's log storage component can be selected for log collection to interface with the

storage data.

» The current version of the DevOps product does not support archiving Jenkins pipeline
execution records using Clickhouse. If you need to use the Jenkins pipeline features, please

choose the ACP Log Storage with Clickhouse plugin cautiously.

» The current version of the ServiceMesh service mesh does not support integration with
Clickhouse. If you need to use the service mesh features, please choose the ACP Log Storage

with Clickhouse plugin cautiously.

« The current version of the ACP Log Storage with Clickhouse plugin does not support IPv6 single

stack or IPv6 dual stack workload clusters.

TOC

Architecture Comparison
ElasticSearch Architecture

Clickhouse Architecture

http://localhost:4173/container_platform/

Log Component Selection Guide - Alauda Container Platform

Function Comparison

Selection Recommendations

Architecture Comparison

ElasticSearch Architecture

Elasticsearch Cluster

Data Node 3

Ingest

Master
Eligible Node 1
Node 1

Coordinating 11R2 12R1 \“\\\ AN
Only Node EREINORNY ‘Master

Eligible
Node 2

Data Node 1

11P1 12P2

Ingest
Node 2

Elasticsearch >
Cient

Elasticsearch .
Cient

I: Index
P: Primary Shard
R: Replica Shard

Data Node 2

112 |[12p1 -
Data Node 4

Master
Eligible
Node 3

ElasticSearch is an open-source distributed search engine built on Lucene, designed for fast

full-text search and analysis. Its advantages include:

¢ High-performance search: Supports real-time search and can quickly process massive

amounts of data.

+ Flexible querying capabilities: Offers a powerful query DSL, supporting complex query

requirements.
o Scalability: Easily horizontally scalable as needed, suitable for applications of all sizes.

o Diverse data support: Able to handle both structured and unstructured data, widely

applicable.

Log Component Selection Guide - Alauda Container Platform

Clickhouse Architecture

client V TableEngine/

response : Storage : E IBlockInputStream
; : : IBlockOutputStream
client : '
! merge
tree
client Interpreter log Senelizg
interpreter

Deserialize

Parser

9 AST object
« analyzer

client

disk/mem

Clickhouse is a high-performance columnar database designed for Online Analytical

Processing (OLAP). Its advantages include:

o Fast data processing: Supports rapid querying and analysis through columnar storage and

data compression.

» Real-time analysis: Capable of processing real-time data streams, suitable for real-time

data analysis scenarios.

» High throughput: Optimized for the performance of large-scale data writing and querying,

making it very suitable for big data scenarios.

o Flexible SQL support: Compatible with standard SQL, easy to get started, reducing the

usage threshold.

Function Comparison

Clickhouse Elasticsearch Explanation

High

Supported Supported
Availability PP PP

Log Component Selection Guide - Alauda Container Platform

Clickhouse Elasticsearch Explanation
Scalability Supported Supported

Elasticsearch offers more robust

search capabilities based on the
Query

. Weak Strong Lucene language, while Clickhouse
Experience

only supports SQL queries, limiting its

search capabilities.

For the same performance
requirements, Clickhouse requires
fewer resources than Elasticsearch.
Resource] For example, to support 20,000 logs
Low High)
Usage per second, Elasticsearch needs 3 es-
masters and 7 es-nodes
(2c4g+8c16g), while Clickhouse only

requires 3 2c4qg replicas.

Under the same resource conditions,

) the log volume supported by
Performance High Low)
Clickhouse far exceeds that of

Elasticsearch.

The Elasticsearch community is active

Community .] with rich documentation, while
L Medium High _ _ _ _ _
Activity Clickhouse is a growing and improving

community.

Selection Recommendations

e If you are accustomed to using Elasticsearch and have a high dependency on the Lucene
language, it is recommended that you continue to use the ACP Log Storage with

ElasticSearch plugin.

« If you depend on the platform's Jenkins pipeline or service mesh features, it is

recommended that you continue to use the ACP Log Storage with ElasticSearch plugin.

Log Component Selection Guide - Alauda Container Platform

« If you have high requirements for the performance and resource consumption of the log
component but only have basic needs for log querying, it is recommended that you choose

to use the ACP Log Storage with Clickhouse plugin.

Log Component Capacity Planning - Alauda Container Platform

Q Alauda Container Platform Q

Log Component Capacity Planning

The log storage component is responsible for storing logs, events, and audit data collected by
the log collection component from one or more clusters in the platform. Therefore, you need to
assess your log scale in advance and plan the resources needed for the log storage

component according to the guidelines in this document.

I WARNING

» The following data represents standard figures obtained from tests conducted under laboratory
conditions, intended for your reference when planning resources. You must ensure that the
actual resources you plan exceed the testing resources described below, and that the log scale

does not exceed the corresponding log scale.

» The disk configuration for the data below is: 6000 iops , 250MB/s read and write speed ,
SSD independent mounting . If your actual storage resources are weaker than the testing

resources, please refer to larger scale configuration information and provide more CPU and

memory resources as needed.

TOC

ElasticSearch
Small Scale 3 Nodes - Total Logs: 6300/s
Small Scale 5 Nodes - Total Logs: 9900/s
Large Scale 3+5 Nodes - Total Logs: 25000/s
Large Scale 3+7 Nodes - Total Logs: 30000/s

Clickhouse

http://localhost:4173/container_platform/

Log Component Capacity Planning - Alauda Container Platform
Single Node - Total Logs: 18000/s

Three Nodes - Total Logs: 20000/s

Six Nodes - Total Logs: 40000/s

Nine Nodes - Total Logs: 69000/s

ElasticSearch

Small Scale 3 Nodes - Total Logs: 6300/s

Component Replicas CPU Limit Memory Limit
ElasticSearch 3 2C 4G
Kafka 3 2C 4G
Zookeeper 3 2C 4G
Lanaya 2 2C 4G
Razor 2 1C 2G

Small Scale 5 Nodes - Total Logs: 9900/s

Component Replicas CPU Limit Memory Limit
ElasticSearch 5 2C 4G
Kafka 3 2C 4G
Zookeeper 3 2C 4G
Lanaya 2 2C 4G

Razor 2 1C 2G

Log Component Capacity Planning - Alauda Container Platform

Large Scale 3+5 Nodes - Total Logs: 25000/s

Component Replicas
ElasticSearch - Master 3
ElasticSearch - Data 5
Kafka 3
Zookeeper 3
Lanaya 2
Razor 2

Large Scale 3+7 Nodes - Total Logs: 30000/s

Component Replicas
ElasticSearch - Master 3
ElasticSearch - Data 7
Kafka 3
Zookeeper 3
Lanaya 2
Razor 2
Clickhouse

CPU Limit

2C

8C

2C

2C

2C

1C

CPU Limit

2C

8C

2C

2C

2C

1C

Single Node - Total Logs: 18000/s

Memory Limit

4G

16G

4G

4G

4G

2G

Memory Limit

4G

16G

4G

4G

4G

2G

Component

Clickhouse

Razor

Vector

Log Component Capacity Planning

Replicas

CPU Limit

2C

1C

2C

- Alauda Container Platform

Memory Limit

4G

1G

4G

Three Nodes - Total Logs: 20000/s

Component

Clickhouse

Razor

Vector

Six Nodes - Total Logs: 40000/s

Component

Clickhouse

Razor

Vector

Replicas

Replicas

CPU Limit

2C

1C

2C

CPU Limit

4C

1C

4C

Memory Limit

4G

1G

4G

Memory Limit

8G

1G

8G

Nine Nodes - Total Logs: 69000/s

Component

Clickhouse

Razor

Replicas

CPU Limit

4C

1C

Memory Limit

8G

1G

Remarks

1 replica 1 shard

Remarks

3 replicas 1 shard

Remarks

3 replicas 2 shards

Remarks

3 replicas 3 shards

Log Component Capacity Planning - Alauda Container Platform

Component Replicas CPU Limit Memory Limit Remarks

Vector 2 4C 8G -

0 Alauda Container Platform

Concepts

TOC

Open Source Components
Filebeat
Elasticsearch
ClickHouse
Kafka

Core Functionality Concepts
Log Collection Pipeline
Index
Shards and Replicas
Columnar Storage

Key Technical Terms
Ingest Pipeline
Consumer Group
TTL (Time To Live)
Replication Factor

Data Flow Model

Concepts - Alauda Container Platform

Open Source Components

http://localhost:4173/container_platform/

Concepts - Alauda Container Platform

Filebeat

Positioning: Lightweight log collector Description: An open-source log collection component
installed on container nodes, responsible for real-time monitoring of log files at specified
paths. It collects log data through input modules, processes it, and forwards the logs to Kafka
or directly delivers them to storage components via output modules. It supports capabilities

such as multiline log aggregation and field filtering for preprocessing.

Elasticsearch

Positioning: Distributed search and analytics engine

Description: A full-text search engine based on Lucene, storing log data in JSON document
format, and providing near real-time search capabilities. It supports dynamic mapping for
automatic field type recognition and achieves fast keyword searches through inverted

indexing, suitable for log searches and monitoring alerts.

ClickHouse

Positioning: Columnar analytical database

Description: High-performance columnar storage database designed for OLAP scenarios,
implementing PB-level log data storage using the MergeTree engine. It supports high-speed
aggregation queries, time partitioning, and data TTL strategies, making it suitable for log

analysis and statistical reporting in batch computation scenarios.

Kafka

Positioning: Distributed message queue

Description: Serving as the messaging middleware for the log pipeline system, it provides
high-throughput log buffering capabilities. When the Elasticsearch cluster experiences
processing bottlenecks, it receives log data sent by Filebeat via Topics, facilitating traffic peak

reduction and asynchronous consumption, ensuring the stability of the log collection end.

Core Functionality Concepts

Concepts - Alauda Container Platform

Log Collection Pipeline

Description: The complete link from log data generation to storage, comprising four stages:

Collection -> Transmission -> Buffering -> Storage . It supports two pipeline modes:

o Direct Write Mode: Filebeat — Elasticsearch/ClickHouse

o Buffer Mode: Filebeat — Kafka — Elasticsearch

Index

Description: The logical data partitioning unit in Elasticsearch, analogous to a table structure
in databases. It supports time-based rolling index creation (e.g., logstash-2023.10.01) and

automated hot-warm-cold tiered storage via Index Lifecycle Management (ILM).

Shards and Replicas

Description:

e Shard: The physical storage unit resulting from Elasticsearch's horizontal splitting of an

index, supporting distributed scalability.

e Replica: A copy of each shard, providing data high availability and query load balancing.

Columnar Storage

Description: The core storage mechanism of ClickHouse, where data is compressed and

stored by column, significantly reducing 1/0 consumption. It supports the following features:

e Vectorized query execution engine
e Data partitioning and sharding

o Materialized views for pre-aggregation

Key Technical Terms

Concepts - Alauda Container Platform

Ingest Pipeline

Description: The data preprocessing pipeline in Elasticsearch, capable of performing ETL

operations such as field renaming, Grok parsing, and conditional logic before data is written.

Consumer Group

Description: Kafka's parallel consumption mechanism, where multiple instances within the
same consumer group can consume messages from different partitions in parallel, ensuring

ordered message processing.

TTL (Time To Live)

Description: Data lifespan strategy, supporting two implementation methods:

» Elasticsearch: Automatically deletes expired indices through ILM policies.

o ClickHouse: Automatically deletes table partitions via TTL expressions.

Replication Factor

Description: The data redundancy configuration at the Kafka Topic level, defining the number

of message replicas across different Brokers, enhancing data reliability.

Data Flow Model

Elasticsearcl Index/Search Interface
Direct Write Mode
Container Log Files H Filebeat Agent ﬁ Storage Component
Buffer Mod54>{ Kafka Cluster
ClickHouse SQL Query Interface

Guides - Alauda Container Platform

Q Alauda Container Platform

Guides

Logs

Log Query Analysis
Manage Application Log Retention Time

Configure Partial Application Log Exclusion from Collection

http://localhost:4173/container_platform/

Logs - Alauda Container Platform

Q Alauda Container Platform Q

Logs

TOC

Log Query Analysis
Search Logs
Export Log Data
View Log Context
Manage Application Log Retention Time
Platform Administrator Sets Retention Policies
Project Administrator Sets Retention Policies
Set Retention Policies via CLI
Configure Partial Application Log Exclusion from Collection
Stop Collecting All Application Logs in the Cluster
Stop Collecting Application Logs in a Specific Namespace

Stop Collecting Pod Logs

Log Query Analysis

In the operations center's log query analysis panel, you can view the standard output (stdout)
logs of the logged-in account within its permissions, including system logs, product logs,
Kubernetes logs, and application logs. Through these logs, you can gain insights into the

operation of resources.

o System Logs: Logs from the host nodes, such as: dmesg, syslog/messages, secure, etc.

http://localhost:4173/container_platform/

Logs - Alauda Container Platform

¢ Product Logs: Logs from the platform's own components and third-party components
integrated with the platform, such as: Container-Platform, Platform-Center, DevOps,

Service-Mesh, etc.

o Kubernetes Logs: Logs from Kubernetes container orchestration-related components, as
well as logs generated by kubelet, kubeproxy, and docker, such as: docker, kube-apiserver,

kube-controller-manager, etcd, etc.

+ Application Logs: Logs from business applications, including file logs and standard output
logs.

The log query conditions support filtering logs within a specified time range (either selected or

custom), and display the query results through bar charts and standard output.

I WARNING

For performance reasons, the platform can display a maximum of 10,000 logs at a time. If the log
volume on the platform is too large over a period of time, please narrow the query's time range and

query logs in stages.

Search Logs

1. In the left navigation bar, click Operations Center > Logs > Log Query Analysis.

2. Select the specified log type, query conditions, input the keywords of the log content you
want to retrieve, and then click Search.

l TIP

Different Log Types allow for different selectable query conditions.

» You can select or input multiple query condition tags; the query conditions for different resource
types are in an AND relationship. Some query condition tags support multiple selections; please

make sure to press the Enter key after making a choice to submit the options.

» Query conditions support fuzzy searches; for example, a query condition of pod = nginx can

retrieve logs for nginx-1 , nginx-2 .

» Log content search conditions are only used to retrieve your log keywords and support the use

of AND and OR parameters for associative queries. However, please note not to use AND

Logs - Alauda Container Platform
and OR parameters simultaneously in a single query.

« The bar chart shows the total number of logs within the current query time range and the
number of logs at different time points. Click on a bar in the chart to view the logs within the

timeframe between that bar and the next one.

Export Log Data

The page can display a maximum of 10,000 log entries. When the number of logs retrieved is

too large, you can use the log export feature to view up to 1 million log entries.

1. Click the Export button in the upper right corner of the bar chart, and configure the

following parameters in the pop-up export log dialog.

e Scope: The export range of logs, you can choose Current Page or All Results.

o Current Page: Only export the query results on the current page, up to 1,000 entries.

+ All Results: Export all log data that meets the current query conditions, up to 1

million entries.

o Fields: Display fields of the logs. You can select which field information to display in the

exported log file by clicking the checkbox next to the field name.

Note: Different log types have different selectable display fields, please select according

to your actual needs.

o Format: The export format of the log file, supporting txt or csv . The platform will

exportin gzip compressed format.

2. Click Export, and the browser will directly download the compressed file to your local

machine.

View Log Context

1. Double-click the log content area, and the current dialog will display 5 logs before and after
the current log printing time, helping operation and maintenance personnel better

understand the reasons for the current logs generated by resources.

Logs - Alauda Container Platform

2. You can set the display fields of the log context or export the log context. When exporting
log context, there's no need to select the Scope; clicking the Export button will directly

download the log context file to your local machine via the browser.

Manage Application Log Retention Time

When no project policy is set, the retention time of application logs on the platform is
determined by the Application Log Retention Time of the Log Storage Plugin installed
on the Storage Cluster selected when ACP Log Collector was installed in the cluster where

the application resides.

You can differentiate the retention time for Application Logs on the platform by adding and

managing project log policies.

l TIP

Project policies only apply to Application Logs under a specific project. After setting a project

policy, the retention time of all application logs under that project will follow the project policy.

Platform Administrator Sets Retention Policies

1. In the left navigation bar, click Operations Center > Logs > Policy Management.
2. Click Add Project Policy.

3. Click the dropdown box for Project and select a project.

4. Set the Log Retention Time.

e Usethe - / + buttons on both sides of the counter to decrease/increase the retention
days, or directly enter a value in the counter. The platform allows setting the retention

time range from 1 to 30 days.

« If the input value is a decimal, it will be rounded up to an integer; if the input value is less
than 1, it will round up to 1, and the - button will not be clickable; if the input value

exceeds 30, it will round down to 30, and the + button will not be clickable.

Logs - Alauda Container Platform

5. Click Add.

Project Administrator Sets Retention Policies

1. Go to the project detail page for the current project.
2. Click the edit button next to the log policy field to enable the log policy in the popup.
3. Set the Log Retention Time.

e Usethe - / + buttons on both sides of the counter to decrease/increase the retention
days, or directly enter a value in the counter. The platform allows setting the retention time

range from 1 to 30 days.

e If the input value is a decimal, it will be rounded up to an integer; if the input value is less
than 1, it will round up to 1, and the - button will not be clickable; if the input value

exceeds 30, it will be rounded down to 30, and the + button will not be clickable.

Set Retention Policies via CLI

1. Log into the global cluster and execute the following command:

kubectl edit project <Project Name>

2. Modify the yaml as per the example below, save, and submit.

Logs - Alauda Container Platform

apiVersion: auth.alauda.io/vi1
kind: Project
metadata:
annotations:
cpaas.io/creator: mschenl@alauda.io
cpaas.io/description: ''
cpaas.io/display-name: "'
cpaas.io/operator: leizhuc
cpaas.io/project.esPolicyLastEnabledTimestamp: '2025-02-18T09:53:54
A
cpaas.io/updated-at: '2025-02-18T09:53:54Z'
creationTimestamp: '2025-02-13T08:19:11Z'
finalizers:
- namespace
generation: 1
labels:
cpaas.io/project: bookinfo

cpaas.io/project.esIndicesKeepbDays: '7'

cpaas.io/project.esPolicyEnabled: 'true'
cpaas.io/project.id: '95447321'

cpaas.io/project.level: '1'

cpaas.io/project.parent:

name: bookinfo

Configure Partial Application Log Exclusion from

Collection

If you only need to view Real-Time Logs of specific applications within the cluster without
wishing to store those logs (the collector will discard the corresponding logs), you can refer to
this section to set the scope for stopping log collection (cluster, namespace, Pod) for fine-

grained control over application log collection.

Stop Collecting All Application Logs in the Cluster

Logs - Alauda Container Platform

You can update the Configuration Parameters of the cluster's ACP Log Collector to turn off
the Application Log collection switch, thereby uniformly updating the logging collection scope
for that cluster. Once the collection switch for a certain type of log is turned off, it will stop

collecting all logs of that type in the current cluster.

Stop Collecting Application Logs in a Specific Namespace

You can turn off the log collection switch for that namespace by adding the label
cpaas.io/log.mute=true to the specified namespace, thus stopping the collection of all

standard output logs and file logs for all Pods in that namespace.
Optional configuration methods are as follows:

« Command Line Method: After logging into any control node of the cluster, execute the

following command to update the namespace's label.

kubectl label namespace <Namespace Name> cpaas.io/log.mute=true

+ Interface Operation Method: In the Project Management view, update the namespace's

label.

1. In the project list of the Project Management view, click on the Project Name where

the namespace is located.
2. In the left navigation bar, click Namespaces.
3. Click the Namespace Name whose label is to be updated.
4. On the Details tab, click the operation button to the right of Labels.
5. Add the label (Key: cpaas.io/log.mute , Value: true) or modify the value of an

existing label, then click Update.

Stop Collecting Pod Logs

You can turn off the log collection switch for the specified Pod by adding the label
cpaas.io/log.mute=true to it, thus stopping the collection of standard output logs and file

logs for that Pod.

Logs - Alauda Container Platform

After logging into any control node of the cluster, execute the following command to update
the Pod's label.

kubectl label pod <Pod Name> -n <Namespace Name> cpaas.io/log.mute=true

Note: If the Pod belongs to a compute component (Workload), you can update the labels of
the compute component (Deployment, StatefulSet, DaemonSet, Job, CronJob) to uniformly
update the labels of all Pods under the compute component, and the labels will not be lost

even after Pod recreation.
You can update the labels of the compute component in the following way.

1. In the Container Platform product view, click on the top navigation to switch to the

namespace where the Pod is located.

2. In the left navigation bar, click Compute Components > Type of Compute Component

to which the Pod Belongs.
3. Click the operation button to the right of the compute component to be updated > Update.
4. Click YAML in the upper right corner to switch to the YAML editing view.
5. Under the spec.template.labels field, add the cpaas.io/log.mute: 'true' label.

An example is as follows:

spec:
template:
metadata:

namespace: tuhao-test

creationTimestamp: null

labels:
app: spilo
cpaas.io/log.mute: 'true'
cluster-name: acid-minimal-cluster
role: exporter
middleware.instance/name: acid-minimal-cluster

middleware.instance/type: PostgreSQL

Logs - Alauda Container Platform

6. Click Update.

How To - Alauda Container Platform

Q Alauda Container Platform Q

How To

How to Archive Logs to Third-P How to Interface with External ES Storage Clu

Transfer to External NFS Resource Preparation

Transfer to External S3 Storage Operating Procedures

http://localhost:4173/container_platform/

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Q Alauda Container Platform Q

How to Archive Logs to Third-Party Storage

Currently, the logs generated by the platform will be stored in the log storage component;
however, the retention period for these logs is relatively short. For enterprises with high
compliance requirements, logs typically require longer retention times to meet audit demands.

Additionally, the economic aspect of storage is also one of the key concerns for enterprises.

Based on the above scenarios, the platform offers a log archiving solution, allowing users to

transfer logs to external NFS or object storage.

TOC

Transfer to External NFS
Prerequisites
Create Log Synchronization Resources
Transfer to External S3 Storage
Prerequisites

Create Log Synchronization Resources

Transfer to External NFS

Prerequisites

http://localhost:4173/container_platform/

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource Description
NFS Set up the NFS service in advance and determine the NFS path to be mounted.
Kafka Obtain the Kafka service address in advance.

You must use the CLI tool in the global cluster to execute the following
commands to get the image addresses:
Image - Get alpine image address: kubectl get daemonset nevermore -n cpaas-
Address system -o jsonpath='{.spec.template.spec.initContainers[0].image}'
- Get razor image address: kubectl get deployment razor -n cpaas-system

-0 jsonpath='{.spec.template.spec.containers[0].image}"'

Create Log Synchronization Resources

1. Click on Cluster Management > Clusters in the left navigation bar.

2. Click the action button on the right side of the cluster where the logs will be transferred >
CLI Tool.

3. Modify the YAML based on the following parameter descriptions; after modifying, paste the

code into the open CLI Tool command line and hit enter to execute.

Resource
Field Path Description
Type

Compress log

text; supported

options are none
ConfigMap data.export.yml.output.compression

(no

compression),

zlib, gzip.

The type of

exported log file;
ConfigMap data.export.yml.output.file_type

supports txt, csv,

json.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource
Field Path Description

Type

Size of a single
archived file; unit
is MB. If it
exceeds this
value, logs will be
automatically
ConfigMap data.export.yml.output.max_size
compressed and
archived based
on the
compression
field's

configuration.

The scope of log

transfer; currently

supported logs

include: system
ConfigMap data.export.yml.scopes

logs, application

logs, Kubernetes

logs, product

logs.

Kafka service
Deployment spec.template.spec.containers[0].command[7]
address.

NFS path to be
Deployment spec.template.spec.volumes[3].hostPath.path
mounted.

Alpine image
Deployment spec.template.spec.initContainers[0].image
address.

Razor image
Deployment spec.template.spec.containers[0].image
address.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

How to Archive Logs to Third-Party Storage - Alauda Container Platform

cat << "EOF" |kubectl apply -f -
apiVersion: vi1i
data:
export.yml: |
scopes: # The scope of log transfer; by default, only application 1

ogs are collected

system: false # System logs

workload: true # Application logs

kubernetes: false # Kubernetes logs

platform: false # Product logs

output:

type: local

path: /cpaas/data/logarchive

layout: TimePrefixed

Size of a single archived file; unit is MB. If it exceeds this
value, logs will be automatically compressed and archived based on the
compression field's configuration.

max_size: 200

compression: zlib # Optional: none (no compression) / zlib / ¢
zip

file_type: txt # Optional: txt csv json
kind: ConfigMap
metadata:

name: log-exporter-config

namespace: cpaas-system

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
service_name: log-exporter
name: log-exporter
namespace: cpaas-system
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 5
selector:
matchLabels:
service_name: log-exporter
strategy:
rollingUpdate:

How to Archive Logs to Third-Party Storage - Alauda Container Platform

maxSurge: 0
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:
app: lanaya
cpaas.io/product: Platform-Center
service_name: log-exporter
version: vi
namespace: cpaas-system
spec:
automountServiceAccountToken: true
affinity:
podAffinity: {}
podAntiAffinity:
preferredbDuringSchedulingIgnoredDuringExecution:
- podAffinityTerm:
labelSelector:
matchExpressions:
- key: service_name
operator: In
values:
- log-exporter
topologyKey: kubernetes.io/hostname
weight: 50
initContainers:
- args:
- -ecx
-
chown -R 697:697 /cpaas/data/logarchive
command:
- /bin/sh
image: registry.example.cn:60080/ops/alpine:3.16 # Alpine ima
ge address
imagePullPolicy: IfNotPresent
name: chown
resources:
limits:
cpu: 100m
memory: 200Mi
requests:

cpu: 16m

How to Archive Logs to Third-Party Storage - Alauda Container Platform

memory: 50Mi
securityContext:
runAsUser: 0
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /cpaas/data/logarchive
name: data
containers:
- command:

/razor

consumer

- --v=1

--kafka-group-log=log-nfs
- --kafka-auth-enabled=true
- --kafka-tls-enabled=true
- --kafka-endpoint=192.168.143.120:9092 # Fill in based on a
ctual environment
- --database-type=file
- --export-config=/etc/log-export/export.yml
image: registry.example.cn:60080/ait/razor:v3.16.0-beta.3.g3d
f8e987 # Razor image
imagePullPolicy: Always
livenessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 8080
scheme: HTTP
initialDelaySeconds: 20
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 3
name: log-export
ports:
- containerPort: 80
protocol: TCP
readinessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 8080
scheme: HTTP

initialDelaySeconds: 20

How to Archive Logs to Third-Party Storage - Alauda Container Platform

periodSeconds: 10

successThreshold: 1

timeoutSeconds: 3
resources:

limits:
cpu: "2"
memory: 4Gi

requests:
cpu: 440m
memory: 1280Mi

securityContext:
runAsGroup: 697
runAsUser: 697
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:

- mountPath: /etc/secrets/kafka
name: kafka-basic-auth
readOnly: true

- mountPath: /etc/log-export
name: config
readOnly: true

- mountPath: /cpaas/data/logarchive
name: data

dnsPolicy: ClusterFirst
nodeSelector:
kubernetes.io/os: linux
restartPolicy: Always
schedulerName: default-scheduler
securityContext:
fsGroup: 697
serviceAccount: lanaya
serviceAccountName: lanaya
terminationGracePeriodSeconds: 10
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/control-plane
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/cpaas-system

operator: Exists

How to Archive Logs to Third-Party Storage - Alauda Container Platform

volumes:
- name: kafka-basic-auth
secret:
defaultMode: 420
secretName: kafka-basic-auth
- name: elasticsearch-basic-auth
secret:
defaultMode: 420
secretName: elasticsearch-basic-auth
- configMap:
defaultMode: 420
name: log-exporter-config
name: config
- hostPath:
path: /cpaas/data/logarchive
type: DirectoryOrCreate
name: data
EOF

4. Once the container status changes to Running, you can view the continuously archived

logs in the NFS path; the log file directory structure is as follows:

/cpaas/data/logarchive/$date/$project/$namespace-$cluster/logfile

Transfer to External S3 Storage

Prerequisites

Resource Description

Prepare the S3 storage service address in advance, and obtain the values for

S3
access_key_id and secret_access_key ; create the bucket where the logs
Storage -
will be stored.
Kafka Obtain the Kafka service address in advance.
Image You must use the CLI tool in the global cluster to execute the following

Address commands to get the image addresses:

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource Description

- Get alpine image address: kubectl get daemonset nevermore -n cpaas-
system -o jsonpath='{.spec.template.spec.initContainers[0].image}'
- Get razor image address: kubectl get deployment razor -n cpaas-system

-0 jsonpath='{.spec.template.spec.containers[0].image}"'

Create Log Synchronization Resources

1. Click on Cluster Management > Clusters in the left navigation bar.

2. Click the action button on the right side of the cluster where the logs will be transferred >
CLI Tool.

3. Modify the YAML based on the following parameter descriptions; after modifying, paste the

code into the open CLI Tool command line and hit enter to execute.

Resource
Field Path Description

Type
Base64 encode the

Secret data.access_key_id obtained
access_key _id.
Base64 encode the

Secret data.secret_access_key obtained
secret_access_key.
Compress log text;
supported options

ConfigMap data.export.yml.output.compression are none (ho

compression),

zlib, gzip.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Resource

Field Path
Type
ConfigMap data.export.yml.output.file_type
ConfigMap data.export.yml.output.max_size
ConfigMap data.export.yml.scopes
ConfigMap data.export.yml.output.s3.bucket_name
ConfigMap data.export.yml.output.s3.endpoint
ConfigMap data.export.yml.output.s3.region

Description

The type of
exported log file;
supports txt, csv,

json.

Size of a single
archived file; unit is
MB. If it exceeds
this value, logs will
be automatically
compressed and
archived based on
the compression
field's

configuration.

The scope of log
transfer; currently
supported logs
include: system
logs, application
logs, Kubernetes

logs, product logs.

Bucket name.

S3 storage service

address.

Region information
for the S3 storage

service.

Resource

Type

Deployment

Deployment

Deployment

Deployment

How to Archive Logs to Third-Party Storage - Alauda Container Platform

Field Path

spec.template.spec.containers[0].command[7]

spec.template.spec.volumes[3].hostPath.path

spec.template.spec.initContainers[0].image

spec.template.spec.containers[0].image

Description

Kafka service

address.

Local path to be
mounted, used for
temporarily storing
log information.
Log files will be
automatically
deleted after
synchronization to

S3 storage.

Alpine image

address.

Razor image

address.

How to Archive Logs to Third-Party Storage - Alauda Container Platform

How to Archive Logs to Third-Party Storage - Alauda Container Platform

cat << "EOF" |kubectl apply -f -
apiVersion: vi1i
type: Opaque
data:
Must include the following two keys

access_key_id: bWluawW9hzZGlpbg== # Base64 encode the obtained access
key_id
secret_access_key: bWluaW9hzZGlpbg== # Base64 encode the obtained sec

ret_access_key
kind: Secret
metadata:
name: log-export-s3-secret

namespace: cpaas-system

apiVersion: vi1
data:
export.yml: |
scopes: # The scope of log transfer; by default, only application 1
0ogs are collected
system: false # System logs
workload: true # Application logs
kubernetes: false # Kubernetes logs
platform: false # Product logs
output:
type: s3
path: /cpaas/data/logarchive

s3:

s3forcepathstyle: true

bucket_name: baucket_name_s3 # Fill in the prepared b
ucket name

endpoint: http://192.168.179.86:9000 # Fill in the prepared S
3 storage service address

region: "dummy" # Region information

access_secret: log-export-s3-secret

insecure: true

layout: TimePrefixed

Size of a single archived file; unit is MB. If it exceeds this
value, logs will be automatically compressed and archived based on the
compression field's configuration.

max_size: 200

How to Archive Logs to Third-Party Storage - Alauda Container Platform

compression: zlib
pression) / zlib / gzip
file_type: txt
on
kind: ConfigMap
metadata:
name: log-exporter-config

namespace: cpaas-system

apiVersion: apps/vi
kind: Deployment
metadata:
labels:
service_name: log-exporter
name: log-exporter
namespace: cpaas-system
spec:
progressDeadlineSeconds: 600
replicas: 1
revisionHistoryLimit: 5
selector:
matchLabels:
service_name: log-exporter
strategy:
rollingUpdate:
maxSurge: 0
maxUnavailable: 1
type: RollingUpdate
template:
metadata:
creationTimestamp: null
labels:

app: lanaya

cpaas.io/product: Platform-Center

service_name: log-exporter

version: vi1

namespace: cpaas-system

spec:
affinity:

podAffinity: {}

podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:

- podAffinityTerm:

Optional:

Optional:

none (no com

txt,

csv, js

How to Archive Logs to Third-Party Storage - Alauda Container Platform

labelSelector:
matchExpressions:
- key: service_name
operator: In
values:
- log-exporter
topologyKey: kubernetes.io/hostname
weight: 50
initContainers:
- args:
- -ecx
-
chown -R 697:697 /cpaas/data/logarchive
command :
- /bin/sh
image: registry.example.cn:60080/ops/alpine:3.16 # Alpine ima
ge address
imagePullPolicy: IfNotPresent
name: chown
resources:
limits:
cpu: 100m
memory: 200Mi
requests:
cpu: 10m
memory: 50Mi
securityContext:
runAsUser: 0
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /cpaas/data/logarchive
name: data
containers:
- command:

/razor

consumer

--v=1

--kafka-group-log=log-s3

- --kafka-auth-enabled=true

- --kafka-tls-enabled=true

- --kafka-endpoint=192.168.179.86:9092 # Fill in the Kafka
service address based on actual environment

- --database-type=file

How to Archive Logs to Third-Party Storage - Alauda Container Platform

- --export-config=/etc/log-export/export.yml
image: registry.example.cn:60080/ait/razor:v3.16.0-beta.3.g3d

f8e987
imagePullPolicy: Always
livenessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 8080

scheme: HTTP
initialDelaySeconds: 20
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 3
name: log-export
ports:
- containerPort: 80
protocol: TCP
readinessProbe:
failureThreshold: 5
httpGet:
path: /metrics
port: 8080
scheme: HTTP
initialDelaySeconds: 20
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 3
resources:
limits:
cpu: "2"
memory: 4Gi
requests:
cpu: 440m
memory: 1280Mi
securityContext:
runAsGroup: 697
runAsUser: 697
terminationMessagePath: /dev/termination-log
terminationMessagePolicy: File
volumeMounts:
- mountPath: /etc/secrets/kafka
name: kafka-basic-auth

readonly: true

How to Archive Logs to Third-Party Storage - Alauda Container Platform

- mountPath: /etc/log-export
name: config
readOnly: true
- mountPath: /cpaas/data/logarchive
name: data
dnsPolicy: ClusterFirst
nodeSelector:
kubernetes.io/os: 1linux
restartPolicy: Always
schedulerName: default-scheduler
securityContext:
fsGroup: 697
serviceAccount: lanaya
serviceAccountName: lanaya
terminationGracePeriodSeconds: 10
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/control-plane
operator: Exists
- effect: NoSchedule
key: node-role.kubernetes.io/cpaas-system
operator: Exists
volumes:

name: kafka-basic-auth

secret:
defaultMode: 420
secretName: kafka-basic-auth
- name: elasticsearch-basic-auth
secret:
defaultMode: 420
secretName: elasticsearch-basic-auth
- configMap:
defaultMode: 420
name: log-exporter-config
name: config
hostPath:

path: /cpaas/data/logarchive # Local temporary storage a

ddress for logs
type: DirectoryOrCreate
name: data
EOF

How to Archive Logs to Third-Party Storage - Alauda Container Platform

4. Once the container status changes to Running, you can view the continuously archived

logs in the bucket.

How to Interface with External ES Storage Clusters - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

How to Interface with External ES Storage

Clusters

You can interface with external Elasticsearch or Kafka clusters by writing YAML configurations.
Depending on your business requirements, you can choose to interface with only the external
Elasticsearch cluster (while installing Kafka in the current cluster), or you can interface with

both the external Elasticsearch and Kafka clusters simultaneously.

l TIP

The supported versions for interfacing with external Elasticsearch are as follows:

» Elasticsearch 6.x supports versions 6.6 - 6.8;

» Elasticsearch 7.x supports versions 7.0 - 7.10.2, with a recommendation to use 7.10.2.

TOC

Resource Preparation

Operating Procedures

Resource Preparation

Before interfacing, you need to prepare the required credential information.

http://localhost:4173/container_platform/

How to Interface with External ES Storage Clusters - Alauda Container Platform

1. In the left navigation bar, click on Cluster Management > Resource Management, then

switch to the cluster that needs the plugin installation.

2. Click on Create Resource Object, and fill in the code box after modifying the parameters

according to the code comments.

« Credentials required for interfacing with external Elasticsearch:

apiVersion: vi1i
type: Opaque
data:
password: dEdWQVduSX5kUwlmc2lacg==

username: YWRtaw4=
kind: Secret

metadata:

name: elasticsearch-basic-auth

namespace: cpaas-system

» If you need to use an external Kafka cluster, you will also need to create credentials for

interfacing with the external Kafka cluster:

apiVersion: vi1i
type: Opaque
data:
password: dEdWQVduSX5kUwlmc2lacg==

username: YWRtaw4=
kind: Secret

metadata:
name: kafka-basic-auth

namespace: cpaas-system

How to Interface with External ES Storage Clusters - Alauda Container Platform

3. Click on Create.

Operating Procedures

1. In the left navigation bar, click on App Store > Plugin Management.

2. In the top navigation, select the Cluster Name where you want to install the ACP Log

Storage with Elasticsearch plugin.
3. Click the action button on the right side of ACP Log Storage with Elasticsearch > Install.

4. Enable the Interface with External Elasticsearch switch, configure the YAML file, with the

interfacing example and parameter descriptions as follows:

« Interfacing with the external Elasticsearch cluster while installing Kafka in the current

cluster:

elasticsearch:
install: false
address: http://fake:9200

basicAuthSecretName: elasticsearch-basic-auth
storageClassConfig:
type: "LocalVolume"

kafka:
auth: true

k8sNodes:
- logl

- log2

- log3

storageSize: 10

 Interfacing with both the external Elasticsearch cluster and the external Kafka cluster:

How to Interface with External ES Storage Clusters - Alauda Container Platform

elasticsearch:

install: false

address: http://fake:9200 # External ES access addres
s, e.g., http://192.168.143.252:11780/es_proxy

basicAuthSecretName: elasticsearch-basic-auth # Credentials required
for interfacing with external Elasticsearch created in the prerequisite
S.
kafka:

auth: true # Whether to enable authenti
cation.

install: false

basicAuthSecretName: kafka-basic-auth # Credentials required for int
erfacing with external Kafka created in the prerequisites.

address: 192.168.130.169:9092,192.168.130.187:9092,192.168.130.193:90

92 # Kafka access addresses, separated by commas.

Q Alauda Container Platform

Permissions

Permissions - Alauda Container Platform

The permission points available in the logging module and the permissions associated with

the built-in roles in the platform are as follows:

Function

logs

aiops-logs

archivelogs
aiops-

archivelogs

Action

View

Create

Update

Delete

View

Create

Update

Delete

Platform

Administrator

Platform

auditors

Project

Manager

v

Namespace

Administrator

http://localhost:4173/container_platform/

Events - Alauda Container Platform

Q Alauda Container Platform Q

Events

Introduction Events Permission
Module Overview Operation Procedures

Functionality Overview Event Overview

Use Cases

Usage Limitations

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Module Overview
Functionality Overview
Use Cases

Usage Limitations

Module Overview

The platform integrates with Kubernetes events, logging significant status changes and
various operational state changes of Kubernetes resources. It also provides capabilities for
storage, querying, and visualization. When abnormalities occur with resources such as

clusters, nodes, or Pods, users can analyze events to determine specific causes.

Based on the root causes identified from the events, users can create alert policies for
workloads. When the number of critical events reaches the alert threshold, alerts can be
automatically triggered to notify relevant personnel for timely intervention, thereby reducing

operational risks on the platform.

Functionality Overview

The events module primarily offers the following functionalities:

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Event Collection and Persistence

« Automatic Collection: The module will automatically collect all events occurring in the

Kubernetes cluster, including Pod creation, deletion, scheduling failures, etc.

+ Persistent Storage: Collected events will be stored persistently to ensure users can

backtrack historical events as needed.
Event Querying

» Flexible Querying: Users can query events using various conditions (such as event type,

namespace, resource name, etc.) to quickly locate issues.

« Time Range Filtering: Supports querying events by time ranges, allowing users to view

cluster activities within specific time periods.
Event Summary and Display

« Event Summary: The module will summarize events and generate statistical information to

help users understand the overall status of the cluster.

Use Cases

The events module is suitable for the following scenarios:

« Cluster Monitoring: By monitoring Kubernetes events in real-time, users can promptly

discover abnormalities in the cluster.

e Troubleshooting: When issues arise within the cluster, users can swiftly locate the root

cause by querying event logs.

+ Performance Optimization: By analyzing event data, users can understand resource

usage in the cluster and optimize resource allocation.

Usage Limitations

This feature relies on the logging system. Please ensure that the ACP Log Collector and ACP

Log Storage plugins are installed within the platform beforehand.

Introduction - Alauda Container Platform

Events - Alauda Container Platform

Q Alauda Container Platform Q

Events

TOC

Operation Procedures

Event Overview

Operation Procedures

1. Click on Operations Center > Events in the left navigation bar.

Tip: Switch the cluster to view events using the dropdown selection box in the top

navigation bar.

Event Overview

The events page displays an overview of significant events that occurred in the last 30
minutes by default (you can choose or customize the time range), as well as records of

resource events.

+ Significant Event Overview: This card shows the reason for significant events and the

number of resources that experienced such events within the selected time range.

* Note: When the same resource experiences this type of event multiple times, the

resource count will not accumulate.

http://localhost:4173/container_platform/

Events - Alauda Container Platform

o For example: If the resource count for node restart events is 20, it indicates that within
the selected time range, 20 resources encountered such events, and the same resource

may have experienced it multiple times.

+ Resource Event Records: Below the significant event overview area, all event records
that meet the query conditions within the selected time range are displayed. You can filter
for respective types of events by clicking on the significant event card, or you can expand

the view and input query conditions to search. The query conditions are as follows:

Resource Type: The type of Kubernetes resource that experienced the event, e.g., Pod.

Namespace: The namespace of the Kubernetes resource where the event occurred.

Event Reason: The reason for the occurrence of the event.

Event Level: The significance of the event, such as Warning.

Resource Name: The name of the Kubernetes resource that experienced the event.

Multiple names can be selected or entered.

l TIP

o Click the view icon next to the resource name in the event record to view detailed information

about the event in the pop-up Event Details dialog.

» The color of the icon to the left of the event reason indicates the event level. A green icon
indicates that the level of this eventis Normal , and this event can be ignored; an orange icon
signifies that the level of this eventis warning , indicating that there is an anomaly with the

resource and this event should be monitored to prevent incidents.

Permissions - Alauda Container Platform

Q Alauda Container Platform Q

Permissions

The permission points available in the event module and the permissions of the platform's

built-in roles are as follows:

. . Platform Platform Project Namespace
Function Action . . o
Administrator auditors Manager Administrator
View v v v v
events Create v X X X
aiops-
events Update v X X X

Delete v X X X

http://localhost:4173/container_platform/

0 Alauda Container Platform

Inspection

Introduction

Introduction

Module Introduction
Module Advantages
Module Use Cases

Usage Limitations

Architecture

Architecture

Inspection

Component Health Status

Guides

Inspection

Execute Inspection

Inspection - Alauda Container Platform

Component Health Status

http://localhost:4173/container_platform/

Inspection - Alauda Container Platform

Inspection Configuration Procedures to Operate

Inspection Report Explanation

Permissions

Permissions

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Module Introduction
Module Advantages
Module Use Cases

Usage Limitations

Module Introduction

To help enterprise customers reduce the cost of manual inspections, the platform's basic
inspection functionality is designed based on experience in performing manual inspections for
enterprise clients. It enables enterprise clients to understand the operation status of all

business resources on the platform in real-time, promptly identify anomalies, and mitigate
business risks.

¢ Supports online execution of inspection tasks, including resource risk inspections of all
clusters, nodes, pods, and certificate resources on the platform, as well as usage

inspections of regular resources, allowing real-time tracking of inspection progress;

o After the inspection is completed, the results are visually displayed, including resource risks

and usage information;
e Supports downloading inspection reports in PDF or Excel format;

+ To ensure the security of client data, only users with appropriate access permissions are

allowed to use the inspection functionality.

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Module Advantages

 Comprehensive Coverage: Supports inspections of all critical resources on the platform,

ensuring nothing is overlooked.

» Real-Time Monitoring: Users can view the inspection progress in real-time, keeping them

informed about resource status.

e Visual Presentation: Inspection results are displayed through an intuitive visual interface,

facilitating quick identification of issues.

e Flexible Reporting: Supports downloading inspection reports in PDF or Excel formats to

meet the needs of different users.

Module Use Cases

» Daily Operations: Regularly performing inspection tasks to ensure normal operation and

security of platform resources.

o Fault Diagnosis: Quickly locating resource risks or usage anomalies through the

inspection functionality when problems arise.

o Compliance Audits: Downloading inspection reports for compliance audits and internal

reviews to ensure the platform meets relevant standards and regulations.

» Resource Optimization: Analyzing resource usage information to identify waste or

shortages and optimize resource allocation.

Usage Limitations

¢ Some inspection items on the platform depend on clusters having monitoring components
installed. Please ensure that each cluster has either the ACP Monitoring with Prometheus

plugin or the ACP Monitoring with VictoriaMetrics plugin installed in advance.

e The platform inspection supports sending inspection results via email. Please ensure that

the email notification server configuration has been completed in advance.

With the container platform's inspection functionality, users can manage and maintain the

container environment more efficiently, enhancing system stability and security.

Introduction - Alauda Container Platform

Q Alauda Container Platform

Architecture

TOC

Inspection

Component Health Status

Inspection

Architecture - Alauda Container Platform

http://localhost:4173/container_platform/

Architecture - Alauda Container Platform

———Create CR————» _ _
mgPec.'hm CR
U
—Read ih-’-spec.-l'icn result—sl
] Write
Whatch hepec.-ﬁm result
O | |
daplay

Couier

Guer"?r Metrics
1

|

The inspection module is jointly provided by the platform component Courier and the

monitoring component, involving the following business processes:

Prometheus VictoriaMetrics

+ Create inspection task: The platform submits an inspection-type CR to the global cluster.

¢ Execute inspection task: The Courier component monitors the generation of inspection-

type CRs and queries the monitoring components of each cluster for various metric data

related to the inspection.

¢ Write inspection results: After the Courier component completes the evaluation of each

inspection item, it will write the inspection results back into the corresponding inspection

CR.

¢ View inspection results: Users can check the status and results of inspection tasks through

the platform, where data will be obtained from the corresponding inspection CR.

Component Health Status

Architecture - Alauda Container Platform

Ul
et Resu et Eesult:
MaoduleHealth
ModuleHealth Heriea
Eecord
F‘GFI'L*I'G F‘arildic
Updates Updates

L T [

GMETY etires

Gue

[c.omponer'lh status

Eubernetes AP Prometheus I l VictoriaMetrics

Component health status is jointly provided by the platform component Courier and the

monitoring component, involving the following business processes:

+ Predefined component monitoring list: The platform has predefined two types of CRDs in
the global cluster to define the list of components to be monitored and the monitoring

methods:

* ModuleHealth: Defines the components that need to be monitored and the monitoring

methods.

* ModuleHealthRecord: Defines the monitoring results of the corresponding components

in each cluster.

* Regularly monitor component status: Courier will watch ModuleHealth, check the specified
functions, and then write the inspection results to the CR resources of ModuleHealth and
ModuleHealthRecord.

« Component status determination: Courier will request data from Kubernetes and the

monitoring components to determine the actual status of the components and any existing

Architecture - Alauda Container Platform

issues.

o Kubernetes: Checks whether the component is installed and whether the number of

component replicas is normal.

¢ Prometheus / VictoriaMetrics: Based on the metrics provided by each component,

queries and determines whether the component can provide services normally.

¢ View component health status: Users can check the health status of each component
through the platform, where data will be obtained from the corresponding CR resources of

ModuleHealth and ModuleHealthRecord.

Q Alauda Container Platform

Guides

Inspection

Execute Inspection
Inspection Configuration

Inspection Report Explanation

Guides - Alauda Container Platform

Component Health Status

Procedures to Operate

http://localhost:4173/container_platform/

Inspection - Alauda Container Platform

Q Alauda Container Platform Q

Inspection

TOC

Execute Inspection

Inspection Configuration

Inspection Report Explanation
Most Recent Inspection
Resource Risk Inspection

Resource Utilization Inspection

Execute Inspection

1. Click on Operation Center > Inspection > Basic Inspection in the left navigation bar.

Tip: The inspection page displays the inspection data information from the most recent
inspection. During the inspection process, you can view the resource data of completed

inspections in real-time.
2. On the Basic Inspection page, the following actions are supported:

o Execute Inspection: Click the Inspection button in the upper right corner of the page to

perform an inspection on the platform.

+ Download Inspection Report: Click the Download Report button in the upper right

corner of the page, select the report format (PDF and Excel) in the pop-up dialog, and

http://localhost:4173/container_platform/

Inspection - Alauda Container Platform

click to download, which will download the corresponding format report to your local

machine.
e The PDF format inspection report does not include resource risk details page data;
e The Excel format inspection report contains all data from the inspection;

e Supports simultaneous download of both formats of reports.

Inspection Configuration

Inspection L
. . Description
Configuration

Automated task execution timing rules, supporting input of Crontab

expressions.
Scheduled

. Tip: Click the input box to expand the platform's preset Trigger Rule
Inspection

Templates, select the appropriate template, and quickly set the trigger
rules with simple modifications.

Inspection Record]))
. The number of inspection records to retain.
Retention

. o Select email notification contacts.
Email Notification o)]
Note: Notification contacts must have email configured.

Inspection Report The name that will be used by the platform's built-in inspection

Name notification template to notify contacts.

. Modify the warning thresholds or disable inspection items according to
Inspection _ o -
) . the platform's default inspection items for certificates, cluster hosts,
Configuration Items
and pods.

Inspection Report Explanation

Most Recent Inspection

Inspection - Alauda Container Platform

In the Most Recent Inspection information area, you can view relevant information from the

most recent inspection:
e Inspection Time: The start and end time of the most recent inspection.

o Total Number of Inspection Resources: The total number of resources (clusters, nodes,

pods, certificates) inspected in the most recent inspection.

o Risks: The number of resources at risk, including those classified as Fault and Warning.

Resource Risk Inspection

In the Resource Risk Inspection page, you can view an overview of risk information for

global clusters, self-built clusters, accessed clusters, and all nodes, pods, and certificates

under these clusters.

Click the Risk Details button on the card of the corresponding resource type (Cluster, Node,
pod, Certificate) to enter the risk details page for that resource type. On the details page, you
can view the most recent inspection information for the resource, as well as the list of

resources with faults and warnings.
e Click on the resource name to jump to the resource details page.

 Click the expand button on the right side of the Name field in the list to expand the

judgment conditions and reasons for faults and warnings.

For explanations of the risk status judgment criteria (Fault, Warning) for each resource, refer

to the table below.

Note: There are multiple conditions used to judge the faults and warnings for each resource
type; when the inspection data of the resource matches any one of the judgment conditions, it

is considered a piece of risk data.

Resource Inspection Fault Judgment . .
o Warning Judgment Conditions
Type Scope Conditions
Cluster - global - Cluster status is - After the cluster scale (number of
cluster Abnormal; nodes/pods/mrtrics) increases, the
- Self-built - apiserver monitoring component resource

cluster configuration has not been

Inspection - Alauda Container Platform

Resource Inspection Fault Judgment
Warning Judgment Conditions
Type Scope Conditions

- Accessed connection is updated.

cluster abnormal - After the log data volume and log
collection frequency increase, the
log component resource
configuration has not been
updated.
- Cluster CPU usage exceeds 60%;
- Cluster memory usage exceeds
60%;
- Any pod in the ETCD component
of the cluster is in a non-Running
state;
- Any host in the cluster is in a non-
Ready state;
- The time difference between any
two nodes in the cluster exceeds
40S;
- The CPU request rate of the
cluster (actual request value / total)
exceeds 60%;
- The memory request rate of the
cluster (actual request value / total)
exceeds 80%;
- Monitoring components are not
installed in the cluster;
- Monitoring components of the
cluster are abnormal;
- Any pod in the kube-controller-
manager component of the cluster
is in a non-Running state;
- Any pod in the kube-scheduler
component of the cluster is in a
non-Running state;
- Any pod in the kube-apiserver
component of the cluster is in a

non-Running state.

Node - All control - Node status is - Node's inode free is less than
nodes Abnormal; 1000
- The node- - Node CPU usage exceeds 60%;

Resource

Type

pod

Certificate

Inspection

Scope

- All compute
nodes

All pods

Certmanager
certificates
- Kubernetes

certificates

Inspection - Alauda Container Platform

Fault Judgment
Conditions

exporter
component's pod
on the node is in
a non-Running
state;

- The kubelet
component's pod
on the node is in
a non-Running

state.

- pod status is
Error;

- The pod has
been in the
starting state for
more than 5

minutes.

Certificate status

is Expired.

Resource Utilization Inspection

Warning Judgment Conditions

- Node memory usage exceeds
60%:;

- Disk space usage of the node
directory exceeds 60%;

- Node system load exceeds 200%
and runtime exceeds 15 minutes;

- At least one NodeDeadlock (node
deadlock) event occurred in the
past day;

- At least one NodeOOM (out of
memory) event occurred in the past
day;

- At least one NodeTaskHung (task
hung) event occurred in the past
day;

- At least one
NodeCorruptDockerlmage
(corrupted Docker image) event

occurred in the past day.

- Pod CPU usage exceeds 80%;

- Pod memory usage exceeds 80%;
- The number of restarts of the Pod
in the past 5 minutes is greater

than or equal to 1.

Certificate's validity period is less
than 29 days.

Click on the Resource Utilization Inspection tab to enter the Resource Utilization

Inspection page.

Inspection - Alauda Container Platform

In the Resource Utilization Inspection page, you can view the total amount, usage, and
usage rate of CPU, memory, and disk of global clusters, accessed clusters, and self-built
clusters, as well as the number of resources such as clusters, nodes, pods, and projects on

the platform.

» Resource Usage Statistics: You can view the total amount and total usage rate of CPU,

memory, and disk of global, accessed, and self-built clusters.

+ Platform Resource Quantity: You can view the number of resources running on the

platform.

Component Health Status - Alauda Container Platform

Q Alauda Container Platform Q

Component Health Status

The platform health status page presents statistical data on the health status of features that
have been installed on the platform. When your account has management or auditing
permissions related to the platform, you can also view detailed health data for specific
features, including: a list of clusters that do not have the feature installed, the health status of
clusters that have the feature installed, and detection data for components within clusters
associated with the feature. This can help you quickly identify issues and improve the

operational efficiency of the platform.

TOC

Procedures to Operate

Procedures to Operate

1. Navigate to the view page of installed products or the platform center (platform

management, project management, operations center).

2. Click the question mark button at the top right corner of the navigation bar > Platform
Health Status.

3. Check the feature card; the feature card displays the health status information of the
feature. If there are abnormalities in the feature components, it will be reflected on the card

as fault .

http://localhost:4173/container_platform/

Component Health Status - Alauda Container Platform

4. Click on the health/fault value on the feature card to expand the detailed health status page
on the right side of the page, where you can view detailed issue information for the faulty

components.

Q Alauda Container Platform

Permissions

The permissions available in the

in roles are as follows:

Function Action
View
inspections Create
aiops-
inspections Update
Delete

Permissions - Alauda Container Platform

inspection module and those inherent to the platform's built-

Platform Platform Project Namespace
Administrator auditors Manager Administrator
v v X X
v X X X
v X X X

http://localhost:4173/container_platform/

	Observability
	Overview
	Monitoring
	Distributed Tracing
	Logs
	Events
	Inspection

	Overview
	Introduction
	Product Introduction
	Product Advantages
	Product Application Scenarios

	Features
	Monitoring
	Alert Notifications
	Distributed Tracing
	Logs
	Events
	Inspection

	Monitoring
	Introduction
	Install
	Architecture
	Concepts
	Guides
	How To
	Permissions

	Introduction
	Module Overview
	Module Advantages
	Application Scenarios
	Usage Limitations

	Install
	Overview
	Installation Preparation
	Install the ACP Monitoring with Prometheus Plugin
	Installation Procedures
	Access Method

	Install the ACP Monitoring with VictoriaMetrics Plugin
	Prerequisites
	Installation Procedures

	Architecture
	Monitoring Module Architecture
	Overall Architecture Explanation
	Monitoring System
	Data Collection and Storage
	Data Query and Visualization

	Alerting System
	Alert Rule Management
	Alert Processing Workflow
	Real-time Alert Status

	Notification System
	Notification Configuration Management
	Notification Server Management

	Monitoring Component Selection Guide
	Important Notes
	Component List
	Prometheus Related Components
	VictoriaMetrics Related Components

	Architecture Comparison
	Prometheus Architecture
	VictoriaMetrics Architecture

	Feature Comparison
	Installation Scheme Suggestions
	Monitoring Installation Architecture Overview
	Prometheus Installation Method
	VictoriaMetrics Installation Method

	Selection Recommendations
	Scenarios Suitable for Using VictoriaMetrics
	Scenarios Suitable for Using Prometheus

	Concepts
	Monitoring
	Metrics
	PromQL
	Built-in Indicators
	Exporter
	ServiceMonitor

	Alarms
	Alarm Rules
	Alarm Policies

	Notifications
	Notification Policies
	Notification Templates

	Monitoring Dashboard
	Dashboard
	Panels
	Data Sources
	Variables

	Guides
	Management of Metrics
	Viewing Metrics Exposed by Platform Components
	Viewing All Metrics Stored by Prometheus / VictoriaMetrics
	Prerequisites
	Procedures

	Viewing All Built-in Metrics Defined by the Platform
	Prerequisites
	Procedures

	Integrating External Metrics
	Prerequisites
	Procedures

	Management of Alert
	Function Overview
	Key Features
	Functional Advantages
	Creating Alert Policies via UI
	Prerequisites
	Procedures
	Selecting Alert Type
	Configuring Alert Rules
	Other Configurations

	Additional Notes

	Creating Resource Alerts via CLI
	Prerequisites
	Procedures

	Creating Event Alerts via CLI
	Prerequisites
	Procedures

	Creating Alert Policies via alert Templates
	Prerequisites
	Procedures
	Creating Alert Template
	Creating Alert Policies Using alert Templates

	Setting Silence for Alerts
	Setting via UI
	Setting via CLI

	Recommendations for Configuring Alert Rules

	Management of Notification
	Feature Overview
	Key Features
	Notification Server
	Corporate Communication Tool Server
	Email Server
	Webhook Type Server

	Notification Contact Group
	Notification Template
	Create Notification Template
	Reference Variables
	Special Formatting Markup Language in Emails

	Notification rule
	Prerequisites
	Operation Procedures

	Set Notification Rule for Projects
	Prerequisites
	Operation Procedures

	Management of Monitoring Dashboards
	Function Overview
	Main Features
	Advantages
	Use Cases
	Prerequisites
	Relationship Between Monitoring Dashboards and Monitoring Components

	Manage Dashboards
	Create a Dashboard
	Import Dashboard
	Add Variables
	Add Pannels
	Add Groups
	Switch Dashboards
	Other Operations

	Manage Panels
	Panel Description
	Panel Configuration Description
	General Parameters
	Special Parameters for Panels

	Create Monitoring Dashboards via CLI
	Common Functions and Variables
	Common Functions
	Common Variables
	Variable Use Case One
	Variable Use Case Two
	Notes When Using Built-in Metrics

	Management of Probe
	Function Overview
	Blackbox Monitoring
	Prerequisites
	Procedures for Operation

	Blackbox Alerts
	Prerequisites
	Procedures for Operation

	Customizing BlackboxExporter Monitoring Module
	Procedures for Operation

	Create Blackbox Monitoring Items and Alerts via CLI
	Prerequisites
	Procedures for Operation

	Reference Information

	How To
	Backup and Restore of Prometheus Monitoring Data
	Feature Overview
	Use Cases
	Prerequisites
	Procedures to Operate
	Backup Data
	Method 1: Backup Storage Directory (Recommended)
	Method 2: Snapshot Backup

	Restore Data

	Operation Results
	Learn More
	TSDB Data Format Description
	Data Backup Considerations

	Next Procedures

	VictoriaMetrics Backup and Recovery of Monitoring Data
	Function Overview
	Use Cases
	Prerequisites
	Procedures
	1. Confirm Storage Path
	2. Execute Data Backup
	3. Execute Data Recovery

	Operation Result
	Learn More
	Follow-up Actions

	Collect Network Data from Custom-Named Network Interfaces
	Function Overview
	Use Case
	Prerequisites
	Procedures to Operate
	Operation Results
	Learn More
	Subsequent Actions

	Permissions
	Distributed Tracing
	Introduction
	Install
	Architecture
	Concepts
	Guides
	How To
	Troubleshooting

	Introduction
	Advantages
	Application Scenarios
	Usage Limitations

	Install
	Installing the Jaeger Operator
	Install the Jaeger Operator using the Web Console

	Deploying a Jaeger Instance
	Installing the OpenTelemetry Operator
	Install the OpenTelemetry Operator using the Web Console

	Deploying OpenTelemetry Instances
	Enable Feature Switch
	Uninstall Tracing
	Deleting OpenTelemetry Instance
	Uninstalling OpenTelemetry Operator
	Deleting Jaeger Instance
	Uninstalling Jaeger Operator

	Architecture
	Core Components
	Data Flow

	Concepts
	Telemetry
	OpenTelemetry
	Span
	Trace
	Instrumentation
	OpenTelemetry Collector
	Jaeger

	Guides
	Query Tracing
	Feature Overview
	Main Features
	Feature Advantages
	Tracing Query
	Step 1: Combine Query Conditions
	Step 2: Execute Query

	Query Result Analysis
	Span List
	Time-Series Waterfall Chart
	Span Details

	Query Trace Logs
	Feature Overview
	Core Features
	Prerequisites
	Log Query Operations
	Access Trace Logs
	Filter Logs
	By Pod Name
	By Time Range
	By Query Conditions
	Contain Trace ID

	Advanced Operations
	Export Logs
	Customize Display Fields
	View Log Context

	How To
	Non-Intrusive Integration of Tracing in Java Applications
	Feature Overview
	Use Cases
	Prerequisites
	Steps to Operate
	Operation Results

	Business Log Associated with the TraceID
	Background
	Adding TraceID to Java Application Logs
	Adding TraceID to Python Application Logs
	Verification Method

	Troubleshooting
	Unable to Query the Required Tracing
	Problem Description
	Root Cause Analysis
	1. Tracing Sampling Rate Configured Too Low
	2. Elasticsearch Real-Time Limitations

	Solution for Root Cause 1
	Solution for Root Cause 2

	Incomplete Tracing Data
	Problem Description
	Root Cause Analysis
	1. Data Persistence Delay
	2. Time Range Limitation

	Solution for Root Cause 1
	Solution for Root Cause 2

	Logs
	Introduction
	Install
	Architecture
	Concepts
	Guides
	How To
	Permissions

	Introduction
	Module Overview
	Module Advantages
	Module Use Cases
	Module Usage Limitations

	Install
	Install ACP Log Storage with ElasticSearch
	Install ACP Log Storage with Clickhouse
	Install ACP Log Collector Plugin

	Architecture
	Log Module Architecture
	Overall Architecture Description
	Log Collection
	Component Installation Method
	Data Collection Process

	Log Consumption and Storage
	Razor
	Lanaya
	Vector

	Log Visualization

	Log Component Selection Guide
	Architecture Comparison
	ElasticSearch Architecture
	Clickhouse Architecture

	Function Comparison
	Selection Recommendations

	Log Component Capacity Planning
	ElasticSearch
	Small Scale 3 Nodes - Total Logs: 6300/s
	Small Scale 5 Nodes - Total Logs: 9900/s
	Large Scale 3+5 Nodes - Total Logs: 25000/s
	Large Scale 3+7 Nodes - Total Logs: 30000/s

	Clickhouse
	Single Node - Total Logs: 18000/s
	Three Nodes - Total Logs: 20000/s
	Six Nodes - Total Logs: 40000/s
	Nine Nodes - Total Logs: 69000/s

	Concepts
	Open Source Components
	Filebeat
	Elasticsearch
	ClickHouse
	Kafka

	Core Functionality Concepts
	Log Collection Pipeline
	Index
	Shards and Replicas
	Columnar Storage

	Key Technical Terms
	Ingest Pipeline
	Consumer Group
	TTL (Time To Live)
	Replication Factor

	Data Flow Model

	Guides
	Logs
	Log Query Analysis
	Search Logs
	Export Log Data
	View Log Context

	Manage Application Log Retention Time
	Platform Administrator Sets Retention Policies
	Project Administrator Sets Retention Policies
	Set Retention Policies via CLI

	Configure Partial Application Log Exclusion from Collection
	Stop Collecting All Application Logs in the Cluster
	Stop Collecting Application Logs in a Specific Namespace
	Stop Collecting Pod Logs

	How To
	How to Archive Logs to Third-Party Storage
	Transfer to External NFS
	Prerequisites
	Create Log Synchronization Resources

	Transfer to External S3 Storage
	Prerequisites
	Create Log Synchronization Resources

	How to Interface with External ES Storage Clusters
	Resource Preparation
	Operating Procedures

	Permissions
	Events
	Introduction
	Module Overview
	Functionality Overview
	Use Cases
	Usage Limitations

	Events
	Operation Procedures
	Event Overview

	Permissions
	Inspection
	Introduction
	Architecture
	Guides
	Permissions

	Introduction
	Module Introduction
	Module Advantages
	Module Use Cases
	Usage Limitations

	Architecture
	Inspection
	Component Health Status

	Guides
	Inspection
	Execute Inspection
	Inspection Configuration
	Inspection Report Explanation
	Most Recent Inspection
	Resource Risk Inspection
	Resource Utilization Inspection

	Component Health Status
	Procedures to Operate

	Permissions

