
Extend

Overview Operator Cluster Plug

Chart Repository Upload Packages

Alauda Container Platform

Extend - Alauda Container Platform

http://localhost:4173/container_platform/

Overview

The platform provides a comprehensive extension system that allows users to enhance the

functionality of their Kubernetes clusters. This system is designed to be flexible and user-

friendly, enabling users to easily add new features and capabilities to their clusters.

This system consists of two main extension types:

Operators: Operators are built on the Operator Lifecycle Manager (OLM) v0 framework,

providing specialized operational capabilities for the platform. These extensions enable

automated management of complex applications and services within your cluster.

Cluster Plugins: The platform features a proprietary cluster plugin system specifically

designed for Chart-type plugins. This system delivers an improved installation and

management experience compared to standard methods, with a user-friendly interface for

handling Chart-based extensions.

With support for numerous Operators and cluster plugins, users can significantly expand the

platform's capabilities to meet specific operational requirements and use cases.

Alauda Container Platform

Overview - Alauda Container Platform

http://localhost:4173/container_platform/

Operator

TOC

Overview

Operator Sources

Pre-installation Preparation

Installation Mode

Update Channel

Approval Strategy

Installation Location

Installing via Web Console

Installing via YAML

Manual

1. Check available versions

2. Confirm catalogSource

3. Create a namespace

4. Create a Subscription

5. Check Subscription status

6. Approve InstallPlan

Automatic

1. Check available versions

2. Confirm catalogSource

3. Create a namespace

4. Create a Subscription

5. Check Subscription status

Alauda Container Platform

Operator - Alauda Container Platform

http://localhost:4173/container_platform/

Overview

Based on the OLM (Operator Lifecycle Manager) framework, OperatorHub provides a

unified interface for managing the installation, upgrade, and lifecycle of Operators.

Administrators can use OperatorHub to install and manage Operators, enabling full lifecycle

automation for Kubernetes applications, including creation, updates, and deletion.

OLM mainly consists of the following components and CRDs:

OLM (olm-operator): Manages the complete lifecycle of Operators, including installation,

upgrades, and version conflict detection.

Catalog Operator: Manages Operator catalogs and generates corresponding InstallPlans.

CatalogSource: A namespace-scoped CRD that manages the Operator catalog source

and provides Operator metadata (e.g., version info, managed CRDs). The platform

provides 3 default CatalogSources: system, platform, and custom. Operators in system

are not displayed in OperatorHub.

ClusterServiceVersion (CSV): A namespace-scoped CRD that describes a specific

version of an Operator, including the resources, CRDs, and permissions it requires.

Subscription: A namespace-scoped CRD that describes the subscribed Operator, its

source, acquisition channel, and upgrade strategy.

InstallPlan: A namespace-scoped CRD that describes the actual installation operations to

be performed (e.g., creating Deployments, CRDs, RBAC). An Operator will only be installed

or upgraded once the InstallPlan is approved.

Operator Sources

To clarify the lifecycle strategy of different Operators in OperatorHub, the platform provides 5

source types:

6. Verify CSV

Upgrade Process

Operator - Alauda Container Platform

1. Alauda Provided and maintained by Alauda, including full lifecycle management, security

updates, technical support, and SLA commitments.

2. Curated Selected from the open-source community, consistent with community versions,

without code modifications or recompilation. Alauda provides guidance and security

updates but does not guarantee SLA or lifecycle management.

3. Community Provided by the open-source community, updated periodically to ensure

installability, but functional completeness is not guaranteed; no SLA or Alauda support is

provided.

4. Marketplace Provided and maintained by third-party vendors certified by Alauda. Alauda

provides platform integration support, while the vendor is responsible for core maintenance.

5. Custom Developed and uploaded by the user to meet custom use-case requirements.

Pre-installation Preparation

Before installing an Operator, you need to understand the following key parameters:

Installation Mode

OLM provides three installation modes:

Single Namespace

Multi Namespace

Cluster

Cluster mode (AllNamespaces) is recommended. The platform will eventually be upgraded

to OLM v1, which only supports the AllNamespaces install mode. Therefore,

SingleNamespace and MultiNamespace should be strongly avoided.

Update Channel

If an Operator provides multiple update channels, you can choose which channel to subscribe

to, e.g., stable.

Operator - Alauda Container Platform

Approval Strategy

Options: Automatic or Manual.

Automatic: OLM will automatically upgrade the Operator when a new version is released

in the selected channel.

Manual: When a new version is available, OLM creates an upgrade request that must be

manually approved by the cluster administrator before the upgrade occurs.

Note: Operators from Alauda only support Manual mode; otherwise, installation will fail.

Installation Location

It is recommended to create a separate namespace for each Operator.

If multiple Operators share the same namespace, their Subscriptions may be resolved into a

single InstallPlan:

If an InstallPlan in that namespace requires Manual approval and remains pending, it can

block automatic upgrades for other Subscriptions included in the same InstallPlan.

Installing via Web Console

1. Log in to the web console and switch to the Administrator view.

2. Navigate to Marketplace > OperatorHub.

3. If the status is Absent:

Download the Operator package from the Alauda Customer Portal or contact support.

Upload the package to the target cluster using violet (see CLI).

On the Marketplace > Upload Packages page, switch to the Operator tab and confirm

the upload.

4. If the status is Ready, click Install and follow the Operator's user guide.

Operator - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

Installing via YAML

The following examples demonstrate installation methods for Operators from Alauda (Manual

only) and non-Alauda sources (Manual or Automatic).

Unlike cluster plugins (which must always be installed in the global cluster when using YAML),

Operators are installed in the target cluster where you want them to run. Make sure you are

connected to the intended cluster before executing any YAML manifests.

Manual

The harbor-ce-operator is from Alauda and supports Manual approval only. In Manual

mode, even if a new version is released, the Operator will not upgrade automatically. You

must Approve manually before OLM executes the upgrade.

1. Check available versions

Example output:

INFO

(

 echo -e "CHANNEL\tNAME\tVERSION"

 kubectl get packagemanifest harbor-ce-operator -o json | jq -r '

 .status.channels[] |

 .name as $channel |

 .entries[] |

 [$channel, .name, .version] | @tsv

 '

) | column -t -s $'\t'

CHANNEL NAME VERSION

harbor-2 harbor-ce-operator.v2.12.11 2.12.11

harbor-2 harbor-ce-operator.v2.12.10 2.12.10

stable harbor-ce-operator.v2.12.11 2.12.11

stable harbor-ce-operator.v2.12.10 2.12.10

Operator - Alauda Container Platform

Fields:

CHANNEL: Operator channel name

NAME: CSV resource name

VERSION: Operator version

2. Confirm catalogSource

Example output:

This indicates the harbor-ce-operator comes from the platform catalogSource.

3. Create a namespace

4. Create a Subscription

kubectl get packagemanifests harbor-ce-operator -ojsonpath='{.status.cata

logSource}'

platform

kubectl create namespace harbor-ce-operator

Operator - Alauda Container Platform

Field explanations:

annotation cpaas.io/target-namespaces : It is recommended to set this to empty;

empty indicates cluster-wide installation.

.metadata.name: Subscription name (DNS-compliant, max 253 characters).

.metadata.namespace: Namespace where the Operator will be installed.

.spec.channel: Subscribed Operator channel.

.spec.installPlanApproval: Approval strategy (Manual or Automatic). Here, Manual

requires manual approval for install/upgrade.

.spec.source: Operator catalogSource.

.spec.sourceNamespace: Must be set to cpaas-system because all catalogSources

provided by the platform are located in this namespace.

.spec.startingCSV: Specifies the version to install for Manual approval; defaults to the

latest in the channel if empty. Not required for Automatic.

5. Check Subscription status

Key output:

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

 annotations:

 cpaas.io/target-namespaces: ""

 name: harbor-ce-operator-subs

 namespace: harbor-ce-operator

spec:

 channel: stable

 installPlanApproval: Manual

 name: harbor-ce-operator

 source: platform

 sourceNamespace: cpaas-system

 startingCSV: harbor-ce-operator.v2.12.11

kubectl -n harbor-ce-operator get subscriptions harbor-ce-operator-subs -

o yaml

Operator - Alauda Container Platform

.status.state: UpgradePending indicates the Operator is awaiting installation or upgrade.

Condition InstallPlanPending = True: Waiting for manual approval.

.status.currentCSV: Latest subscribed CSV.

.status.installPlanRef: Associated InstallPlan; must be approved before installation

proceeds.

6. Approve InstallPlan

Example output:

Approve manually:

Wait for CSV creation; Phase changes to Succeeded :

Example output:

kubectl -n harbor-ce-operator get installplan \

 "$(kubectl -n harbor-ce-operator get subscriptions harbor-ce-operator-s

ubs -o jsonpath='{.status.installPlanRef.name}')"

NAME CSV APPROVAL APPROVED

install-27t29 harbor-ce-operator.v2.12.11 Manual false

PLAN="$(kubectl -n harbor-ce-operator get subscription harbor-ce-operator

-subs -o jsonpath='{.status.installPlanRef.name}')"

kubectl -n harbor-ce-operator patch installplan "$PLAN" --type=json -p

='[{"op": "replace", "path": "/spec/approved", "value": true}]'

kubectl -n harbor-ce-operator get csv

NAME DISPLAY VERSION REPLACES

PHASE

harbor-ce-operator.v2.12.11 Alauda Build of Harbor 2.12.11 harbor-c

e-operator.v2.12.10 Succeeded

Operator - Alauda Container Platform

Fields:

NAME: Installed CSV name

DISPLAY: Operator display name

VERSION: Operator version

REPLACES: CSV replaced during upgrade

PHASE: Installation status (Succeeded indicates success)

Automatic

The clickhouse-operator comes from a non-Alauda source, and its Approval Strategy can

be set to Automatic. In Automatic mode, the Operator upgrades automatically when a new

version is released, without manual approval.

1. Check available versions

Example output:

2. Confirm catalogSource

(

 echo -e "CHANNEL\tNAME\tVERSION"

 kubectl get packagemanifest clickhouse-operator -o json | jq -r '

 .status.channels[] |

 .name as $channel |

 .entries[] |

 [$channel, .name, .version] | @tsv

 '

) | column -t -s $'\t'

CHANNEL NAME VERSION

stable clickhouse-operator.v0.18.2 0.18.2

kubectl get packagemanifests clickhouse-operator -ojsonpath='{.status.cat

alogSource}'

Operator - Alauda Container Platform

Example output:

This indicates the clickhouse-operator comes from the platform catalogSource.

3. Create a namespace

4. Create a Subscription

Field explanations are the same as in Manual.

5. Check Subscription status

6. Verify CSV

platform

kubectl create namespace clickhouse-operator

apiVersion: operators.coreos.com/v1alpha1

kind: Subscription

metadata:

 annotations:

 cpaas.io/target-namespaces: ""

 name: clickhouse-operator-subs

 namespace: clickhouse-operator

spec:

 channel: stable

 installPlanApproval: Automatic

 name: clickhouse-operator

 source: platform

 sourceNamespace: cpaas-system

kubectl -n clickhouse-operator get subscriptions clickhouse-operator-subs

-oyaml

kubectl -n clickhouse-operator get csv

Operator - Alauda Container Platform

Example output:

Installation is successful.

Upgrade Process

The upgrade process starts by uploading the new Operator version.

After the upload is completed, wait approximately 10–15 minutes for the platform to

synchronize the new version information.

Once synchronization is complete, upgrades follow the strategy configured in the

Subscription:

If the Operator Approval Strategy is set to Automatic, the Operator is upgraded

automatically.

If the strategy is set to Manual, the upgrade request must be approved manually. You can

choose one of the following upgrade methods:

Batch Upgrade: Execute the upgrade on the Platform Management > Cluster

Management > Cluster > Features page.

Individual Upgrade: Manually approve upgrade requests in OperatorHub.

Note: Only Operators provided by Alauda support batch upgrades.

NAME DISPLAY VERSION PHASE

clickhouse-operator.v0.18.2 ClickHouse Operator 0.18.2 Succeeded

Operator - Alauda Container Platform

Cluster Plugin

TOC

Overview

A cluster plugin is a tool for extending the platform's functionality. Each plugin is managed

through three cluster-level CRDs: ModulePlugin, ModuleConfig, and ModuleInfo.

ModulePlugin: Defines the basic information of the cluster plugin.

Overview

Viewing Available Plugins

Installing via Web Console

Installing via YAML

non-config

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

with-config

1. Check available versions

2. Create a ModuleInfo

3. Verify installation

Upgrade Process

Alauda Container Platform

Cluster Plugin - Alauda Container Platform

http://localhost:4173/container_platform/

ModuleConfig: Defines the version information of the plugin. Each ModulePlugin can

correspond to one or more ModuleConfigs.

ModuleInfo: Records the installed plugin's version and status information.

Cluster plugins support dynamic form configuration. Dynamic forms are simple UI forms that

provide customizable configuration options or parameter combinations for plugins. For

example, when installing the Alauda Container Platform Log Collector, you can select the log

storage plugin as ElasticSearch or ClickHouse via the dynamic form. The dynamic form

definition is located in the .spec.config field of the ModuleConfig; if the plugin does not

require a dynamic form, this field is empty.

Plugins are published via the violet tool. Note:

Plugins can only be published to the global cluster, but can be installed on either the

global or workload cluster depending on the configuration.

In the same cluster, a plugin can only be installed once.

Once published successfully, the platform will automatically create the corresponding

ModulePlugin and ModuleConfig in the global cluster—no manual modifications are

required.

Creating a ModuleInfo resource installs the plugin and allows selecting the version, target

cluster, and dynamic form parameters. Refer to the ModuleConfig of the selected version

for the dynamic form definition. For more usage instructions, refer to the plugin-specific

documentation.

Viewing Available Plugins

To view all plugins provided by the platform:

1. Navigate to the platform management view.

2. Click the left navigation menu: Administrator > Marketplace > Cluster Plugin

This page lists all available plugins along with their current status.

Installing via Web Console

Cluster Plugin - Alauda Container Platform

If a plugin shows an "absent" status, follow these steps to install it:

1. Download the plugin package:

Visit the Alauda Customer Portal to download the corresponding plugin package.

If you don't have access to the Alauda Customer Portal, contact technical support.

2. Upload the package to the platform:

Use the violet tool to publish the package to the platform.

For detailed instructions on using this tool, refer to the CLI.

3. Verify the upload:

Navigate to Administrator > Marketplace > Upload Packages

Switch to the Cluster Plugin tab

Locate the uploaded plugin name

The plugin details will show the version(s) of the uploaded package

4. Install the plugin:

If the plugin shows a "ready" status, click Install

Some plugins require installation parameters; refer to the plugin-specific documentation

Plugins without installation parameters will start installation immediately after clicking

Install

Installing via YAML

The installation method differs by plugin type:

Non-config plugin: No additional parameters required; installation is straightforward.

Config plugin: Requires filling in configuration parameters; refer to the plugin

documentation for details.

INFO

Cluster Plugin - Alauda Container Platform

http://localhost:4173/container_platform/ui/cli_tools/index.html

YAML-based installation must always be performed in the global cluster.

Although the plugin itself can target either the global cluster or a workload cluster (depending on

the affinity settings in the ModuleConfig), the ModuleInfo resource can only be created in the

global cluster.

The following examples demonstrate YAML-based installation.

non-config

Example: Alauda Container Platform Web Terminal

1. Check available versions

Ensure the plugin has been published by checking for ModulePlugin and ModuleConfig

resources in the global cluster:

This indicates that the ModulePlugin web-cli exists in the global cluster and version

v4.0.4 is published.

Check the ModuleConfig for version v4.0.4:

kubectl get moduleplugins web-cli

NAME AGE

web-cli 4d20h

kubectl get moduleconfigs -l cpaas.io/module-name=web-cli

NAME AGE

web-cli-v4.0.4 4d21h

Cluster Plugin - Alauda Container Platform

The .spec.affinity defines cluster affinity, indicating that web-cli can only be installed

on the global cluster. .spec.config is empty, meaning the plugin requires no configuration

and can be installed directly.

2. Create a ModuleInfo

Create a ModuleInfo resource in the global cluster to install the plugin without any

configuration parameters:

Field explanations:

kubectl get moduleconfigs web-cli-v4.0.4 -oyaml

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleConfig

metadata:

 ...

 name: web-cli-v4.0.4

spec:

 affinity:

 clusterAffinity:

 matchLabels:

 is-global: "true"

 version: v4.0.4

 config: {}

 ...

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 labels:

 cpaas.io/cluster-name: global

 cpaas.io/module-name: web-cli

 cpaas.io/module-type: plugin

 name: global-temporary-name

spec:

 config: {}

 version: v4.0.4

Cluster Plugin - Alauda Container Platform

name : Temporary name for the cluster plugin. The platform will rename it after creation

based on the content, in the format <cluster-name>-<hash of content> , e.g., global-

ee98c9991ea1464aaa8054bdacbab313 .

label cpaas.io/cluster-name : Specifies the target cluster where the plugin should be

installed. If it conflicts with the ModuleConfig's affinity, installation will fail.

Note: This label does not change where the YAML is applied—the YAML must still be

applied in the global cluster.

label cpaas.io/module-name : Plugin name, must match the ModulePlugin resource.

label cpaas.io/module-type : Fixed field, must be plugin ; missing this field causes

installation failure.

.spec.config : If the corresponding ModuleConfig is empty, this field can be left empty.

.spec.version : Specifies the plugin version to install, must match .spec.version in

ModuleConfig.

3. Verify installation

Since the ModuleInfo name changes upon creation, locate the resource via label in the global

cluster to check the plugin status and version:

Field explanations:

NAME : ModuleInfo resource name

CLUSTER : Cluster where the plugin is installed

MODULE : Plugin name

DISPLAY_NAME : Display name of the plugin

STATUS : Installation status; Running means successfully installed and running

kubectl get moduleinfo -l cpaas.io/module-name=web-cli

NAME CLUSTER MODULE DISPLAY_NAM

E STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSION

global-ee98c9991ea1464aaa8054bdacbab313 global web-cli web-cli

Running v4.0.4 v4.0.4 v4.0.4

Cluster Plugin - Alauda Container Platform

TARGET_VERSION : Intended installation version

CURRENT_VERSION : Version before installation

NEW_VERSION : Latest available version for installation

with-config

Example: Alauda Container Platform GPU Device Plugin

1. Check available versions

Ensure the plugin has been published by checking ModulePlugin and ModuleConfig

resources in the global cluster:

This indicates that ModulePlugin gpu-device-plugin in the global cluster exists and version

v4.0.15 is published.

Check the ModuleConfig for v4.0.15:

kubectl get moduleplugins gpu-device-plugin

NAME AGE

gpu-device-plugin 4d23h

kubectl get moduleconfigs -l cpaas.io/module-name=gpu-device-plugin

NAME AGE

gpu-device-plugin-v4.0.15 4d23h

Cluster Plugin - Alauda Container Platform

Notes:

This plugin can only be installed on clusters with Linux OS and amd64 architecture.

The dynamic form includes three device driver switches: custom.mps_enable ,

custom.pgpu_enable , and custom.vgpu_enable . Only when set to true will the

corresponding driver be installed.

2. Create a ModuleInfo

Create a ModuleInfo resource in the global cluster to install the plugin, filling in dynamic form

parameters as needed (e.g., enabling pgpu and vgpu drivers):

kubectl get moduleconfigs gpu-device-plugin-v4.0.15 -oyaml

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleConfig

metadata:

 ...

 name: gpu-device-plugin-v4.0.15

spec:

 affinity:

 clusterAffinity:

 matchExpressions:

 - key: cpaas.io/os-linux

 operator: Exists

 matchLabels:

 cpaas.io/arch-amd64: "true"

 config:

 custom:

 mps_enable: false

 pgpu_enable: false

 vgpu_enable: false

 version: v4.0.15

 ...

Cluster Plugin - Alauda Container Platform

Field explanations are the same as non-config. Refer to the plugin documentation for config

details.

3. Verify installation

Locate the ModuleInfo via label in the global cluster to check status and version:

Field explanations are the same as non-config.

Upgrade Process

To upgrade an existing plugin to a newer version:

1. Upload the new version:

apiVersion: cluster.alauda.io/v1alpha1

kind: ModuleInfo

metadata:

 labels:

 cpaas.io/cluster-name: business

 cpaas.io/module-name: gpu-device-plugin

 cpaas.io/module-type: plugin

 name: business-temporary-name

spec:

 config:

 custom:

 mps_enable: false

 pgpu_enable: true

 vgpu_enable: true

 version: v4.0.15

kubectl get moduleinfo -l cpaas.io/module-name=gpu-device-plugin

NAME CLUSTER MODULE D

ISPLAY_NAME STATUS TARGET_VERSION CURRENT_VERSION NEW_VERSI

ON

business-7ebb241b4f77471235e57dd1ec7fbd0d business gpu-device-plugin g

pu-device-plugin Running v4.0.15 v4.0.15 v4.0.15

Cluster Plugin - Alauda Container Platform

Follow the same process to upload the new version to the platform.

After the upload is completed, wait approximately 10–15 minutes for the platform to

synchronize the new version information.

2. Verify the new version:

Navigate to Administrator > Marketplace > Upload Packages

Switch to the Cluster Plugin tab

The plugin details will show the newly uploaded version

3. Perform the upgrade:

Navigate to Administrator > Clusters > Clusters

Clusters with upgradable plugins will display an upgrade icon

Enter the cluster details and switch to the Features tab

The upgrade button will be enabled under the features component

Click Upgrade to complete the plugin upgrade

Cluster Plugin - Alauda Container Platform

Chart Repository

For information about Chart repositories and Helm charts, see Working with Helm Charts.

Alauda Container Platform

Chart Repository - Alauda Container Platform

http://localhost:4173/container_platform/developer/building_application/functions/working_with_helm_charts.html
http://localhost:4173/container_platform/

Upload Packages

The platform provides a command-line tool violet , which is used to upload packages

downloaded from the Marketplace in the Alauda Customer Portal to the platform.

violet supports uploading the following types of packages:

Operator

Cluster Plugin

Helm Chart

When the status of a package in Cluster Plugins or OperatorHub is shown as Absent , you

need to use this tool to upload the corresponding package.

The upload process of violet mainly includes the following steps:

1. Extract and retrieve information from the package

2. Push images to the image registry

3. Create Artifact and ArtifactVersion resources on the platform

TOC

Download the Tool

For Linux or macOS

For Windows

Prerequisites

Usage

violet show

Alauda Container Platform

Upload Packages - Alauda Container Platform

http://localhost:4173/container_platform/

Download the Tool

Log in to the Alauda Customer Portal, navigate to the Downloads page, and click CLI

Tools. Download the binary that matches your operating system and architecture.

After downloading, install the tool on your server or PC.

For Linux or macOS

For non-root users:

For root users:

violet push

Upload an Operator to Multiple Clusters

Upload an Operator to a Standby Global Cluster

Upload a Cluster Plugin

Upload a Helm Chart to the chart repository

Push only images from all packages in a directory

Create only CRs from all packages in a directory

Linux x86

sudo mv -f violet_linux_amd64 /usr/local/bin/violet && sudo chmod +x /us

r/local/bin/violet

Linux ARM

sudo mv -f violet_linux_arm64 /usr/local/bin/violet && sudo chmod +x /us

r/local/bin/violet

macOS x86

sudo mv -f violet_darwin_amd64 /usr/local/bin/violet && sudo chmod +x /us

r/local/bin/violet

macOS ARM

sudo mv -f violet_darwin_arm64 /usr/local/bin/violet && sudo chmod +x /us

r/local/bin/violet

Upload Packages - Alauda Container Platform

For Windows

1. Download the file and rename it to violet.exe , or use PowerShell to rename it:

2. Run the tool in PowerShell.

Note: If the tool path is not added to your environment variables, you must specify the full

path when running commands.

Prerequisites

Permission requirements

You must provide a valid platform user account (username and password).

The account must have the role property set to System and the role name must be

platform-admin-system .

Note: If the role property of your account is set to Custom , you cannot use this tool.

Usage

Linux x86

mv -f violet_linux_amd64 /usr/bin/violet && chmod +x /usr/bin/violet

Linux ARM

mv -f violet_linux_arm64 /usr/bin/violet && chmod +x /usr/bin/violet

macOS x86

mv -f violet_darwin_amd64 /usr/bin/violet && chmod +x /usr/bin/violet

macOS ARM

mv -f violet_darwin_arm64 /usr/bin/violet && chmod +x /usr/bin/violet

Windows x86

mv -Force violet_windows_amd64.exe violet.exe

Upload Packages - Alauda Container Platform

violet show

Before uploading a package, use the violet show command to preview its details.

violet push

The following examples illustrate common usage scenarios.

Before digging into the examples, here are some common OPTIONAL parameters used in the

commands:

violet show topolvm-operator.v2.3.0.tgz

Name: NativeStor

Type: bundle

Arch: [linux/amd64]

Version: 2.3.0

violet show topolvm-operator.v2.3.0.tgz --all

Name: NativeStor

Type: bundle

Arch: []

Version: 2.3.0

Artifact: harbor.demo.io/acp/topolvm-operator-bundle:v3.11.0

RelateImages: [harbor.demo.io/acp/topolvm-operator:v3.11.0 harbor.demo.i

o/acp/topolvm:v3.11.0 harbor.demo.io/3rdparty/k8scsi/csi-provisioner:v3.0

0 ...]

Upload Packages - Alauda Container Platform

Upload an Operator to Multiple Clusters

--platform-address <platform access URL> # The access URL of the plat

form, e.g., "https://example.com"

--platform-username <platform user> # The username of the platfo

rm user

--platform-password <platform password> # The password of the platfo

rm user

--clusters <cluster names> # Specify target clusters, s

eparated by commas (e.g., region1,region2)

--dest-repo <image repository URL> # Specify the destination im

age repository URL. MUST be specified when uploading extensions to a stan

dby cluster.

 When `--dest-repo` is sp

ecified, either the authentication info of the image registry or `--no-au

th` MUST be provided.

--username <registry user> # The username of the specif

ied image registry.

--password <registry password> # The password of the specif

ied image registry.

--no-auth # Specify if the image regis

try does not require authentication.

--plain # Specify if the image regis

try uses HTTP instead of HTTPS.

--skip-crs # Skip creating `Artifact` a

nd `ArtifactVersion` resources, only push images.

 This prevents Operators

or Cluster Plugins from being updated prematurely during the <Term name

="productShort" /> upgrade process.

--skip-push # Only create `Artifact` and

`ArtifactVersion` resources, while images are not pushed.

violet push opensearch-operator.v3.14.2.tgz \

 --platform-address "https://example.com" \

 --platform-username "<platform_user>" \

 --platform-password "<platform_password>" \

 --clusters region1,region2

Upload Packages - Alauda Container Platform

If --clusters is not specified, the Operator is uploaded to the global cluster by default.

Upload an Operator to a Standby Global Cluster

Upload a Cluster Plugin

You do not need to specify the --clusters parameter when uploading a Cluster Plugin, as

the platform will automatically distribute it based on its affinity configuration. If you specify --

clusters , the parameter will be ignored.

Upload a Helm Chart to the chart repository

INFO

INFO

violet push opensearch-operator.v3.14.2.tgz \

 --platform-address "https://example.com" \

 --platform-username "<platform_user>" \

 --platform-password "<platform_password>" \

 --dest-repo "<standby-cluster-VIP>:11443" --username "<registry-usernam

e>" --password "<registry-password>"

violet push plugins-cloudedge-v0.3.16-hybrid.tgz \

 --platform-address "https://example.com" \

 --platform-username "<platform_user>" \

 --platform-password "<platform_password>"

violet push plugins-cloudedge-v0.3.16-hybrid.tgz \

 --platform-address "https://example.com" \

 --platform-username "<platform_user>" \

 --platform-password "<platform_password>"

Upload Packages - Alauda Container Platform

Helm Charts can only be uploaded to the default public-charts repository provided by the

platform.

Push only images from all packages in a directory

When multiple packages are downloaded from the Marketplace, you can place them in the

same directory and upload them all at once:

Create only CRs from all packages in a directory

When multiple packages are downloaded from the Marketplace, you can place them in the

same directory and upload them all at once:

When the upgrade target is the global cluster , you can omit the --clusters parameter, as it

defaults to uploading to the global cluster.

However, when the upgrade target is a workload cluster, you must specify the --clusters

<workload_cluster_name> parameter.

INFO

WARNING

violet push <packages_dir_name> \

 --skip-crs \

 --platform-address "https://example.com" \

 --platform-username "<platform_user>" \

 --platform-password "<platform_password>"

violet push <packages_dir_name> \

 --skip-push \

 --platform-address "https://example.com" \

 --platform-username "<platform_user>" \

 --platform-password "<platform_password>"

 --clusters "<cluster_name>"

Upload Packages - Alauda Container Platform

Upload Packages - Alauda Container Platform

	Extend
	Overview
	Operator
	Overview
	Operator Sources
	Pre-installation Preparation
	Installation Mode
	Update Channel
	Approval Strategy
	Installation Location

	Installing via Web Console
	Installing via YAML
	Manual
	1. Check available versions
	2. Confirm catalogSource
	3. Create a namespace
	4. Create a Subscription
	5. Check Subscription status
	6. Approve InstallPlan

	Automatic
	1. Check available versions
	2. Confirm catalogSource
	3. Create a namespace
	4. Create a Subscription
	5. Check Subscription status
	6. Verify CSV

	Upgrade Process

	Cluster Plugin
	Overview
	Viewing Available Plugins
	Installing via Web Console
	Installing via YAML
	non-config
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	with-config
	1. Check available versions
	2. Create a ModuleInfo
	3. Verify installation

	Upgrade Process

	Chart Repository
	Upload Packages
	Download the Tool
	For Linux or macOS
	For Windows

	Prerequisites
	Usage
	violet show
	violet push
	Upload an Operator to Multiple Clusters
	Upload an Operator to a Standby Global Cluster
	Upload a Cluster Plugin
	Upload a Helm Chart to the chart repository
	Push only images from all packages in a directory
	Create only CRs from all packages in a directory

