Hardware accelerators - Alauda Container Platform

0 Alauda Container Platform Q

Hardware accelerators

Overview
Introduction Features
Hardware accelerator Introduction vGPU (Based on Opensource GPU-Manager)
Product Advantages pGPU (NVIDIA Device Plugin)
Application Scenarios MPS (NVIDIA Multi-Process Service Plugin)

Technical Limitations

Install

Install

Installing Kubernetes Hardware accelerator Toolkit

Application Development

Introduction Guides Troublesho

http://localhost:4173/container_platform/

Hardware accelerators - Alauda Container Platform

Application Development Introduction

Configuration Management

Introduction Guides

Configuration Management Introduction

Resource Monitoring

Introduction Guides

Resource Monitoring Introduction
Advantages
Application Scenarios

Usage Limitations

Q Alauda Container Platform

Overview

Introduction

Hardware accelerator Introduction
Product Advantages
Application Scenarios

Technical Limitations

Overview - Alauda Container Platform

Features

vGPU (Based on Opensource GPU-Manager)
pGPU (NVIDIA Device Plugin)

MPS (NVIDIA Multi-Process Service Plugin)

http://localhost:4173/container_platform/

0 Alauda Container Platform

Introduction

TOC

Hardware accelerator Introduction
Product Advantages
vGPU Module
pGPU Module
MPS Module
Application Scenarios
vGPU Use Cases
pGPU Use Cases
MPS Use Cases
Technical Limitations

Privileged Required

Introduction - Alauda Container Platform

Hardware Device Access Requirements

Kernel-Level Operations

K8s Device Plugin Architecture Requirements

vGPU Constraints
pGPU Constraints

MPS Constraints

Hardware accelerator Introduction

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

The Kubernetes Hardware accelerator Suite is an enterprise-grade solution for optimizing
GPU resource allocation, isolation, and sharing in cloud-native environments. Built on

Kubernetes device plugins and NVIDIA-native technologies, it provides three core modules:

1. vGPU Module Based on Opensource GPU-Manager, this enables fine-grained GPU
virtualization by splitting physical GPUs into shareable virtual units with memory/compute

quotas. Ideal for multi-tenant environments requiring dynamic resource allocation.

2. pGPU Module Leveraging NVIDIA's official Device Plugin, it delivers full physical GPU
isolation with NUMA-aware scheduling. Designed for high-performance computing (HPC)

workloads needing dedicated GPU access.

3. MPS Module Implements NVIDIA's Multi-Process Service to allow concurrent GPU context
execution with resource constraints. Optimizes latency-sensitive applications through
CUDA kernel fusion.

Product Advantages

vGPU Module

+ Dynamic Slicing: Split GPUs to support multi progress used one physical gpu

¢ QoS Enforcement: Guaranteed compute units (vcuda-core) and memory quotas (vcuda-

memory)

pGPU Module

+ Hardware-Level Isolation: Direct PCle passthrough with IOMMU protection

 NUMA Optimization: Minimize cross-socket data transfer via automatic NUMA node

binding

MPS Module

* Low-Latency Execution: 30-50% latency reduction through CUDA context fusion

e Resource Caps: Limit per-process GPU compute (0-100%) and memory usage

Introduction - Alauda Container Platform

e Zero Code Changes: Works with unmodified CUDA applications

Application Scenarios

vGPU Use Cases

e Multi-Tenant Al Platforms: Share A100/H100 GPUs across teams with guaranteed SLAs
e VDI Environments: Deliver GPU-accelerated virtual desktops for CAD/3D rendering

» Batch Inference: Parallelize model serving with fractional GPU allocations

pGPU Use Cases

+ HPC Clusters: Run MPI jobs with exclusive GPU access for weather simulation
e ML Training: Full GPU utilization for large language model training

+ Medical Imaging: Process high-resolution MRI data without resource contention

MPS Use Cases

+ Real-Time Inference: Low-latency video analytics using concurrent CUDA streams
e Microservice Orchestration: Co-locate multiple GPU microservices on shared Hardware

+ High-Concurrency Serving: Improve QPS by 3x for recommendation systems

Technical Limitations

Privileged Required

Hardware Device Access Requirements

Device File Permissions NVIDIA GPU devices require direct access to protected system
resources:

Introduction - Alauda Container Platform

1ls -1 /dev/nvidia*

crw-rw-rw- 1 root root 195, O Aug 1 10:00 /dev/nvidia®
crw-rw-rw- 1 root root 195, 255 Aug 1 10:00 /dev/nvidiactl
crw-rw-rw- 1 root root 195, 254 Aug 1 10:00 /dev/nvidia-uvm

* Requirement: Root access to read/write device files

+ Consequence: Non-root containers get permission denied errors

Kernel-Level Operations

Essential NVIDIA Driver Interactions

Operation Privilege Requirement Purpose

Module Loading CAP_SYS MODULE Load NVIDIA kernel modules
Memory Management CAP_IPC_LOCK GPU memory allocation
Interrupt Handling CAP_SYS_RAWIO Process GPU interrupts

K8s Device Plugin Architecture Requirements

1. Socket Creation: Write to /var/lib/kubelet/device-plugins
2. Health Monitoring: Access to nvidia-smi and kernel logs

3. Resource Allocation: Modify device cgroups

vGPU Constraints

¢ support only cuda less then 12.4

¢ No MIG support when vGPU enabled

pGPU Constraints

* No GPU sharing capability (1:1 pod-to-GPU mapping)

Introduction - Alauda Container Platform

¢ Requires Kubernetes 1.25+ with SR-IOV enabled

¢ Limited to PCle/NVSwitch-connected GPUs

MPS Constraints

o Potential fault propagation across fused contexts
¢ Requires CUDA 11.4+ for memory limits

e No support for MIG-sliced GPUs

Features - Alauda Container Platform

Q Alauda Container Platform Q

Features

TOC

vGPU (Based on Opensource GPU-Manager)
pGPU (NVIDIA Device Plugin)

MPS (NVIDIA Multi-Process Service Plugin)

vGPU (Based on Opensource GPU-Manager)

+ Fine-Grained Resource Slicing
Splits physical GPUs core from 1-100 quotas. Supports dynamic allocation for multi-tenant

environments like Al inference and virtual desktops.

+ Topology-Aware Scheduling
Automatically prioritizes NVLink/C2C-connected GPUs to minimize cross-socket data

transfer latency. Ensures optimal GPU pairing for distributed training workloads.

pGPU (NVIDIA Device Plugin)

 NUMA-Optimized Allocation
Enforces 1:1 GPU-to-Pod mapping with NUMA node binding, reducing PCle bus contention
for high-performance computing (HPC) tasks like LLM training.

http://localhost:4173/container_platform/

Features - Alauda Container Platform

+ Exclusive Hardware Access
Provides full physical GPU isolation through PCle passthrough, ideal for mission-critical

applications requiring deterministic performance (e.g., medical imaging processing).

MPS (NVIDIA Multi-Process Service Plugin)

¢ Latency-Optimized Execution
Enables CUDA kernel fusion across processes, reducing inference latency by 30-50% for

real-time applications like video analytics.

+ Resource Sharing with Caps
Allows concurrent GPU context execution while enforcing per-process compute (0-100%)

and memory limits via environment variables.

Install - Alauda Container Platform

Q Alauda Container Platform Q

Install

TOC

Installing Kubernetes Hardware accelerator Toolkit
Prerequisites

Installing via Web Console

Installing Kubernetes Hardware accelerator
Toolkit

Prerequisites

Before installation, ensure the following requirements are met:

1. Kubernetes Cluster: Version >1.25 with DevicePlugins feature gate enabled.

2. NVIDIA Drivers: Installed on all GPU nodes . Verify with nvidia-smi .

3. Container Runtime: Configured with NVIDIA Container Toolkit (=1.7.0) for GPU support.

Installing via Web Console

1. Navigate to Cluster Plugins:

http://localhost:4173/container_platform/

Install - Alauda Container Platform
e Go to Platform Management — Catalog — Cluster Plugin

e Search for "gpu" and click Install

2. Feature Toggles: Enable/disable advanced capabilities during installation:

Option Functionality Recommended Scenario
Physical GPU isolation with NUMA-aware Al training/high-performance
PGPU
scheduling computing

Multi-tenant sharing/resource
vGPU Virtual GPU slicing via GPU-Manager
guotas

Multi-Process Service for Low-latency inference/parallel
MPS
compute/memory sharing tasks

Application Development - Alauda Container Platform

0 Alauda Container Platform

Application Development

Introduction

Introduction

Application Development Introduction

Guides

CUDA Driver and Runtime Com

Hierarchical Architecture & Core Concepts

Version Compatibility Matrix & Constraints
Deployment Best Practices

Troubleshooting Handbook

Troubleshooting

Add Custom Devices Using ConfigMap

Introduction

Features

Advantages

Function Module 1: ConfigMap Authoring Specifications

Function Module 2: Resource Value Definition

http://localhost:4173/container_platform/

Application Development - Alauda Container Platform

Troubleshooting floatl6 is only Paddle Autogrow Memory Allocation Crash ol

capability at least xx Error in vL
Problem Description

Problem Description Sl Ealse

Root Cause Solution

Troubleshooting Verification Methods

Solution Preventive Measures

Preventive Measures Related Content

Related Content

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Application Development Introduction

Application Development Introduction

Application Development Module guides users in configuring Hardware accelerators from
multiple vendors (e.g., AMD/Intel GPUs, FPGASs) through a unified interface, enabling the
orchestration and optimization of heterogeneous computing resources in containerized

environments to enhance high-performance workloads like Al training and image processing.

http://localhost:4173/container_platform/

Guides - Alauda Container Platform

0 Alauda Container Platform

Guides

CUDA Driver and Runtime Com

Hierarchical Architecture & Core Concepts
Version Compatibility Matrix & Constraints
Deployment Best Practices

Troubleshooting Handbook

Add Custom Devices Using ConfigMap

Introduction

Features

Advantages

Function Module 1: ConfigMap Authoring Specifications

Function Module 2: Resource Value Definition

http://localhost:4173/container_platform/

CUDA Driver and Runtime Compatibility - Alauda Container Platform

0 Alauda Container Platform

CUDA Driver and Runtime Compatibility

TOC

Hierarchical Architecture & Core Concepts
1. CUDA Runtime API Layer
Technical Positioning
Version Detection Methods
2. CUDA Driver API Layer
Technical Positioning
Version Detection Methods
Version Compatibility Matrix & Constraints
Physical GPU Deployment - Core Compatibility Principles
Formal Rules
Virtualization Scenario Enhancements (HAMI/GPU-Manager)
Version Requirements
Deployment Best Practices
Recommended Strategy
Alternative Solutions for Legacy Systems
1. Physical GPU Scheduling or GPU-Manager Whole-Card Allocation
2. Node Labeling Strategy
3. Runtime Version Upgrade
Troubleshooting Handbook

Common Error Codes

http://localhost:4173/container_platform/

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Hierarchical Architecture & Core Concepts

“Toolkit components to
build applications”

CUDA Toolkit
(runtime, libraries, tools)

CUDA user-mode driver |
i “Driver components
: GPU kernel-mode driver i to run applications™
| (nvidia.ko) |

i NVIDIA Display Driver Package

A | (libcuda.so)

__

1. CUDA Runtime API Layer

Technical Positioning

1. Functional Scope: Provides high-level abstraction interfaces for developers,
encapsulating core GPU operations (memory allocation, stream management, kernel

launches, etc.)

2. Version Binding: Determined by the CUDA Toolkit version used during build (e.g., CUDA
12.0.1)

Version Detection Methods

CUDA Driver and Runtime Compatibility - Alauda Container Platform

pip list | grep cuda

conda list |grep cuda

find / -name "libcudart*"

/usr/local/cuda-12.4/targets/x86_64-1inux/1ib/1libcudart.so0.12
/usr/local/cuda-12.4/targets/x86_64-1inux/1lib/1libcudart.so0.12.4.127
Indicates CUDA 12.4

if you find multi lib version, you should check your program which version used,like PATH,
LD_LIBRARY_PATH or other program set

env |grep PATH

LIBRARY_PATH=/usr/local/cuda/1ib64/stubs
LD_LIBRARY_PATH=/usr/local/nvidia/1lib:/usr/local/nvidia/1ib64
PATH=/go/bin:/usr/local/go/bin:/usr/local/nvidia/bin:/usr/local/cuda/bi

n:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

2. CUDA Driver API Layer

Technical Positioning

1. Functional Scope: Low-level interface directly interacting with GPU hardware, handling

instruction translation and hardware resource scheduling

2. Version Binding: Determined by NVIDIA driver version, following SemVer specification

Version Detection Methods

CUDA Driver and Runtime Compatibility - Alauda Container Platform

nvidia-smi

o o o e e e e e
_________________ +

| NVIDIA-SMI 550.144.03 Driver Version: 550.144.03 CUDA V
ersion: 12.4 |

R e o e e e e e e oo oo e
_________________ +

| GPU Name Persistence-M | Bus-Id Disp.A | Vola
tile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-
Util Compute M. |

| | |

MIG M. |

| LS S e
= ——————11

| © NVIDIA A30 off | 000000E0:00:0B.0 Off |

0 |

| N/A 31C PO 28W / 165W | 10195MiB / 24576MiB |

0% Default |

| | |
Disabled |

o m e e Fom oo R pep——
_________________ +

Version Compatibility Matrix & Constraints

Physical GPU Deployment - Core Compatibility Principles

First reference NVIDIA's official statement,the base constraints is

1. Driver version must always be = Runtime version

2. NVIDIA officially guarantees 1 major version backward compatibility (e.g., CUDA Driver

12.x supports Runtime 11.x)

3. Cross-two-major-version compatibility (e.g., Driver 12.x with Runtime 10.x) is neither

officially supported nor recommended

CUDA Driver and Runtime Compatibility - Alauda Container Platform

when you deploy cuda program , please comply with the base constraints

Formal Rules

+ Mandatory: Driver version = Runtime version

+ Recommended: Driver major version - Runtime major version < 1

- Blocked: Driver version < Runtime version - May trigger CUDA_ERROR_UNKN
OWN(999)

- Unstable: Driver major version - Runtime major version > 1 - Applicatio
n may malfunction

Virtualization Scenario Enhancements (HAMI/GPU-

Manager)

When using Virtual GPU solutions like GPU-Manager or HAMI, besides the base

constraints up, you must comply with the additional constraints apply:

Version Requirements

1. Virtual GPU solutions baseline version = Runtime version

2. Runtime major version = Driver major version = Baseline major version

Special Note for GPU-Manager: We implemented partial cross-1-major-version compatibility
(e.g., baseline 12.4 supporting vLLM 11.8). However, this requires per-application hook

adjustments and must be analyzed case-by-case.

Deployment Best Practices

Recommended Strategy

» Adopt newer CUDA versions (e.g., CUDA 12.x) for both Driver and Runtime in new GPU

cluster planning

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Alternative Solutions for Legacy Systems

1. Physical GPU Scheduling or GPU-Manager Whole-Card Allocation

Whole-card scheduling provides native compatibility equivalent to physical GPU access GPU-
Manager can use whole card mode when you set tencent.com/vcuda-core to 100 multily
positive integer,like 100,200,300

resources:
limits:
tencent.com/vcuda-core: "100"

2. Node Labeling Strategy

Label nodes based on supported Driver CUDA versions:

node_labels:
cuda-major-version: "12"

cuda-minor-version: "4"

this means your node is cuda 12.4

Configure scheduling affinity in deployments: you can set cuda-major-version and cuda-minor-

version by your program cuda runtime need

CUDA Driver and Runtime Compatibility - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:
name: cuda-app
spec:
template:
spec:
affinity:
nodeAffinity:
requiredbDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: cuda-major-version
operator: In
values: ["12"]
- key: cuda-minor-version
operator: Gt

values: ["2"]

3. Runtime Version Upgrade

Legacy CUDA Runtimes may have security vulnerabilities (CVESs) and lack support for new

GPU features. Prioritize upgrades to CUDA 12.x.

nvidia recomend to upgrade both

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Upgrade both toolkit and driver

Cuba 10.1 CUDA 11.0
CUDA Toolkit and Runtime CUDA Toolkit and Runtime
------------ R418 driver ---------- rrommmmmm=== - R450 driver
| user-mode library I (user-mode library]
(libcuda.so) (libcuda.so)
[kernel-mode driver l [kernel-mode driver J
| (nvidia.ko) i i (nvidia.ko)

Figure 2: CUDA Upgrade Path

Troubleshooting Handbook
Common Error Codes

Error Code Description

Driver-Runtime
CUDA_ERROR_INVALID_IMAGE) .
incompatibility

Virtual memory

violation
CUDA_ERROR_ILLEGAL_ADDRESS (common in
version

mismatch)

PTX instruction
CUDA ERROR_UNSUPPORTED_ PTX_ VERSION _
set mismatch

Recommended

Action

Align driver
version with
container CUDA

version

Verify Runtime vs
baseline

constraints

Recompile with
explicit -

arch=sm_xx

CUDA Driver and Runtime Compatibility - Alauda Container Platform

Add Custom Devices Using ConfigMap - Alauda Container Platform

Q Alauda Container Platform Q

Add Custom Devices Using ConfigMap

TOC

Introduction
Features
Advantages
Function Module 1: ConfigMap Authoring Specifications
Core Rules
Parameter Specification
Function Module 2: Resource Value Definition
Single Key Example
Multi-key Association

Policy Specification

Introduction

* Implements standardized definition and management of Kubernetes custom resources

through ConfigMap, addressing:

+ Unified management of custom resource specifications to prevent configuration

fragmentation
o Standardized resource definition format for better maintainability

« Multi-language description support and default value configuration

http://localhost:4173/container_platform/

Add Custom Devices Using ConfigMap - Alauda Container Platform

« Suitable for scenarios requiring Kubernetes resource model extension (e.g., GPU resource

management), providing a standardized resource definition framework

Features

e Single-key resource definition specification

« Multi-key associated resource definition

o Standardized resource request interface

¢ Chinese/English bilingual description support

o Resource default value configuration mechanism

Advantages

Extensibility: Resource group management through labels

Security: Namespace isolation (kube-public)

Stability: Enforced format validation rules

Maintainability: Unified metadata label specifications

Function Module 1: ConfigMap Authoring

Specifications

Core Rules

1. Single Responsibility Principle: One ConfigMap per key definition
2. Namespace: Fixed to namespace=kube-public

3. Naming Convention:

cf-crl-{customName}-{keyName}

Add Custom Devices Using ConfigMap - Alauda Container Platform
e cf-crl : Fixed prefix
e customName : Custom valid name

e keyName : Key identifier (special characters replaced with '-")

4. Label Requirements:

labels:
features.alauda.io/type: CustomResourcelLimitation

features.alauda.io/group: {resource-group}

features.alauda.io/enabled: "true"

Parameter Specification

Parameter Required Description

name format Yes Follows cf-crl-{customName}-{keyName}
namespace Yes Fixed as kube-public

label group Yes Must contain specified 3 feature labels

Function Module 2: Resource Value Definition

Single Key Example

Add Custom Devices Using ConfigMap - Alauda Container Platform

apiVersion: vi
kind: ConfigMap
metadata:
name: cf-crl-gpu-manager-vcuda-core
namespace: kube-public
labels:
features.alauda.io/type: CustomResourcelLimitation
features.alauda.io/group: gpu-manager
features.alauda.io/enabled: "true"
data:
key: "tencent.com/vcuda-core"
dataType: "integer"
defaultvalue: "20"
descriptionzh: ""
descriptionEn: "GPU vcore count, 100 virtual cores equal 1 physical GPU
core"
group: "gpu-manager"
limits: "optional"
requests: "disabled"

Multi-key Association

metadata:
name: cf-crl-gpu-manager-vcuda-core
labels: [same group labels]
metadata:

name: cf-crl-gpu-manager-vcuda-memory

labels: [same group labels]

Policy Specification

Field Allowed Values Description
limits disabled/required/optional Resource limits configuration

requests disabled/required/fromLimits Resource requests configuration

Add Custom Devices Using ConfigMap - Alauda Container Platform

Troubleshooting - Alauda Container Platform

Q Alauda Container Platform Q

Troubleshooting

Troubleshooting floatl6 is only Paddle Autogrow Memory Allocation Crash ol

capability at least xx Error in vL
Problem Description

Problem Description Bl ERlee

Root Cause Solution

Troubleshooting Verification Methods

Solution Preventive Measures

Preventive Measures Bl o

Related Content

http://localhost:4173/container_platform/

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

Q Alauda Container Platform Q

Troubleshooting floatl6 is only supported
on GPUs with compute capability at least

xX Error in vLLM

TOC

Problem Description
Environment
Symptoms
Related Logs
Root Cause
Primary Cause
Technical Analysis
Troubleshooting
Step 1: Verify GPU Compute Capability
Step 2: Check Model Precision Requirements
Step 3: Validate Framework Compatibility
Solution
Solution for Insufficient Compute Capability
Considerations
Prerequisites
Steps
Preventive Measures

Related Content

http://localhost:4173/container_platform/

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vVLLM - Alauda Container Platform

GPU Compute Capability Reference

Official References

Problem Description

Environment

+ Hardware: NVIDIA GPUs with compute capability <8.0 (e.g., Tesla V100, T4)

* Model Types: LLMs requiring bfloat16/FP8 precision (e.g., LLaMA-2-70B, GPT-NeoX-20B)

Symptoms
1. Explicit error message:

ValueError: floatl6/bfloat16 is only supported on GPUs with compute cap
ability at least 8.0

2. Failed kernel compilation during model loading

Related Logs

File "/usr/local/lib/python3.10/site-packages/v1ilm/model_executor/layers/

quantization/__init__.py", line 37, in _verify_cuda_compute_capability
raise ValueError(

ValueError: bfloatl6 is only supported on GPUs with compute capability at

least 8.0. Current GPU: Tesla V100-PCIE-16GB, compute capability 7.0

Root Cause

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

Primary Cause

Insufficient GPU Compute Capability The GPU's compute capability (CC) doesn't meet the
minimum requirement for specific data types:

+ bfloatl6/FP8: Requires CC =8.0 (Ampere architecture or newer)

e FP16 Tensor Core Optimization: Requires CC \>7.0 (Volta architecture or newer)
Technical Analysis

1. Architecture Limitations:

e Pre-Ampere GPUs (CC <8.0) lack dedicated matrix math units for bfloat16 operations

e Tensor Cores in Volta/Turing (CC 7.0-7.5) only support FP16/FP32 mixed precision

2. Framework Enforcement:

def _verify_cuda_compute_capability():
if device.compute_capability < MIN_REQUIRED_CC:

raise ValueError(f"Requires compute capability ={MIN_REQUIRED_C
C}II)

Troubleshooting

Step 1: Verify GPU Compute Capability

import torch

print(f"Compute Capability: {torch.cuda.get_device_capability()}")

Step 2: Check Model Precision Requirements

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

cat model/config.json | grep "torch_dtype"

Step 3: Validate Framework Compatibility

from v1llm import _is_cuda_compute_capability_compatible as compat
print(f"bfloatl6 supported: {compat((8,0))}")

Solution

Solution for Insufficient Compute Capability

Considerations

o Performance degradation expected when downgrading precision

+ Model accuracy may vary with different precision types

Prerequisites

e CUDA Toolkit 211.8

Steps

1. Modify InferenceService yaml: add args like --dtype=half

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

apiVersion: serving.kserve.io/vilbetal
kind: InferenceService
metadata:
name: llama-2-service
annotations:
serving.kserve.io/enable-prometheus-scraping: 'true'
spec:
predictor:
containers:
- name: kserve-container
image: vllm/v1llm-serving:0.3.2
args:
- --model=meta-1llama/Llama-2-7b-chat-hf
- --dtype=half
- --tensor-parallel-size=1
resources:
limits:

nvidia.com/gpu: '1'

2. Wait deploy restart

Preventive Measures

1. Pre-Flight Checks:

from vllm import LLM
LLM.validate_environment(model_dtype="bfloatl6")

2. Cluster Configuration:

helm upgrade -i nvidia-device-plugin \
--set compatabilityPolicy=strict \

--set computeCapabilities=8.0+

3. Model Optimization:

Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM - Alauda Container Platform

1lm = LLM(model="codellama/CodeLlama-34b",

quantization="awq",
load_format="awq")

Related Content

GPU Compute Capability Reference

Architecture CC Range
Volta 7.0-7.2
Turing 7.5
Ampere 8.0-8.9
Hopper 9.0+

Official References

1. NVIDIA Compute Capability Table ~

2. vLLM Hardware Requirements ~

Supported Precisions

FP16 Tensor Core

FP16/INT8

bfloat16/TF32/FP8

FP4/FP8 with dynamic scale

https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://developer.nvidia.com/cuda-gpus
https://docs.vllm.ai/en/latest/getting_started/installation.html
https://docs.vllm.ai/en/latest/getting_started/installation.html
https://docs.vllm.ai/en/latest/getting_started/installation.html

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

Q Alauda Container Platform Q

Paddle Autogrow Memory Allocation Crash

on GPU-Manager

TOC

Problem Description
Symptoms
Root Cause
Root Cause Analysis
Solution
Solution Overview
Considerations
Implementation Steps
Kubernetes Deployment
Bare Metal Deployment
Verification Methods
Preventive Measures
Related Content
Memory Allocation Strategy Comparison

References

Problem Description

http://localhost:4173/container_platform/

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

Symptoms

When both PaddlePaddle's Autogrow memory allocation strategy and GPU-Manager's

virtualized memory management are enabled simultaneously, the following anomalies may

occur:

1. OOM errors due to discontinuous memory allocation
2. Abnormal GPU utilization fluctuations
3. Random training process crashes

4. Inconsistent memory usage between nvidia-smi reports and framework statistics

Root Cause

Root Cause Analysis

1. Memory Allocation Strategy Conflict Paddle's Autogrow uses dynamic segmented
allocation while GPU-Manager's virtualization requires contiguous physical memory
mapping

2. Management Mechanism Incompatibility Autogrow's delayed release mechanism

conflicts with GPU-Manager's memory reclamation strategy

3. Metadata Maintenance Conflict Separate metadata maintenance by both systems causes

inconsistent memory views

Trigger Mechanism:

Autogrow attempts optimal block sizing during allocation

GPU-Manager virtualization layer intercepts physical memory requests

Non-contiguous allocations cause virtual address mapping failures

Dual management leads to metadata consistency exceptions

Solution

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

Solution Overview

Force Paddle to use traditional allocation strategy via environment variable:

FLAGS_allocator_strategy=naive_best_fit

Considerations

1. Requires training process restart

2. May reduce Paddle's memory reuse efficiency

Implementation Steps

Kubernetes Deployment

1. Edit Deployment configuration

apiVersion: apps/vi
kind: Deployment
spec:
template:
spec:
containers:
- name: paddle-container
env:
- name: FLAGS_allocator_strategy
value: 'naive_best_fit'

2. Apply configuration
kubectl apply -f updated_deployment.yaml

3. Verify configuration

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

kubectl exec <pod-name> -- env | grep FLAGS
Bare Metal Deployment
1. Set environment variable before execution

export FLAGS_allocator_strategy=naive_best_fit

python train.py

2. Or set in Python code

import os

os.environ['FLAGS_ allocator_strategy'] = 'naive_best_fit'

Verification Methods

1. Check allocation strategy confirmation in logs

I0715 14:25:17.112233 12345 allocator.cc:256]
Using Naive Best Fit allocation strategy

2. Monitor memory allocation continuity

nvidia-smi --query-gpu=memory.used --format=csv -1 1

3. Stress test validation

import paddle

for 1 in range(10):
data = paddle.randn([1024, 1024, 100], dtype='float32')
print(f"Allocated {i+1}GB")

Paddle Autogrow Memory Allocation Crash on GPU-Manager - Alauda Container Platform

Preventive Measures

1. Version Compatibility Check Review Paddle release notes for memory allocation
changes during upgrades

2. Monitoring Configuration Add Prometheus alert rule:

e alert: GPUAllocConflict

expr: rate(paddle_gpu_malloc_failed_total[5m]) > ©
labels:

severity: critical

annotations:

summary: "GPU Memory Allocation Conflict Alert"

3. Baseline Testing Perform memory allocation baseline tests for new environments:

python -c "import paddle; paddle.utils.run_check()"

Related Content

Memory Allocation Strategy Comparison

Strategy Advantages Disadvantages

autogrow High efficiency Poor large-block perf

naive_best_fit Stable allocation Potential fragmentation
References

Paddle Memory Optimization Whitepaper ~

https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/flags/memory_en.html

Configuration Management - Alauda Container Platform

0 Alauda Container Platform

Configuration Management

Introduction

Introduction

Configuration Management Introduction

Guides

Configure Hardware accelerator on GPU nodes

Prerequisites

Physical GPU configuration

NVIDIA MPS configuration (driver support cuda version must >= 11.5)
GPU-Manager configuration

Validation of results

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Configuration Management Introduction

Configuration Management Introduction

Configuration Management is the centralized documentation portal for configuring GPU
acceleration capabilities in kubernetes environments. This living document provides
administrators with unified guidance for setting up physical GPU (pGPU), virtual GPU (vGPU),

and Multi-Process Service (MPS) configurations across hybrid infrastructure.

http://localhost:4173/container_platform/

Guides - Alauda Container Platform

Q Alauda Container Platform

Guides

Configure Hardware accelerator on GPU nodes

Prerequisites

Physical GPU configuration

NVIDIA MPS configuration (driver support cuda version must >= 11.5)
GPU-Manager configuration

Validation of results

http://localhost:4173/container_platform/

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Q Alauda Container Platform Q

Configure Hardware accelerator on GPU

nodes

As the amount of business data increases, especially for scenarios such as artificial
intelligence and data analysis, you may want to use GPU capabilities in your self-built
business cluster to accelerate data processing. In addition to preparing GPU resources for

cluster nodes, GPU configuration should also be performed.

This solution refers to nodes in the cluster that have GPU computing capabilities as GPU

Nodes.

Note: Unless otherwise specified, the operation steps will apply to both types of nodes. For

driver installation related issues, refer to the NVIDIA official installation documentation .

TOC

Prerequisites
Install GPU driver
Gets the driver download address
Installation driver
Installation the NVIDIA Container runtime
Physical GPU configuration
Deploy physical GPU plugin on a GPU Business Cluster
NVIDIA MPS configuration (driver support cuda version must >= 11.5)
Deploy NVIDIA MPS plugin on a GPU Business Cluster
On the management interface of the GPU cluster, perform the following actions:

Configure kube-scheduler (kubernetes> = 1.23)

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
http://localhost:4173/container_platform/

Configure Hardware accelerator on GPU nodes - Alauda Container Platform
GPU-Manager configuration
Configure kube-scheduler (kubernetes> = 1.23)
Deploy GPU Manager plugin on a GPU Business Cluster

Validation of results

Prerequisites

GPU resources have been prepared on the operating node, which belongs to the GPU node

mentioned in this section.

Install GPU driver

Notice: If the GPU node uses the NVIDIA MPS plugin, ensure that the GPU architecture
of the node is Volta or newer (Volta/Turing/Ampere/Hopper, etc.), and the driver

supports CUDA version 11.5 or higher.

Gets the driver download address

1. Log in to the GPU node and run the command 1spci |grep -i NVIDIA to check the

GPU model of the node.

In the following example, the GPU model is Tesla T4.

lspci | grep NVIDIA
00:08.0 3D controller: NVIDIA Corporation TU104GL [Tesla T4] (rev al)

2. Go to the NVIDIA official website ~ to obtain the driver download link.
1. Click on Drivers in the top navigation bar on the homepage.

2. Fill in the required information for downloading the driver according to the GPU node

model .

https://www.nvidia.cn/
https://www.nvidia.cn/
https://www.nvidia.cn/

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

3. Click on Search.
4. Click on Download.
5. Right-click on Download > Copy Link Address to copy the download link of the driver.

3. Execute the following command lines on the GPU node in order to create the /home/gpu

directory and download and save the driver file to this directory.

Create /home/gpu Directory

mkdir -p /home/gpu

cd /home/gpu/

Download the driver file to /home/gpu Directory, Example : wget http
s://cn.download.nvidia.com/tesla/515.65.01/NVIDIA-Linux-x86_64-515.65.0
1.run

wget <Driver download address>

Verify that the driver file has been downloaded successfully, If the
driver file name is returned (For example : NVIDIA-Linux-x86_64-515.65.0
1.run) Indicates that the download was successful

1ls <Driver file name>

Installation driver

1. Execute the following command on the GPU node to install the gcc and kernel-devel

packages corresponding to the current operating system.

sudo yum install dkms gcc kernel-devel-$(uname -r) -y

2. Execute the following commands in order to install the GPU driver.

chmod a+x /home/gpu/<Driver file name>

/home/gpu/<Driver file name> --dkms

3. After installation, execute the nvidia-smi command. If GPU information similar to the

following example is returned, it indicates that the driver installation was successful.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

nvidia-smi
Tue Sep 13 01:31:33 2022

| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 1
1.7 |

| GPU Name Persistence-M| Bus-1Id Disp.A | Volatile Uncor
r. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Comp
ute M. |

| © Tesla T4 Off | 000EEE0E0:00:08.0 OFf |

| N/A 55C PO 28W / 70W | 2MiB / 15360MiB | 5% D
efault |

| Processes:

I
| GPU GI CI PID Type Process name GPU

Memory |

Installation the NVIDIA Container runtime

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

1. On the GPU Node, add the NVIDIA yum repository.

distribution=$(. /etc/os-release;echo $IDSVERSION_ID) && curl -s -L htt
ps://nvidia.github.io/libnvidia-container/$distribution/1libnvidia-conta
iner.repo | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo

yum makecache -y

When the prompt "Metadata cache created." appears, it indicates that the addition is

successful.

2. Install NVIDIA Container Runtime.

yum install nvidia-container-toolkit -y

When the prompt Complete! appears, it means the installation is successful.

3. Config the default Runtime. Add the following configuration to the file.

o Containerd: Modify the /etc/containerd/config.toml file.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

[plugins]
[plugins."io.containerd.grpc.vl.cri"]

[plugins."io.containerd.grpc.vl.cri".containerd]

default_runtime_name = "nvidia"

[plugins."io.containerd.grpc.vl.cri".containerd.runtimes]

[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.ru
nc]
runtime_type = "io.containerd.runc.v2"
runtime_engine = ""
runtime_root = ""
privileged_without_host_devices = false
base_runtime_spec = ""
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.
runc.options]
SystemdCgroup = true
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.nv
idia]
privileged_without_host_devices = false
runtime_engine = ""
runtime_root = ""
runtime_type = "io.containerd.runc.v1l"
[plugins."io.containerd.grpc.vl.cri".containerd.runtimes.
nvidia.options]
BinaryName = "/usr/bin/nvidia-container-runtime"

SystemdCgroup = true

o Docker: Modify the /etc/docker/daemon.json file.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

{
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime"
3
3
}

4. Restart Containerd / Docker.

¢ Containerd

systemctl restart containerd #Restart

crictl info |grep Runtime #Check

e Docker

systemctl restart docker #Restart

docker info |grep Runtime #Check

Physical GPU configuration

Deploy physical GPU plugin on a GPU Business Cluster

On the management interface of the GPU cluster, perform the following actions:

1. In the Catalog leftsidebar, choose "Cluster Plugins" subsidebar, click to deploy the "ACP
GPU Device Plugin" and open the "pGPU" option;

2. In the "Nodes" tab, select the nodes that need to deploy the physical GPU, then click on

"Label and Taint Manager", add a "device label" and choose "pGPU", and click OK;

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

3. In the "Pods" tab, check the running status of the container group corresponding to nvidia-
device-plugin-ds to see if there are any abnormalities and ensure it is running on the

specified nodes.

NVIDIA MPS configuration (driver support cuda

version must >= 11.5)

Deploy NVIDIA MPS plugin on a GPU Business Cluster
On the management interface of the GPU cluster, perform the
following actions:

1. In the Catalog leftsidebar, choose "Cluster Plugins" subsidebar, click to deploy the "ACP
GPU Device Plugin" and open the "MPS" option;

2. In the "Nodes" tab, select the nodes that need to deploy the physical GPU, then click on

"Label and Taint Manager", add a "device label" and choose "MPS", and click OK;

3. In the "Pods" tab, check the running status of the container group corresponding to nvidia-
mps-device-plugin-daemonset to see if there are any abnormalities and ensure it is running

on the specified nodes.

Configure kube-scheduler (kubernetes> = 1.23)

1. On the Business Cluster Control Node, check if the scheduler correctly references the

scheduling policy.

cat /etc/kubernetes/manifests/kube-scheduler.yaml

check if has —config option and value is /etc/kubernetes/scheduler-config.yaml, like

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

apiVersion: vi1i
kind: Pod
metadata:
creationTimestamp: null
labels:
component: kube-scheduler
tier: control-plane
name: kube-scheduler
namespace: kube-system
spec:
containers:
- command:

- kube-scheduler

- --config=/etc/kubernetes/scheduler-config.yaml

Endpoints .

Expected effectEndpoints:

Note: The above parameters and values are the default configurations of the platform. If you
have modified them, please change them back to the default values. The original custom

configurations can be copied to the scheduling policy file.
2. Check the configuration of the scheduling policy file.

1. Execute the command: kubectl describe service kubernetes -n default |grep

192.168.130.240:6443

2. Replace the contents of the /etc/kubernetes/scheduler-config.yaml file on all

Master nodes with the following content, where ${kube-apiserver} should be

replaced with the output of the first step.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

apiVersion: kubescheduler.config.k8s.io/vlbeta2
kind: KubeSchedulerConfiguration
clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
extenders:
- enableHTTPS: true
filterVerb: predicates
managedResources:
- ignoredByScheduler: false
name: nvidia.com/mps-core
nodeCacheCapable: false
urlPrefix: https://${kube-apiserver}/api/vl/namespaces/kube-system/
services/nvidia-mps-scheduler-plugin/proxy/scheduler
tlsConfig:
insecure: false
certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt
keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key
caFile: /etc/kubernetes/pki/ca.crt

if schedule-config.yaml already exist extenders,then append yaml to the end

- enableHTTPS: true
filterVerb: predicates
managedResources:
- ignoredByScheduler: false
name: nvidia.com/mps-core
nodeCacheCapable: false
urlPrefix: https://${kube-apiserver}/api/vi/namespaces/kube-system/
services/nvidia-mps-scheduler-plugin/proxy/scheduler
t1lsConfig:
insecure: false
certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt
keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key
caFile: /etc/kubernetes/pki/ca.crt

3. Run the following command to obtain the container ID:

o Containerd: Execute crictl ps |grep kube-scheduler ,the output is as follows, with

the first column being the container ID.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

1d113ccfilcla9 03c72176dof15 2 seconds ago Running
kube-scheduler 3 ecd054bbdd465 k
ube-scheduler-192.168.176.47

e Docker: Run docker ps |grep kube-scheduler ,the outputis as follows, with the first

column being the container ID.

30528a45a118 d8a9fef7349c "kube-scheduler --au..." 37 minutes
ago Up 37 minutes k8s_kube-scheduler_kube-scheduler-192.168.13
0.240_kube-system_3e9f7007b38f4deb6ffd1c7587621009_28

4. Restart the Containerd/Docker container using the container ID obtained in the previous

step.

¢ Containerd

crictl stop <Container ID>

5. Restart Kubelet.

systemctl restart kubelet

GPU-Manager configuration

Configure kube-scheduler (kubernetes> = 1.23)

1. On the Business Cluster Control Node, check if the scheduler correctly references the

scheduling policy.

cat /etc/kubernetes/manifests/kube-scheduler.yaml

check if has —config option and value is /etc/kubernetes/scheduler-config.yaml, like

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

apiVersion: vi1i
kind: Pod
metadata:
creationTimestamp: null
labels:
component: kube-scheduler
tier: control-plane
name: kube-scheduler
namespace: kube-system
spec:
containers:
- command:

- kube-scheduler

- --config=/etc/kubernetes/scheduler-config.yaml

Endpoints .

Expected effectEndpoints:

Note: The above parameters and values are the default configurations of the platform. If you
have modified them, please change them back to the default values. The original custom

configurations can be copied to the scheduling policy file.
2. Check the configuration of the scheduling policy file.

1. Execute the command: kubectl describe service kubernetes -n default |grep

192.168.130.240:6443

2. Replace the contents of the /etc/kubernetes/scheduler-config.yaml file on all

Master nodes with the following content, where ${kube-apiserver} should be

replaced with the output of the first step.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

apiVersion: kubescheduler.config.k8s.io/vlbeta2
kind: KubeSchedulerConfiguration

clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
extenders:

- enableHTTPS: true
filterVerb: predicates
managedResources:
- ignoredByScheduler: false
name: tencent.com/vcuda-core
nodeCacheCapable: false
urlPrefix: https://${kube-apiserver}/api/vl/namespaces/kube-system/

services/gpu-quota-admission/proxy/scheduler
tlsConfig:

insecure: false

certFile: /etc/kubernetes/pki/apiserver-kubelet-client.crt
keyFile: /etc/kubernetes/pki/apiserver-kubelet-client.key
caFile: /etc/kubernetes/pki/ca.crt

3. Run the following command to obtain the container ID:

o Containerd: Execute crictl ps |grep kube-scheduler ,the output is as follows, with

the first column being the container ID.

1d113ccfilcla9 03c72176dof15 2 seconds ago Running

kube-scheduler 3 ecd054bbdd465 k
ube-scheduler-192.168.176.47

e Docker: Run docker ps |grep kube-scheduler ,the outputis as follows, with the first

column being the container ID.

30528a45a118 d8a9fef7349c "kube-scheduler --au..." 37 minutes

ago Up 37 minutes k8s_kube-scheduler_kube-scheduler-192.168.13
0.240_kube-system_3e9f7007b38f4deb6ffd1c7587621009_28

4. Restart the Containerd/Docker container using the container ID obtained in the previous
step.

e Containerd

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

crictl stop <Container ID>

5. Restart Kubelet.

systemctl restart kubelet

Deploy GPU Manager plugin on a GPU Business Cluster

On the management interface of the GPU cluster, perform the following actions:

1. In the Catalog leftsidebar, choose "Cluster Plugins" subsidebar, click to deploy the "ACP
GPU Device Plugin” and open the "GPU-Manager" option;

2. In the "Nodes" tab, select the nodes that need to deploy the physical GPU, then click on

"Label and Taint Manager", add a "device label" and choose "vGPU", and click OK;

3. In the "Pods" tab, check the running status of the container group corresponding to gpu-
manager-daemonset to see if there are any abnormalities and ensure it is running on the

specified nodes.

Validation of results

Method 1. Check if there are available GPU resources on the GPU nodes by running the

following command on the control node of the business cluster:

kubectl get node ${nodeName} -o=jsonpath='{.status.allocatable}'

Method 2: Deploy a GPU application on the platform by specifying the required amount of

GPU resources. After deployment, exec the Pod and execute the following command..

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

nvidia-smi
Tue Sep 13 01:31:33 2022

| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7

e m e e e e e e e e memaao o e o m e e oo oo
----- +

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr.
ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Comput
e M. |

| I | MI
G M. |

I ey ooty e
=====|

| © Tesla T4 off | 00EOEO0:00:08.0 Off |

o |

| N/A 55C PO 28W / 70W | 2MiB / 15360MiB | 5% Def
ault |

| | |

N/A |

e e e e e e emm oo e e e oo e e e oo
----- +

o o o e e o e e e e e e e e e e e eeeeo o
----- +

| Processes:

I

| GPU GI CI PID Type Process name GPU Me
mory |

[ID ID Usage

Check whether the correct GPU information is retrieved.

Configure Hardware accelerator on GPU nodes - Alauda Container Platform

Resource Monitoring - Alauda Container Platform

0 Alauda Container Platform

Resource Monitoring

Introduction

Introduction

Resource Monitoring Introduction
Advantages
Application Scenarios

Usage Limitations

Guides

GPU Resource Monitoring

Feature Overview
Core Features
Feature Advantages
Node Monitoring
Pod Monitoring

Time Range Selection

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

TOC

Resource Monitoring Introduction
Advantages
Application Scenarios

Usage Limitations

Resource Monitoring Introduction

Resource Monitoring is a critical component of the Kubernetes Hardware Accelerator Suite,
designed to provide comprehensive visibility into GPU resource utilization across your
containerized workloads. This module delivers real-time metrics and historical data analysis

for both compute utilization and GPU memory consumption at two fundamental levels:

Resource Monitoring is a critical component of the Kubernetes Hardware Accelerator Suite,
designed to provide comprehensive visibility into GPU resource utilization across your
containerized workloads. This module delivers both compute utilization and GPU memory

consumption at two fundamental levels:

+ Node-Level Monitoring: Track aggregate GPU resource usage across entire Kubernetes

nodes

¢ Pod-Level Monitoring: Analyze per-workload GPU consumption with pod granularity

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Integrated with the platform's core accelerator modules (pGPU/NGPU(GPU-Manager)/MPS),

this monitoring solution enables users to optimize GPU allocation, enforce resource quotas,

and troubleshoot performance bottlenecks in AI/ML workloads, real-time inference services,

Advantages

The core advantages of Resource Monitoring are as follows:

Multi-Dimensional Observability

Simultaneously monitor both compute units (CUDA cores) and memory utilization across

physical/virtual GPUs, providing holistic insights into accelerator usage patterns.
Hierarchical Metrics Collection

Capture data at both node and pod granularity, enabling correlation between cluster-wide

resource trends and individual workload demands.
Native Integration

Seamlessly works with all accelerator modules (pGPU/NGPU/MPS) without requiring

additional agents, leveraging Kubernetes-native metrics pipelines.
Historical Analysis

Store GPU metrics with configurable retention periods (default 7 days) for capacity

planning and usage pattern analysis through integrated visualization tools.

Application Scenarios

The main application scenarios for Resource Monitoring are as follows:

o Performance Optimization

Identify underutilized GPUs in training clusters and right-size resource requests for deep

learning workloads. For example, detect pods consistently using <30% of allocated GPU

Introduction - Alauda Container Platform

memory to optimize memory allocations.
Multi-Tenant Governance

Enforce GPU quota compliance in shared environments by monitoring vGPU consumption

across teams. Track cumulative usage against allocated quotas in Al platform deployments.
Cost Attribution

Generate per-namespace GPU utilization reports for chargeback/showback models in

enterprise Kubernetes environments, correlating pod-level metrics with organizational units.
Fault Diagnosis

Investigate OOM (Out-of-Memory) incidents in GPU-accelerated workloads by analyzing
memory usage trends preceding container crashes. Cross-reference with Kubernetes

events for root cause analysis.
Capacity Planning

Analyze historical GPU utilization patterns (e.g., peak compute demand periods) to inform

infrastructure scaling decisions and budget allocations for Al infrastructure.

Usage Limitations

When using Resource Monitoring, please note the following constraints:

e Module Dependencies

e Requires at least one accelerator module (pGPU/VGPU/MPS) to be deployed in the

cluster

Q Alauda Container Platform

Guides

GPU Resource Monitoring

Feature Overview
Core Features
Feature Advantages
Node Monitoring
Pod Monitoring

Time Range Selection

Guides - Alauda Container Platform

http://localhost:4173/container_platform/

GPU Resource Monitoring - Alauda Container Platform

Q Alauda Container Platform Q

GPU Resource Monitoring

TOC

Feature Overview

Core Features

Feature Advantages

Node Monitoring
Access GPU Dashboards
Select Node Metrics
Interpret Metrics

Pod Monitoring
Access Pod Metrics
Configure Filters
Key Metrics

Time Range Selection

Feature Overview

The Resource Monitoring feature enables real-time and historical tracking of GPU utilization
and memory usage across nodes and pods within the Container Platform. This functionality

helps administrators and developers:

* Monitor GPU Performance: Identify bottlenecks in GPU resource allocation.

http://localhost:4173/container_platform/

GPU Resource Monitoring - Alauda Container Platform

e Troubleshoot Issues: Analyze GPU usage trends for debugging resource-related
problems.

» Optimize Workloads: Make data-driven decisions to improve workload distribution.

Applicable Scenarios:

e Real-time monitoring of GPU-intensive applications.
» Historical analysis of GPU utilization for capacity planning.

e Multi-node/pod GPU performance comparison.

Value Delivered:

» Enhanced visibility into GPU resource consumption.

o Improved cluster efficiency through actionable insights.

Core Features

* Node-Level Monitoring: Track GPU utilization and memory usage per node.
e Pod-Level Monitoring: Monitor GPU metrics for individual pods.

e Custom Time Ranges: Analyze data from 30 minutes up to 7 days.

Feature Advantages

o Real-Time Visualization: Interactive dashboards with auto-refresh capabilities.

o Multi-Dimensional Filtering: Narrow down metrics by GPU type, nhamespace, or pod.

Node Monitoring

Monitor GPU resources at the node level through these steps:

1’ Access GPU Dashboards

1. Navigate to Platform Management view

GPU Resource Monitoring - Alauda Container Platform
2. Go to Operations Center —. Monitoring — Dashboards

3. Switch to the GPU directory
2) Select Node Metrics

1. Choose Node Monitoring dashboard
2. Select target node from dropdown

3. Pick time range:

Last 30 minutes

Last 1/6/12/24 hours

Last 2/7 days

Custom range

3 Interpret Metrics

Metric Description
GPU Utilization Percentage of GPU computing capacity used (0-100%)
GPU Memory Usage Total memory consumed vs. available memory (in GiB)

Pod Monitoring
Analyze GPU usage at the pod level with granular filtering:

1 Access Pod Metrics

1. Navigate to GPU directory dashboards

2. Choose Pod Monitoring

2) Configure Filters

1. Select GPU type:

GPU Resource Monitoring - Alauda Container Platform
e pGPU
¢ GPU-Manager(vGPU)
e MPS
2. Choose namespace containing GPU pods

3. Select specific pod

3 Key Metrics

Metric Description
Pod GPU Utilization GPU compute usage by selected pod
Pod GPU Memory Memory allocation for selected pod

Time Range Selection

Both dashboards support flexible time windows:

Available Presets:
- Last 30 minutes
- Last 1 hour

- Last 6 hours

- Last 12 hours

- Last 24 hours

- Last 2 days

- Last 7 days

- Custom range

	Hardware accelerators
	Overview
	Install
	Application Development
	Configuration Management
	Resource Monitoring

	Overview
	Introduction
	Hardware accelerator Introduction
	Product Advantages
	vGPU Module
	pGPU Module
	MPS Module

	Application Scenarios
	vGPU Use Cases
	pGPU Use Cases
	MPS Use Cases

	Technical Limitations
	Privileged Required
	Hardware Device Access Requirements
	Kernel-Level Operations
	K8s Device Plugin Architecture Requirements

	vGPU Constraints
	pGPU Constraints
	MPS Constraints

	Features
	vGPU (Based on Opensource GPU-Manager)
	pGPU (NVIDIA Device Plugin)
	MPS (NVIDIA Multi-Process Service Plugin)

	Install
	Installing Kubernetes Hardware accelerator Toolkit
	Prerequisites
	Installing via Web Console

	Application Development
	Introduction
	Guides
	Troubleshooting

	Introduction
	Application Development Introduction

	Guides
	CUDA Driver and Runtime Compatibility
	Hierarchical Architecture & Core Concepts
	1. CUDA Runtime API Layer
	Technical Positioning
	Version Detection Methods

	2. CUDA Driver API Layer
	Technical Positioning
	Version Detection Methods

	Version Compatibility Matrix & Constraints
	Physical GPU Deployment - Core Compatibility Principles
	Formal Rules

	Virtualization Scenario Enhancements (HAMI/GPU-Manager)
	Version Requirements

	Deployment Best Practices
	Recommended Strategy
	Alternative Solutions for Legacy Systems
	1. Physical GPU Scheduling or GPU-Manager Whole-Card Allocation
	2. Node Labeling Strategy
	3. Runtime Version Upgrade

	Troubleshooting Handbook
	Common Error Codes

	Add Custom Devices Using ConfigMap
	Introduction
	Features
	Advantages
	Function Module 1: ConfigMap Authoring Specifications
	Core Rules
	Parameter Specification

	Function Module 2: Resource Value Definition
	Single Key Example
	Multi-key Association
	Policy Specification

	Troubleshooting
	Troubleshooting float16 is only supported on GPUs with compute capability at least xx Error in vLLM
	Problem Description
	Environment
	Symptoms
	Related Logs

	Root Cause
	Primary Cause
	Technical Analysis

	Troubleshooting
	Step 1: Verify GPU Compute Capability
	Step 2: Check Model Precision Requirements
	Step 3: Validate Framework Compatibility

	Solution
	Solution for Insufficient Compute Capability
	Considerations
	Prerequisites
	Steps

	Preventive Measures
	Related Content
	GPU Compute Capability Reference
	Official References

	Paddle Autogrow Memory Allocation Crash on GPU-Manager
	Problem Description
	Symptoms

	Root Cause
	Root Cause Analysis

	Solution
	Solution Overview
	Considerations
	Implementation Steps
	Kubernetes Deployment
	Bare Metal Deployment

	Verification Methods
	Preventive Measures
	Related Content
	Memory Allocation Strategy Comparison
	References

	Configuration Management
	Introduction
	Guides

	Introduction
	Configuration Management Introduction

	Guides
	Configure Hardware accelerator on GPU nodes
	Prerequisites
	 Install GPU driver
	Gets the driver download address
	Installation driver
	Installation the NVIDIA Container runtime

	Physical GPU configuration
	Deploy physical GPU plugin on a GPU Business Cluster

	NVIDIA MPS configuration (driver support cuda version must >= 11.5)
	Deploy NVIDIA MPS plugin on a GPU Business Cluster
	On the management interface of the GPU cluster, perform the following actions:

	Configure kube-scheduler (kubernetes> = 1.23)

	GPU-Manager configuration
	Configure kube-scheduler (kubernetes> = 1.23)
	Deploy GPU Manager plugin on a GPU Business Cluster

	Validation of results

	Resource Monitoring
	Introduction
	Guides

	Introduction
	Resource Monitoring Introduction
	Advantages
	Application Scenarios
	Usage Limitations

	Guides
	GPU Resource Monitoring
	Feature Overview
	Core Features
	Feature Advantages
	Node Monitoring
	Access GPU Dashboards
	Select Node Metrics
	Interpret Metrics

	Pod Monitoring
	Access Pod Metrics
	Configure Filters
	Key Metrics

	Time Range Selection

