
硬件加速器

概述

安装

应用开发

介绍

硬件加速器介绍

产品优势

应用场景

技术限制

功能概览

vGPU（基于开源 GPU-Manager）

pGPU（NVIDIA 设备插件）

MPS（NVIDIA 多进程服务插件）

安装

安装 Kubernetes 硬件加速工具包

介绍

应用开发简介

功能指南 故障排除

Alauda Container Platform

硬件加速器 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

配置管理

资源监控

介绍

配置管理概述

功能指南

介绍

资源监控介绍

优势

应用场景

使用限制

功能指南

硬件加速器 - Alauda Container Platform

概述

介绍

硬件加速器介绍

产品优势

应用场景

技术限制

功能概览

vGPU（基于开源 GPU-Manager）

pGPU（NVIDIA 设备插件）

MPS（NVIDIA 多进程服务插件）

Alauda Container Platform

概述 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍

目录

硬件加速器介绍

硬件加速器介绍

产品优势

vGPU 模块

pGPU 模块

MPS 模块

应用场景

vGPU 使用场景

pGPU 使用场景

MPS 使用场景

技术限制

需要特权权限

硬件设备访问要求

内核级操作

K8s 设备插件架构要求

vGPU 限制

pGPU 限制

MPS 限制

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

Kubernetes 硬件加速器套件是一款企业级解决方案，旨在优化云原生环境中的 GPU 资源分

配、隔离和共享。基于 Kubernetes 设备插件和 NVIDIA 原生技术构建，提供三个核心模块：

1. vGPU 模块

基于开源 GPU-Manager，实现细粒度 GPU 虚拟化，将物理 GPU 切分为具有内存/计算配

额的可共享虚拟单元。适用于需要动态资源分配的多租户环境。

2. pGPU 模块

利用 NVIDIA 官方 Device Plugin，提供完整的物理 GPU 隔离和 NUMA 感知调度。专为需要

专用 GPU 访问的高性能计算（HPC）工作负载设计。

3. MPS 模块

实现 NVIDIA 的多进程服务，允许在资源受限条件下并发执行 GPU 上下文。通过 CUDA 内

核融合优化延迟敏感型应用。

产品优势

vGPU 模块

动态切片：将 GPU 切分以支持多进程共享同一物理 GPU

QoS 保证：保证计算单元（vcuda-core）和内存配额（vcuda-memory）

pGPU 模块

硬件级隔离：通过 IOMMU 保护的直接 PCIe 直通

NUMA 优化：自动绑定 NUMA 节点，最小化跨插槽数据传输

MPS 模块

低延迟执行：通过 CUDA 上下文融合降低 30-50% 延迟

资源限制：限制单进程 GPU 计算（0-100%）和内存使用

零代码改动：兼容未修改的 CUDA 应用

介绍 - Alauda Container Platform

应用场景

vGPU 使用场景

多租户 AI 平台：跨团队共享 A100/H100 GPU，保障 SLA

VDI 环境：为 CAD/3D 渲染提供 GPU 加速虚拟桌面

批量推理：通过分配部分 GPU 资源实现模型服务并行化

pGPU 使用场景

HPC 集群：运行 MPI 作业，独占 GPU 访问，用于天气模拟

ML 训练：大语言模型训练的全 GPU 利用

医学影像：处理高分辨率 MRI 数据，无资源争用

MPS 使用场景

实时推理：使用并发 CUDA 流实现低延迟视频分析

微服务编排：在共享硬件上共置多个 GPU 微服务

高并发服务：推荐系统 QPS 提升 3 倍

技术限制

需要特权权限

硬件设备访问要求

设备文件权限

NVIDIA GPU 设备需要直接访问受保护的系统资源：

介绍 - Alauda Container Platform

要求：需要 root 权限读写设备文件

后果：非 root 容器会出现权限拒绝错误

内核级操作

关键 NVIDIA 驱动交互

模块加载 CAP_SYS_MODULE 加载 NVIDIA 内核模块

内存管理 CAP_IPC_LOCK GPU 内存分配

中断处理 CAP_SYS_RAWIO 处理 GPU 中断

K8s 设备插件架构要求

1. Socket 创建：写入 /var/lib/kubelet/device-plugins

2. 健康监控：访问 nvidia-smi 和内核日志

3. 资源分配：修改设备 cgroups

vGPU 限制

仅支持 CUDA 版本低于 12.4

启用 vGPU 时不支持 MIG

pGPU 限制

不支持 GPU 共享（1:1 Pod 到 GPU 映射）

操作 权限要求 目的

设备文件所有权和权限

ls -l /dev/nvidia*

crw-rw-rw- 1 root root 195, 0 Aug 1 10:00 /dev/nvidia0

crw-rw-rw- 1 root root 195, 255 Aug 1 10:00 /dev/nvidiactl

crw-rw-rw- 1 root root 195, 254 Aug 1 10:00 /dev/nvidia-uvm

介绍 - Alauda Container Platform

需要 Kubernetes 1.25+ 并启用 SR-IOV

仅限 PCIe/NVSwitch 连接的 GPU

MPS 限制

融合上下文间可能发生故障传播

需要 CUDA 11.4+ 支持内存限制

不支持 MIG 切片 GPU

介绍 - Alauda Container Platform

功能概览

目录

vGPU（基于开源 GPU-Manager）

细粒度资源切割

将物理 GPU 核心切分为 1-100 个配额。支持动态分配，适用于 AI 推理和虚拟桌面等多租户

环境。

拓扑感知调度

自动优先考虑 NVLink/C2C 连接的 GPU，以最小化跨插槽数据传输延迟。确保用于分布式

训练工作负载的最佳 GPU 配对。

pGPU（NVIDIA 设备插件）

NUMA 优化分配

强制执行 1:1 GPU 与 Pod 的映射，并绑定 NUMA 节点，减少高速计算（HPC）任务（如

LLM 训练）中的 PCIe 总线争用。

vGPU（基于开源 GPU-Manager）

pGPU（NVIDIA 设备插件）

MPS（NVIDIA 多进程服务插件）

Alauda Container Platform

功能概览 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

独占硬件访问

通过 PCIe 直通提供完全的物理 GPU 隔离，非常适合需要确定性性能的关键任务应用程序

（如医疗影像处理）。

MPS（NVIDIA 多进程服务插件）

延迟优化执行

实现跨进程的 CUDA 核心融合，减少实时应用（如视频分析）的推理延迟 30-50%。

带上限的资源共享

允许并发 GPU 上下文执行，同时通过环境变量强制每个进程的计算（0-100%）和内存限

制。

功能概览 - Alauda Container Platform

安装

目录

安装 Kubernetes 硬件加速工具包

先决条件

在安装之前，请确保满足以下要求：

1. Kubernetes 集群：版本 ≥1.25，并启用了 DevicePlugins 功能开关。

2. NVIDIA 驱动程序：已安装在所有 GPU 节点上。通过 nvidia-smi 验证。

3. 容器运行时：已配置 NVIDIA 容器工具包（≥1.7.0）以支持 GPU。

通过 Web 控制台安装

1. 导航到集群插件：

前往 平台管理 → 目录 → 集群插件

安装 Kubernetes 硬件加速工具包

先决条件

通过 Web 控制台安装

Alauda Container Platform

安装 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

搜索 "gpu" 并点击 安装

2. 功能切换： 在安装过程中启用/禁用高级功能：

PGPU 物理 GPU 隔离，支持 NUMA 感知调度 AI 训练/高性能计算

vGPU 通过 GPU-Manager 进行虚拟 GPU 切片 多租户共享/资源配额

MPS 多进程服务用于计算/内存共享 低延迟推理/并行任务

选项 功能 推荐场景

安装 - Alauda Container Platform

应用开发

介绍

功能指南

故障排除

介绍

应用开发简介

CUDA 驱动与运行时兼容性

分层架构与核心概念

版本兼容矩阵与约束

部署最佳实践

故障排查手册

使用 ConfigMap 添加自定义设备

介绍

特性

优势

功能模块 1：ConfigMap 编写规范

功能模块 2：资源值定义

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误Paddle Autogrow 内存分配在 GPU-Manager 上

Alauda Container Platform

应用开发 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

问题描述

根本原因

故障排查

解决方案

预防措施

相关内容

问题描述

根本原因

解决方案

验证方法

预防措施

相关内容

应用开发 - Alauda Container Platform

介绍

目录

应用开发简介

应用开发模块指导用户通过统一接口配置多个供应商（例如，AMD/Intel GPU、FPGA）的硬件

加速器，从而在容器化环境中实现异构计算资源的协调和优化，以提升高性能工作负载，如人

工智能训练和图像处理。

应用开发简介

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

功能指南

CUDA 驱动与运行时兼容性

分层架构与核心概念

版本兼容矩阵与约束

部署最佳实践

故障排查手册

使用 ConfigMap 添加自定义设备

介绍

特性

优势

功能模块 1：ConfigMap 编写规范

功能模块 2：资源值定义

Alauda Container Platform

功能指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

CUDA 驱动与运行时兼容性

目录

分层架构与核心概念

1. CUDA Runtime API 层

技术定位

版本检测方法

2. CUDA Driver API 层

技术定位

版本检测方法

版本兼容矩阵与约束

物理 GPU 部署 - 核心兼容原则

正式规则

虚拟化场景增强（HAMI/GPU-Manager）

版本要求

部署最佳实践

推荐策略

旧系统替代方案

1. 物理 GPU 调度或 GPU-Manager 整卡分配

2. 节点标签策略

3. 运行时版本升级

故障排查手册

常见错误代码

Alauda Container Platform

CUDA 驱动与运行时兼容性 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

分层架构与核心概念

1. CUDA Runtime API 层

技术定位

1. 功能范围：为开发者提供高层抽象接口，封装核心 GPU 操作（内存分配、流管理、内核启

动等）

2. 版本绑定：由构建时使用的 CUDA Toolkit 版本决定（例如 CUDA 12.0.1）

版本检测方法

CUDA 驱动与运行时兼容性 - Alauda Container Platform

如果发现多个库版本，应检查程序实际使用的版本，如 PATH、LD_LIBRARY_PATH 或其他程

序设置

2. CUDA Driver API 层

技术定位

1. 功能范围：低层接口，直接与 GPU 硬件交互，负责指令翻译和硬件资源调度

2. 版本绑定：由 NVIDIA 驱动版本决定，遵循 SemVer 规范

版本检测方法

Python 环境检测（推荐优先方法）

pip list | grep cuda

conda list |grep cuda

示例输出：cu121 # cu121 表示 CUDA 12.1 环境

系统级运行时库检测

find / -name "libcudart*"

cudart 表示 cuda runtime

示例输出:

/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudart.so.12

/usr/local/cuda-12.4/targets/x86_64-linux/lib/libcudart.so.12.4.127

表示 CUDA 12.4

env |grep PATH

示例输出：

LIBRARY_PATH=/usr/local/cuda/lib64/stubs

LD_LIBRARY_PATH=/usr/local/nvidia/lib:/usr/local/nvidia/lib64

PATH=/go/bin:/usr/local/go/bin:/usr/local/nvidia/bin:/usr/local/cuda/bi

n:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

表示你的 cuda 程序使用的是 lib 路径顺序中的第一个库

CUDA 驱动与运行时兼容性 - Alauda Container Platform

版本兼容矩阵与约束

物理 GPU 部署 - 核心兼容原则

首先参考 NVIDIA 官方声明，基本约束为

1. 驱动版本必须始终 ≥ 运行时版本

2. NVIDIA 官方保证 向后兼容 1 个主版本（例如 CUDA Driver 12.x 支持 Runtime 11.x）

3. 跨两个主版本兼容（例如 Driver 12.x 与 Runtime 10.x）既不官方支持也不推荐

部署 cuda 程序时，请遵守基本约束

nvidia-smi

示例输出：

+--

-----------------+

| NVIDIA-SMI 550.144.03 Driver Version: 550.144.03 CUDA V

ersion: 12.4 |

|---+------------------------+-----

-----------------+

| GPU Name Persistence-M | Bus-Id Disp.A | Vola

tile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-

Util Compute M. |

| | |

MIG M. |

|===+========================+=====

=================|

| 0 NVIDIA A30 Off | 00000000:00:0B.0 Off |

0 |

| N/A 31C P0 28W / 165W | 10195MiB / 24576MiB |

0% Default |

| | |

Disabled |

+---+------------------------+-----

-----------------+

CUDA 驱动与运行时兼容性 - Alauda Container Platform

正式规则

虚拟化场景增强（HAMI/GPU-Manager）

使用 GPU-Manager 或 HAMI 等虚拟 GPU 方案时，除遵守上述基本约束外，还必须满足以下

额外约束：

版本要求

GPU-Manager 特别说明： 我们实现了部分跨 1 主版本兼容（例如基线 12.4 支持 vLLM

11.8），但这需要针对每个应用进行 hook 调整，需逐案分析。

部署最佳实践

推荐策略

• 新 GPU 集群规划时，建议采用较新 CUDA 版本（如 CUDA 12.x）作为驱动和运行时版本

旧系统替代方案

1. 物理 GPU 调度或 GPU-Manager 整卡分配

整卡调度提供与物理 GPU 访问等效的原生兼容性

GPU-Manager 可通过设置 tencent.com/vcuda-core 为 100 的正整数倍（如 100、200、300）

启用整卡模式

+ 强制：驱动版本 ≥ 运行时版本

+ 推荐：驱动主版本 - 运行时主版本 ≤ 1

- 阻断：驱动版本 < 运行时版本 → 可能触发 CUDA_ERROR_UNKNOWN(999)

- 不稳定：驱动主版本 - 运行时主版本 > 1 → 应用可能异常

1. 虚拟 GPU 方案基线版本 ≥ 运行时版本

2. 运行时主版本 = 驱动主版本 = 基线主版本

CUDA 驱动与运行时兼容性 - Alauda Container Platform

2. 节点标签策略

根据支持的驱动 CUDA 版本为节点打标签：

表示该节点为 cuda 12.4

在部署时配置调度亲和性：

可根据程序所需的 cuda 运行时版本设置 cuda-major-version 和 cuda-minor-version

3. 运行时版本升级

resources:

 limits:

 tencent.com/vcuda-core: "100"

node_labels:

 cuda-major-version: "12"

 cuda-minor-version: "4"

apiVersion: apps/v1

kind: Deployment

metadata:

 name: cuda-app

spec:

 template:

 spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: cuda-major-version

 operator: In

 values: ["12"]

 - key: cuda-minor-version

 operator: Gt

 values: ["2"]

CUDA 驱动与运行时兼容性 - Alauda Container Platform

旧版 CUDA Runtime 可能存在安全漏洞（CVE）且不支持新 GPU 特性，优先升级至 CUDA

12.x。

NVIDIA 推荐同时升级驱动和运行时

故障排查手册

常见错误代码

CUDA_ERROR_INVALID_IMAGE
驱动与运行时

不兼容

使驱动版本与容器

CUDA 版本保持一致

CUDA_ERROR_ILLEGAL_ADDRESS

虚拟内存违规

（版本不匹配

常见）

核实运行时与基线约

束是否符合

CUDA_ERROR_UNSUPPORTED_PTX_VERSION
PTX 指令集

不匹配

使用显式 -

arch=sm_xx 重新编

译

错误代码 描述 推荐操作

CUDA 驱动与运行时兼容性 - Alauda Container Platform

CUDA 驱动与运行时兼容性 - Alauda Container Platform

使用 ConfigMap 添加自定义设备

目录

介绍

通过 ConfigMap 实现 Kubernetes 自定义资源的标准化定义和管理，解决以下问题：

自定义资源规范的统一管理，防止配置碎片化

标准化的资源定义格式，便于维护

支持多语言描述和默认值配置

适用于需要扩展 Kubernetes 资源模型的场景（例如，GPU 资源管理），提供标准化的资源

定义框架

介绍

特性

优势

功能模块 1：ConfigMap 编写规范

核心规则

参数规范

功能模块 2：资源值定义

单键示例

多键关联

策略规范

Alauda Container Platform

使用 ConfigMap 添加自定义设备 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

特性

单键资源定义规范

多键关联资源定义

标准化的资源请求接口

中英文双语描述支持

资源默认值配置机制

优势

扩展性：通过标签进行资源组管理

安全性：命名空间隔离（kube-public）

稳定性：强制格式验证规则

可维护性：统一的元数据标签规范

功能模块 1：ConfigMap 编写规范

核心规则

1. 单一职责原则：每个键定义对应一个 ConfigMap

2. 命名空间：固定为 namespace=kube-public

3. 命名约定：

cf-crl ：固定前缀

customName ：自定义有效名称

keyName ：键标识符（特殊字符用 '-' 替换）

cf-crl-{customName}-{keyName}

使用 ConfigMap 添加自定义设备 - Alauda Container Platform

4. 标签要求：

参数规范

name format 是 遵循 cf-crl-{customName}-{keyName}

namespace 是 固定为 kube-public

label group 是 必须包含指定的 3 个特征标签

功能模块 2：资源值定义

单键示例

参数 必填 描述

labels:

 features.alauda.io/type: CustomResourceLimitation # 固定值

 features.alauda.io/group: {resource-group} # 例如，gpu-manager

 features.alauda.io/enabled: "true" # 启用标志

使用 ConfigMap 添加自定义设备 - Alauda Container Platform

多键关联

策略规范

limits disabled/required/optional 资源限制配置

requests disabled/required/fromLimits 资源请求配置

字段 允许值 描述

apiVersion: v1

kind: ConfigMap

metadata:

 name: cf-crl-gpu-manager-vcuda-core

 namespace: kube-public

 labels:

 features.alauda.io/type: CustomResourceLimitation

 features.alauda.io/group: gpu-manager

 features.alauda.io/enabled: "true"

data:

 key: "tencent.com/vcuda-core" # 资源键

 dataType: "integer" # 值类型

 defaultValue: "20" # 默认值

 descriptionZh: "" # 中文描述

 descriptionEn: "GPU vcore count, 100 virtual cores equal 1 physical GPU

core" # 英文描述

 group: "gpu-manager" # 资源组

 limits: "optional" # 限制字段策略

 requests: "disabled" # 请求字段策略

metadata:

 name: cf-crl-gpu-manager-vcuda-core

 labels: [相同的组标签]

metadata:

 name: cf-crl-gpu-manager-vcuda-memory

 labels: [相同的组标签] # 通过相同标签进行关联

使用 ConfigMap 添加自定义设备 - Alauda Container Platform

使用 ConfigMap 添加自定义设备 - Alauda Container Platform

故障排除

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误

问题描述

根本原因

故障排查

解决方案

预防措施

相关内容

Paddle Autogrow 内存分配在 GPU-Manager 上

问题描述

根本原因

解决方案

验证方法

预防措施

相关内容

Alauda Container Platform

故障排除 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

解决 vLLM 中 float16 仅支持计算能力至少为

xx 的 GPU 错误

目录

问题描述

环境

症状

相关日志

根本原因

主要原因

技术分析

故障排查

步骤 1：验证 GPU 计算能力

步骤 2：检查模型精度需求

步骤 3：验证框架兼容性

解决方案

针对计算能力不足的解决方案

注意事项

前提条件

操作步骤

预防措施

相关内容

GPU 计算能力参考

官方参考

Alauda Container Platform

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

问题描述

环境

硬件：计算能力 <8.0 的 NVIDIA GPU（例如 Tesla V100、T4）

模型类型：需要 bfloat16/FP8 精度的 LLM（例如 LLaMA-2-70B、GPT-NeoX-20B）

症状

1. 明确的错误信息：

2. 模型加载时内核编译失败

相关日志

根本原因

主要原因

GPU 计算能力不足

GPU 的计算能力（CC）未达到特定数据类型的最低要求：

ValueError: float16/bfloat16 is only supported on GPUs with compute cap

ability at least 8.0

vLLM 错误堆栈

File "/usr/local/lib/python3.10/site-packages/vllm/model_executor/layers/

quantization/__init__.py", line 37, in _verify_cuda_compute_capability

 raise ValueError(

ValueError: bfloat16 is only supported on GPUs with compute capability at

least 8.0. Current GPU: Tesla V100-PCIE-16GB, compute capability 7.0

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误 - Alauda Container Platform

bfloat16/FP8：需要 CC ≥8.0（Ampere 架构或更新）

FP16 Tensor Core 优化：需要 CC ≥7.0（Volta 架构或更新）

技术分析

1. 架构限制：

Ampere 之前的 GPU（CC <8.0）缺少专用的 bfloat16 矩阵运算单元

Volta/Turing（CC 7.0-7.5）的 Tensor Core 仅支持 FP16/FP32 混合精度

2. 框架强制检查：

故障排查

步骤 1：验证 GPU 计算能力

步骤 2：检查模型精度需求

步骤 3：验证框架兼容性

vLLM 的能力检查（简化）

def _verify_cuda_compute_capability():

 if device.compute_capability < MIN_REQUIRED_CC:

 raise ValueError(f"Requires compute capability ≥{MIN_REQUIRED_C

C}")

import torch

print(f"Compute Capability: {torch.cuda.get_device_capability()}")

cat model/config.json | grep "torch_dtype"

预期输出："bfloat16" 或 "float16"

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误 - Alauda Container Platform

解决方案

针对计算能力不足的解决方案

注意事项

降低精度可能导致性能下降

不同精度类型可能影响模型准确性

前提条件

CUDA Toolkit ≥11.8

操作步骤

1. 修改 InferenceService yaml：

添加参数 --dtype=half

from vllm import _is_cuda_compute_capability_compatible as compat

print(f"bfloat16 supported: {compat((8,0))}")

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误 - Alauda Container Platform

2. 等待部署重启

预防措施

1. 预检查：

2. 集群配置：

3. 模型优化：

apiVersion: serving.kserve.io/v1beta1

kind: InferenceService

metadata:

 name: llama-2-service

 annotations:

 serving.kserve.io/enable-prometheus-scraping: 'true'

spec:

 predictor:

 containers:

 - name: kserve-container

 image: vllm/vllm-serving:0.3.2

 args:

 - --model=meta-llama/Llama-2-7b-chat-hf

 - --dtype=half # 强制使用 FP16 精度

 - --tensor-parallel-size=1

 resources:

 limits:

 nvidia.com/gpu: '1'

from vllm import LLM

LLM.validate_environment(model_dtype="bfloat16")

NVIDIA 设备插件配置

helm upgrade -i nvidia-device-plugin \

 --set compatabilityPolicy=strict \

 --set computeCapabilities=8.0+

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误 - Alauda Container Platform

相关内容

GPU 计算能力参考

Volta 7.0-7.2 FP16 Tensor Core

Turing 7.5 FP16/INT8

Ampere 8.0-8.9 bfloat16/TF32/FP8

Hopper 9.0+ FP4/FP8 动态缩放

官方参考

1. NVIDIA Compute Capability Table

2. vLLM Hardware Requirements

架构 CC 范围 支持的精度

↗

↗

应用 AWQ 量化

llm = LLM(model="codellama/CodeLlama-34b",

 quantization="awq",

 load_format="awq")

解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误 - Alauda Container Platform

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://docs.vllm.ai/en/latest/getting_started/installation.html
https://docs.vllm.ai/en/latest/getting_started/installation.html
https://docs.vllm.ai/en/latest/getting_started/installation.html

Paddle Autogrow 内存分配在 GPU-Manager
上的崩溃问题

目录

问题描述

问题描述

现象

根本原因

根因分析

解决方案

方案概述

注意事项

实施步骤

Kubernetes 部署

裸机部署

验证方法

预防措施

相关内容

内存分配策略对比

参考资料

Alauda Container Platform

Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

现象

当 PaddlePaddle 的 Autogrow 内存分配策略与 GPU-Manager 的虚拟化内存管理同时启用时，

可能出现以下异常：

1. 由于内存分配不连续导致的 OOM 错误

2. GPU 利用率异常波动

3. 训练进程随机崩溃

4. nvidia-smi 报告的内存使用与框架统计不一致

根本原因

根因分析

1. 内存分配策略冲突

Paddle 的 Autogrow 采用动态分段分配，而 GPU-Manager 的虚拟化要求连续的物理内存映

射

2. 管理机制不兼容

Autogrow 的延迟释放机制与 GPU-Manager 的内存回收策略冲突

3. 元数据维护冲突

两套系统分别维护元数据，导致内存视图不一致

触发机制：

Autogrow 在分配时尝试最优块大小

GPU-Manager 虚拟化层拦截物理内存请求

非连续分配导致虚拟地址映射失败

双重管理引发元数据一致性异常

解决方案

Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题 - Alauda Container Platform

方案概述

通过环境变量强制 Paddle 使用传统分配策略：

注意事项

1. 需要重启训练进程

2. 可能降低 Paddle 的内存复用效率

实施步骤

Kubernetes 部署

1. 编辑 Deployment 配置

2. 应用配置

3. 验证配置

FLAGS_allocator_strategy=naive_best_fit

apiVersion: apps/v1

kind: Deployment

spec:

 template:

 spec:

 containers:

 - name: paddle-container

 env:

 - name: FLAGS_allocator_strategy

 value: 'naive_best_fit'

kubectl apply -f updated_deployment.yaml

Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题 - Alauda Container Platform

裸机部署

1. 在执行前设置环境变量

2. 或在 Python 代码中设置

验证方法

1. 查看日志确认分配策略

2. 监控内存分配连续性

3. 压力测试验证

kubectl exec <pod-name> -- env | grep FLAGS

export FLAGS_allocator_strategy=naive_best_fit

python train.py

import os

os.environ['FLAGS_allocator_strategy'] = 'naive_best_fit'

I0715 14:25:17.112233 12345 allocator.cc:256]

Using Naive Best Fit allocation strategy

nvidia-smi --query-gpu=memory.used --format=csv -l 1

连续分配测试脚本

import paddle

for i in range(10):

 data = paddle.randn([1024, 1024, 100], dtype='float32')

 print(f"Allocated {i+1}GB")

Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题 - Alauda Container Platform

预防措施

1. 版本兼容性检查

升级时查看 Paddle release notes 中关于内存分配的变更

2. 监控配置

添加 Prometheus 告警规则：

3. 基线测试

新环境进行内存分配基线测试：

相关内容

内存分配策略对比

autogrow 高效 大块分配性能较差

naive_best_fit 分配稳定 可能产生碎片

参考资料

Paddle Memory Optimization Whitepaper

策略 优点 缺点

↗

• alert: GPUAllocConflict

 expr: rate(paddle_gpu_malloc_failed_total[5m]) > 0

 labels:

 severity: critical

 annotations:

 summary: "GPU Memory Allocation Conflict Alert"

python -c "import paddle; paddle.utils.run_check()"

Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题 - Alauda Container Platform

https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html

Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题 - Alauda Container Platform

配置管理

介绍

功能指南

介绍

配置管理概述

在 GPU 节点上配置硬件加速器

前提条件

物理 GPU 配置

NVIDIA MPS 配置（驱动支持 CUDA 版本必须 >= 11.5）

GPU 管理器配置

结果验证

Alauda Container Platform

配置管理 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍

目录

配置管理概述

配置管理是一个集中化的文档门户，用于在 Kubernetes 环境中配置 GPU 加速功能。该活文档

为管理员提供了统一的指导，以便在混合基础设施上设置物理 GPU (pGPU)、虚拟 GPU

(vGPU) 和多进程服务 (MPS) 配置。

配置管理概述

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

功能指南

在 GPU 节点上配置硬件加速器

前提条件

物理 GPU 配置

NVIDIA MPS 配置（驱动支持 CUDA 版本必须 >= 11.5）

GPU 管理器配置

结果验证

Alauda Container Platform

功能指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

在 GPU 节点上配置硬件加速器

随着业务数据的增加，尤其是在人工智能和数据分析等场景中，您可能希望在自建业务集群中

利用 GPU 功能来加速数据处理。除了为集群节点准备 GPU 资源外，还需进行 GPU 配置。

本解决方案将集群中具有GPU计算能力的节点称为 GPU 节点。

注意：除非另有说明，操作步骤适用于两种类型的节点。有关驱动程序安装相关问题，请参考

NVIDIA 官方安装文档 。

目录

↗

前提条件

安装 GPU 驱动

获取驱动下载地址

安装驱动

安装 NVIDIA 容器运行时

物理 GPU 配置

在 GPU 业务集群上部署物理 GPU 插件

NVIDIA MPS 配置（驱动支持 CUDA 版本必须 >= 11.5）

在 GPU 业务集群上部署 NVIDIA MPS 插件

在 GPU 集群的管理界面上执行以下操作：

配置 kube-scheduler（kubernetes >= 1.23）

GPU 管理器配置

配置 kube-scheduler（kubernetes >= 1.23）

在 GPU 业务集群上部署 GPU 管理器插件

结果验证

Alauda Container Platform

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
http://localhost:4173/container_platform/zh/

前提条件

在操作节点上已准备好 GPU 资源，该节点属于本节提到的 GPU 节点。

安装 GPU 驱动

注意：如果 GPU 节点使用 NVIDIA MPS 插件，请确保该节点的 GPU 架构为 Volta 或更新版

本（Volta/Turing/Ampere/Hopper 等），且驱动程序支持 CUDA 版本 11.5 或更高版本。

获取驱动下载地址

1. 登录到 GPU 节点，并运行命令 lspci |grep -i NVIDIA 检查该节点的 GPU 型号。

在以下示例中，GPU 型号为 Tesla T4。

2. 访问 NVIDIA 官方网站 获取驱动下载链接。

1. 点击首页顶部导航栏中的 Drivers。

2. 根据 GPU 节点型号填写下载驱动所需的信息。

3. 点击 Search。

4. 点击 Download。

5. 右键点击 Download > Copy Link Address 复制驱动的下载链接。

3. 在 GPU 节点上执行以下命令，创建 /home/gpu 目录，并将驱动文件下载并保存到该目

录。

↗

lspci | grep NVIDIA

00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev a1)

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

https://www.nvidia.cn/
https://www.nvidia.cn/
https://www.nvidia.cn/

安装驱动

1. 在 GPU 节点上执行以下命令，以安装与当前操作系统对应的 gcc 和 kernel-devel 包。

2. 执行以下命令以安装 GPU 驱动。

3. 安装完成后，执行 nvidia-smi 命令。如果返回类似以下示例的 GPU 信息，则表示驱动安

装成功。

创建 /home/gpu 目录

mkdir -p /home/gpu

cd /home/gpu/

将驱动文件下载到 /home/gpu 目录，示例：wget https://cn.download.nvidia.co

m/tesla/515.65.01/NVIDIA-Linux-x86_64-515.65.01.run

wget <驱动下载地址>

验证驱动文件是否成功下载，如果返回驱动文件名（例如：NVIDIA-Linux-x86_64-515.6

5.01.run）则表示下载成功

ls <驱动文件名>

sudo yum install dkms gcc kernel-devel-$(uname -r) -y

chmod a+x /home/gpu/<驱动文件名>

/home/gpu/<驱动文件名> --dkms

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

安装 NVIDIA 容器运行时

nvidia-smi

Tue Sep 13 01:31:33 2022

+--

-------+

| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 1

1.7 |

+-------------------------------+-----------------------+--------------

-------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncor

r. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Comp

ute M. |

| | |

MIG M. |

|===============================+======================+===============

=======|

| 0 Tesla T4 Off | 00000000:00:08.0 Off |

0 |

| N/A 55C P0 28W / 70W | 2MiB / 15360MiB | 5% D

efault |

| | |

N/A |

+-------------------------------+-----------------------+--------------

-------+

+--

-------+

| Processes:

|

| GPU GI CI PID Type Process name GPU

Memory |

| ID ID Usag

e |

|==

=======|

| No running processes found

|

+--

-------+

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

1. 在 GPU 节点 上添加 NVIDIA yum 仓库。

当提示 "Metadata cache created." 出现时，表示添加成功。

2. 安装 NVIDIA 容器运行时。

当提示 Complete! 出现时，表示安装成功。

3. 配置默认运行时。

将以下配置添加到文件中。

Containerd: 修改 /etc/containerd/config.toml 文件。

distribution=$(. /etc/os-release;echo IDVERSION_ID) && curl -s -L htt

ps://nvidia.github.io/libnvidia-container/$distribution/libnvidia-conta

iner.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo

yum makecache -y

yum install nvidia-container-toolkit -y

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

Docker: 修改 /etc/docker/daemon.json 文件。

[plugins]

 [plugins."io.containerd.grpc.v1.cri"]

 [plugins."io.containerd.grpc.v1.cri".containerd]

...

 default_runtime_name = "nvidia"

...

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes]

...

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.ru

nc]

 runtime_type = "io.containerd.runc.v2"

 runtime_engine = ""

 runtime_root = ""

 privileged_without_host_devices = false

 base_runtime_spec = ""

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.

runc.options]

 SystemdCgroup = true

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.nv

idia]

 privileged_without_host_devices = false

 runtime_engine = ""

 runtime_root = ""

 runtime_type = "io.containerd.runc.v1"

 [plugins."io.containerd.grpc.v1.cri".containerd.runtimes.

nvidia.options]

 BinaryName = "/usr/bin/nvidia-container-runtime"

 SystemdCgroup = true

...

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

4. 重启 Containerd / Docker。

Containerd

Docker

物理 GPU 配置

在 GPU 业务集群上部署物理 GPU 插件

在 GPU 集群的管理界面上执行以下操作：

1. 在目录左侧栏中，选择 "集群插件" 子栏，单击部署 "ACP GPU 设备插件" 并打开 "pGPU" 选

项；

2. 在 "节点" 选项卡中，选择需要部署物理 GPU 的节点，然后单击 "标签和污点管理器"，添加

"设备标签" 并选择 "pGPU"，然后单击 OK；

 {

 ...

 "default-runtime": "nvidia",

 "runtimes": {

 "nvidia": {

 "path": "/usr/bin/nvidia-container-runtime"

 }

 },

 ...

 }

systemctl restart containerd #重启

crictl info |grep Runtime #检查

systemctl restart docker #重启

docker info |grep Runtime #检查

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

3. 在 "Pods" 选项卡中，检查与 nvidia-device-plugin-ds 对应的容器组运行状态，查看是否有异

常，并确保它在指定节点上运行。

NVIDIA MPS 配置（驱动支持 CUDA 版本必须 >=
11.5）

在 GPU 业务集群上部署 NVIDIA MPS 插件

在 GPU 集群的管理界面上执行以下操作：

1. 在目录左侧栏中，选择 "集群插件" 子栏，单击部署 "ACP GPU 设备插件" 并打开 "MPS" 选

项；

2. 在 "节点" 选项卡中，选择需要部署物理 GPU 的节点，然后单击 "标签和污点管理器"，添加

"设备标签" 并选择 "MPS"，然后单击 OK；

3. 在 "Pods" 选项卡中，检查与 nvidia-mps-device-plugin-daemonset 对应的容器组运行状

态，查看是否有异常，并确保它在指定节点上运行。

配置 kube-scheduler（kubernetes >= 1.23）

1. 在 业务集群控制节点 上，检查调度程序是否正确引用调度策略。

检查是否有 –config 选项，并且值为 /etc/kubernetes/scheduler-config.yaml，如下

cat /etc/kubernetes/manifests/kube-scheduler.yaml

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

注意：上述参数和配置为平台的默认配置。如果您已修改它们，请改回默认值。可以将原始自

定义配置复制到调度策略文件中。

2. 检查调度策略文件的配置。

1. 执行命令： kubectl describe service kubernetes -n default |grep

Endpoints 。

2. 将所有 Master 节点上 /etc/kubernetes/scheduler-config.yaml 文件的内容替换为以

下内容，其中 ${kube-apiserver} 应该替换为第一步的输出。

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-scheduler

 tier: control-plane

 name: kube-scheduler

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-scheduler

 - --config=/etc/kubernetes/scheduler-config.yaml

期望效果 Endpoints: 192.168.130.240:6443

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

如果 schedule-config.yaml文件中已存在 extenders，则将 yaml 附加到末尾

3. 运行以下命令以获取容器 ID：

Containerd：执行 crictl ps |grep kube-scheduler ，输出如下，第一列为容器 ID。

apiVersion: kubescheduler.config.k8s.io/v1beta2

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

extenders:

- enableHTTPS: true

 filterVerb: predicates

 managedResources:

 - ignoredByScheduler: false

 name: nvidia.com/mps-core

 nodeCacheCapable: false

 urlPrefix: https://${kube-apiserver}/api/v1/namespaces/kube-system/

services/nvidia-mps-scheduler-plugin/proxy/scheduler

 tlsConfig:

 insecure: false

 certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt

 keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key

 caFile: /etc/kubernetes/pki/ca.crt

- enableHTTPS: true

 filterVerb: predicates

 managedResources:

 - ignoredByScheduler: false

 name: nvidia.com/mps-core

 nodeCacheCapable: false

 urlPrefix: https://${kube-apiserver}/api/v1/namespaces/kube-system/

services/nvidia-mps-scheduler-plugin/proxy/scheduler

 tlsConfig:

 insecure: false

 certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt

 keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key

 caFile: /etc/kubernetes/pki/ca.crt

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

Docker：运行 docker ps |grep kube-scheduler ，输出如下，第一列为容器 ID。

4. 使用上一步获得的容器 ID 重启 Containerd/Docker 容器。

Containerd

5. 重启 Kubelet。

GPU 管理器配置

配置 kube-scheduler（kubernetes >= 1.23）

1. 在 业务集群控制节点 上，检查调度程序是否正确引用调度策略。

检查是否有 –config 选项，并且值为 /etc/kubernetes/scheduler-config.yaml，如下所示

1d113ccf1c1a9 03c72176d0f15 2 seconds ago Running

kube-scheduler 3 ecd054bbdd465 k

ube-scheduler-192.168.176.47

30528a45a118 d8a9fef7349c "kube-scheduler --au..." 37 minutes

ago Up 37 minutes k8s_kube-scheduler_kube-scheduler-192.168.13

0.240_kube-system_3e9f7007b38f4deb6ffd1c7587621009_28

crictl stop <容器 ID>

systemctl restart kubelet

cat /etc/kubernetes/manifests/kube-scheduler.yaml

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

注意：上述参数和配置为平台的默认配置。如果您已修改它们，请改回默认值。可以将原始自

定义配置复制到调度策略文件中。

2. 检查调度策略文件的配置。

1. 执行命令： kubectl describe service kubernetes -n default |grep

Endpoints 。

2. 将所有 Master 节点上 /etc/kubernetes/scheduler-config.yaml 文件的内容替换为以

下内容，其中 ${kube-apiserver} 应该替换为第一步的输出。

apiVersion: v1

kind: Pod

metadata:

 creationTimestamp: null

 labels:

 component: kube-scheduler

 tier: control-plane

 name: kube-scheduler

 namespace: kube-system

spec:

 containers:

 - command:

 - kube-scheduler

 - --config=/etc/kubernetes/scheduler-config.yaml

期望效果 Endpoints: 192.168.130.240:6443

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

3. 运行以下命令以获取容器 ID：

Containerd：执行 crictl ps |grep kube-scheduler ，输出如下，第一列为容器 ID。

Docker：运行 docker ps |grep kube-scheduler ，输出如下，第一列为容器 ID。

4. 使用上一步获得的容器 ID 重启 Containerd/Docker 容器。

Containerd

apiVersion: kubescheduler.config.k8s.io/v1beta2

kind: KubeSchedulerConfiguration

clientConnection:

 kubeconfig: /etc/kubernetes/scheduler.conf

extenders:

- enableHTTPS: true

 filterVerb: predicates

 managedResources:

 - ignoredByScheduler: false

 name: tencent.com/vcuda-core

 nodeCacheCapable: false

 urlPrefix: https://${kube-apiserver}/api/v1/namespaces/kube-system/

services/gpu-quota-admission/proxy/scheduler

 tlsConfig:

 insecure: false

 certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt

 keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key

 caFile: /etc/kubernetes/pki/ca.crt

1d113ccf1c1a9 03c72176d0f15 2 seconds ago Running

kube-scheduler 3 ecd054bbdd465 k

ube-scheduler-192.168.176.47

30528a45a118 d8a9fef7349c "kube-scheduler --au..." 37 minutes

ago Up 37 minutes k8s_kube-scheduler_kube-scheduler-192.168.13

0.240_kube-system_3e9f7007b38f4deb6ffd1c7587621009_28

crictl stop <容器 ID>

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

5. 重启 Kubelet。

在 GPU 业务集群上部署 GPU 管理器插件

在 GPU 集群的管理界面上执行以下操作：

1. 在目录左侧栏中，选择 "集群插件" 子栏，单击部署 "ACP GPU 设备插件" 并打开 "GPU-管理

器" 选项；

2. 在 "节点" 选项卡中，选择需要部署物理 GPU 的节点，然后单击 "标签和污点管理器"，添加

"设备标签" 并选择 "vGPU"，然后单击 OK；

3. 在 "Pods" 选项卡中，检查与 gpu-manager-daemonset 对应的容器组运行状态，查看是否有

异常，并确保它在指定节点上运行。

结果验证

方法 1：在业务集群的控制节点上运行以下命令检查 GPU 节点上是否有可用的 GPU 资源：

方法 2：在平台上通过指定所需的 GPU 资源量来部署 GPU 应用程序。部署后，进入 Pod 并执

行以下命令：

systemctl restart kubelet

kubectl get node ${nodeName} -o=jsonpath='{.status.allocatable}'

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

检查是否正确检索到 GPU 信息。

nvidia-smi

Tue Sep 13 01:31:33 2022

+--

-----+

| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7

|

+-------------------------------+-----------------------+----------------

-----+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr.

ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Comput

e M. |

| | | MI

G M. |

|===============================+======================+=================

=====|

| 0 Tesla T4 Off | 00000000:00:08.0 Off |

0 |

| N/A 55C P0 28W / 70W | 2MiB / 15360MiB | 5% Def

ault |

| | |

N/A |

+-------------------------------+-----------------------+----------------

-----+

+--

-----+

| Processes:

|

| GPU GI CI PID Type Process name GPU Me

mory |

| ID ID Usage

|

|==

=====|

| No running processes found

|

+--

-----+

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

在 GPU 节点上配置硬件加速器 - Alauda Container Platform

资源监控

介绍

功能指南

介绍

资源监控介绍

优势

应用场景

使用限制

GPU资源监控

功能概述

核心功能

功能优势

节点监控

容器组监控

时间范围选择

Alauda Container Platform

资源监控 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

介绍

目录

资源监控介绍

资源监控是 Kubernetes 硬件加速器套件的关键组成部分，旨在为您容器化工作负载中的 GPU

资源利用率提供全面的可见性。该模块提供实时指标和历史数据分析，涵盖两个基本层面上的

计算利用率 和 GPU 内存消耗：

资源监控是 Kubernetes 硬件加速器套件的关键组成部分，旨在为您容器化工作负载中的 GPU

资源利用率提供全面的可见性。该模块在两个基本层面提供 计算利用率 和 GPU 内存消耗：

节点级监控：跟踪整个 Kubernetes 节点的 GPU 资源总使用情况

容器组级监控：分析每个工作负载的 GPU 消耗，具有容器组粒度

此监控解决方案与平台的核心加速器模块（pGPU/vGPU（GPU-Manager）/MPS）集成，使用

户能够优化 GPU 分配，实施资源配额，并排除 AI/ML 工作负载、实时推理服务等中的性能瓶

颈。

资源监控介绍

优势

应用场景

使用限制

Alauda Container Platform

介绍 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

优势

资源监控的核心优势如下：

多维可观察性

同时监控物理/虚拟 GPU 的计算单元（CUDA 内核）和内存利用率，提供有关加速器使用模

式的全面见解。

层次化指标收集

在节点和容器组粒度下捕获数据，使集群范围的资源趋势与个别工作负载需求之间能够进行

关联。

原生集成

与所有加速器模块（pGPU/vGPU/MPS）无缝协作，无需额外代理，利用 Kubernetes 原生

指标管道。

历史分析

存储 GPU 指标并设定可配置的保留期（默认 7 天），通过集成可视化工具进行容量规划和

使用模式分析。

应用场景

资源监控的主要应用场景如下：

性能优化

在训练集群中识别未充分利用的 GPU，并为深度学习工作负载调整资源请求。例如，检测

持续使用 <30% 分配 GPU 内存的容器组，以优化内存分配。

多租户治理

在共享环境中监控 vGPU 消耗，强制执行 GPU 配额合规性。跟踪 AI 平台部署中累积使用

情况与分配配额之间的关系。

成本归属

介绍 - Alauda Container Platform

为企业 Kubernetes 环境中的费用分摊/展示模型生成每个命名空间的 GPU 利用报告，将容

器组级指标与组织单位相关联。

故障诊断

通过分析容器崩溃前的内存使用趋势来调查 GPU 加速工作负载中的 OOM（内存溢出）事

件。与 Kubernetes 事件交叉参考以进行根本原因分析。

容量规划

分析历史 GPU 利用模式（例如，峰值计算需求期），为基础设施扩展决策和 AI 基础设施的

预算分配提供参考。

使用限制

使用资源监控时，请注意以下限制：

模块依赖性

需要在集群中部署至少一个加速器模块（pGPU/vGPU/MPS）

介绍 - Alauda Container Platform

功能指南

GPU资源监控

功能概述

核心功能

功能优势

节点监控

容器组监控

时间范围选择

Alauda Container Platform

功能指南 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

GPU资源监控

目录

功能概述

资源监控功能允许在容器平台中实时和历史性地跟踪各节点和容器组（Pods）内的GPU利用

率和内存使用情况。该功能帮助管理员和开发人员：

监控GPU性能：识别GPU资源分配中的瓶颈。

排除故障：分析GPU使用趋势以调试与资源相关的问题。

功能概述

核心功能

功能优势

节点监控

访问GPU仪表板

选择节点指标

理解指标

容器组监控

访问容器组指标

配置过滤器

关键指标

时间范围选择

Alauda Container Platform

GPU资源监控 - Alauda Container Platform

http://localhost:4173/container_platform/zh/

优化工作负载：根据数据做出决策，改善工作负载分布。

适用场景：

实时监控GPU密集型应用程序。

对GPU利用率进行历史分析，以进行容量规划。

多节点/多容器组GPU性能比较。

提供的价值：

增强对GPU资源消耗的可视化。

通过可操作的见解提高集群效率。

核心功能

节点级监控：跟踪每个节点的GPU利用率和内存使用情况。

容器组级监控：监控独立容器组的GPU指标。

自定义时间范围：分析最近30分钟到7天的数据。

功能优势

实时可视化：具有自动刷新功能的互动仪表板。

多维度过滤：按GPU类型、命名空间或容器组缩小指标范围。

节点监控

通过以下步骤监控节点级的GPU资源：

1. 导航到平台管理视图

2. 转到操作中心 → 监控 → 仪表板

访问GPU仪表板1

GPU资源监控 - Alauda Container Platform

3. 切换到GPU目录

1. 选择节点监控仪表板

2. 从下拉菜单中选择目标节点

3. 选择时间范围：

最近30分钟

最近1/6/12/24小时

最近2/7天

自定义范围

GPU利用率 使用的GPU计算能力百分比（0-100%）

GPU内存使用量 使用的总内存与可用内存（以GiB为单位）

容器组监控

通过精细过滤分析容器组级的GPU使用情况：

1. 导航到GPU目录下的仪表板

2. 选择容器组监控

1. 选择GPU类型：

pGPU

选择节点指标2

理解指标3

指标 描述

访问容器组指标1

配置过滤器2

GPU资源监控 - Alauda Container Platform

GPU-Manager(vGPU)

MPS

2. 选择包含GPU容器组的命名空间

3. 选择特定容器组

容器组GPU利用率 被选定容器组的GPU计算使用情况

容器组GPU内存 被选定容器组的内存分配

时间范围选择

两个仪表板都支持灵活的时间窗口：

关键指标3

指标 描述

可用预设:

- 最近30分钟

- 最近1小时

- 最近6小时

- 最近12小时

- 最近24小时

- 最近2天

- 最近7天

- 自定义范围

GPU资源监控 - Alauda Container Platform

	硬件加速器
	概述
	安装
	应用开发
	配置管理
	资源监控

	概述
	介绍
	硬件加速器介绍
	产品优势
	vGPU 模块
	pGPU 模块
	MPS 模块

	应用场景
	vGPU 使用场景
	pGPU 使用场景
	MPS 使用场景

	技术限制
	需要特权权限
	硬件设备访问要求
	内核级操作
	K8s 设备插件架构要求

	vGPU 限制
	pGPU 限制
	MPS 限制

	功能概览
	vGPU（基于开源 GPU-Manager）
	pGPU（NVIDIA 设备插件）
	MPS（NVIDIA 多进程服务插件）

	安装
	安装 Kubernetes 硬件加速工具包
	先决条件
	通过 Web 控制台安装

	应用开发
	介绍
	功能指南
	故障排除

	介绍
	应用开发简介

	功能指南
	CUDA 驱动与运行时兼容性
	分层架构与核心概念
	1. CUDA Runtime API 层
	技术定位
	版本检测方法

	2. CUDA Driver API 层
	技术定位
	版本检测方法

	版本兼容矩阵与约束
	物理 GPU 部署 - 核心兼容原则
	正式规则

	虚拟化场景增强（HAMI/GPU-Manager）
	版本要求

	部署最佳实践
	推荐策略
	旧系统替代方案
	1. 物理 GPU 调度或 GPU-Manager 整卡分配
	2. 节点标签策略
	3. 运行时版本升级

	故障排查手册
	常见错误代码

	使用 ConfigMap 添加自定义设备
	介绍
	特性
	优势
	功能模块 1：ConfigMap 编写规范
	核心规则
	参数规范

	功能模块 2：资源值定义
	单键示例
	多键关联
	策略规范

	故障排除
	解决 vLLM 中 float16 仅支持计算能力至少为 xx 的 GPU 错误
	问题描述
	环境
	症状
	相关日志

	根本原因
	主要原因
	技术分析

	故障排查
	步骤 1：验证 GPU 计算能力
	步骤 2：检查模型精度需求
	步骤 3：验证框架兼容性

	解决方案
	针对计算能力不足的解决方案
	注意事项
	前提条件
	操作步骤

	预防措施
	相关内容
	GPU 计算能力参考
	官方参考

	Paddle Autogrow 内存分配在 GPU-Manager 上的崩溃问题
	问题描述
	现象

	根本原因
	根因分析

	解决方案
	方案概述
	注意事项
	实施步骤
	Kubernetes 部署
	裸机部署

	验证方法
	预防措施
	相关内容
	内存分配策略对比
	参考资料

	配置管理
	介绍
	功能指南

	介绍
	配置管理概述

	功能指南
	在 GPU 节点上配置硬件加速器
	前提条件
	 安装 GPU 驱动
	获取驱动下载地址
	安装驱动
	安装 NVIDIA 容器运行时

	物理 GPU 配置
	在 GPU 业务集群上部署物理 GPU 插件

	NVIDIA MPS 配置（驱动支持 CUDA 版本必须 >= 11.5）
	在 GPU 业务集群上部署 NVIDIA MPS 插件
	在 GPU 集群的管理界面上执行以下操作：

	配置 kube-scheduler（kubernetes >= 1.23）

	GPU 管理器配置
	配置 kube-scheduler（kubernetes >= 1.23）
	在 GPU 业务集群上部署 GPU 管理器插件

	结果验证

	资源监控
	介绍
	功能指南

	介绍
	资源监控介绍
	优势
	应用场景
	使用限制

	功能指南
	GPU资源监控
	功能概述
	核心功能
	功能优势
	节点监控
	访问GPU仪表板
	选择节点指标
	理解指标

	容器组监控
	访问容器组指标
	配置过滤器
	关键指标

	时间范围选择

