Developer - Alauda Container Platform

Q Alauda Container Platform

Developer

Overview

Introduction Concepts

Advantages
Use Cases

Cross-Cutting Cloud-Native Principles

Quick Start

Creating a simple application via image

Introduction
Important Notes
Prerequisites
Workflow Overview

Procedure

Features

Building Applice
Namespace Me
Application Obs
Source to Imag
Registry

Node Isolation :

OAM Applicatio

http://localhost:4173/container_platform/

Developer - Alauda Container Platform

Building Applications

Overview Concepts Guides

Namespace Management
Application Lifecycle Management

How To
Kubernetes Workload Management

Registry

Introduction Install How To

Principles and namespace isolation
Authentication and authorization
Advantages

Application Scenarios

Source to Image

Introduction Install Architectur

Source to Image Concept
Core Features

_ Guides How To
Core Benefits

Application scenarios

Developer - Alauda Container Platform

Usage Limitations

Node Isolation Strategy

Introduction Architecture

Advantages

Application Scenarios
Guides

FAQ

FAQ

Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist or a LimitRange that is not named default
namespace when importing it?

ina

Concepts

Permission

Overview - Alauda Container Platform

0 Alauda Container Platform Q

Overview

Introduction

Introduction

Advantages
Use Cases

Cross-Cutting Cloud-Native Principles

Concepts

Resource Unit Description Application Types Workload T

Features

Features

Building Application
Namespace Management

Application Observability

http://localhost:4173/container_platform/

Source to Image
Registry
Node Isolation Strategy

OAM Application

Overview - Alauda Container Platform

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

The Developer view module empowers developers with cloud-native application orchestration
and operational capabilities. It provides a unified interface for application composition from

multiple sources while integrating built-in observability tools for production operations.

TOC

Advantages
Use Cases

Cross-Cutting Cloud-Native Principles

Advantages

The Developer view module delivers the following key advantages:

1. Unified Application Orchestration

Images: Deploy from public/private registries with image

YAML: Direct Kubernetes resource declarations with schema validation

Source to Image (S2I): Build containerized applications directly from source code

Helm Charts: Deploy packaged applications from curated Application Catalog

Implements GitOps-aligned application composition using multiple approaches

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

2. Holistic Lifecycle Management
Implements declarative management for workloads and namespaces:

¢ Progressive Delivery: Canary/Blue-Green deployments via ServiceMesh
» Resource Governance:

* Namespace provisioning with RBAC policies

» Resource allocation policies via HPA/VPA

e Dynamic scaling with Cluster Autoscaler integration
+ Workflow Automation: CI/CD pipeline integration with Tekton

3. Enterprise-Grade Namespace Controls
Implements multi-tenant namespace management:

o Complete lifecycle management
¢ Resource Guarantees:
* ResourceQuota and LimitRange configurations
o Configurable overcommit ratios for CPU/Memory

4. Full-Stack Observability
Integrated monitoring stack with:

¢ Event Correlation: Kubernetes Event and Audit log integration
¢ Log Analytics: Log aggregation

¢ Metrics dashboard: Monitoring and Custom alert rules

Use Cases

The main use cases of the Developer module include:

Introduction - Alauda Container Platform
¢ Multi-Cloud Deployment

Organizations distribute workloads across multiple cloud providers (AWS, Azure, GCP) to
avoid vendor lock-in, optimize costs, and ensure resilience. Cloud-native application delivery

enables consistent deployment pipelines that abstract provider-specific implementations.

e Hybrid Cloud Environments

Enterprises maintain on-premises infrastructure alongside public cloud resources. Cloud-

native delivery provides unified application deployment across hybrid environments while

managing heterogeneous infrastructure complexities.

« Edge Computing Integration

As edge computing gains prominence, applications must run in centralized clouds, edge
devices, and regional edge nodes. Cloud-native delivery extends deployment capabilities to

these distributed edge environments.

+ Development-to-Production Pipeline

Cloud-native methodologies enable seamless promotion of applications from development
through testing/staging to production, preserving configuration consistency while

accommodating environment-specific requirements.

¢ Global Multi-Region Deployments

For globally distributed applications, cloud-native delivery ensures consistent deployments

across geographic regions, addressing latency optimization and data locality compliance.

¢ Disaster Recovery and Workloads Continuity

Cloud-native delivery facilitates disaster recovery environment provisioning that mirrors

production systems, enabling rapid failover and ensuring uninterrupted operations.

Cross-Cutting Cloud-Native Principles

These scenarios leverage core cloud-native principles:

e Containerization

Introduction - Alauda Container Platform

Infrastructure-as-Code (laC)

Declarative configurations

Immutable infrastructure

GitOps workflows

These ensure consistency, reliability, and automation across heterogeneous computing

environments.

Concepts - Alauda Container Platform

Q Alauda Container Platform Q

Concepts

Resource Unit Description Application Types Workload T

http://localhost:4173/container_platform/

Resource Unit Description - Alauda Container Platform

Q Alauda Container Platform Q

Resource Unit Description

e CPU: Optional units are: core, m (millicore). Where 1 core = 1000 m.

e Memory: Optional units are: Mi (1 MiB = 2720 bytes), Gi (1 GiB = 2730 bytes). Where 1 Gi
= 1024 Mi.

» Virtual GPU (optional): This parameter is only effective when there are GPU resources
under the cluster. The number of virtual GPU cores; 100 virtual cores equal 1 physical GPU

core. It supports positive integers.

* Video Memory (optional): This parameter is only effective when there are GPU resources
under the cluster. Virtual GPU video memory; 1 unit of video memory equals 256 Mi. It

supports positive integers.

http://localhost:4173/container_platform/

Application Types - Alauda Container Platform

Q Alauda Container Platform Q

Application Types

In the platform's Container Platform > Application Management, the following types of

applications can be created:

o Application: A complete business application composed of one or more associated
computing components (Workloads), internal routes (Services), and other native
Kubernetes resources. It supports creation through Ul editing, YAML orchestration, and
templates, and can run in development, testing, or production environments. Different types

of native applications can be created in the following ways:

Create from Image: Quickly create applications using existing container images.

Create from Catalog: Create applications using Helm Chart packages.

Create from YAML: Create applications using YAML configuration files.

Create from Code: Create applications using source code.

e Operator Backed App: Based on application components (Operator backed), you can
quickly deploy a component application and leverage the capabilities of Operators to

automate the entire lifecycle management of the application.

« OAM Application: Used to define the model of cloud-native applications. Compared to
container or Kubernetes orchestration logic, OAM focuses more on the "application” itself.
Based on OAM, common capabilities of applications are encapsulated into high-level
interfaces for use, throughout the entire process of application deployment, development,

and operations.

http://localhost:4173/container_platform/

Workload Types - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Workload Types

In addition to creating native applications and component applications, workloads can also be

directly created in Container Platform > Computing Components:

+ Deployment: The most commonly used workload controller for deploying stateless
applications. It can ensure that a specified number of Pod replicas are running in the
cluster, supporting rolling updates and rollbacks, suitable for stateless application scenarios

such as web services and API services.

o DaemonSet: Ensures that each node in the cluster (or specific nodes) runs a Pod replica.
When a node joins the cluster, the Pod is automatically created; when a node is removed
from the cluster, those Pods are also reclaimed. Suitable for scenarios requiring logging,

monitoring, etc., to run on each node.

» StatefulSet: A workload controller for managing stateful applications. It maintains a fixed
identity for each Pod and provides stable storage and network identity, which remains
unchanged even if the Pod is rescheduled. Suitable for stateful applications such as

databases and distributed caches.

e Job: A workload for running one-time tasks. A Job creates one or more Pods and ensures
that the specified number of Pods successfully complete the task before terminating. It is

suitable for batch processing, data migration, and other one-time task scenarios.

e CronJob: Used to manage Jobs scheduled to run based on time. You can set the time
expression for task execution, and the system will automatically create and run the Job at
the scheduled time. Suitable for periodic tasks such as data backup, report generation, and

periodic cleaning.

In addition to creating the above computing components through the platform's form page, the

platform also supports creating Pods and Containers through CLI tools:

e Pod: The smallest deployable unit in Kubernetes, a Pod can contain one or more

containers that share storage, network, and configuration declarations. Pods are typically

http://localhost:4173/container_platform/

Workload Types - Alauda Container Platform

managed by controllers (such as Deployments).

+ Container: A standard software unit that packages the code and all dependencies, allowing
applications to run quickly and reliably across different computing environments.

Containers run inside Pods and share the Pod's resources.

Features - Alauda Container Platform

Q Alauda Container Platform Q

Features

TOC

Building Application
Namespace Management
Application Observability
Source to Image

Registry

Node Isolation Strategy

OAM Application

Building Application
« Creating Application
Support multiple ways to create an Application, including image, yaml, codes and catalog.
¢ Application Operation
Use Application to orchestrate and operate the workloads and their related resources.
¢ Workloads Management

Manage the lifecycle of the workloads.

http://localhost:4173/container_platform/

Features - Alauda Container Platform

Namespace Management

o Namespace Lifecycle Management

Manage the lifecycle of the namespace.
e Resource Quota and Limit Management

Manage the resource quota and limit of the namespace.
* Namespace Resource Overcommit

Allow overcommit the reousurce of the namespace.

Application Observability
e Logs
Query the history logs or real time logs of the applications.
e Events
Query the events collected from the applications.
e Monitoring

Monitor the application status and firing alerts when abnormalities occur.

Source to Image

 Build image from source

Build image from the source code of the git repository and push the image to the image

repository.

Registry

Features - Alauda Container Platform

¢ Out-of-the-box Registry Server

Easily deploy an registry server available for the platform.

Node Isolation Strategy

¢ Node Isolation

Support project-level node isolation to avoid resource contention between projects.

OAM Application

« Efficient operation and maintenance

Through OAM applications, application operation and maintenance personnel can focus on
business logic and manage applications from the application perspective rather than the
platform perspective, reducing the threshold for application operation and maintenance.
Platform operation and maintenance personnel can handle platform plugins, operation and
maintenance plugins, and other configurations uniformly, thereby improving operational

efficiency.
o Portability

The OAM application model includes configurations related to application operation and
maintenance, service governance, etc. Compared with applications deployed through
Operators, Charts, and other methods, OAM applications can be repeatedly deployed
through YAML, making cross-environment migration easier. Even without Kubernetes and

specific vendors, OAM applications can run normally on various platforms.
o Scalability

Several types of components pre-installed on the platform can meet most application
development needs: network services, stateful applications, and native Kubernetes
resources. In addition, the platform also provides the ability to extend components and
traits, making it easy for developers to use custom-designed and encapsulated

components and traits.

Features - Alauda Container Platform

Quick Start - Alauda Container Platform

Q Alauda Container Platform

Quick Start

Creating a simple application via image

Introduction
Important Notes
Prerequisites
Workflow Overview

Procedure

http://localhost:4173/container_platform/

Creating a simple application via image - Alauda Container Platform

0 Alauda Container Platform

Creating a simple application via image

This technical guide demonstrates how to efficiently create, manage, and access
containerized applications in Alauda Container Platform using Kubernetes-native

methodologies.

TOC

Introduction
Use Cases
Time Commitment
Important Notes
Prerequisites
Workflow Overview
Procedure
Create namespace
Configure Image Repository
Method 1: Integrated Registry via Toolchain
Method 2: External Registry Services
Create application via Deployment
Expose Service via NodePort

Validate Application Accessibility

Introduction

http://localhost:4173/container_platform/

Creating a simple application via image - Alauda Container Platform

Use Cases

» New users seeking to understand fundamental application creation workflows on
Kubernetes platforms

e Practical exercise demonstrating core platform capabilities including:

Project/Namespace orchestration

Deployment creation

Service exposure patterns

Application accessibility verification

Time Commitment

Estimated completion time: 10-15 minutes

Important Notes

e This technical guide focuses on essential parameters - refer to comprehensive
documentation for advanced configurations

e Required permissions:

» Project/Namespace creation
e Image repository integration

» Workload deployment

Prerequisites

¢ Basic understanding of Kubernetes architecture and Alauda Container Platform platform
concepts

* Pre-configured project following platform establishment procedures

Creating a simple application via image - Alauda Container Platform

Workflow Overview

No. Operation

1 Create Namespace

2 Configure Image Repository

3 Create application via Deployment

4 Expose Service via NodePort

5 Validate Application Accessibility
Procedure

Create namespace

Description

Establish resource isolation boundary

Set up container image sources

Create Deployment workload

Configure NodePort service

Test endpoint connectivity

Namespaces provide logical isolation for resource grouping and quota management.

Prerequisites

+ Permissions to create, update, and delete namespaces(e.g., Administrator or Project

Administrator roles)

» kubectl configured with cluster access

Creation Process

1. Log in, and navigate to Project Management > Namespaces

2. Select Create Namespace

3. Configure essential parameters:

Creating a simple application via image - Alauda Container Platform

** Parameter ** Description
Cluster Target cluster from project-associated clusters
Namespace Unique identifier (auto-prefixed with project name)

4. Complete creation with default resource constraints

Configure Image Repository
Alauda Container Platform supports multiple image sourcing strategies:
Method 1: Integrated Registry via Toolchain

1. Access Platform Management > Toolchain > Integration

2. Initiate new integration:

Parameter Requirement

Name Unique integration identifier

API Endpoint Registry service URL (HTTP/HTTPS)
Secret Pre-existing or newly created credential

3. Allocate registry to target platform project

Method 2: External Registry Services

e Use publicly accessible registry URLs (e.g., Docker Hub)

e Example: index.docker.io/library/nginx:latest
Verification Requirement

o Cluster network must have egress access to registry endpoints

Creating a simple application via image - Alauda Container Platform

Create application via Deployment

Deployments provide declarative updates for Pod replicasets.

Creation Process
1. From Container Platform view:

» Use namespace selector to choose target isolation boundary

2. Navigate to Workloads > Deployments
3. Click Create Deployment

4. Specify image source:

o Select integrated registry or

¢ Input external image URL (e.g., index.docker.io/library/nginx:latest)

5. Configure workload identity and launch
Management Operations

* Monitor replica status
e View events and logs
¢ Inspect YAML manifests

e Analyze resource metrics, alerts

Expose Service via NodePort

Services enable network accessibility to Pod groups.
Creation Process
1. Navigate to Networking > Services

2. Click Create Service with parameters:

Creating a simple application via image - Alauda Container Platform

Parameter Value

Type NodePort

Selector Target Deployment name

Port Mapping Service Port: Container Port (e.g., 8080:80)

3. Confirm creation.
Critical

e Cluster-visible virtual IP

e NodePort allocation range (30000-32767)

Internal routes enable service discovery for workloads by providing a unified IP address or

host port for access.
1. Click on Network > Service.
2. Click on Create Service.

3. Configure the Details based on the parameters below, keeping other parameters at their

defaults.
Parameter Description
Name Enter the name of the Service.
Type NodePort
Workload

Select the Deployment created previously.
Name

Creating a simple application via image - Alauda Container Platform

Parameter Description

Service Port: The port number exposed by the Service within the cluster,

i.e., Port, e.g., 8080 .
Port
Container Port: The target port number (or name) mapped by the service

port, i.e., targetPort, e.g., 80 .

4. Click on Create. At this point, the Service is successfully created.

Validate Application Accessibility

Verification Method

1. Obtain exposed endpoint components:

* Node IP: Worker node public address

e NodePort: Allocated external port

2. Construct access URL: http://<Node_IP>:<NodePort>

3. Expected result: Nginx welcome page

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Q Alauda Container Platform

Building Applic

Overview

Overview

Namespace Management

Building Applications - Alauda Container Platform

ations

Application Lifecycle Management

Kubernetes Workload Management

Concepts
Understanding Parameters Understanding Startup Comma
Overview Overview

Core Concepts

Use Cases and Scenarios

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage CLI Examples and Practical Usage

Best Practices
Troubleshooting Common Issues

Advanced Usage Patterns

Best Practices

Advanced Usage Patterns

Understand

Overview

Core Concepts
Use Cases and
CLI Examples ¢

Best Practices

http://localhost:4173/container_platform/

Building Applications - Alauda Container Platform

Guides

Namespaces Pre-Application-Creation Prepa Creating Af.

Post-Application-Creation Conf’
Application Observability

Workloads Working with Helm charts Pod

1. Understanding Helm
2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via Ul

How To

Setting Scheduled Task Trigger Rules

Time Conversion

Writing Crontab Expressions

Overview - Alauda Container Platform

Q Alauda Container Platform Q

Overview

Alauda Container Platform provides a unified interface to create, edit, delete, and manage
cloud-native applications through both a web console and CLI (Command-Line Interface).

Applications can be deployed across multiple namespaces with RBAC policies.

TOC

Namespace Management
Application Lifecycle Management
Application Creation Patterns

Application Operations
Application Observability

Kubernetes Workload Management

Namespace Management

Namespaces provide logical isolation for Kubernetes resources. Key operations include:

¢ Creating Namespaces: Define resource quotas and pod security admission policies.

¢ Importing Namespaces: Importing existing Kubernetes namespaces into Alauda Container

Platform provides full platform capabilities parity with natively created nhamespaces.

Application Lifecycle Management

http://localhost:4173/container_platform/

Overview - Alauda Container Platform

Alauda Container Platform supports end-to-end lifecycle management including:

Application Creation Patterns

In Alauda Container Platform, applications can be created in multiple ways. Here are some

common methods:

+ Create from Images: Create custom applications using pre-built container images. This
method supports creating complete application that include Deployments , Services ,

configMaps , and other Kubernetes resources.

o Create from Catalog: Alauda Container Platform provides application catalogs, allowing
users to select predefined application templates (Helm Charts or Operator Backed) for

creation.

e Create from YAML: By importing a YAML file, create a custom application with all included

resources in one step.

e Create from Code: Build images via Source to Image (S2I).

Application Operations

« Updating Applications: Update an application's image version, environment variables, and

other configurations, or import existing Kubernetes resources for centralized management.

o Exporting Applications: Export applications in YAML, Kustomize, or Helm Chart formats,

then import them to create new application instances in other namespaces or clusters.

+ \ersion Management: Support automatically or manually creating application versions, and

in case of issues, one-click rollback to a specific version is available for quick recovery.

¢ Deleting Applications: Delete an application, it simultaneously deletes the application itself
and all of its directly contained Kubernetes resources. Additionally, this action severs any
association the application might have had with other Kubernetes resources that were not

directly part of its definition.

Application Observability

For continuous operation management, the platform provides logs, events, monitoring, etc.

Overview - Alauda Container Platform

¢ Logs: Supports viewing real-time logs from the currently running Pod, and also provides

logs from previous container restarts.
e Events: Supports viewing event information for all resources within a namespace.

¢ Monitoring Dashboards: Provides namespace-level monitoring dashboards, including
dedicated views for Applications, Workloads, and Pods, and also support customizing

monitoring dashboards to suit specific operational requirements.

Kubernetes Workload Management

Support for core workload types:

Deployments: Manage stateless applications with rolling updates.

StatefulSets: Run stateful apps with stable network IDs.

DaemonSets: Deploy node-level services (e.g., log collectors).

CronJobs: Schedule batch jobs with retry policies.

Q Alauda Container Platform

Concepts

Understanding Parameters

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage
Best Practices

Troubleshooting Common Issues

Advanced Usage Patterns

Concepts - Alauda Container Platform

Understanding Startup Comma

Overview

Core Concepts

Use Cases and Scenarios

CLI Examples and Practical Usage
Best Practices

Advanced Usage Patterns

Understand

Overview

Core Concepts
Use Cases and
CLI Examples ¢

Best Practices

http://localhost:4173/container_platform/

Understanding Parameters - Alauda Container Platform

0 Alauda Container Platform

Understanding Parameters

TOC

Overview
Core Concepts

What are Parameters?

Relationship with Docker
Use Cases and Scenarios

1. Application Configuration

2. Environment-Specific Deployment

3. Database Connection Configuration
CLI Examples and Practical Usage

Using kubectl run

Using kubectl create

Complex Parameter Examples

Web Server with Custom Configuration
Application with Multiple Parameters

Best Practices

1. Parameter Design Principles

2. Security Considerations

3. Configuration Management
Troubleshooting Common Issues

1. Parameter Not Recognized

2. Parameter Override Not Working

3. Debugging Parameter Issues

http://localhost:4173/container_platform/

Understanding Parameters - Alauda Container Platform
Advanced Usage Patterns
1. Conditional Parameters with Init Containers

2. Parameter Templating with Helm

Overview
Parameters in Kubernetes refer to command-line arguments passed to containers at runtime.
They correspond to the args field in Kubernetes Pod specifications and override the default

CMD arguments defined in container images. Parameters provide a flexible way to configure

application behavior without rebuilding images.

Core Concepts

What are Parameters?

Parameters are runtime arguments that:

Override the default CMD instruction in Docker images

Are passed to the container's main process as command-line arguments

Allow dynamic configuration of application behavior

Enable reuse of the same image with different configurations

Relationship with Docker

In Docker terminology:

o« ENTRYPOINT: Defines the executable (maps to Kubernetes command)
o CMD: Provides default arguments (maps to Kubernetes args)

+ Parameters: Override CMD arguments while preserving ENTRYPOINT

Understanding Parameters - Alauda Container Platform

FROM nginx:alpine
ENTRYPOINT ["nginx"]
CMD ["-g", "daemon off;"]

apiVersion: vi

kind: Pod
spec:
containers:

- name: nginx
image: nginx:alpine

args: ["-g", "daemon off;", "-c", "/custom/nginx.conf"]

Use Cases and Scenarios

1. Application Configuration

Pass configuration options to applications:

apiVersion: apps/vil
kind: Deployment
metadata:

name: web-server

spec:
template:
spec:
containers:
- name: app

image: myapp:latest

args:

- "--port=8080"

- "--1log-level=info"

- "--config=/etc/app/config.yaml"

Understanding Parameters - Alauda Container Platform

2. Environment-Specific Deployment

Different parameters for different environments:

args: ["--debug", "--reload", "--port=3000"]

args: ["--optimize", "--port=80", "--workers=4"]

3. Database Connection Configuration

apiVersion: vi

kind: Pod
spec:
containers:

- name: db-client
image: postgres:13
args:

- "psql”

- M_p"

- "postgres.example.com"
- "-p"

- "5432"

- "_y»

- "myuser"

- on_gn

- "mydb"

CLI Examples and Practical Usage

Using kubectl run

Understanding Parameters - Alauda Container Platform

kubectl run nginx --image=nginx:alpine --restart=Never -- -g "daemon of

f;" -c "/custom/nginx.conf"

kubectl run myapp --image=myapp:latest --restart=Never -- --port=8080 --1
0g- level=debug

kubectl run debug --image=ubuntu:20.04 --restart=Never -it -- /bin/bash

Using kubectl create

kubectl create deployment web --image=nginx:alpine --dry-run=client -0 ya

ml > deployment.yaml

kubectl apply -f deployment.yaml

Complex Parameter Examples

Web Server with Custom Configuration

Understanding Parameters - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:
name: nginx-custom
spec:
replicas: 3
selector:
matchLabels:
app: nginx-custom
template:
metadata:
labels:
app: nginx-custom
spec:
containers:
- name: nginx

image: nginx:1.21-alpine

args:

- "-g"

- "daemon off;"

- "_C”

- "/etc/nginx/custom.conf"

ports:

- containerPort: 80

vo lumeMounts:

- name: config
mountPath: /etc/nginx/custom.conf
subPath: nginx.conf

volumes:
- name: config
configMap:

name: nginx-config

Application with Multiple Parameters

Understanding Parameters - Alauda Container Platform

apiVersion: vi
kind: Pod
metadata:
name: myapp
spec:
containers:
- name: app
image: mycompany/myapp:v1.2.3
args:
- "--server-port=8080"
- "--database-url=postgresql://db:5432/mydb"
- "--1log-level=info"
- "--metrics-enabled=true"
- "--cache-size=256MB"

- "--worker-threads=4"

Best Practices

1. Parameter Design Principles

Use meaningful parameter names: --port=8080 instead of -p 8080

Provide sensible defaults: Ensure applications work without parameters

Document all parameters: Include help text and examples

Validate input: Check parameter values and provide error messages

2. Security Considerations

Understanding Parameters - Alauda Container Platform

X

args: ["--api-key=secret123", "--password=mypass"]

env:
- name: API_KEY
valueFrom:
secretKeyRef:
name: app-secrets
key: api-key

args: ["--config-from-env"]

3. Configuration Management

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp: latest
args:
- "--config=/etc/config/app.yaml"
- "--1log-level=info"
volumeMounts:
- name: config
mountPath: /etc/config
volumes:
- name: config
configMap:

name: app-config

Troubleshooting Common Issues

1. Parameter Not Recognized

Understanding Parameters - Alauda Container Platform

kubectl logs pod-name

2. Parameter Override Not Working

X

command: ["myapp", "--port=8080"]
args: ["--log-level=debug"]

args: ["--port=8080", "--log-level=debug"]

3. Debugging Parameter Issues

kubectl run debug --image=myapp:latest -it --rm --restart=Never --

h

/app/myapp --port=8080 --log-level=debug

Advanced Usage Patterns

1. Conditional Parameters with Init Containers

/bin/s

Understanding Parameters - Alauda Container Platform

apiVersion: vi

kind: Pod
spec:
initContainers:

- name: config-generator
image: busybox

command: ['sh', '-c']

args:
-
if ["$ENVIRONMENT" = "production"]; then
echo "--optimize --workers=8" > /shared/args
else
echo "--debug --reload" > /shared/args
fi
volumeMounts:

- name: shared
mountPath: /shared
containers:
- name: app
image: myapp:latest
command: ['sh', '-c']
args: ['exec myapp $(cat /shared/args)’]
volumeMounts:
- name: shared
mountPath: /shared
volumes:
- name: shared

emptyDir: {3}

2. Parameter Templating with Helm

Understanding Parameters - Alauda Container Platform

app:
parameters:
port: 8080
logLevel: info

workers: 4

apiVersion: apps/vil

kind: Deployment

spec:
template:
spec:
containers:
- name: app

image: myapp:latest

args:

- "--port={{ .values.app.parameters.port }}"

- "--1log-level={{ .values.app.parameters.logLevel }}"
- "--workers={{ .Values.app.parameters.workers }}"

Parameters provide a powerful mechanism for configuring containerized applications in
Kubernetes. By understanding how to properly use parameters, you can create flexible,
reusable, and maintainable deployments that adapt to different environments and

requirements.

Understanding Startup Commands - Alauda Container Platform

0 Alauda Container Platform

Understanding Startup Commands

TOC

Overview
Core Concepts
What are Startup Commands?
Relationship with Docker and Parameters
Command vs Args Interaction
Use Cases and Scenarios
1. Custom Application Startup
2. Debugging and Troubleshooting
3. Initialization Scripts
4. Multi-Purpose Images
CLI Examples and Practical Usage
Using kubectl run
Using kubectl create job
Complex Startup Command Examples
Multi-Step Initialization
Conditional Startup Logic
Best Practices
1. Signal Handling and Graceful Shutdown
2. Error Handling and Logging
3. Security Considerations
4. Resource Management

Advanced Usage Patterns

http://localhost:4173/container_platform/

Understanding Startup Commands - Alauda Container Platform

1. Init Containers with Custom Commands
2. Sidecar Containers with Different Commands

3. Job Patterns with Custom Commands

Overview

Startup commands in Kubernetes define the primary executable that runs when a container
starts. They correspond to the command field in Kubernetes Pod specifications and override
the default ENTRYPOINT instruction defined in container images. Startup commands provide

complete control over what process runs inside your containers.

Core Concepts

What are Startup Commands?

Startup commands are:

e The primary executable that runs when a container starts
e Override the ENTRYPOINT instruction in Docker images
» Define the main process (PID 1) inside the container

e Work in conjunction with parameters (args) to form the complete command line

Relationship with Docker and Parameters

Understanding the relationship between Docker instructions and Kubernetes fields:

Docker Kubernetes Purpose
ENTRYPOINT command Defines the executable

CMD args Provides default arguments

Understanding Startup Commands - Alauda Container Platform

FROM ubuntu:20.04
ENTRYPOINT ["/usr/bin/myapp"]
CMD ["--config=/etc/default.conf"]

apiVersion: vi

kind: Pod
spec:
containers:

- name: myapp
image: myapp: latest
command: ["/usr/bin/myapp"]

args: ["--config=/etc/custom.conf", "--debug"]

Command vs Args Interaction

Scenario Docker Image Kubernetes Spec
ENTRYPOINT +
Default (none)
CMD
Override args ENTRYPOINT + args: ["new-
only CMD args"]

Override

command only

Override both

ENTRYPOINT +
CMD

ENTRYPOINT +
CMD

command: ["new-

cmd"]

command: ["new-
cmd"]
args: ["new-

args"]

Use Cases and Scenarios

Resulting

Command

ENTRYPOINT +
CMD

ENTRYPOINT +

new-args

new-cmd

new-cmd + new-args

Understanding Startup Commands - Alauda Container Platform

1. Custom Application Startup

Run different applications using the same base image:

apiVersion: vi
kind: Pod
metadata:
name: web-server
spec:
containers:
- name: nginx
image: ubuntu:20.04
command: ["/usr/sbin/nginx"]

args: ["-g", "daemon off;", "-c", "/etc/nginx/nginx.conf"]

2. Debugging and Troubleshooting

Override the default command to start a shell for debugging:

apivVersion: vi
kind: Pod
metadata:
name: debug-pod
spec:
containers:
- name: debug
image: myapp: latest
command: ["/bin/bash"]

args: ["-c", "sleep 3600"]

3. Initialization Scripts

Run custom initialization before starting the main application:

Understanding Startup Commands - Alauda Container Platform

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp: latest
command: ["/bin/sh"]
args:
- "
-
echo "Initializing application..."
/scripts/init.sh
echo "Starting main application..."
exec /usr/bin/myapp --config=/etc/app.conf

4. Multi-Purpose Images

Use the same image for different purposes:

Understanding Startup Commands - Alauda Container Platform

Understanding Startup Commands - Alauda Container Platform

Web server
apiVersion: apps/vil
kind: Deployment

metadata:
name: web
spec:
template:
spec:
containers:
- name: web

image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["server", "--port=8080"]

Background worker
apiVersion: apps/vil
kind: Deployment
metadata:
name: worker
spec:
template:
spec:
containers:
- name: worker
image: myapp: latest
command: ["/usr/bin/myapp"]

args: ["worker", "--queue=tasks"]

Database migration
apiVersion: batch/vi
kind: Job
metadata:
name: migrate
spec:
template:
spec:
containers:
- name: migrate
image: myapp: latest
command: ["/usr/bin/myapp"]
args: ["migrate", "--up"]

Understanding Startup Commands - Alauda Container Platform

restartPolicy: Never

CLI Examples and Practical Usage

Using kubectl run

kubectl run debug --image=nginx:alpine --command -- /bin/sh -c "sleep 360
0”

kubectl run -it debug --image=ubuntu:20.04 --restart=Never --command -- /
bin/bash

kubectl run myapp --image=myapp:latest --command -- /usr/local/bin/start.

sh --config=/etc/app.conf

kubectl run task --image=busybox --restart=Never --command -- /bin/sh -c

"echo 'Task completed'"

Using kubectl create job

kubectl create job backup --image=postgres:13 --dry-run=client -o yaml --
pg_dump -h db.example.com mydb > backup.yaml

kubectl apply -f backup.yaml

Complex Startup Command Examples

Multi-Step Initialization

Understanding Startup Commands - Alauda Container Platform

apiVersion: vi
kind: Pod
metadata:
name: complex-init
spec:
containers:
- name: app
image: myapp:latest
command: ["/bin/bash"]
args:
n_gn
-
set -e
echo "Step 1: Checking dependencies..."

/scripts/check-deps.sh

echo "Step 2: Setting up configuration..."

/scripts/setup-config.sh

echo "Step 3: Running database migrations..."

/scripts/migrate.sh

echo "Step 4: Starting application..."
exec /usr/bin/myapp --config=/etc/app/config.yaml
vo lumeMounts:
- name: scripts
mountPath: /scripts
- name: config
mountPath: /etc/app
volumes:
- name: scripts
configMap:
name: init-scripts
defaultMode: 0755
- name: config
configMap:
name: app-config

Conditional Startup Logic

Understanding Startup Commands - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:

name: conditional-app

spec:
template:
spec:
containers:
- name: app

image: myapp:latest
command: ["/bin/sh"]

args:
- """
-
if ["$APP_MODE" = "worker"]; then
exec /usr/bin/myapp worker --queue=$QUEUE_NAME
elif ["$APP_MODE" = "scheduler"]; then

exec /usr/bin/myapp scheduler --interval=60
else
exec /usr/bin/myapp server --port=8080
fi
env:
- name: APP_MODE
value: "server"
- name: QUEUE_NAME

value: "default"

Best Practices

1. Signal Handling and Graceful Shutdown

Understanding Startup Commands - Alauda Container Platform

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp: latest
command: ["/bin/bash"]
args:
- "
-
Trap SIGTERM for graceful shutdown
trap 'echo "Received SIGTERM, shutting down gracefully..."; kill -T
ERM $PID; wait $PID' TERM

Start the main application in background
/usr/bin/myapp --config=/etc/app.conf &

PID=$!

Wait for the process
wait $PID

2. Error Handling and Logging

Understanding Startup Commands - Alauda Container Platform

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
command: ["/bin/bash"]
args:
- "_C"
-

set -euo pipefail # Exit on error, undefined vars, pipe failures

log() {
echo "[$(date '+%Y-%m-%d %H:%M:%S')] $*" >&2

log "Starting application initialization..."
if ! /scripts/health-check.sh; then

log "ERROR: Health check failed"

exit 1

fi

log "Starting main application..."

exec /usr/bin/myapp --config=/etc/app.conf

3. Security Considerations

Understanding Startup Commands - Alauda Container Platform

apiVersion: vi

kind: Pod

spec:
securityContext:

runAsNonRoot: true
runAsUser: 1000
runAsGroup: 1000
containers:
- name: app
image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["--config=/etc/app.conf"]
securityContext:
allowPrivilegeEscalation: false
readonlyRootFilesystem: true
capabilities:
drop:
- ALL

4. Resource Management

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
command: ["/usr/bin/myapp"]
args: ["--config=/etc/app.conf"]
resources:
requests:
memory: "64Mi"
cpu: "250m"
limits:
memory: "128Mi"
cpu: "500m"

Understanding Startup Commands - Alauda Container Platform

Advanced Usage Patterns

1. Init Containers with Custom Commands

apiVersion: vi

kind: Pod
spec:
initContainers:

- hame: setup
image: busybox
command: ["/bin/sh"]
args:
- ".c"
-
echo "Setting up shared data..."
mkdir -p /shared/data
echo "Setup complete" > /shared/data/status
volumeMounts:
- name: shared-data
mountPath: /shared
containers:
- name: app
image: myapp: latest
command: ["/bin/sh"]
args:
- "_C”
-
while [! -f /shared/data/status]; do
echo "Waiting for setup to complete..."
sleep 1
done
echo "Starting application..."
exec /usr/bin/myapp
volumeMounts:
- name: shared-data
mountPath: /shared
volumes:
- name: shared-data
emptyDir: {}

Understanding Startup Commands - Alauda Container Platform

2. Sidecar Containers with Different Commands

apiVersion: vi
kind: Pod
spec:

containers:

- name: app
image: myapp:latest
command: ["/usr/bin/myapp"]

args: ["--config=/etc/app.conf"]

- name: log-shipper
image: fluent/fluent-bit:latest
command: ["/fluent-bit/bin/fluent-bit"]
args: ["--config=/fluent-bit/etc/fluent-bit.conf"]

- name: metrics
image: prom/node-exporter:latest
command: ["/bin/node_exporter"]

args: ["--path.rootfs=/host"]

3. Job Patterns with Custom Commands

Understanding Startup Commands - Alauda Container Platform

apiVersion: batch/v1i
kind: Job
metadata:
name: database-backup
spec:
template:
spec:
containers:
- name: backup
image: postgres:13
command: ["/bin/bash"]
args:
n_gn
-
set -e
echo "Starting backup at $(date)"
pg_dump -h $DB_HOST -U $DB_USER $DB_NAME > /backup/dump-$(date
+9%Y%M%d - %H%M%S) . sq 1
echo "Backup completed at $(date)"
env:
- name: DB_HOST
value: "postgres.example.com"
- name: DB_USER
value: "backup_user"
- name: DB_NAME
value: "myapp"
vo lumeMounts:
- name: backup-storage
mountPath: /backup
restartPolicy: Never
volumes:
- name: backup-storage
persistentVolumeClaim:

claimName: backup-pvc

Startup commands provide complete control over container execution in Kubernetes. By
understanding how to properly configure and use startup commands, you can create flexible,

maintainable, and robust containerized applications that meet your specific requirements.

Understanding Environment Variables - Alauda Container Platform

0 Alauda Container Platform

Understanding Environment Variables

TOC

Overview
Core Concepts
What are Environment Variables?
Environment Variable Sources in Kubernetes
Environment Variable Precedence
Use Cases and Scenarios
1. Application Configuration
2. Database Configuration
3. Dynamic Runtime Information
4. Environment-Specific Configuration
CLI Examples and Practical Usage
Using kubectl run
Using kubectl create
Complex Environment Variable Examples
Microservices with Service Discovery
Multi-Container Pod with Shared Configuration
Best Practices
1. Security Best Practices
2. Configuration Organization
3. Environment Variable Naming

4. Default Values and Validation

http://localhost:4173/container_platform/

Understanding Environment Variables - Alauda Container Platform

Overview
Environment variables in Kubernetes are key-value pairs that provide configuration data to
containers at runtime. They offer a flexible and secure way to inject configuration information,

secrets, and runtime parameters into your applications without modifying container images or

application code.

Core Concepts

What are Environment Variables?

Environment variables are:

Key-value pairs available to processes running inside containers

Runtime configuration mechanism that doesn't require image rebuilds

Standard way to pass configuration data to applications

Accessible through standard operating system APIs in any programming language

Environment Variable Sources in Kubernetes

Kubernetes supports multiple sources for environment variables:

Source Type Description Use Case
Static Values Direct key-value pairs Simple configuration

) Reference to ConfigMap -))
ConfigMap ‘ Non-sensitive configuration
eys

Sensitive data (passwords,
Secret Reference to Secret keys

tokens)

Field Reference Pod/Container metadata Dynamic runtime information

Understanding Environment Variables - Alauda Container Platform

Source Type Description Use Case

Resource o .)
Resource requests/limits Resource-aware configuration

Reference

Environment Variable Precedence

Environment variables override configuration in this order:

1. Kubernetes env (highest priority)
2. Referenced ConfigMaps/Secrets
3. Dockerfile ENV instructions

4. Application default values (lowest priority)

Use Cases and Scenarios

1. Application Configuration

Basic application settings:

apiVersion: vi

kind: Pod
spec:
containers:

- name: web-app

image: myapp: latest

env:

- name: PORT
value: "8080"

- name: LOG_LEVEL
value: "info"

- name: ENVIRONMENT
value: "production"

- name: MAX_CONNECTIONS
value: "100"

Understanding Environment Variables - Alauda Container Platform

2. Database Configuration

Database connection settings using ConfigMaps and Secrets:

Understanding Environment Variables - Alauda Container Platform

Understanding Environment Variables - Alauda Container Platform

apiVersion: vi
kind: ConfigMap
metadata:
name: db-config
data:
DB_HOST: "postgres.example.com"
DB_PORT: '"5432"
DB_NAME: "myapp"
DB_POOL_SIZE: "10"

apivVersion: vi
kind: Secret
metadata:
name: db-secret
type: Opaque
data:
DB_USER: bXl1c2Vy # base64 encoded "myuser"
DB_PASSWORD: bX1lwYXNzd29yZA== # base64 encoded "mypassword"

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp:latest
env:
From ConfigMap
- name: DB_HOST
valueFrom:
configMapKeyRef:
name: db-config
key: DB_HOST
- name: DB_PORT
valueFrom:
configMapKeyRef:
name: db-config
key: DB_PORT
- name: DB_NAME
valueFrom:
configMapKeyRef:
name: db-config

Understanding Environment Variables - Alauda Container Platform

key: DB_NAME

- name: DB_USER
valueFrom:
secretKeyRef:
name: db-secret
key: DB_USER
- name: DB_PASSWORD
valueFrom:
secretKeyRef:
name: db-secret
key: DB_PASSWORD

3. Dynamic Runtime Information

Access Pod and Node metadata:

Understanding Environment Variables - Alauda Container Platform

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp:latest

env.

- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
- name: POD_NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: status.podIP
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName

- name: CPU_REQUEST
valueFrom:
resourceFieldRef:
resource: requests.cpu
- name: MEMORY_LIMIT
valueFrom:
resourceFieldRef:

resource: limits.memory

4. Environment-Specific Configuration

Different configurations for different environments:

Understanding Environment Variables - Alauda Container Platform

Development environment
apiVersion: vi
kind: ConfigMap
metadata:
name: app-config-dev
data:
DEBUG: "true"
LOG_LEVEL: "debug"
CACHE_TTL: "e0"
RATE_LIMIT: "1000"

Production environment
apivVersion: vi
kind: ConfigMap
metadata:
name: app-config-prod
data:
DEBUG: "false"
LOG_LEVEL: "warn"
CACHE_TTL: "3600"
RATE_LIMIT: "100"

Deployment using environment-specific config
apiVersion: apps/vi
kind: Deployment
metadata:
name: myapp

spec:
template:
spec:
containers:
- name: app

image: myapp: latest
envFrom:
- configMapRef:
name: app-config-prod # Change to app-config-dev for develop

ment

Understanding Environment Variables - Alauda Container Platform

CLI Examples and Practical Usage

Using kubectl run

kubectl run myapp --image=nginx --env="PORT=8080" --env="DEBUG=true"

kubectl run webapp --image=myapp:latest \
--env="DATABASE_URL=postgresql://localhost:5432/mydb" \
--env="REDIS_URL=redis://localhost:6379" \
--env="LOG_LEVEL=info"

kubectl run debug --image=ubuntu:20.04 -it --rm \
--env="TEST_VAR=hello" \
--env="ANOTHER_VAR=wor 1d" \
-- /bin/bash

Using kubectl create

kubectl create configmap app-config \
--from-literal=DATABASE_HOST=postgres.example.com \
--from-1literal=DATABASE_PORT=5432 \
--from-literal=CACHE_SIZE=256MB

echo "DEBUG=true" > app.env
echo "LOG_LEVEL=debug" >> app.env

kubectl create configmap app-env --from-env-file=app.env

kubectl create secret generic db-secret \
--from-literal=username=myuser \

--from-literal=password=mypassword

Understanding Environment Variables - Alauda Container Platform

Complex Environment Variable Examples

Microservices with Service Discovery

apiVersion: vi

kind: ConfigMap

metadata:
name: service-config

data:
USER_SERVICE_URL: "http://user-service:8080"
ORDER_SERVICE_URL: "http://order-service:8080"
PAYMENT_SERVICE_URL: "http://payment-service:8080"
NOTIFICATION_SERVICE_URL: "http://notification-service:8080"

apiVersion: apps/vil
kind: Deployment
metadata:
name: api-gateway
spec:
template:
spec:
containers:
- name: gateway
image: api-gateway:latest
env:
- name: PORT
value: "8080"
- name: ENVIRONMENT
value: "production"
envFrom:
- configMapRef:
name: service-config
- secretRef:

name: api-keys

Multi-Container Pod with Shared Configuration

Understanding Environment Variables - Alauda Container Platform

apiVersion: vi
kind: Pod
metadata:
name: multi-container-app
spec:

containers:

- name: app
image: myapp:latest
env:

- name: ROLE
value: "primary"
- name: SHARED_SECRET
valueFrom:
secretKeyRef:

name: shared-secret

key: token
envFrom:
- configMapRef:

name: shared-config

- name: sidecar

image: sidecar:latest
env:
- name: ROLE

value: "sidecar"
- name: MAIN_APP_URL

value: "http://localhost:8080"
- name: SHARED_SECRET

valueFrom:

secretKeyRef:

name: shared-secret

key: token
envFrom:
- configMapRef:

name: shared-config

Best Practices

Understanding Environment Variables - Alauda Container Platform

1. Security Best Practices

apiVersion: vi

kind: Secret

metadata:
name: app-secrets

type: Opaque

data:
api-key: <base64-encoded-value>
database-password: <base64-encoded-value>

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp: latest
env:
- name: API_KEY
valueFrom:
secretKeyRef:
name: app-secrets
key: api-key

X

2. Configuration Organization

Understanding Environment Variables - Alauda Container Platform

apiVersion: vi
kind: ConfigMap
metadata:
name: database-config
data:
DB_HOST: "postgres.example.com"
DB_PORT: '"5432"
DB_POOL_SIZE: "10"

apiVersion: vi
kind: ConfigMap
metadata:
name: cache-config
data:
REDIS_HOST: "redis.example.com"
REDIS_PORT: "6379"
CACHE_TTL: "3600"

apiVersion: vi
kind: Pod
spec:
containers:
- name: app
image: myapp: latest
envFrom:
- configMapRef:
name: database-config
- configMapRef:

name: cache-config

3. Environment Variable Naming

Understanding Environment Variables - Alauda Container Platform

M Use consistent naming conventions

env:

- name: DATABASE_HOST # Clear, descriptive names
value: "postgres.example.com"

- name: DATABASE_PORT # Use underscores for separation
value: "5432"

- name: LOG_LEVEL # Use uppercase for environment variables
value: "info"

- name: FEATURE_FLAG_NEW_UI # Prefix related variables

value: "true"

X Avoid unclear or inconsistent naming

- name: db # Too short

- name: databaseHost # Inconsistent casing

- name: log-level # Inconsistent separator

4. Default Values and Validation

apiVersion: vi

kind: Pod

spec:
containers:
- name: app

image: myapp: latest

env:
- name: PORT
value: "8080" # Provide sensible defaults

- name: LOG_LEVEL

value: "info" # Default to safe values
- name: TIMEOUT_SECONDS
value: "30" # Include units in names

- name: MAX_RETRIES

value: "3" # Limit retry attempts

Guides - Alauda Container Platform

Q Alauda Container Platform Q

Guides

Namespaces
Creating Namespaces Importing Namespaces Resource G
Understanding namespaces Overview Understanding
Creating namespaces by using web consc Use Cases Quotas
Creating namespace by using CLI Prerequisites Extended Reso

Procedure

Overcommit Ratio

UnderStanding Namespace Resource Overcommit Ratio
CRD Define
Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console Manaaina N
Updating Namespaces

Updating Quotas

Updating Container LimitRanges

Deleting/lRemoving Namespaces

Deleting Namespaces

Removing Namespaces

http://localhost:4173/container_platform/

Guides - Alauda Container Platform

Pre-Application-Creation Preparation

Configuring ConfigMap

Understanding Config Maps

Config Map Restrictions

ConfigMap vs Secret

Creating a ConfigMap by using the web cc
Creating a ConfigMap by using the CLI
Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

Creating Applications

Creating applications from Ima

Prerequisites

Procedure 1 - Workloads

Procedure 2 - Services

Procedure 3 - Ingress

Application Management Operations

Reference Information

Configuring Secrets

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret
Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console
How to Use a Secret in a Pod

Follow-up Actions

Operations

Creating applications from Cha

Precautions
Prerequisites
Procedure

Status Analysis Reference

Creating ap

Precautions
Prerequisites

Procedure

o~ . _a_ o

Creating applications from Operator Backed

Guides - Alauda Container Platform

Creating applications by using CLI

Prerequisites
Procedure
Example

Reference

Post-Application-Creation Configuration

Configuring HPA Configuring VerticalPodAutosc Configuring
Understanding Horizontal Pod Autoscalers Understanding VerticalPodAutoscalers Understanding
Prerequisites Prerequisites Prerequisites
Creating a Horizontal Pod Autoscaler Creating a VerticalPodAutoscaler Creating a Cror
Calculation Rules Follow-Up Actions Schedule Rule

Operation and Maintenance

Status Description Starting and Stopping Applicati Updating A|
Applications Starting the Application Importing Reso
Stopping the Application Removing/Batc

Exporting Applications

Exporting Helm Charts

Guides - Alauda Container Platform

Exporting YAML to Local Updating and deleting Chart Ap Version Mal
Exporting YAML to Code Repository (Alph Important Notes Creating a Vers
Prerequisites Rolling Back to

Qtatiic Analveic NDeserintinn

Deleting Applications

Health Che«

Understanding
YAML file exam
Health Checks

Troubleshooting

Application Observability

Monitoring Dashboards Logs Events
Prerequisites Procedure Procedure
Namespace-Level Monitoring Dashboards Event records il

Workload-Level Monitoring

Workloads
Deployments DaemonSets StatefulSet:
Understanding Deployments Understanding DaemonSets Understanding

Creating Deployments Creating DaemonSets Creating Statefi

Guides - Alauda Container Platform

Managing Deployments Managing DaemonSets Managing State

Troubleshooting by using CLI

CronJobs Jobs

Understanding CronJobs Understanding
Creating CronJobs YAML file exam
Execute Immediately Execution Over

Deleting CronJobs

Working with Helm charts

Working with Helm charts

1. Understanding Helm
2 Deploying Helm Charts as Applications via CLI

3. Deploying Helm Charts as Applications via Ul

Pod

Introduction Pod Parameters Deleting Po

Use Cases

Container

Namespaces - Alauda Container Platform

Q Alauda Container Platform Q

Namespaces

Creating Namespaces Importing Namespaces Resource G

Understanding namespaces Overview Understanding

Creating namespaces by using web consc Use Cases Quotas

Creating namespace by using CLI Prerequisites Extended Reso
Procedure

Overcommit Ratio

UnderStanding Namespace Resource Overcommit Ratio
CRD Define
Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console Manaaina N
Updating Namespaces

Updating Quotas
Updating Container LimitRanges
Deleting/Removing Namespaces

Deleting Namespaces

Removing Namespaces

http://localhost:4173/container_platform/

Creating Namespaces - Alauda Container Platform

Jo
1l

0 Alauda Container Platform

Creating Namespaces

TOC

Understanding namespaces
Creating namespaces by using web console
Creating namespace by using CLI

YAML file examples

Create via YAML file

Create via command line directly

Understanding nhamespaces

Refer to the official Kubernetes documentation: Namespaces -~

In Kubernetes, namespaces provide a mechanism for isolating groups of resources within a
single cluster. Names of resources need to be unique within a namespace, but not across
namespaces. Namespace-based scoping is applicable only for namespaced objects (e.g.
Deployments, Services, etc.) and not for cluster-wide objects (e.g. StorageClass, Nodes,

PersistentVolumes, etc.).

Creating hamespaces by using web console

https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
https://kubernetes.io/docs/reference/kubernetes-api/cluster-resources/namespace-v1/
http://localhost:4173/container_platform/

Creating Namespaces - Alauda Container Platform

Within the cluster associated with the project, create a new namespace aligned with the
project's available resource quotas. The new namespace operates within the resource
quotas allocated to the project (e.g., CPU, memory), and all resources in the namespace

must reside within the associated cluster.

. In the Project Management view, click on the Project Name for which you want to create
a namespace.

. In the left navigation bar, click on Namespaces > Namespaces.
. Click on Create Namespace.

. Configure Basic Information.

Parameter Description
Cluster Select the cluster linked to the project to host the namespace.

The namespace name must include a mandatory prefix, which is the project
Namespace

name.

. (Optional) Configure Resource Quota.

Every time a resource limit (limits) for computational or storage resources is specified for a
container within the namespace, or each time a new Pod or PVC is added, it will consume

the quota set here.

NOTICE:

e The namespace's resource quota is inherited from the project's allocated quota in the
cluster. The maximum allowable quota for a resource type cannot exceed the remaining
available quota of the project. If any resource's available quota reaches 0, namespace

creation will be blocked. Contact your platform administrator for quota adjustments.
e GPU Quota Configuration Requirements:

¢ GPU quotas (vGPU or pGPU) can only be configured if GPU resources are
provisioned in the cluster.

¢ When using vGPU, memory quotas can also be set.

Creating Namespaces - Alauda Container Platform

GPU Unit Definitions:

e VGPU Units: 100 virtual GPU units (vGPU) = 1 physical GPU core (pGPU).

¢ Note: pGPU units are counted in whole numbers only (e.g., 1 pGPU = 1 core = 100
VvGPU).

¢ Memory Units:

e 1 memory unit = 256 MiIB.

¢ 1 GiB =4 memory units (1024 MiB = 4 x 256 MiB).

o Default Quota Behavior:

e If no quota is specified for a resource type, the default is unbounded.

e This means the namespace can consume all available resources of that type

allocated to the project without explicit limits.

Quota Parameter Description

Value
Category Quota Type and Description
Unit
Storage Gi The total requested storage
Resource capacity of all Persistent Volume
All
Quota Claims (PVCs) in this namespace
cannot exceed this value.
Storage Class The total requested storage

capacity of all Persistent Volume
Claims (PVCs) associated with
the selected StorageClass in this
namespace cannot exceed this

value.

Note: Please allocate

StorageClass to the project that

Creating Namespaces - Alauda Container Platform

Value
Category Quota Type and Description
Unit
the namespace belongs to in
advance.
Obtained from the
configuration
This category will not be
dictionary
Extended displayed if there is no
(ConfigMap); please -
Resources corresponding configuration
refer to Extended
dictionary.
Resources Quotas
description for details.
To avoid problems of resource
duplication, the following values
are not allowed as quota types:
 limits.cpu
Enter custom quotas; o
 limits.memory
Other for specific input rules,
Quotas please refer to Other * requests.cpu
Quota description. e requests.memory
e pods
e Cpu
e memory

6. (Optional) Configure Container Limit Range; please refer to Limit Range for more details.

7. (Optional) Configure Pod Security Admission; please refer to Pod Security Admission for

specific details.

8. (Optional) In the More Configuration area, add labels and annotations for the current

namespace.

Creating Namespaces - Alauda Container Platform

Tip: You can define the attributes of the namespace through labels or supplement the
namespace with additional information through annotations; both can be used to filter and

sort namespaces.

9. Click on Create.

Creating namespace by using CLI

YAML file examples

example-namespace.yaml

apiVersion: vi
kind: Namespace
metadata:
name: example
labels:
pod-security.kubernetes.io/audit: baseline
pod-security.kubernetes.io/enforce: baseline

pod-security.kubernetes.io/warn: baseline

example-resourcequota.yaml

apivVersion: vi
kind: ResourceQuota
metadata:
name: example-resourcequota
namespace: example
spec:
hard:
limits.cpu: '20'
limits.memory: 20Gi
pods: '500'
requests.cpu: '2'

requests.memory: 2Gi

example-limitrange.yaml

Creating Namespaces - Alauda Container Platform

apiVersion: vi
kind: LimitRange
metadata:
name: example-limitrange
namespace: example
spec:
limits:
- default:
cpu: 100m
memory: 100Mi
defaultRequest:
cpu: 50m
memory: 50Mi
max:
cpu: 1000m
memory: 1000Mi

type: Container

Create via YAML file

kubectl apply -f example-namespace.yaml
kubectl apply -f example-resourcequota.yaml

kubectl apply -f example-limitrange.yaml

Create via command line directly

kubectl create namespace example

kubectl create resourcequota example-resourcequota --namespace=example --
hard=1limits.cpu=20, limits.memory=20Gi, pods=500

kubectl create limitrange example-limitrange --namespace=example --defaul
t="'cpu=100m, memory=100Mi' --default-request='cpu=50m, memory=50Mi' --max

='cpu=1000m, memory=1000Mi"

Importing Namespaces - Alauda Container Platform

Q Alauda Container Platform Q

Importing Namespaces

TOC

Overview
Use Cases
Prerequisites

Procedure

Overview

Namespace Lifecycle Management Capabilities:

¢ Cross-Cluster Namespace Import: Importing Namespaces into a Project centralizes their
management across all Kubernetes Clusters provisioned by the platform. This provides
administrators with unified resource governance and monitoring capabilities across

distributed environments.
Namespace Disassociation:

e The Disassociate Namespace feature enables you to unlink a Namespace from its current

Project, resetting its association for subsequent reassignment or cleanup.

¢ Importing a Namespace into a Project grants it capabilities equivalent to those of natively
created Namespaces on the platform. This includes inherited Project-level Policies (e.g.,

Resource Quotas), unified monitoring, and centralized governance controls.

http://localhost:4173/container_platform/

Importing Namespaces - Alauda Container Platform

Important Notes:

+ A Namespace can only be associated with one Project at any given time.

¢ If a Namespace is already linked to a Project, it cannot be imported into or reassigned to

another Project without first disassociating it from its original Project.

Use Cases

Common use cases for Namespace management include:

¢ Upon connecting a new Kubernetes cluster to the platform, you can utilize the Import
Namespace feature to associate its existing Kubernetes Namespaces with a Project.
Simply select the target Project and Cluster to initiate the import. This action grants the
project governance over these namespace, encompassing Resource Quotas,

monitoring, and policy enforcement.

Create/Import

Clusters

Whether to

associate with

existing projects YES

Create Project Add Cluster

Create / Import
Namespace

+ A namespace that has been disassociated from one project can be seamlessly re-
associated with another project via the Import Namespace feature for continued

centralized governance.

* Namespaces not currently managed by any project (e.g., those created via cluster-level
scripts) must be linked to a target project using the Import Namespace feature to enable

platform-level governance, including visibility and centralized management.

Importing Namespaces - Alauda Container Platform

Prerequisites

¢ The Namespace is not currently managed by any existing Project within the platform.

+ Namespaces can only be imported into a Project that is already associated with their target
Kubernetes Cluster. If no such Project exists, you must first provision a Project linked to
that Cluster.

Procedure

1. Project Management, click on the Project name where the namespace is to be imported.
2. Navigate to Namespaces > Namespaces.

3. Click on the Dropdown button next to Create Namespace, then select Import

Namespace.
4. Refer to the Creating Namespaces documentation for parameter configuration details.

5. Click Import.

Resource Quota - Alauda Container Platform

Q Alauda Container Platform Q

Resource Quota

Refer to the official Kubernetes documentation: Resource Quotas ~

TOC

Understanding Resource Requests & Limits
Quotas
Resource Quotas
YAML file example
Create resouce quota by using CLI
Storage Quotas
Extended Resources Quotas

Other Quotas

Understanding Resource Requests & Limits

Used to restrict resources available to a specific namespace. The total resource usage by all

Pods in the namespace (excluding those ina Terminating state) must not exceed the

quota.

Resource Requests: Define the minimum resources (e.g., CPU, memory) required by a
container, guiding the Kubernetes Scheduler to place the Pod on a node with sufficient

capacity.

https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
https://kubernetes.io/docs/concepts/policy/resource-quotas/
http://localhost:4173/container_platform/

Resource Quota - Alauda Container Platform

Resource Limits: Define the maximum resources a container can consume, preventing

resource exhaustion and ensuring cluster stability.

Quotas

Resource Quotas

If a resource is marked as Unlimited , no explicit quota is enforced, but usage cannot

exceed the cluster's available capacity.

Resource Quotas track the cumulative resource consumption (e.g., container limits, new

Pods, or PVCs) within a namespace.

Supported Quota Types

Field Description
Total requested resources for all Pods in the namespace:
Resource Requests « CPU

e Memory

Total limit resources for all Pods in the namespace:

Resource Limits + CPU
e Memory
Number of Pods Maximum number of Pods allowed in the namespace.
Note:

» Namespace quotas are derived from the project's allocated cluster resources. If any

resource's available quota is 0, namespace creation will fail. Contact the administrator.

e Unlimited implies the namespace can consume the project's remaining cluster

resources for that resource type.

Resource Quota - Alauda Container Platform

YAML file example

apivVersion: vi
kind: ResourceQuota
metadata:
name: example-resourcequota
namespace: <example>
spec:
hard:
limits.cpu: "20"
limits.memory: 20Gi
pods: "500"
requests.cpu: "2"

requests.memory: 2Gi

Create resouce quota by using CLI

Create via YAML file

kubectl apply -f example-resourcequota.yaml

Create via command line directly

kubectl create resourcequota example-resourcequota --namespace=<example>

--hard=1limits.cpu=20, limits.memory=20Gi, pods=500

Storage Quotas

Quota Type:

o All: Total PVC storage capacity in the namespace.

o Storage Class: Total PVC storage capacity for a specific storage class.

Note: Ensure the storage class is pre-assigned to the project containing the namespace.

Resource Quota - Alauda Container Platform

Extended Resources Quotas

Extended resource quotas are defined via ConfigMap. If the ConfigMap is missing, the

resource category will not appear.

ConfigMap Field Descriptions

Field

data.dataType

data.defaultValue

data.descriptionEn

data.descriptionZh

data.excludeResources

data.group

data.groupl18n

data.key

data.labelEn/data.labelZh

data.limits

data.requests

Description

Data type (e.g., VGPU).

Default value (empty = no default).

English tooltip text (displayed when hovering over the field).

Chinese tooltip text (displayed when hovering over the field).

Mutually exclusive resources (comma-separated).

Resource group (e.g., MPS).

Group name in English/Chinese for Ul dropdowns.

Specifies the value of the key. A configuration dictionary can only

describe one key.

The English/Chinese name of the resource, which can be viewed
and selected in the drop-down options corresponding to the
guota types. This field serves the same function as the
data.groupl18n field but is only applicable when the same
resource has a single value, ensuring compatibility with the old

version of the configuration dictionary (ConfigMap).

Indicates whether to configure limits for the resources. Valid
values include: disabled indicates limits cannot be configured for
the resource, required indicates it must be input, and optional

indicates it is optional input.

Indicates whether to configure requests for the resources. Valid
values include: disabled indicates requests cannot be configured

for the resource, required indicates it must be input, optional

Resource Quota - Alauda Container Platform

Field Description

indicates it is optional input, and fromLimits indicates it will use

the same configuration as limits.

Associated resources. This field is reserved and currently cannot
data.relatedResources
be used.

. Resource unit (e.g., cores , GiB). Not support input in
data.resourceUnit)
Chinese.

data.runtimeClassName Runtime class (default: nvidia for GPU).

Mandatory labels:

e features.cpaas.io/type: CustomResourcelLimitation

e features.cpaas.io/group: <groupName>
metadata.labels

o features.cpaas.io/enabled : true or false ,the label

is mandatory and indicates whether it is enabled, default is

true.

The formatis cf-crl-<*groupName*>-<*name*> , where

« cf-crl is a fixed field and cannot be changed.

« groupName is the name of the corresponding resource group,

e.g., gpu-manager, galaxy, etc.

¢ name is the resource name:

» Resource name can be standard resource type names,
metadata.name e.g., cpu, memory, pods, etc. The standard resource
names must comply with Kubernetes' qualified name rules
and must exist within the defined standard resource types

in Kubernetes.

» Resource names can also be special resource types
starting with specific prefixes, such as: hugepages- or

requests.hugepages-.

Resource Quota - Alauda Container Platform

Field Description

metadata.namespace Must be kube-public

Other Quotas

The format for custom quota names must comply with the following specifications:

e If the custom quota name does not contain a slash (/): It must start and end with a letter or
number, and can contain letters, numbers, hyphens (-), underscores (_), or periods (.),

forming a qualified name with a maximum length of 63 characters.

 If the custom quota name contains a slash (/): The name is divided into two parts: prefix
and name, in the form of: prefix/name. The prefix must be a valid DNS subdomain, while

the name must comply with the rules for a qualified name.

e DNS Subdomain:

o Label: Must start and end with lowercase letters or numbers, may contain hyphens (-),
but cannot be exclusively composed of hyphens, with a maximum length of 63

characters.

o Subdomain: Extends the rules of the label, allowing multiple labels to be connected by

periods (.) to form a subdomain, with a maximum length of 253 characters.

Limit Range - Alauda Container Platform

0 Alauda Container Platform Q

Limit Range

TOC

Understanding Limit Range
Create Limit Range by using CLI
YAML file examples
Create via YAML file

Create via command line directly

Understanding Limit Range

Refer to the official Kubernetes documentation: Limit Ranges -~

Using Kubernetes LimitRange as an admission controller is resource limitations at the
container or Pod level. It sets default request values, limit values, and maximum values for
containers or Pods created after the LimitRange is created or updated, while continuously
monitoring container usage to ensure that no resources exceed the defined maximum values

within the namespace.

The resource request of a container is the ratio between resource limits and cluster
overcommitment. Resource request values serve as a reference and criterion for the
scheduler when scheduling containers. The scheduler will check the available resources for
each node (total resources - sum of resource requests of containers within Pods scheduled
on the node). If the total resource requests of the new Pod container exceed the remaining

available resources of the node, that Pod will not be scheduled on that node.

https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/
https://kubernetes.io/docs/concepts/policy/limit-range/
http://localhost:4173/container_platform/

Limit Range - Alauda Container Platform

LimitRange is an admission controller:

« It applies default request and limit values for all Containers that do not set compute

resource requirements.

« It tracks usage to ensure it does not exceed resource maximum and ratio defined in any

LimitRange present in the namespace.

Includes the following configurations

Resource Field

« Default Request
CPU e Limit

o Max

o Default Request
Memory e Limit

¢ Max

Create Limit Range by using CLI

YAML file examples

Limit Range - Alauda Container Platform

apiVersion: vi
kind: LimitRange
metadata:
name: example-limitrange
namespace: example
spec:
limits:
- default:
cpu: 100m
memory: 100Mi
defaultRequest:
cpu: 50m
memory: 50Mi
max:
cpu: 1000m
memory: 1000Mi

type: Container

Create via YAML file

kubectl apply -f example-limitrange.yaml

Create via command line directly

kubectl create limitrange example-limitrange --namespace=example --defaul
t="'cpu=100m, memory=100Mi' --default-request='cpu=50m, memory=50Mi' --max

='cpu=1000m, memory=1000Mi"

Pod Security Admission - Alauda Container Platform

Q Alauda Container Platform Q

Pod Security Admission

Refer to the official Kubernetes documentation: Pod Security Admission ~

Pod Security Admission (PSA) is a Kubernetes admission controller that enforces security

policies at the namespace level by validating Pod specifications against predefined standards.

TOC

Security Modes

Security Standards

Configuration
Namespace Labels

Exemptions

Security Modes

PSA defines three modes to control how policy violations are handled:

Mode Behavior Use Case
En Denies creation/modification of non- Production environments requiring
nforce
compliant Pods. strict security enforcement.
Audit Allows Pod creation but logs violations Monitoring and analyzing security
udi

in audit logs. incidents without blocking workloads.

https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
https://kubernetes.io/docs/concepts/security/pod-security-admission/
http://localhost:4173/container_platform/

Pod Security Admission - Alauda Container Platform

Mode Behavior Use Case
W Allows Pod creation but returns client Testing environments or transitional
arn
warnings for violations. phases for policy adjustments.
Key Notes:

» Enforce acts on Pods only (e.g., rejects Pods but allows non-Pod resources like

Deployments).

e Audit and Warn apply to both Pods and their controllers (e.g., Deployments).

Security Standards

PSA defines three security standards to restrict Pod privileges:

Standard Description Key Restrictions

Unrestricted access. Suitable
Privileged for trusted workloads (e.g., No validation of securityContext fields.
system components).

o o Blocks hostNetwork , hostPID ,
. Minimal restrictions to prevent . _ _
Baseline o) privileged containers, and unrestricted
known privilege escalations.
hostPath volumes.

Requires:
. . . - runAsNonRoot: true
) Strictest policy enforcing
Restricted]] - seccompProfile.type:
security best practices.
RuntimeDefault

- Dropped Linux capabilities.

Configuration

Namespace Labels

Pod Security Admission - Alauda Container Platform

Apply labels to namespaces to define PSA policies.

YAML file example

apiVersion: vi
kind: Namespace
metadata:
name: example-namespace
labels:
pod-security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/audit: baseline

pod-security.kubernetes.io/warn: baseline

CLI command

kubectl label namespace <namespace-name> \
pod-security.kubernetes.io/enforce=baseline \
pod-security.kubernetes.io/audit=restricted \

--overwrite

kubectl get namespace <namespace-name> --show-labels

Exemptions

Exempt specific users, namespaces, or runtime classes from PSA checks.

Example Configuration:

apiVersion: pod-security.admission.config.k8s.io/v1
kind: PodSecurityConfiguration
exemptions:

usernames: ['admin']

runtimeClasses: ['nvidia']

namespaces: ['kube-system']

Overcommit Ratio - Alauda Container Platform

Q Alauda Container Platform Q

Overcommit Ratio

TOC

UnderStanding Namespace Resource Overcommit Ratio

CRD Define

Creating overcommit ratio by using CLI

Creating/Updating Overcommit Ratio by using web console
Precautions

Procedure

UnderStanding Namespace Resource

Overcommit Ratio

Alauda Container Platform allows you to set a resource overcommit ratio (CPU and memory)
per namespace. This manages the relationship between container limits (maximum usage)

and requests (guaranteed minimum) within that namespace, optimizing resource utilization.

By configuring this ratio, you ensure user-defined container limits and requests remain within

reasonable bounds, improving overall cluster resource efficiency.
Key Concepts

¢ Limits: The maximum resource a container can use. Exceeding limits can lead to throttling

(CPU) or termination (memory).

http://localhost:4173/container_platform/

Overcommit Ratio - Alauda Container Platform

¢ Requests: The guaranteed minimum resource a container needs. Kubernetes schedules

containers based on these requests.

« Overcommit Ratio: Limits / Requests. This setting defines the acceptable range for this
ratio within the namespace, balancing resource guarantees and preventing over-

consumption.
Core Capabilities

+ Enhance resource density and application stability within the namespace by setting an

appropriate overcommit ratio to manage the balance between resource limits and requests.
Example

Assuming the namespace overcommit ratio is set to 2, when creating an application and

specifies a CPU limit of 4c, the corresponding CPU request value is calculated as:

CPU Request = CPU Limit / Overcommit ratio. Thus, the CPU request becomes 4c/ 2 = 2c.

CRD Define

apiVersion: resource.alauda.io/v1l
kind: NamespaceResourceRatio
metadata:

namespace: example

name: example-namespace-overcommit
spec:

cpu: 3

memory: 4
status:

clusterCPU: 2

clusterMemory: 3

Creating overcommit ratio by using CLI

Overcommit Ratio - Alauda Container Platform

kubectl apply -f example-namespace-overcommit.yaml

Creating/Updating Overcommit Ratio by using

web console

Allows adjusting the overcommit ratio for a namespace to manage the ratio between
resource limits and requests. This ensures container's resource allocations remain within

defined bounds, improving cluster resource utilization.

Precautions

If the cluster uses node virtualization (e.g., virtual nodes), disable oversubscription at the

cluster/namespace level before configuring it for virtual machines.

Procedure

1. Enter the Project Management and navigation to Namespaces > Namespace List.
2. Click the target Namespace name.
3. Click Actions > Update Overcommit.

4. Select the appropriate overcommit ratio configuration method to set the CPU or memory

overcommit ratio for the namespace.

Parameter Description

Namespace inherits the cluster's oversubscription ratio.

Inherit from Example: If cluster CPU/memory ratio is 4, namespace defaults to 4.

Cluster

Container requests = limit / cluster ratio.

If no limit is set, use the namespace's default container quota.

Overcommit Ratio - Alauda Container Platform

Parameter Description

« Set a namespace-specific ratio (integer > 1).

« Example: Cluster ratio = 4, namespace ratio = 2 - requests = limit /
Custom

2.

« Leave empty to disable oversubscription for the namespace.

5. Click Update.

Note: Changes apply only to newly created Pods. Existing Pods retain their original requests

until rebuilt.

Managing Namespace Members - Alauda Container Platform

Q Alauda Container Platform Q

Managing Namespace Members

TOC

Importing Members
Constraints and Limitations
Prerequisites
Procedure

Adding Members
Procedure

Removing Members

Procedure

Importing Members

The platform supports bulk importing members into a namespace and assigning roles such as

Namespace Administrator or Developer to grant corresponding permissions.

Constraints and Limitations

e Members can only be imported into the namespace from the Project Members of the

namespace's project.

¢ The platform does not support importing default system-created admin users or the active

user.

http://localhost:4173/container_platform/

Managing Namespace Members - Alauda Container Platform

Prerequisites

To import users as namespace members, they must first be added to the namespace's

project.

Procedure

1. Project Management, click on Project Name where the members to be imported are

located.
2. Navigation to Namespaces > Namespaces.
3. Click on Namespace Name of the members to be imported.
4. In the Namespace Members tab, click Import Members.

5. Follow the procedures below to import all or some users from the list into the namespace.

TIP

You can select a user group using the dropdown box at the top right of the dialog and perform a

fuzzy search by entering the username in the username search box.

o Import all users in the list as namespace members and assign roles to users in bulk.

1. Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign.
2. Click Import All.
¢ Import one or more users from the list as namespace members.

1. Click the checkbox in front of the username/display name to select one or more

users.

2. Click the dropdown on the right side of the Set Role item at the bottom of the dialog,

and select the role name to assign to the selected users.

3. Click Import.

Managing Namespace Members - Alauda Container Platform

Adding Members

When the platform has added an OICD type IDP, OIDC users can be added as namespace

members.

You can add valid OIDC accounts that meet the input requirements as namespace roles and

assign the corresponding namespace roles to the user.

Note: When adding members, the system does not verify the validity of the accounts. Please
ensure that the accounts you add are valid; otherwise, these accounts will not be able to log in

to the platform successfully.

Valid OIDC accounts include: Valid accounts in the OIDC identity authentication service
configured via IDP for the platform, including those that have successfully logged in to the

platform and those that have not logged in to the platform.
Prerequisites

The platform has added an OICD type IDP.

Procedure

1. Project Management, click on Project Name where the member to be added is located.
2. Navigation to Namespaces > Namespaces.

3. Click on Namespace Name of the member to be added.

4. In the Namespace Members tab, click Add Member.

5. In the Username input box, enter a username for an existing third-party platform account

supported by the platform.

Note: Please confirm that the entered username corresponds to an existing account on the
third-party platform; otherwise, that account will not be able to log in to this platform

successfully.

6. In the Role dropdown, select the role name to configure for this user.

Managing Namespace Members - Alauda Container Platform

7. Click Add. After a successful addition, you can view the member in the namespace
member list. At the same time, in the user list (Platform Management > User
Management), you can view that user. Before the user successfully logs in or is
synchronized to this platform, the source will be - , and it can be deleted; when the
account successfully logs in or synchronizes to the platform, the platform will record the

account's source information and display it in the user list.

Removing Members

Remove specified namespace members and delete their associated roles to revoke their

namespace permissions.

Procedure

1. Project Management, click on Project Name where the member to be removed is located.
2. Navigation to Namespaces > Namespaces.
3. Click on Namespace Name of the member to be removed.

4. In the Namespace Members tab, click : on the right side of the record of the member to be

removed > Remove.

5. Click Remove.

Updating Namespaces - Alauda Container Platform

Q Alauda Container Platform Q

Updating Namespaces

TOC

Updating Quotas
Updating a Resource Quota by using web console
Updating a Resource Quota by using CLI
Updating Container LimitRanges
Updating a LimitRange by using web console
Updating a LimitRange by using CLI
Updating Pod Security Admission

Updating a Pod Security Admission by using web console

Updating a Pod Security Admission by using CLI

Updating Quotas

Resource Quota

Updating a Resource Quota by using web console

1. Project Management, and navigate to Namespaces > Namespace List in the left sidebar.
2. Click the target namespace name.

3. Click Actions > Update Quota.

http://localhost:4173/container_platform/

Updating Namespaces - Alauda Container Platform

4. Adjust resource quotas (CPU, Memory, Pods, etc.) and click Update.

Updating a Resource Quota by using CLI

Resource Quota YAML file example

kubectl edit resourcequota <quota-name> -n <namespace-name>

kubectl get resourcequota <quota-name> -n <namespace-name> -0 yaml

Updating Container LimitRanges

Limit Range

Updating a LimitRange by using web console

1. Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.
2. Click the target namespace name.
3. Click Actions > Update Container LimitRange.

4. Adjust container limit range (defaultRequest , default , max) and click Update.

Updating a LimitRange by using CLI

Limit Range YAML file example

Updating Namespaces - Alauda Container Platform

kubectl edit limitrange <limitrange-name> -n <namespace-name>

kubectl get limitrange <limitrange-name> -n <namespace-name> -0 yaml

Updating Pod Security Admission

Pod Security Admission

Updating a Pod Security Admission by using web console

1. Project Management view, and navigate to Namespaces > Namespace List in the left

sidebar.
2. Click the target namespace name.
3. Click Actions > Update Pod Security Admission.

4. Adjust security standard (enforce , audit , warn) and click Update.

Updating a Pod Security Admission by using CLI

Update Pod Security Admission CLI command

Deleting/Removing Namespaces - Alauda Container Platform

Q Alauda Container Platform Q

Deleting/Removing Namespaces

You can either delete a namespace permanently or remove it from the current project.

TOC

Deleting Namespaces

Removing Namespaces

Deleting Namespaces

Delete Namespace: Permanently deletes a namespace and all resources within it (e.g.,
Pods, Services, ConfigMaps). This action cannot be undone and releases allocated resource

quotas.

kubectl delete namespace <namespace-name>

Removing Namespaces

Remove Namespace: Removing a namespace from the current project without deleting its
resources. The namespace remains in the cluster and can be imported into other projects via

Import Namespace.

I NOTE

http://localhost:4173/container_platform/

Deleting/Removing Namespaces - Alauda Container Platform
» This feature is exclusive to the Alauda Container Platform.

» Kubernetes does not natively support “removing" namespaces from projects.

kubectl label namespace <namespace-name> cpaas.io/project- --overwrite

Pre-Application-Creation Preparation - Alauda Container Platform

Q Alauda Container Platform

Pre-Application-Creation Preparation

Configuring ConfigMap

Understanding Config Maps

Config Map Restrictions

ConfigMap vs Secret

Creating a ConfigMap by using the web cc
Creating a ConfigMap by using the CLI
Operations

View, Edit and Delete by using the CLI

Ways to Use a ConfigMap in a Pod

Configuring Secrets

Understanding Secrets

Creating an Opaque type Secret

Creating a Docker registry type Secret
Creating a Basic Auth type Secret

Creating a SSH-Auth type Secret

Creating a TLS type Secret

Creating a Secret by using the web console
How to Use a Secret in a Pod

Follow-up Actions

Operations

http://localhost:4173/container_platform/

Configuring ConfigMap - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Configuring ConfigMap

Config maps allow you to decouple configuration artifacts from image content to keep
containerized applications portable. The following sections define config maps and how to

create and use them.

TOC

Understanding Config Maps
Config Map Restrictions
ConfigMap vs Secret
Creating a ConfigMap by using the web console
Creating a ConfigMap by using the CLI
Operations
View, Edit and Delete by using the CLI
Ways to Use a ConfigMap in a Pod
As Environment Variables
As Files in a Volume

As Individual Environment Variables

Understanding Config Maps

Many applications require configuration by using some combination of configuration files,

command-line arguments, and environment variables. In OpenShift Container Platform, these

http://localhost:4173/container_platform/

Configuring ConfigMap - Alauda Container Platform

configuration artifacts are decoupled from image content to keep containerized applications

portable.

The configMap object provides mechanisms to inject containers with configuration data
while keeping containers agnostic of OpenShift Container Platform. A config map can be used
to store fine-grained information like individual properties or coarse-grained information like

entire configuration files or JSON blobs.

The configMap object holds key-value pairs of configuration data that can be consumed in
pods or used to store configuration data for system components such as controllers. For

example:

apivVersion: vi
kind: ConfigMap
metadata:
name: my-app-config
namespace: default
data:
app_mode: "development"
feature_flags: "true"
database.properties: |-
jdbc.ur1l=jdbc:mysql://localhost:3306/mydb
jdbc.username=user
jdbc.password=password
log_settings.json: |-
{
"level": "INFO",

"format": "json"

Note: You can use the binarybData field when you create a config map from a binary file,

such as an image.

Configuration data can be consumed in pods in a variety of ways. A config map can be used

to:

+ Populate environment variable values in containers

¢ Set command-line arguments in a container

Configuring ConfigMap - Alauda Container Platform

e Populate configuration files in a volume

Users and system components can store configuration data in a config map. A config map is
similar to a secret, but designed to more conveniently support working with strings that do not

contain sensitive information.

Config Map Restrictions

» A config map must be created before its contents can be consumed in pods.

o Controllers can be written to tolerate missing configuration data. Consult individual

components configured by using config maps on a case-by-case basis.
e ConfigMap objects reside in a project.
¢ They can only be referenced by pods in the same project.

e The Kubectl only supports the use of a config map for pods it gets from the API server. This
includes any pods created by using the CLI, or indirectly from a replication controller. It
does not include pods created by using the OpenShift Container Platform node's - -
manifest-url flag, its --config flag, or its REST API because these are not common

ways to create pods.

ConfigMap vs Secret

Feature ConfigMap Secret

Data Type Non-sensitive Sensitive (e.g., passwords)
Encoding Plaintext Base64-encoded

Use Cases Configs, flags Passwords, tokens

Creating a ConfigMap by using the web console

1. Go to Container Platform.

Configuring ConfigMap - Alauda Container Platform

2. In the left sidebar, click Configuration > ConfigMap.
3. Click Create ConfigMap.

4. Refer to the instructions below to configure the relevant parameters.

Parameter Description

Refers to key:value pairs, supporting both Add and Import methods.

» Add: You can add configuration items one by one, or you can paste one
or multiple lines of key=value pairs in the Key input area to bulk add

Entries configuration items.

« Import: Import a text file not larger than 1M. The file name will be used
as the key, and the file content will be used as the value, filled into a

configuration item.

Refers to binary files not larger than 1M. The file name will be used as the
Binary key, and the file content will be used as the value, filled into a configuration
Entries item.

Note: After creating a ConfigMap, the imported files cannot be modified.

Example of Bulk Add Format:

One key=value pair per line, multiple pairs must be on separate line
s, otherwise they will not be recognized correctly after pasting.
keyl=valuel

key2=value2

key3=value3

5. Click Create.

Creating a ConfigMap by using the CLI

Configuring ConfigMap - Alauda Container Platform
kubectl create configmap app-config \

--from-1literal=APP_ENV=production \
--from-literal=LOG_LEVEL=debug

Or from a file:

kubectl apply -f app-config.yaml -n k-1

Operations

You can click the (}) on the right side of the list page or click Actions in the upper right corner

of the detail page to update or delete the ConfigMap as needed.

Changes to the ConfigMap will affect the workloads that reference the configuration, so please

read the operation instructions in advance.

Operations Description

» After adding or updating a ConfigMap, any workloads that have referenced
this ConfigMap (or its configuration items) through environment variables

Update need to rebuild their Pods for the new configuration to take effect.

« For imported binary configuration items, only key updates are supported, not

value updates.

After deleting a ConfigMap, workloads that have referenced this ConfigMap (or
Delete its configuration items) through environment variables may be adversely affected

during Pod creation if they are rebuilt and cannot find the reference source.

View, Edit and Delete by using the CLI

Configuring ConfigMap - Alauda Container Platform
kubectl get configmap app-config -n k-1 -0 yaml

kubectl edit configmap app-config -n k-1
kubectl delete configmap app-config -n k-1

Ways to Use a ConfigMap in a Pod

As Environment Variables

envFrom:
- configMapRef:
name: app-config

Each key becomes an environment variable in the container.

As Files in a Volume

volumes:
- name: config-volume
configMap:
name: app-config

volumeMounts:
- name: config-volume

mountPath: /etc/config

Each key is a file under /etc/config , and the file content is the value.

As Individual Environment Variables

env:
- name: APP_ENV
valueFrom:
configMapKeyRef:
name: app-config
key: APP_ENV

Configuring ConfigMap - Alauda Container Platform

Configuring Secrets - Alauda Container Platform

0 Alauda Container Platform Q

Configuring Secrets

TOC

Understanding Secrets

Usage Characteristics

Supported Types

Usage Methods
Creating an Opaque type Secret
Creating a Docker registry type Secret
Creating a Basic Auth type Secret
Creating a SSH-Auth type Secret
Creating a TLS type Secret
Creating a Secret by using the web console
How to Use a Secret in a Pod

As Environment Variables

As Mounted Files (Volume)
Follow-up Actions

Operations

Understanding Secrets

In Kubernetes (k8s), a Secret is a fundamental object designed to store and manage sensitive

information, such as passwords, OAuth tokens, SSH keys, TLS certificates, and API keys. Its

http://localhost:4173/container_platform/

Configuring Secrets - Alauda Container Platform

primary purpose is to prevent sensitive data from being directly embedded in Pod definitions

or container images, thereby enhancing security and portability.

Secrets are similar to ConfigMaps but are specifically intended for confidential data. They are

typically base64-encoded for storage and can be consumed by pods in various ways,

including being mounted as volumes or exposed as environment variables.

Usage Characteristics

 Enhanced Security: Compared to plaintext configuration maps (Kubernetes ConfigMap),

Secrets offer better security by storing sensitive information using Base64 encoding. This
mechanism, combined with Kubernetes' ability to control access, significantly reduces the

risk of data exposure.

Flexibility and Management: Using Secrets provides a more secure and flexible approach
than hardcoding sensitive information directly into Pod definition files or container images.
This separation simplifies the management and modification of sensitive data without

requiring changes to application code or container images.

Supported Types

Kubernetes supports various types of Secrets, each tailored for specific use cases. The

platform typically supports the following types:

Opaque: A general-purpose Secret type used to store arbitrary key-value pairs of sensitive

data, such as passwords or API keys.

TLS: Specifically designed to store TLS (Transport Layer Security) protocol certificate and

private key information, commonly used for HTTPS communication and secure ingress.

SSH Key: Used to store SSH private keys, often for secure access to Git repositories or

other SSH-enabled services.

SSH Authentication (kubernetes.iolssh-auth): Stores authentication information for data

transmitted over the SSH protocol.

Username/Password (kubernetes.iol/basic-auth): Used to store basic authentication

credentials (username and password).

Configuring Secrets - Alauda Container Platform

+ Image Pull Secret (kubernetes.ioldockerconfigjson): Stores the JSON authentication
string required for pulling container images from private image repositories (Docker

Registry).

Usage Methods

Secrets can be consumed by applications within pods through different methods:

+ As Environment Variables: Sensitive data from a Secret can be injected directly into a

container's environment variables.

+ As Mounted Files (Volume): Secrets can be mounted as files within a pod's volume,

allowing applications to read sensitive data from a specified file path.

Note: Pod instances in workloads can only reference Secrets within the same namespace.

For advanced usage and YAML configurations, refer to the Kubernetes official documentation

/ .

Creating an Opaque type Secret

kubectl create secret generic my-secret \
--from-literal=username=admin \

--from-literal=password=Pa$$word

YAML

apiVersion: vi

kind: Secret

metadata:
name: my-secret

type: Opaque

data:
username: YWRtaw4=
password: UGEkJHcwcmQ=

You can decode them like:

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets

Configuring Secrets - Alauda Container Platform

echo YWRtawW4= | base64 --decode

Creating a Docker registry type Secret

kubectl create secret docker-registry my-docker-creds \
--docker-username=myuser \
--docker-password=mypass \
--docker-server=https://index.docker.io/v1l/ \

- -docker-email=my@example.com

YAML

apivVersion: vi
kind: Secret
metadata:
name: my-docker-creds
type: kubernetes.io/dockerconfigjson
data:
.dockerconfigjson: eyJhdXRocyI6eyJodHRwczovL21luZGV4LmRvY2t1lci5pby92MS8i
OnsidXN1lcm5hbwWUi0iJteXVzZXIiLCIJwYXNzd29yZCI6Im15¢cGFzcyIsImVtYWlsIjoibX1AZ
XhhbXBszZS5jb20iLCJhdXRoIjoiY lhsMWMyVn1PbTE1YOdGemN3PTOifX19

K8s automatically converts your username, password, email, and server information into the

Docker standard login format:

"auths": {
"https://index.docker.io/v1/": {
"username": "myuser",
"password": "mypass",
"email": "my@example.com",

"auth": "bX1l1lc2VyOml5cGFzcw==" # base64(username:password)

Configuring Secrets - Alauda Container Platform

This JSON is then base64 encoded and used as the data field value of the Secret.

Use itin a Pod:

imagePullSecrets:

- name: my-docker-creds

Creating a Basic Auth type Secret

apivVersion: vi
kind: Secret
metadata:

name: basic-auth-secret
type: kubernetes.io/basic-auth
stringData:

username: myuser

password: mypass

Creating a SSH-Auth type Secret

Use Case: Store SSH private keys (e.g., for Git access).

apiVersion: vi
kind: Secret
metadata:
name: ssh-key-secret
type: kubernetes.io/ssh-auth
stringData:

ssh-privatekey: |

Configuring Secrets - Alauda Container Platform

Creating a TLS type Secret

Use Case: TLS certs (used by Ingress, webhooks, etc.)

kubectl create secret tls tls-secret \
--cert=path/to/tls.crt \
--key=path/to/t1ls.key

YAML

apiVersion: vi
kind: Secret
metadata:

name: tls-secret
type: kubernetes.io/tls
data:

tls.crt: <base64>

tls.key: <base64>

Creating a Secret by using the web console

1. Go to Container Platform.

2. In the left navigation bar, click Configuration > Secrets.
3. Click Create Secret.

4. Configure the parameters.

Note: In the form view, sensitive data such as the input username and password will
automatically be encoded in Base64 format before being stored in the Secret. The

converted data can be previewed in the YAML view.

5. Click Create.

Configuring Secrets - Alauda Container Platform

How to Use a Secret in a Pod

As Environment Variables

env:
- name: DB_USERNAME
valueFrom:
secretKeyRef:
name: my-secret
key: username

From the secret named my-secret , take the value with the key username and assign it to

the environment variable DB_USERNAME .

As Mounted Files (Volume)

volumes:
- name: secret-volume

secret:
secretName: my-secret

volumeMounts:
- name: secret-volume
mountPath: "/etc/secret"

Follow-up Actions

When creating workloads for native applications in the same namespace, you can reference

the Secrets that have already been created.

Operations

Configuring Secrets - Alauda Container Platform

You can click the (}) on the right side of the list page or click Actions in the upper right corner

of the details page to update or delete the Secret as needed.

Operation Description

After adding or updating a Secret, workloads that have referenced this Secret (or
Update its configuration items) via environment variables need to have their Pods rebuilt
for the new configuration to take effect.

» After deleting a Secret, workloads that have referenced this Secret (or its
configuration items) via environment variables may be impacted due to the

inability to find the reference source when rebuilding Pods.

Delete « Please do not delete the Secrets automatically generated by the platform, as
this may prevent the platform from functioning properly. For example: Secrets
of type service-account-token that contain authentication information for
namespace resources and Secrets in system namespaces (such as kube-

system).

Creating Applications - Alauda Container Platform

Q Alauda Container Platform Q

Creating Applications

Creating applications from Ima Creating applications from Cha Creating ap

Prerequisites Precautions Precautions
Procedure 1 - Workloads Prerequisites Prerequisites
Procedure 2 - Services Procedure Procedure
Procedure 3 - Ingress Status Analysis Reference

Application Management Operations

Reference Information

C(Nen = = o =

Creating applications from Operator Backed

Procedure

Creating applications by using CLI

Prerequisites
Procedure
Example

Reference

http://localhost:4173/container_platform/

Creating applications from Image - Alauda Container Platform

Q Alauda Container Platform Q

Creating applications from Image

TOC

Prerequisites
Procedure 1 - Workloads
Workload 1 - Configure Basic Info
Workload 2 - Configure Pod
Workload 3 - Configure Containers
Procedure 2 - Services
Procedure 3 - Ingress
Application Management Operations
Reference Information
Storage Volume Mounting Instructions
Health Check Parameters
Common Parameters

Protocol-Specific Parameters

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

http://localhost:4173/container_platform/

Creating applications from Image - Alauda Container Platform

+ For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

o Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure 1 - Workloads

1. Container Platform, navigate to Applications > Applications in the left sidebar.
2. Click Create.
3. Choose Create from Image as the creation approach.

4. Select or Input an image, and click Confirm.

I INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

6. Refer to the following instructions to configure the related parameters.

Workload 1 - Configure Basic Info

In the Workload > Basic Info section, configure declarative parameters for workloads

Parameters Description

Model Select a workload as needed:

« Deployment: For detailed parameter descriptions, please refer to

Creating Deployment.

Creating applications from Image - Alauda Container Platform

Parameters Description

« DaemonSet: For detailed parameter descriptions, please refer to

Creating DaemonSet.

» StatefulSet: For detailed parameter descriptions, please refer to

Creating StatefulSet.

Defines the desired number of Pod replicas in the Deployment (default:

Replicas))

1). Adjust based on workload requirements.
More > Update Configures the rollingUpdate strategy for zero-downtime deployments:
Strategy Max surge (maxSurge):

« Maximum number of Pods that can exceed the desired replica count

during an update.

Accepts absolute values (e.g., 2) or percentages (e.g., 20%).

Percentage calculation: ceil(current_replicas x percentage) .

o« Example: 4.1 - 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

« Maximum number of Pods that can be temporarily unavailable during
an update.
« Percentage values cannot exceed 100% .

« Percentage calculation: floor(current_replicas x percentage) .

o Example: 4.9 - 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1 , maxUnavailable=1 if not explicitly set.
2. Non-running Pods (e.g., in Pending / CrashLoopBackOff states)
are considered unavailable.

3. Simultaneous constraints:

e maxSurge and maxUnavailable cannotbothbe 0 or 0% .

« |f percentage values resolve to 0 for both parameters, Kubernetes

forces maxUnavailable=1 to ensure update progress.

Parameters

Creating applications from Image - Alauda Container Platform

Description

Example:

For a Deployment with 10 replicas:

e maxSurge=2 - Total Pods during update: 10 + 2 = 12 .
e maxUnavailable=3 - Minimum available Pods: 10 - 3 = 7 .

« This ensures availability while allowing controlled rollout.

Workload 2 - Configure Pod

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1. Pod section, configure container runtime parameters and lifecycle management:

Parameters

Volumes

Image

Credential

More > Close

Grace Period

2. Node Affinity Rules

Description

Mount persistent volumes to containers. Supported volume types include
PVC , ConfigMap , Secret , emptyDir , hostPath , and so on. For

implementation details, see Storage Volume Mounting Instructions.

Required only when pulling images from third-party registries (via
manual image URL input).
Note: Images from the platform's integrated registry automatically inherit

associated secrets.

Duration (default: 30s) allowed for a Pod to complete graceful
shutdown after receiving termination signal.

- During this period, the Pod completes inflight requests and releases
resources.

- Setting o forces immediate deletion (SIGKILL), which may cause

request interruptions.

Creating applications from Image - Alauda Container Platform

Parameters Description

Constrain Pods to nodes with specific labels (e.g., kubernetes.io/os:

More >
linux).
Node
Selector Node Selector: acp.cpaas.io/node-group-share-mode:Share x v
Define fine-grained scheduling rules based on existing Pods.
Pod Affinity Types:
 Inter-Pod Affinity: Schedule new Pods to nodes hosting specific Pods
(same topology domain).
» Inter-Pod Anti-affinity: Prevent co-location of new Pods with specific Pods.
Enforcement Modes:
More > * RequiredDuringSchedulinglgnoredDuringExecution: Pods are
Affinity scheduled only if rules are satisfied.

» PreferredDuringSchedulinglgnoredDuringExecution: Prioritize nodes

meeting rules, but allow exceptions.

Configuration Fields:

e topologyKey : Node label defining topology domains (default:

kubernetes.io/hostname).

e labelselector : Filters target Pods using label queries.

3. Network Configuration

e Kube-OVN

Creating applications from Image - Alauda Container Platform

Parameters Description

Enforce QoS for Pod network traffic:

Bandwidth . . .

» Egress rate limit: Maximum outbound traffic rate (e.g., 10Mbps).
Limits

e Ingress rate limit: Maximum inbound traffic rate.

Assign IPs from a predefined subnet pool. If unspecified, uses the
Subnet

namespace's default subnet.

Bind persistent IP addresses to Pods:
Static IP » Multiple Pods across Deployments can claim the same IP, but only
Address one Pod can use it concurrently.

» Critical: Number of static IPs must = Pod replica count.

e Calico
Parameters Description
Assign fixed IPs with strict uniqueness:

Static IP Address « Each IP can be bound to only one Pod in the cluster.

e Critical: Static IP count must = Pod replica count.

Workload 3 - Configure Containers

1. Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource Requests
o » Requests: Minimum CPU/memory required for container
& Limits
operation.

Creating applications from Image - Alauda Container Platform

Parameters Description

e Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.

Namespace overcommit ratio:

e Without overcommit ratio:
If namespace resource quotas exist: Container requests/limits
inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

o With overcommit ratio:

Requests auto-calculated as Limits / Overcommit ratio

(immutable).

Constraints:

Request < Limit < Namespace quota maximum.

« Overcommit ratio changes require pod recreation to take effect.

Overcommit ratio disables manual request configuration.

e No namespace quotas — no container resource constraints.

Extended Configure cluster-available extended resources (e.g., vGPU,
Resources pGPU).
Volume Mount Persistent storage configuration. See Storage Volume Mounting

Instructions.

Operations:

» Existing pod volumes: Click Add

» No pod volumes: Click Add & Mount

Parameters:

e mountPath : Container filesystem path (e.g., /data)

e subPath : Relative file/directory path within volume.

For configMap / Secret : Select specific key

Parameters

Port

Startup Commands

& Arguments

More >
Environment

Variables

More > Referenced

ConfigMap

More > Health
Checks

Creating applications from Image - Alauda Container Platform

Description

e readonly : Mount as read-only (default: read-write)

See Kubernetes Volumes 7.

Expose container ports.
Example: Expose TCP port 6379 with name redis .

Fields:

e protocol : TCP/UDP
e Port :Exposed port (e.g., 6379)

e name : DNS-compliant identifier (e.g., redis)

Override default ENTRYPOINT/CMD:

Example 1: Execute top -b

-Command: ["top", "-b"]

-OR Command: ["top"] ,Args: ["-b"]

Example 2: Output $MESSAGE :

/bin/sh -c "while true; do echo $(MESSAGE); sleep 10;
done"

See Defining Commands .

 Static values: Direct key-value pairs
» Dynamic values: Reference ConfigMap/Secret keys, pod fields

(fieldRef), resource metrics (resourceFieldRef)

Note: Env variables override image/configuration file settings.

Inject entire ConfigMap/Secret as env variables. Supported Secret

types: Opaque , kubernetes.io/basic-auth .

» Liveness Probe: Detect container health (restart if failing)

» Readiness Probe: Detect service availability (remove from

endpoints if failing)

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Creating applications from Image - Alauda Container Platform

Parameters Description

See Health Check Parameters.

Configure log paths:

- Default: Collect stdout
- File patterns: e.g., /var/log/*.log

Requirements:

More > Log File « Storage driver overlay2 : Supported by default

e devicemapper : Manually mount EmptyDir to log directory

» Windows nodes: Ensure parent directory is mounted (e.g.,

c:/a for c:/a/b/c/*.1log)

More > Exclude Log - _
Exclude specific logs from collection (e.g., /var/log/aaa.log).

File
Execute commands before container termination.
More > Execute Example: echo "stop"
before Stopping Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2. Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

1. Start before app containers (sequential execution).
2. Release resources after completion.

3. Deletion allowed when:

¢ Pod has >1 app container AND =1 init container.

+ Not allowed for single-app-container pods.

3. Click Create.

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Creating applications from Image - Alauda Container Platform

Procedure 2 - Services

Parameters

Service

Description

Kubernetes Service, expose an application running in your cluster behind a
single outward-facing endpoint, even when the workload is split across multiple
backends.. For specific parameter explanations, please refer to Creating

Services.

Note The default name prefix for the internal routing created under the

application is the name of the compute component. If the compute component
type (deployment mode) is StatefulSet, it is advisable not to change the default
name of the internal routing (the name of the workload); otherwise, it may lead

to accessibility issues for the workload.

Procedure 3 - Ingress

Parameters

Ingress

7. Click Create.

Description

Kubernetes Ingress, make your HTTP (or HTTPS) network service available
using a protocol-aware configuration mechanism, that understands web
concepts like URIs, hostnames, paths, and more. The Ingress concept lets you
map traffic to different backends based on rules you define via the Kubernetes

API. For detailed parameter descriptions, please refer to Creating Ingresses.

Note: The Service used when creating Ingress under the application must be
resources created under the current application. However, ensure that the
Service is associated with the workload under the application; otherwise,

service discovery and access for workload will fail.

Application Management Operations

To modify application configurations, use one of the following methods:

http://localhost:4173/container_platform/configure/networking/functions/configure_service.html
http://localhost:4173/container_platform/configure/networking/functions/configure_service.html
http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

Creating applications from Image - Alauda Container Platform
1. Click the vertical ellipsis (:) on the right side of the application list.

2. Select Actions from the upper-right corner of the application details page.

Operation Description

« Update: Modifies only the target workload using its defined update strategy
(Deployment strategy shown as example). Preserves existing replica count

and rollout configuration.

» Force Update: Triggers full application rollout using each component's update
strategy.

1. Use cases:

« Batch configuration changes requiring immediate cluster-wide propagation

(e.g., ConfigMap/Secret updates referenced as environment variables).

» Coordinated component restarts for critical security.
2. Warning Caution:

Update « May cause temporary service degradation during mass restarts.

» Not recommended for production environments without business continuity

validation.
o Network Implications:

» Ingress Rule Deletion: External access remains available via
LB_IP:NodePort if:
1) LoadBalancer Service uses default ports.
2) Surviving routing rules reference application components.

Full external access termination requires Service deletion.

« Service Deletion: Irreversible loss of network connectivity to application
components. Associated Ingress rules become non-functional despite API

object persistence.

Delete
» Cascading Deletion:

1. Removes all child resources including Deployments, Services, and Ingress

rules.

Creating applications from Image - Alauda Container Platform

Operation Description

2. Persistent Volume Claims (PVCs) follow retention policy defined in

StorageClass

Pre-deletion Checklist:

1. Verify no active traffic through associated Services.

2. Confirm data backup completion for stateful components.

3. Check dependent resource relationships using kubectl describe

ownerReferences .

Reference Information

Storage Volume Mounting Instructions

Type

Persistent Volume

Claim

ConfigMap

Secret

Ephemeral

Volumes

Purpose

Binds an existing PVC to request persistent storage.

Note: Only bound PVCs (with associated PV) are selectable. Unbound

PVCs will cause pod creation failures.

Mounts full/partial ConfigMap data as files:

« Full ConfigMap: Creates files named after keys under mount path

e Subpath selection: Mount specific key (e.g., my.cnf)

Mounts full/partial Secret data as files:

o Full Secret: Creates files named after keys under mount path

» Subpath selection: Mount specific key (e.g., tls.crt)

Cluster-provisioned temporary volume with features:

» Dynamic provisioning

http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Creating applications from Image - Alauda Container Platform

Type Purpose

« Lifecycle tied to pod

e Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Ephemeral storage sharing between containers in same pod:
- Created on node when pod starts
Empty Directory - Deleted with pod removal
Use Case: Inter-container file sharing, temporary data storage. See
EmptyDir

Mounts host machine directory (must start with / , e.g.,
Host Path
/volumepath).

Health Check Parameters

Common Parameters

Parameters Description

Initial Delay Grace period (seconds) before starting probes. Default: 3600 .
Period Probe interval (1-120s). Default: 60 .

Timeout Probe timeout duration (1-300s). Default: 30 .

Success Threshold Minimum consecutive successes to mark healthy. Default: © .

Maximum consecutive failures to trigger action:
Failure Threshold - 0 : Disables failure-based actions

- Default: 5 failures — container restart.

Protocol-Specific Parameters

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Parameter

Protocol

Port

Path

HTTP

Headers

Command

Creating applications from Image - Alauda Container Platform

Applicable
Protocols

HTTP/HTTPS

HTTP/HTTPS/TCP

HTTP/HTTPS

HTTP/HTTPS

EXEC

Description

Health check protocol

Target container port for probing.

Endpoint path (e.g., /healthz).

Custom headers (Add key-value pairs).

Container-executable check command (e.g., sh -c
"curl -I localhost:8080 | grep OK").
Note: Escape special characters and test command

viability.

Creating applications from Chart - Alauda Container Platform

Q Alauda Container Platform Q

Creating applications from Chart

Based on Helm Chart represents a native application deployment pattern. A Helm Chart is a
collection of files that define Kubernetes resources, designed to package applications and
facilitate application distribution with version control capabilities. This enables seamless

environment transitions, such as migrations from development to production environments.

TOC

Precautions
Prerequisites
Procedure

Status Analysis Reference

Precautions

When a cluster contains both Linux and Windows nodes, explicit node selection MUST be

configured to prevent scheduling conflicts. Example:

spec:
spec:
nodeSelector:

kubernetes.io/os: linux

http://localhost:4173/container_platform/

Creating applications from Chart - Alauda Container Platform

Prerequisites

If the template is from a application and references relevant resources (e.g., secret
dictionaries), ensure the to-be-referenced resources already exist in the current namespace

before application deployment.

Procedure

1. Container Platform, navigate to Applications > Applications in the left sidebar.
2. Click Create.
3. Choose Create from Catalog as the creation approach.

4. Select a Chart and configure parameters, pick a Chart and configure the required
parameters, such as resources.requests , resources.limits , and other parameters

that are closely related to the chart.
5. Click Create.

The web console will redirect you to the Application > [Native Applications] details page.
The process will take some time, so please be patient. In case of operation failure, follow the

interface prompts to complete the operation.

Status Analysis Reference

Click on Application Name to display detailed status analysis of the Chart in the details

information.
Type Reason
Initialized Indicates the status of Chart template download.

« True: It indicates that the Chart template has been successfully downloaded.

» False: It indicates that the Chart template download has failed; you can check

the specific failure reason in the message column.

Creating applications from Chart - Alauda Container Platform

Type Reason
e ChartLoadFailed : Chart template download failed.

e InitializeFailed : There was an exception in the initialization process

before the Chart was downloaded.

Indicates the status of user permissions, dependencies, and other validations for

the Chart template.

« True: It indicates that all validation checks have passed.
« False: It indicates that there are validation checks that have not passed; you
can check the specific failure reason in the message column.
Validated e DependenciesCheckFailed : Chart dependency check failed.

e PermissionCheckFailed : The current user lacks permission to perform

operations on certain resources.

e ConsistentNamespaceCheckFailed : When deploying applications
through templates in native applications, the Chart contains resources that

require cross-namespace deployment.

Indicates the deployment status of the Chart template.

« True: It indicates that the Chart template has been successfully deployed.

Synced « False: It indicates that the Chart template deployment has failed; the reason

column shows chartSyncFailed , and you can check the specific failure

reason in the message column.

I WARNING

« If the template references cross - namespace resources, contact the Administrator for help with

creation. Afterward, you can normally Updating and deleting Chart Applications on web console.

« If the template references cluster - level resources (e.g., StorageClasses), it's recommended to

contact the Administrator for assistance with creation.

Creating applications from Chart - Alauda Container Platform

Creating applications from YAML - Alauda Container Platform

Q Alauda Container Platform Q

Creating applications from YAML

If you are proficient in YAML syntax and prefer to define configurations outside of forms or pre-
defined templates, you can choose the one-click YAML creation method. This approach offers
more flexible configuration of basic information and resources for your cloud-native

application.

TOC

Precautions
Prerequisites

Procedure

Precautions

When both Linux and Windows nodes exist in the cluster, to prevent scheduling the

application on incompatible nodes, you must configure node selection. For example:

spec:
spec:
nodeSelector:
kubernetes.io/os: linux

Prerequisites

http://localhost:4173/container_platform/

Creating applications from YAML - Alauda Container Platform

Ensure the images defined in the YAML can be pulled within the current cluster. You can verify

this using the docker pull command.

Procedure

1. Container Platform, and navigate to Application > Applications.
2. Click Create.

3. Select the Create from YAML.

4. Complete the configuration and click Create.

5. The corresponding Deployment can be viewed on the Details page.

Creating applications from YAML - Alauda Container Platform

Creating applications from YAML - Alauda Container Platform

Creating applications from Code - Alauda Container Platform

Q Alauda Container Platform Q

Creating applications from Code

Creating application from code is implemented using Source to Image(S2l) technology. S2I is
an automated framework for building container images directly from source code. This
approach standardizes and automates the application build process, allowing developers to

focus on source code development without worrying about containerization details.

TOC

Prerequisites

Procedure

Prerequisites

o Complete the installation of Alauda Container Platform Builds

Procedure

1. Container Platform, and navigate to Application > Applications.
2. Click Create.
3. Select the Create from Code.

4. For detailed parameter descriptions, please refer to Managing applications created from
Code

http://localhost:4173/container_platform/

Creating applications from Code - Alauda Container Platform

5. After completing the parameter input, click Create.

6. The corresponding deployment can be viewed on the Detail Information page.

Creating applications from Operator Backed - Alauda Container Platform

Q Alauda Container Platform Q

Creating applications from Operator
Backed

Operator backed applications are collections of resources provided by the Operator. Based on
these Operator backed applications, you can quickly deploy a component application and
leverage the capabilities of the Operator to automate the entire lifecycle management of the

application.

TOC

Procedure

Troubleshooting

Procedure

1. Container Platform, navigate to Applications > Applications in the left sidebar.
2. Click Create.
3. Choose Create from Catalog as the creation approach.

4. Select an Operator-Backed Instance and Configure Custom Resource Parameters.
Select an Operator-managed application instance and configure its Custom Resource (CR)

specifications in the CR manifest, including:

e spec.resources.limits (container-level resource constraints).

http://localhost:4173/container_platform/

Creating applications from Operator Backed - Alauda Container Platform

e spec.resourceQuota (Operator-defined quota policies). Other CR-specific parameters

such as spec.replicas , spec.storage.className , etc.

5. Click Create.

The web console will navigate to Applications > Operator Backed Apps page.

l INFO

Note: The Kubernetes resource creation process requires asynchronous reconciliation. Completion

may take several minutes depending on cluster conditions.

Troubleshooting

If resource creation fails:

1. Inspect controller reconciliation errors:

kubectl get events --field-selector involvedObject.kind=<Your-Custom-Re

source> --sort-by=.metadata.creationTimestamp
2. Verify API resource availability:

kubectl api-resources | grep <Your-Resource-Type>

3. Retry creation after verifying CRD/Operator readiness:

kubectl apply -f your-resource-manifest.yaml

Creating applications by using CLI - Alauda Container Platform

Q Alauda Container Platform Q

Creating applications by using CLI

kubectl is the primary command-line interface (CLI) for interacting with Kubernetes
clusters. It functions as a client for the Kubernetes API Server - a RESTful HTTP API that
serves as the control plane's programmatic interface. All Kubernetes operations are exposed
through API endpoints, and kubect1l essentially translates CLI commands into
corresponding API requests to manage cluster resources and application workloads

(Deployments, StatefulSets, etc.).

The CLI tools facilitates application deployment by intelligently interpreting input artifacts
(images, or Chart, etc.) and generating corresponding Kubernetes API objects. The generated

resources vary based on input types:

+ Image: Directly creates Deployment.

+ Chart: Instantiates all objects defined in the Helm Chart.

TOC

Prerequisites
Procedure
Example

YAML

kubectl commands

Reference

http://localhost:4173/container_platform/

Creating applications by using CLI - Alauda Container Platform

Prerequisites

The Alauda Container Platform Web Terminal plugin is installed, and the web-cli switch is

enabled.

Procedure

1. Contianer Platform, click the terminal icon in the lower-right corner.
2. Wait for session initialization (1-3 sec).

3. Execute kubectl commands in the interactive shell:

kubectl get pods -n ${CURRENT_NAMESPACE}

4. View real-time command output

Example

YAML

Creating applications by using CLI - Alauda Container Platform

Creating applications by using CLI - Alauda Container Platform

webapp.yaml
apiVersion: app.k8s.io/vilbetal
kind: Application
metadata:
name: webapp
spec:
componentKinds:
- group: apps
kind: Deployment
- group: ""
kind: Service

descriptor: {}

webapp-deployment.yaml
apiVersion: apps/vil
kind: Deployment
metadata:

name: webapp

labels:
app: webapp
env: prod
spec:

replicas: 3

selector:
matchLabels:
app: webapp
template:
metadata:
labels:
app: webapp
tier: frontend
spec:
containers:

- name: webapp
image: nginx:1.25-alpine
ports:
- containerPort: 80
resources:
requests:
cpu: "100m"
memory: "128Mi"
limits:
cpu: "250m"

Creating applications by using CLI - Alauda Container Platform

memory: "256Mi"

apivVersion: vi
kind: Service
metadata:

name: webapp-service
spec:

selector:

app: webapp

ports:

- protocol: TCP
port: 80
targetPort: 80

type: ClusterIP

kubectl commands

kubectl apply -f webapp.yaml -n {CURRENT_NAMESPACE}
kubectl apply -f webapp-deployment.yaml -n {CURRENT_NAMESPACE}
kubectl apply -f webapp-service.yaml -n {CURRENT_NAMESPACE}

Reference

¢ Conceptual Guide: kubectl Overview ~
+ Syntax Reference: kubectl Cheat Sheet ~

¢ Command Manual: kubectl Commands ~

https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/overview/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands
https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands

Post-Application-Creation Configuration - Alauda Container Platform

0 Alauda Container Platform

Post-Application-Creation Configuration

Configuring HPA

Understanding Horizontal Pod Autoscalers
Prerequisites
Creating a Horizontal Pod Autoscaler

Calculation Rules

Configuring VerticalPodAutosc

Understanding VerticalPodAutoscalers
Prerequisites
Creating a VerticalPodAutoscaler

Follow-Up Actions

Configuring

Understanding
Prerequisites
Creating a Cror

Schedule Rule

http://localhost:4173/container_platform/

Configuring HPA - Alauda Container Platform

0 Alauda Container Platform Q

Configuring HPA

HPA (Horizontal Pod Autoscaler) automatically scales the number of pods up or down based
on preset policies and metrics, enabling applications to handle sudden spikes in business load

while optimizing resource utilization during low-traffic periods.

TOC

Understanding Horizontal Pod Autoscalers
How Does the HPA Work?
Supported Metrics

Prerequisites

Creating a Horizontal Pod Autoscaler
Using the CLI
Using the Web Console
Using Custom Metrics for HPA

Requirements

Traditional (Core Metrics) HPA
Custom Metrics HPA

Trigger Condition Definition
Custom Metrics HPA Compatibility
Updates in autoscaling/v2beta2

Calculation Rules

http://localhost:4173/container_platform/

Configuring HPA - Alauda Container Platform

Understanding Horizontal Pod Autoscalers

You can create a horizontal pod autoscaler to specify the minimum and maximum number of
pods you want to run, as well as the CPU utilization or memory utilization your pods should

target.

After you create a horizontal pod autoscaler, the platform begins to query the CPU and/or
memory resource metrics on the pods. When these metrics are available, the horizontal pod
autoscaler computes the ratio of the current metric utilization with the desired metric
utilization, and scales up or down accordingly. The query and scaling occurs at a regular

interval, but can take one to two minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication
controller. For deployment configurations, scaling corresponds directly to the replica count of
the deployment configuration. Note that autoscaling applies only to the latest deployment in

the Complete phase.

The platform automatically accounts for resources and prevents unnecessary autoscaling
during resource spikes, such as during start up. Pods in the unready state have 0 CPU usage
when scaling up and the autoscaler ignores the pods when scaling down. Pods without known
metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows
for more stability during the HPA decision. To use this feature, you must configure readiness

checks to determine if a new pod is ready for use.

How Does the HPA Work?

The horizontal pod autoscaler (HPA) extends the concept of pod auto-scaling. The HPA lets
you create and manage a group of load-balanced nodes. The HPA automatically increases or

decreases the number of pods when a given CPU or memory threshold is crossed.

The HPA works as a control loop with a default of 15 seconds for the sync period. During this
period, the controller manager queries the CPU, memory utilization, or both, against what is
defined in the configuration for the HPA. The controller manager obtains the utilization metrics
from the resource metrics API for per-pod resource metrics like CPU or memory, for each pod
that is targeted by the HPA.

Configuring HPA - Alauda Container Platform

If a utilization value target is set, the controller calculates the utilization value as a percentage
of the equivalent resource request on the containers in each pod. The controller then takes
the average of utilization across all targeted pods and produces a ratio that is used to scale

the number of desired replicas.

Supported Metrics

The following metrics are supported by horizontal pod autoscalers:

Metric Description

o Number of CPU cores used. Can be used to calculate a percentage of
CPU Utilization
the pod's requested CPU.

o Amount of memory used. Can be used to calculate a percentage of
Memory Utilization
the pod's requested memory.

Network Inbound . o o
Amount of network traffic coming into the pod, measured in KiB/s.

Traffic
Network Outbound .) o
] Amount of network traffic going out from the pod, measured in KiB/s.
Traffic
Storage Read Traffic Amount of data read from storage, measured in KiB/s.
Storage Write Traffic Amount of data written to storage, measured in KiB/s.

Important: For memory-based autoscaling, memory usage must increase and decrease

proportionally to the replica count. On average:

e An increase in replica count must lead to an overall decrease in memory (working set)
usage per-pod.

o Adecrease in replica count must lead to an overall increase in per-pod memory usage.

» Use the platform to check the memory behavior of your application and ensure that your

application meets these requirements before using memory-based autoscaling.

Prerequisites

Configuring HPA - Alauda Container Platform

Please ensure that the monitoring components are deployed in the current cluster and are
functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform (Z) > Platform Health Status..

Creating a Horizontal Pod Autoscaler

Using the CLI

You can create a horizontal pod autoscaler using the command line interface by defining a
YAML file and using the kubectl create command. The following example shows
autoscaling for a Deployment object. The initial deployment requires 3 pods. The HPA object

increases the minimum to 5. If CPU usage on the pods reaches 75%, the pods increase to 7:

1. Create a YAML file named hpa.yaml with the following content:

apiVersion: autoscaling/vza
kind: HorizontalPodAutoscalere
metadata:
name: hpa—demo@
namespace: default
spec:
maxReplicas: 76
minReplicas: 36
scaleTargetRef:
apiversion: apps/vi @
kind: Deployment @)
name: deployment-demo@
targetCPUUtilizationPercentage: 75@

1. Use the autoscaling/v2 API.

2. The name of the HPA resource.

3. The name of the deployment to scale.

4. The maximum number of replicas to scale up to.
5. The minimum number of replicas to maintain.

6. Specify the API version of the object to scale.

Configuring HPA - Alauda Container Platform
7. Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.
8. The target resource to which the HPA applies.

9. The target CPU utilization percentage that triggers scaling.

2. Apply the YAML file to create the HPA:

kubectl create -f hpa.yaml

Example output:

horizontalpodautoscaler.autoscaling/hpa-demo created

3. After you create the HPA, you can view the new state of the deployment by running the

following command:

kubectl get deployment deployment-demo

Example output:

NAME READY UP-TO-DATE AVAILABLE AGE
deployment-demo 5/5 5 5 3m

4. You can also check the status of your HPA:

kubectl get hpa hpa-demo

Example output:

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
hpa-demo Deployment/deployment-demo 0%/ 75% 3 7

3 2m

Configuring HPA - Alauda Container Platform

Using the Web Console

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling area and click on Update on the right.

5. Select Horizontal Scaling and complete the policy configuration.

Parameter Description

After a deployment is successfully created, you need to evaluate the
Minimum Pod Count corresponding to known and regular business
volume changes, as well as the Maximum Pod Count that can be

Pod Count supported by the namespace quota under high business pressure. The
maximum or minimum pod counts can be changed after setting, and it is
recommended to first derive a more accurate value through performance

testing and to continuously adjust during usage to meet business needs.

List the Metrics that are sensitive to business changes and their Target
Thresholds to trigger scale-up or scale-down actions.
For example, if you set CPU Utilization = 60%, once the CPU utilization
) deviates from 60%, the platform will start to automatically adjust the number

Trigger of pods based on the current deployment's insufficient or excessive

Policy
resource allocation.
Note: Metric types include built-in metrics and custom metrics. Custom
metrics only apply to deployments in native applications, and you must first

add custom metrics .

Configuring HPA - Alauda Container Platform

Parameter Description

For businesses with specific scaling rate requirements, you can gradually
adapt to changes in business volume by specifying Scale-Up Step or

Scale

Scale-Down Step.
Up/Down

For the scale-down step, you can customize the Stability Window, which
Step (Alpha)
defaults to 300 seconds, meaning that you must wait 300 seconds before

executing scale-down actions.

6. Click Update.

Using Custom Metrics for HPA

Custom metrics HPA extends the original HorizontalPodAutoscaler by supporting additional

metrics beyond CPU and memory utilization.

Requirements

kube-controller-manager: horizontal-pod-autoscaler-use-rest-clients=true

Pre-installed metrics-server

Prometheus

custom-metrics-api

Traditional (Core Metrics) HPA

Traditional HPA supports CPU utilization and memory metrics to dynamically adjust the

number of Pod instances, as shown in the example below:

Configuring HPA - Alauda Container Platform

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: nginx-app-nginx
namespace: test-namespace
spec:
maxReplicas: 1
minReplicas: 1
scaleTargetRef:
apiVersion: apps/vil
kind: Deployment
name: nginx-app-nginx
targetCPUUtilizationPercentage: 50

In this YAML, scaleTargetRef specifies the workload object for scaling, and

targetCPUUtilizationPercentage specifies the CPU utilization trigger metric.

Custom Metrics HPA

To use custom metrics, you need to install prometheus-operator and custom-metrics-api. After

installation, custom-metrics-api provides a large number of custom metric resources:

Configuring HPA - Alauda Container Platform

{
"kind": "APIResourcelList",
"apiVersion": "v1",
"groupVersion": "custom.metrics.k8s.io/vlbetal",
"resources": [
{
"name": '"namespaces/go_memstats_heap_sys_bytes",
"singularName": "",
"namespaced": false,
"kind": "MetricValuelList",
"verbs": ["get"]
3
{
"name": "jobs.batch/go_memstats_last_gc_time_seconds",
"singularName": "",
"namespaced": true,
"kind": "MetricValuelList",
"verbs": ["get"]
i
{
"name": "pods/go_memstats_frees",
"singularName": "",
"namespaced": true,
"kind": "MetricValuelList",
"verbs": ["get"]
¥
]
¥

These resources are all sub-resources under MetricValueList. You can create rules through
Prometheus to create or maintain sub-resources. The HPA YAML format for custom metrics
differs from traditional HPA:

Configuring HPA - Alauda Container Platform

apiVersion: autoscaling/v2betal
kind: HorizontalPodAutoscaler
metadata:
name: demo
spec:
scaleTargetRef:
apiVersion: extensions/vilbetal
kind: Deployment
name: demo
minReplicas: 2
maxReplicas: 10
metrics:
- type: Pods
pods:
metricName: metric-demo
targetAveragevalue: 10

In this example, scaleTargetRef specifies the workload.

Trigger Condition Definition

e metrics Iis an array type, supporting multiple metrics

e metric type can be: Object (describing k8s resources), Pods (describing metrics for
each Pod), Resources (built-in k8s metrics: CPU, memory), or External (typically metrics

external to the cluster)

¢ |If the custom metric is not provided by Prometheus, you need to create a new metric

through a series of operations such as creating rules in Prometheus

The main structure of a metric is as follows:

Configuring HPA - Alauda Container Platform

{
"describedObject": { # Described object (Pod)
Ilkindll . IIPOdII
. ’
"namespace": "monitoring",
"name": '"'nginx-788f78d959-fd6n9",
"apiversion": "/v1"
3
"metricName": "metric-demo",
"timestamp": "2020-02-5T04:26:01Z",
Ilvaluell: ll50|l
}

This metric data is collected and updated by Prometheus.

Custom Metrics HPA Compatibility

Custom metrics HPA YAML is actually compatible with the original core metrics (CPU). Here's

how to write it;

apiVersion: autoscaling/v2betal
kind: HorizontalPodAutoscaler
metadata:
name: nginx
spec:
scaleTargetRef:
apiVersion: extensions/vilbetal
kind: Deployment
name: nginx
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
targetAverageUtilization: 80
- type: Resource
resource:
name: memory
targetAveragevalue: 200Mi

Configuring HPA - Alauda Container Platform
e targetAverageValue is the average value obtained for each Pod

e targetAverageUtilization is the utilization calculated from the direct value

The algorithm reference is:

replicas = ceil(sum(CurrentPodsCPUUtilization) / Target)

Updates in autoscaling/v2beta2

autoscaling/v2beta2 supports memory utilization:

apiVersion: autoscaling/v2beta?2
kind: HorizontalPodAutoscaler
metadata:
name: nginx
namespace: default
spec:
minReplicas: 1
maxReplicas: 3
metrics:
- resource:
name: cpu
target:
averageUtilization: 70
type: Utilization
type: Resource
- resource:
name: memory
target:
averageUtilization:
type: Utilization
type: Resource
scaleTargetRef:
apiVersion: apps/vil
kind: Deployment

name: nginx

Changes: targetAverageUtilization and targetAveragevalue have been changed to

target and converted to a combination of xxxvalue and type :

Configuring HPA - Alauda Container Platform

e xxxValue :AverageValue (average value), AverageUtilization (average utilization), Value

(direct value)

e type : Utilization (utilization), AverageValue (average value)
Notes:

+ For CPU Utilization and Memory Utilization metrics, auto-scaling will only be triggered

when the actual value fluctuates outside the range of £10% of the target threshold.

e Scale-down may impact ongoing business operations; please proceed with caution.

Calculation Rules

When business metrics change, the platform will automatically calculate the target pod count
that matches the business volume according to the following rules and adjust accordingly. If
the business metrics continue to fluctuate, the value will be adjusted to the set Minimum Pod

Count or Maximum Pod Count.

¢ Single Policy Target Pod Count: ceil[(sum(actual metric values)/metric threshold)] . This
means that the sum of the actual metric values of all pods divided by the metric threshold,
rounded up to the smallest integer that is greater than or equal to the result. For example: If
there are currently 3 pods with CPU utilizations of 80%, 80%, and 90%, and the set CPU
utilization threshold is 60%. According to the formula, the number of pods will be
automatically adjusted to: ceil[(80%+80%+90%)/60%] = ceil 4.1 = 5 pods.

Note:

« If the calculated target pod count exceeds the set Maximum Pod Count (for example
4), the platform will only scale up to 4 pods. If after changing the maximum pod count
the metrics remain persistently high, you may need to use alternate scaling methods,

such as increasing the namespace pod quota or adding hardware resources.

o If the calculated target pod count (in the previous example 5) is less than the pod count
adjusted according to the Scale-Up Step (for example 10), the platform will only scale

up to 5 pods.

o Multiple Policy Target Pod Count: Take the maximum value among the results of each

policy calculation.

Configuring HPA - Alauda Container Platform

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Q Alauda Container Platform Q

Configuring VerticalPodAutoscaler (VPA)

For both stateless and stateful applications, VerticalPodAutoscaler (VPA) automatically
recommends and optionally applies more appropriate CPU and memory resource limits based
on your business needs, ensuring that pods have sufficient resources while improving cluster

resource utilization.

TOC

Understanding VerticalPodAutoscalers
How Does the VPA Work?
Supported Features

Prerequisites
Installing the Vertical Pod Autoscaler Plugin

Creating a VerticalPodAutoscaler
Using the CLI
Using the Web Console
Advanced VPA Configuration

Update Policy Options
Container Policy Options

Follow-Up Actions

Understanding VerticalPodAutoscalers

http://localhost:4173/container_platform/

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

You can create a VerticalPodAutoscaler to recommend or automatically update the CPU and

memory resource requests and limits for your pods based on their historical usage patterns.

After you create a VerticalPodAutoscaler, the platform begins to monitor the CPU and memory
resource usage of the pods. When sufficient data is available, the VerticalPodAutoscaler
calculates recommended resource values based on the observed usage patterns. Depending
on the configured update mode, VPA can either automatically apply these recommendations

or simply make them available for manual application.

The VPA works by analyzing the resource usage of your pods over time and making
recommendations based on this analysis. It can help ensure that your pods have the
resources they need without over-provisioning, which can lead to more efficient resource

utilization across your cluster.

How Does the VPA Work?

The VerticalPodAutoscaler (VPA) extends the concept of pod resource optimization. The VPA
monitors the resource usage of your pods and provides recommendations for CPU and

memory requests based on the observed usage patterns.

The VPA works by continuously monitoring the resource usage of your pods and updating its
recommendations as new data becomes available. The VPA can operate in the following

modes:

o Off: VPA only provides recommendations without automatically applying them.

 Manual Adjustment: You can manually adjust resource configurations based on VPA

recommendations.

Important: Elastic scaling can achieve horizontal or vertical scaling of Pods. When
sufficient resources are available, elastic scaling can bring good results, but when cluster
resources are insufficient, it may cause Pods to be in a Pending state. Therefore, please
ensure that the cluster has sufficient resources or reasonable quotas, or you can configure

alerts to monitor scaling conditions.

Supported Features

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

The VerticalPodAutoscaler provides resource recommendations based on historical usage

patterns, allowing you to optimize your pod's CPU and memory configurations.

Important: When manually applying VPA recommendations, pod recreation will occur,
which can cause temporary disruption to your application. Consider applying

recommendations during maintenance windows for production workloads.

Prerequisites

+ Please ensure that the monitoring components are deployed in the current cluster and are
functioning properly. You can check the deployment and health status of the monitoring
components by clicking on the top right corner of the platform
(?) > Platform Health Status..

¢ The Alauda Container Platform Vertical Pod Autoscaler cluster plugin must be installed in

your cluster.

Installing the Vertical Pod Autoscaler Plugin

Before using VPA, you need to install the Vertical Pod Autoscaler cluster plugin:
1. Log in and navigate to the Administrators page.
2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Vertical Pod Autoscaler cluster plugin, click Install,

then proceed to the installation page.

Creating a VerticalPodAutoscaler

Using the CLI

You can create a VerticalPodAutoscaler using the command line interface by defining a YAML
file and using the kubectl create command. The following example shows vertical pod

autoscaling for a Deployment object:

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

1. Create a YAML file named vpa.yaml with the following content:

apiVersion: autoscaling.kSS.io/vla
kind: VerticalPodAutoscalerg
metadata:
name: my—deployment—vpae
namespace: default
spec:
targetRef:
apiVersion: apps/vle
kind: Deploymente
name: my—deployment@
updatePolicy:
updateMode: 'Off' e
resourcePolicy: Q
containerPolicies:
- containerName: '*' @)
mode: 'Auto’ (@

1. Use the autoscaling.k8s.io/v1 API.
2. The name of the VPA

3. Specify the target workload object. VPA uses the workload's selector to find pods that
need resource adjustment. Supported workload types include DaemonSet, Deployment,

ReplicaSet, StatefulSet, ReplicationController, Job, and CronJob.
4. Specify the API version of the object to scale.
5. Specify the type of object.
6. The target resource to which the VPA applies
7. Update policy that defines how VPA applies recommendations. The updateMode can be:
¢ Auto: Automatically sets resource requests when creating pods and updates current
pods to recommended resource requests. Currently equivalent to "Recreate". This

mode may cause application downtime. Once in-place pod resource updates are

supported, "Auto” mode will adopt this update mechanism.

* Recreate: Automatically sets resource requests when creating pods and evicts
current pods to update to recommended resource requests. Will not use in-place

updates.

« Initial: Only sets resource requests when creating pods, no modifications afterward.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

« Off: Does not automatically modify pod resource requests, only provides

recommendations in the VPA object.

8. Resource policy that can set specific strategies for different containers. For example,
setting a container's mode to "Auto" means it will calculate recommendations for that

container, while "Off" means it won't calculate recommendations.
9. Apply policy to all containers in the pod.

10. Set the mode to Auto or Off. Auto means recommendations will be generated for this

container, Off means no recommendations will be generated.

2. Apply the YAML file to create the VPA:

kubectl create -f vpa.yaml

Example output:

verticalpodautoscaler.autoscaling.k8s.io/my-deployment-vpa created

3. After you create the VPA, you can view the recommendations by running the following

command:

kubectl describe vpa my-deployment-vpa

Example output (partial):

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Status:
Recommendation:

Container Recommendations:
Container Name: my-container
Lower Bound:

Cpu: 100m

Memory: 262144k
Target:

Cpu: 200m

Memory: 524288k
Upper Bound:

Cpu: 300m

Memory: 786432k

Using the Web Console

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling area and click Update on the right.

5. Select Vertical Scaling and configure the scaling rules.

Parameter Description

Currently supports Manual Scaling mode, which provides recommended
resource configurations by analyzing past resource usage. You can manually
adjust according to the recommended values. Adjustments will cause pods to
be recreated and restarted, so please choose an appropriate time to avoid
Scaling impacting running applications.
Mode Typically, after pods have been running for more than 8 days, the
recommended values will become accurate.
Note that when cluster resources are insufficient, scaling may cause Pods to
be in a Pending state. Please ensure that the cluster has sufficient resources

or reasonable quotas, or configure alerts to monitor scaling conditions.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Parameter Description
Target Defaults to the first container of the workload. You can choose to enable
Container resource limit recommendations for one or more containers as needed.

6. Click Update.

Advanced VPA Configuration

Update Policy Options

updateMode: "Off" - VPA only provides recommendations without automatically

applying them. You can manually apply these recommendations as needed.

e updateMode: "Auto" - Automatically sets resource requests when creating pods and

updates current pods to recommended values. Currently equivalent to "Recreate”.

e updateMode: "Recreate" -Automatically sets resource requests when creating pods

and evicts current pods to update to recommended values.

e updateMode: "Initial" - Only sets resource requests when creating pods, no
modifications afterward.

e minReplicas: <number> - Minimum number of replicas. Ensures this minimum number

of pods remain available when the Updater evicts pods. Must be greater than 0.

Container Policy Options

e containerName: "*" - Apply policy to all containers in the pod.
e mode: "Auto" - Automatically generate recommendations for the container.

e mode: "Off" - Do not generate recommendations for the container.

Notes:

* VPA recommendations are based on historical usage data, so it may take several days of

pod operation before recommendations become accurate.

e Pod recreation will occur when VPA recommendations are applied in Auto mode, which can
cause temporary disruption to your application.

Configuring VerticalPodAutoscaler (VPA) - Alauda Container Platform

Follow-Up Actions

After configuring VPA, the recommended values for CPU and memory resource limits of the
target container can be viewed in the Elastic Scaling area. In the Containers area, select the
target container tab and click the icon on the right side of Resource Limits to update the

resource limits according to the recommended values.

Configuring CronHPA - Alauda Container Platform

Q Alauda Container Platform Q

Configuring CronHPA

For stateless applications with periodic fluctuations in business usage, CronHPA (Cron
Horizontal Pod Autoscaler) supports adjusting the number of pods based on the time policies

you set, allowing you to optimize resource usage according to predictable business patterns.

TOC

Understanding Cron Horizontal Pod Autoscalers
How Does the CronHPA Work?

Prerequisites

Creating a Cron Horizontal Pod Autoscaler
Using the CLI
Using the Web Console

Schedule Rule Explanation

Understanding Cron Horizontal Pod Autoscalers

You can create a cron horizontal pod autoscaler to specify the number of pods you want to run
at specific times according to a schedule, allowing you to prepare for predictable traffic

patterns or reduce resource usage during off-peak hours.

After you create a cron horizontal pod autoscaler, the platform begins to monitor the schedule

and automatically adjusts the number of pods at the specified times. This time-based scaling

http://localhost:4173/container_platform/

Configuring CronHPA - Alauda Container Platform

occurs independently of resource utilization metrics, making it ideal for applications with

known usage patterns.

The CronHPA works by defining one or more schedule rules, each specifying a time (using
crontab format) and a target number of replicas. When a scheduled time is reached, the
CronHPA adjusts the pod count to match the specified target, regardless of the current

resource utilization.

How Does the CronHPA Work?

The cron horizontal pod autoscaler (CronHPA) extends the concept of pod auto-scaling with
time-based controls. The CronHPA lets you define specific times when the number of pods
should change, allowing you to prepare for predictable traffic patterns or reduce resource

usage during off-peak hours.

The CronHPA works by continuously checking the current time against the defined schedules.
When a scheduled time is reached, the controller adjusts the number of pods to match the
target replica count specified for that schedule. If multiple schedules trigger at the same time,

the platform will use the rule with higher priority (the one defined earlier in the configuration).

Prerequisites

Please ensure that the monitoring components are deployed in the current cluster and are
functioning properly. You can check the deployment and health status of the monitoring

components by clicking on the top right corner of the platform (Z) > Platform Health Status..

Creating a Cron Horizontal Pod Autoscaler

Using the CLI

You can create a cron horizontal pod autoscaler using the command line interface by defining
a YAML file and using the kubectl create command. The following example shows

scheduled scaling for a Deployment object:

Configuring CronHPA - Alauda Container Platform

1. Create a YAML file named cronhpa.yaml with the following content:

apiVersion: tkestack.io/vla
kind: CronHPAe
metadata:
name: my—deployment—cronhpaa
namespace: default
spec:
scaleTargetRef:
apiVersion: apps/vle
kind: Deploymente
name: my—deployment@
crons:
- schedule: 'e @ * * *' @)
targetReplicas: Oe
- schedule: 'e 8 * * 1-5' @)
targetReplicas: 3@
- schedule: 'e 18 * * 1-5' {8
targetReplicas: 1@

1. Use the tkestack.io/vl API.

2. The name of the CronHPA resource.

3. The name of the deployment to scale.

4. Specify the API version of the object to scale.

5. Specify the type of object. The object must be a Deployment, ReplicaSet, or StatefulSet.
6. The target resource to which the CronHPA applies.

7. The cron schedule in standard crontab format (minute hour day month weekday).

8. The target number of replicas to scale to when the schedule is triggered.
This example configures the deployment to:

o Scale down to O replicas at midnight every day
e Scale up to 3 replicas at 8:00 AM on weekdays (Monday-Friday)

e Scale down to 1 replica at 6:00 PM on weekdays

2. Apply the YAML file to create the CronHPA:

Configuring CronHPA - Alauda Container Platform

kubectl create -f cronhpa.yaml

Using the Web Console

1. Enter Container Platform.

2. In the left navigation bar, click Workloads > Deployments.

3. Click on Deployment Name.

4. Scroll down to the Elastic Scaling section and click Update on the right.

5. Select Scheduled Scaling, and configure the scaling rules. When the type is Custom, you
must provide a Crontab expression for the trigger condition, formatted as minute hour

day month week . For detailed introduction, please refer to Writing Crontab Expressions.

6. Click Update.

Schedule Rule Explanation

* Scaling Rules:

Type * Trigger Condition * Target Replicas
o—| Time v Sunday x v 01:00 ® 1 ©
9—| Customize v 02**2 2 S
e—| Customize v 02**2 3 S
® Add

1. Indicates that starting from 01:00 AM every Monday, only 1 pod will be retained.
2. Indicates that starting from 02:00 AM every Tuesday, only 2 pods will be retained.

3. Indicates that starting from 02:00 AM every Tuesday, only 3 pods will be retained.
Important Notes:

+ When multiple rules have the same trigger time (Examples 2 and 3), the platform will

execute automatic scaling based only on the rule that is higher in priority (Example 2).

Configuring CronHPA - Alauda Container Platform

CronHPA operates independently of HPA. If both are configured for the same workload,

they may conflict with each other. Consider your scaling strategy carefully.

The schedule uses the crontab format (minute hour day month week) and follows the

same rules as Kubernetes CronJobs.
Time is based on the cluster's timezone setting.

For workloads with critical availability requirements, ensure that your scheduled scaling

doesn't unexpectedly reduce capacity during high-traffic periods.

Operation and Maintenance - Alauda Container Platform

Q Alauda Container Platform Q

Operation and Maintenance

Status Description

Applications

Exporting Applications

Exporting Helm Charts
Exporting YAML to Local

Exporting YAML to Code Repository (Alph

Deleting Applications

Starting and Stopping Applicati

Starting the Application

Stopping the Application

Updating and deleting Chart Ap

Important Notes
Prerequisites

Status Analysis Description

Updating A|

Importing Reso

Removing/Batc

Version Mai

Creating a Vers

Rolling Back to

Health Che«

Understanding
YAML file exam
Health Checks

Troubleshooting

http://localhost:4173/container_platform/

Q Alauda Container Platform

Status Description - Alauda Container Platform

Status Description

TOC

Applications

Applications

The status of native applications and their corresponding meanings are as follows. The

numbers following the status indicate the number of computing components.

Status

Running

Partially Running

Stopped

Processing

No Computing

Components

Failed

Meaning

All computing components are in normal operation.

Some computing components are running, while others have
stopped.

All computing components have stopped.

At least one computing component is in a pending state.

There are no computing components under the application.

Deployment has failed.

http://localhost:4173/container_platform/

Status Description - Alauda Container Platform

Note: Similarly, the numbers in the computing component status indicate the number of
container groups.

Deployment

Running: All Pods are in normal operation.

Processing: There are Pods that are not in a running state.

Stopped: All Pods have stopped.

Failed: Deployment has failed.

Starting and Stopping Applications - Alauda Container Platform

Q Alauda Container Platform Q

Starting and Stopping Applications

TOC

Starting the Application

Stopping the Application

Starting the Application

1. Access the Container Platform.
2. In the left navigation bar, click Application > Applications.
3. Click on the application name.

4. Click Start.

Stopping the Application

1. Access the Container Platform.
2. In the left navigation bar, click Application > Applications.
3. Click on the application name.

4. Click Stop.

http://localhost:4173/container_platform/

Starting and Stopping Applications - Alauda Container Platform

5. Read the prompt message, and after confirming that everything is correct, click Stop.

Updating Applications - Alauda Container Platform

Q Alauda Container Platform Q

Updating Applications
Custom Applications greatly facilitate the unified management of workloads, networks,
storage, and configurations, but not all resources belong to the application.

* Resources added during the application creation process, or added through application
updates, are by default associated with the application and do not require additional

importing.

* Resources created outside the application do not belong to the application and cannot be
found in the application's details. However, as long as the resource definitions meet
business requirements, the business can operate normally. In this case, it is recommended

that you import the resources into the application for unified management.
 Image Management

» Rollout new container images with tag/patch version control

o Configure imagePullPolicy (Always/IfNotPresent/Never)
* Runtime Configuration

» Modify environment variables via ConfigMaps/Secrets

o Update resource requests/limits (CPU/Memory)
e Resource Orchestration

e Import existing Kubernetes resources (Deployments/Services/Ingresses)

e Synchronize configurations across hamespaces using kubectl apply -f

Resources imported into the application can benefit from the following features:

http://localhost:4173/container_platform/

Updating Applications - Alauda Container Platform
Feature Description

When creating a version snapshot for the application, a snapshot will also be

generated for the resources within the application.

« If the application is rolled back, the resources will also roll back to the

Version state in the snapshot.

Snapshot
« |If a specific version of the application is distributed, the platform will

automatically create the resources recorded in the snapshot upon

redeploying the application.

If an application is no longer needed, deleting the application will

Deleted with))) S)
automatically remove all resources associated with the application, including

Application)))
computing components, internal routes, and inbound rules.

In the application detail information, you can quickly view the resources

associated with the application.

For example: External traffic can access Deployment D through Service S,

Easier to Find) o)
which belongs to Application A, but the corresponding access address can

only be quickly found in the application details if Service S also belongs to

Application A.

TOC

Importing Resources

Removing/Batch Removing Resources

Importing Resources

Batch import related resources under the namespace where the application resides; a

resource can belong to only one application.

Updating Applications - Alauda Container Platform

1. Enter Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.
3. Click on Application Name.

4. Click Actions > Manage Resources.

5. In the Resource Type at the bottom, select the type of resources to be imported.

Note: Common resource types include Deployment, DaemonSet, StatefulSet, Job,
CronJob, Service, Ingress, PVC, ConfigMap, Secret, and HorizontalPodAutoscaler, which
are displayed at the top; other resources are arranged in alphabetical order, and you can

quickly query specific resource types by searching keywords.
6. In the Resources section, select the resources to be imported.

Attention: For Job type resources, only tasks created through YAML are supported for

import.

7. Click Import Resources.

Removing/Batch Removing Resources

Removing / batch removing resources from an application only disassociates the

application from the resources and does not delete the resources.

If there are interconnections between resources under an application, removing any resource
from the application will not change the associations between the resources. For example,
even if Service S is removed from Application A, external traffic can still access Deployment D

through Service S.

1. Enter Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.
3. Click on Application Name.

4. Click Actions > Manage Resources.

Updating Applications - Alauda Container Platform

5. Click Remove on the right side of a resource to remove it; or select multiple resources at

once, and click Remove at the top of the table to batch remove resources.

Exporting Applications - Alauda Container Platform

Q Alauda Container Platform Q

Exporting Applications

To standardize the export process of applications between development, testing, and
production environments, and to facilitate the rapid migration of business to new
environments, you can export native applications as application templates (Charts) or export
simplified YAML files that can be used directly for deployment. This allows the native
application to run in different environments or namespaces. You can also export YAML files to

a code repository to deploy applications across clusters quickly using GitOps functionality.

TOC

Exporting Helm Charts
Procedure
Follow-Up Actions
Exporting YAML to Local
Steps
Method 1
Method 2
Follow-Up Actions
Exporting YAML to Code Repository (Alpha)
Precautions
Steps

Follow-Up Actions

http://localhost:4173/container_platform/

Exporting Applications - Alauda Container Platform

Exporting Helm Charts

Procedure

1. Access the Container Platform.
2. In the left navigation bar, click on Application Management > Native Applications.
3. Click on the application name of the type Custom Application .

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Choose one export method as needed and refer to the following instructions to configure

the relevant information.
o Exporting Helm Charts to a template repository with management permissions

Note: The template repository is added by the platform administrator. Please contact the
platform administrator to obtain a valid template repository of type Chart or OCI Chart

with Management permissions.

Parameter Description

Select Template Repository to directly sync the template to a template
Target repository of type Chart or OCI Chart with Management permissions.
Location The project owner assigned to this Template Repository can directly

use the template.

When the selected template repository type is OCI Chart, you need to

select or manually input the directory for storing the Helm Chart.
Template

Note: When manually entering a new template directory, the platform
Directory

will create this directory in the template repository, but there is a risk of

the creation failing.

Exporting Applications - Alauda Container Platform

Parameter Description

The version number of the application template.

Version The format should be v<Major>.<Minor>.<Patch> . The default value

is the current application version or the current snapshot version.

Supports JPG, PNG, and GIF image formats, with a file size of no more

Icon

than 500KB. Suggested dimensions are 80*60 pixels.

The description will be displayed in the list of application templates
Description

within the application directory.

Description file. Supports editing in Markdown format and will be
README

displayed on the details page of the application template.

Template help file. Supports standard plaintext editing; after the
NOTES deployment template is completed, it will be displayed on the template

application details page.

o Exporting Helm Charts to local for manual upload to the template repository: Select
Local as the target location and choose Helm Chart as the file format to generate a

Helm Chart package which will be downloaded locally for offline transmission.

6. Click Export.

Follow-Up Actions

 If you export the Helm Chart to local, you will need to add the template to a template

repository with management permissions.

+ Regardless of the export method chosen, you can refer to Creating Native Applications -
Template Method to create a Template Application type of native application in a non-

current namespace.

Exporting YAML to Local

Exporting Applications - Alauda Container Platform

Steps

Method 1

1. Access the Container Platform.
2. In the left navigation bar, click on Application Management > Native Applications.
3. Click on application name.

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Select Local as the target location and YAML as the file format, at which point you can

export a simplified YAML file that can be deployed directly in other environments.

6. Click Export.

Method 2

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.
3. Click on application name.

4. Click on the YAML tab, configure settings as needed, and preview the YAML file.

Type Description

By default, Preview Simplified YAML is not selected, displaying the YAML
file with the managedFields fields hidden. You can preview it and export

directly; you may also uncheck Hide managedFields fields to export the full

Full YAML
YAML file.
Note: Full YAML is primarily used for operations and troubleshooting and
cannot be used to quickly create native applications on the platform.
Simplified Check Preview Simplified YAML, at which point you can preview and

YAML export a simplified YAML file that can be deployed directly in other

Exporting Applications - Alauda Container Platform

Type Description

environments.

5. Click Export.

Follow-Up Actions

After exporting the simplified YAML, you can refer to Creating Native Applications - YAML
Method to create a Custom Application type of native application in a non-current

namespace.

Exporting YAML to Code Repository (Alpha)

Precautions

¢ Only platform administrators and project administrators can directly export native

application YAML files to the code repository.

e Template Applications do not support exporting Kustomize formatted application
configuration files or directly exporting YAML files to the code repository; you can first
detach from the template and convertittoa Custom Application .

Steps

1. Access the Container Platform.

2. In the left navigation bar, click on Application Management > Native Applications.

3. Click on the application name of type Custom .

4. Click on Actions > Export; you can also export a specific version from the application

detail page.

5. Choose one export method as needed and refer to the following instructions to configure

the relevant information.

Parameter

Target

Location

Integration

Project Name

Repository
Address

Export Method

File Path

Commit

Message

Preview

Exporting Applications - Alauda Container Platform

o Exporting YAML to a code repository:

Description

Select Code Repository to directly sync the YAML file to the specified
Git code repository. The project owner assigned to this Code

Repository can directly use the YAML file.

The name of the integration tool project assigned or associated with

your project by the platform administrator.

The repository address assigned for your use under the integrated

tool project.

» Existing Branch: Export the application YAML to the selected

branch.

o New Branch: Create a new branch based on the selected
Branch/Tag/ICommit ID and export the application YAML to the

new branch.

o |f Submit PR (Pull Request) is checked, the platform will

create a new branch and submit a Pull Request.

« |f Automatically delete source branch after merging PR is
checked, the source branch will be automatically deleted after

you merge the PR in the Git code repository.

The specific location where the file should be saved in the code
repository; you can also input a file path, and the platform will create a

new path in the code repository based on the input.

Fill in commit information to identify the content of this submission.

Preview the YAML file to be submitted and compare differences with
the existing YAML in the code repository, displayed with color

differentiation.

Exporting Applications - Alauda Container Platform

o Exporting Kustomize-type files to local for manual upload to the code repository: Select
Local as the target location and choose Kustomize as the file format to export the
Kustomize-type application configuration file locally. This file supports differentiated

configurations and is suitable for cross-cluster application deployments.

6. Click Export.

Follow-Up Actions

After exporting the YAML to a Git code repository, you can refer to Creating GitOps

Applications ~ to create a Custom Application type of GitOps application across clusters.

http://localhost:4173/gitops/functions/create_argocd_application/create_application_via_platform.html
http://localhost:4173/gitops/functions/create_argocd_application/create_application_via_platform.html
http://localhost:4173/gitops/functions/create_argocd_application/create_application_via_platform.html
http://localhost:4173/gitops/functions/create_argocd_application/create_application_via_platform.html

Updating and deleting Chart Applications - Alauda Container Platform

Q Alauda Container Platform Q

Updating and deleting Chart Applications

Due to overlapping functionality between the current template applications and native
applications, and the enhanced operational capabilities available under native applications,
independent management of template applications will no longer be offered in future versions.
Please upgrade your currently successfully deployed template applications to native

applications as soon as possible.

TOC

Important Notes
Prerequisites

Status Analysis Description

Important Notes

This feature is going to be discontinued. Please upgrade your currently successfully

deployed template applications to native applications as soon as possible.

Prerequisites

Please contact the platform administrator to enable template application-related features.

http://localhost:4173/container_platform/

Updating and deleting Chart Applications - Alauda Container Platform

Status Analysis Description

Click on Template Application Name to display detailed deployment status analysis of the

Chart in the detail information.

Type Reason

Indicates the state of the Chart template download.
« When the status is True, it indicates that the Chart template download was
successful.
« When the status is False, it indicates that the Chart template download has
Initialized failed, and the reason for failure can be viewed in the message column.
e ChartLoadFailed: Chart template download failed.

« InitializeFailed: An exception occurred during initialization before

downloading the Chart.

Indicates the state of user permissions and dependencies verification for the Chart

template.

* When the status is True, it indicates that all validation checks have passed.
« When the status is False, it indicates that there are validation checks that have
failed, and the reason for failure can be viewed in the message column.
Validated « DependenciesCheckFailed: Chart dependency check failed.

» PermissionCheckFailed: The current user lacks permissions for certain

resource operations.

» ConsistentNamespaceCheckFailed: When deploying the template
application as a native application, the Chart contains resources that require

cross-namespace deployment.

Synced Indicates the state of the Chart template deployment.

* When the status is True, it indicates that the Chart template deployment was

successful.

Updating and deleting Chart Applications - Alauda Container Platform

Type Reason

« When the status is False, it indicates that the Chart template deployment has
failed, with the reason displayed as ChartSyncFailed, and the specific reason

for failure can be viewed in the message column.

Version Management for Applications - Alauda Container Platform

Q Alauda Container Platform Q

Version Management for Applications

After updating the application through the platform interface, a historical version record is
automatically generated. For application updates triggered by non-interface operations, such
as updating the application via API calls, you can manually create a version snapshot to
record the changes.

Note: When the number of version snapshot entries exceeds 6, the platform retains only the
latest 6 entries and automatically deletes the others, prioritizing the removal of the oldest

version snapshot entries.

TOC

Creating a Version Snapshot
Procedure
Rolling Back to a Historical Version

Procedure

Creating a Version Snapshot

Procedure

1. Access Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.

http://localhost:4173/container_platform/

Version Management for Applications - Alauda Container Platform

3. Click on Application Name.
4. In the Version Snapshot tab, click Create Version Snapshot.
5. Configure the information and click Confirm.

Note: You can also Distribute the Application, which allows you to distribute the version
snapshot of the application as a Chart, facilitating the rapid deployment of the same

application across multiple clusters and namespaces on the platform.

Rolling Back to a Historical Version

Roll back the current application's configuration to a historical version.

Procedure

1. Access Container Platform.

2. In the left navigation bar, click Application Management > Native Applications.
3. Click on Application Name.

4. In the Historical Versions tab, click on Version Number.

5. Click : > Roll Back to This Version.

6. Click Roll Back.

Deleting Applications - Alauda Container Platform

Q Alauda Container Platform Q

Deleting Applications

Delete an application, it simultaneously deletes the application itself and all of its directly
contained Kubernetes resources. Additionally, this action severs any association the

application might have had with other Kubernetes resources that were not directly part of its

definition.

http://localhost:4173/container_platform/

Health Checks - Alauda Container Platform

0 Alauda Container Platform

Health Checks

TOC

Understanding Health Checks
Probe Types
HTTP GET Action
exec Action
TCP socket Action
Best Practices
YAML file example
Health Checks configuration parameters by using web console
Common parameters
Protocol specific parameters
Troubleshooting probe failures
Check pod events
View container logs
Test probe endpoint manually
Review probe configuration
Check application code
Resource constraints

Network issues

http://localhost:4173/container_platform/

Health Checks - Alauda Container Platform

Understanding Health Checks

Refer to the official Kubernetes documentation:

e Liveness, Readiness, and Startup Probes ~

o Configure Liveness, Readiness and Startup Probes ~

In Kubernetes, health checks, also known as probes, are a critical mechanism to ensure
the high availability and resilience of your applications. Kubernetes uses these probes to
determine the health and readiness of your Pods, allowing the system to take appropriate
actions, such as restarting containers or routing traffic. Without proper health checks,
Kubernetes cannot reliably manage your application's lifecycle, potentially leading to

service degradation or outages.

Kubernetes offers three types of probes:

e livenessProbe : Detects if the container is still running. If a liveness probe fails,

Kubernetes will terminate the Pod and restart it according to its restart policy.

e readinessProbe : Detects if the container is ready to serve traffic. If a readiness probe
fails, the Endpoint Controller removes the Pod from the Service's Endpoint list until the

probe succeeds.

e startupProbe : Specifically checks if the application has successfully started. Liveness
and readiness probes will not execute until the startup probe succeeds. This is very useful

for applications with long startup times.

Properly configuring these probes is essential for building robust and self-healing applications

on Kubernetes.

Probe Types
Kubernetes supports three mechanisms for implementing probes:
HTTP GET Action

Executes an HTTP GET request against the Pod's IP address on a specified port and

path. The probe is considered successful if the response code is between 200 and 399.

https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/concepts/configuration/liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Health Checks - Alauda Container Platform

¢ Use Cases: Web servers, REST APIs, or any application exposing an HTTP endpoint.

 Example:

livenessProbe:
httpGet:
path: /healthz
port: 8080
initialDelaySeconds: 15
periodSeconds: 20

exec Action

Executes a specified command inside the container. The probe is successful if the
command exits with status code 0.

¢ Use Cases: Applications without HTTP endpoints, checking internal application state, or
performing complex health checks that require specific tools.

 Example:

readinessProbe:
exec:
command :
- cat
- /tmp/healthy
initialDelaySeconds: 5
periodSeconds: 5

TCP sSocket Action

Attempts to open a TCP socket on the container's IP address and a specified port. The
probe is successful if the TCP connection can be established.

* Use Cases: Databases, message queues, or any application that communicates over a
TCP port but might not have an HTTP endpoint.

 Example:

Health Checks - Alauda Container Platform

startupProbe:
tcpSocket:
port: 3306
initialDelaySeconds: 5
periodSeconds: 10
failureThreshold: 30

Best Practices

e Liveness vs. Readiness:

o Liveness: If your application is unresponsive, it's better to restart it. If it fails, Kubernetes

will restart it.

* Readiness: If your application is temporarily unable to serve traffic (e.g., connecting to a
database), but might recover without a restart, use a Readiness Probe. This prevents

traffic from being routed to an unhealthy instance.

o Startup Probes for Slow Applications: Use Startup Probes for applications that take a
significant amount of time to initialize. This prevents premature restarts due to Liveness

Probe failures or traffic routing issues due to Readiness Probe failures during startup.

+ Lightweight Probes: Ensure your probe endpoints are lightweight and perform quickly.
They should not involve heavy computation or external dependencies (like database calls)

that could make the probe itself unreliable.

o Meaningful Checks: Probe checks should genuinely reflect the health and readiness of
your application, not just whether the process is running. For example, for a web server,

check if it can serve a basic page, not just if the port is open.

¢ Adjust initialDelaySeconds: Set initialDelaySeconds appropriately to give your

application enough time to start before the first probe.

* Tune periodSeconds and failureThreshold: Balance the need for quick detection of
failures with avoiding false positives. Too frequent probes or too low a failureThreshold can

lead to unnecessary restarts or unready states.

e Logs for Debugging: Ensure your application logs clear messages related to health check

endpoint calls and internal state to aid in debugging probe failures.

e Combine Probes: Often, all three probes (Liveness, Readiness, Startup) are used

together to manage application lifecycle effectively.

Health Checks - Alauda Container Platform

YAML file example

spec:
template:
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80
startupProbe:
httpGet:
path: /startup-check

port: 8080

initialDelaySeconds: 0

periodSeconds: 5
failureThreshold: 60

livenessProbe:
httpGet:
path: /healthz
port: 8080
initialDelaySeconds: 5

periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

readinessProbe:

httpGet:

path: /ready

port: 8080
initialDelaySeconds: 5
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

Health Checks - Alauda Container Platform

Health Checks configuration parameters by using

web console

Common parameters

Parameters Description

initialbDelaySeconds : Grace period (seconds) before starting probes.

Initial Delay
Default: 300 .
Period periodSeconds : Probe interval (1-120s). Default: 60 .
Timeout timeoutSeconds : Probe timeout duration (1-300s). Default: 30 .
Success successThreshold : Minimum consecutive successes to mark healthy.
Threshold Default: o .
Eail failureThreshold : Maximum consecutive failures to trigger action:
ailure
- 0 : Disables failure-based actions
Threshold

- Default;: 5 failures — container restart.

Protocol specific parameters

Applicable L.
Parameter Description
Protocols
Protocol HTTP/HTTPS Health check protocol
Port HTTP/HTTPS/TCP Target container port for probing.
Path HTTP/HTTPS Endpoint path (e.g., /healthz).
HTTP _
HTTP/HTTPS Custom headers (Add key-value pairs).
Headers
Command EXEC Container-executable check command (e.g., sh -c

"curl -I localhost:8080 | grep OK").

Health Checks - Alauda Container Platform

Applicable o
Parameter Description
Protocols

Note: Escape special characters and test command
viability.

Troubleshooting probe failures

When a Pod's status indicates issues related to probes, here's how to troubleshoot:

Check pod events

kubectl describe pod <pod-name>

Look for events related to LivenessProbe failed, ReadinessProbe failed, or StartupProbe
failed. These events often provide specific error messages (e.g., connection refused, HTTP

500 error, command exit code).

View container logs

kubectl logs <pod-name> -c <container-name>

Examine application logs to see if there are errors or warnings around the time the probe

failed. Your application might be logging why its health endpoint isn't responding correctly.

Test probe endpoint manually

o HTTP: If possible, kubectl exec -it <pod-name> -- curl <probe-path>:<probe-

port> or wget from within the container to see the actual response.

o Exec: Run the probe command manually: kubectl exec -it <pod-name> -- <command-

from-probe> and check its exit code and output.

e TCP: Use nc (netcat) or telnet from another Pod in the same network or from the host

if allowed, to test TCP connectivity: kubectl exec -it <another-pod> -- nc -vz <pod-

Health Checks - Alauda Container Platform

ip> <probe-port> .

Review probe configuration

* Double-check the probe parameters (path, port, command, delays, thresholds) in your

Deployment/Pod YAML. A common mistake is an incorrect port or path.

Check application code

¢ Ensure your application's health check endpoint is correctly implemented and truly reflects
the application's readiness/liveness. Sometimes, the endpoint might return success even

when the application itself is broken.

Resource constraints

+ Insufficient CPU or memory resources could cause your application to become
unresponsive, leading to probe failures. Check Pod resource usage (kubectl top pod

<pod-name>) and consider adjusting resources limits/requests.

Network issues

¢ Inrare cases, network policies or CNI issues might prevent probes from reaching the

container. Verify network connectivity within the cluster.

Application Observability - Alauda Container Platform

0 Alauda Container Platform Q

Application Observability

Monitoring Dashboards Logs Events

Prerequisites Procedure Procedure

Namespace-Level Monitoring Dashboards Event records il

Workload-Level Monitoring

http://localhost:4173/container_platform/

Monitoring Dashboards - Alauda Container Platform

Q Alauda Container Platform Q

Monitoring Dashboards

¢ Supports viewing resource monitoring data for workload components on the platform for
the past 7 days (with configurable monitoring data retention period). Includes statistics for

applications, workloads, pods, and trends/rankings of CPU/memory usage.
¢ Supports Namespace-Level monitoring.

o Supported Workload-Level Monitoring: Applications, Deployments, DaemonSets,
StatefulSets, and Pods

TOC

Prerequisites
Namespace-Level Monitoring Dashboards
Procedure
Creating Namespace-Level Monitoring Dashboard
Workload-Level Monitoring
Default Monitoring Dashboard
Procedure
Metric interpretation

Custom Monitoring Dashboard

Prerequisites

¢ Installation of Monitoring Plugins

http://localhost:4173/container_platform/observability/monitor/install_monitor.html
http://localhost:4173/container_platform/

Monitoring Dashboards - Alauda Container Platform

Namespace-Level Monitoring Dashboards

Procedure

1. Container Platform, click Observe > Dashboards.

2. View monitoring data under the namespace. Three dashboards are provided: Applications

Overview, Workloads Overview, and Pods Overview.

3. Switch between dashboards to monitor target Overview.

Creating Namespace-Level Monitoring Dashboard

1. Platform Management, create a dedicated monitoring dashboard by referring to Creating

Monitoring Dashboard to create a dedicated monitoring dashboard.

2. Configure the following labels to display the Namespace-Level Monitoring dashboard on

the Container Platform:

e cpaas.io/dashboard.folder: container-platform

e cpaas.io/dashboard.tag.overview: "true"

Workload-Level Monitoring

This procedure demonstrates how to view pod monitoring through the Deployment

interface.

Default Monitoring Dashboard

Procedure
1. Container Platform, click Workloads > Deployments.
2. Click a Deployment name from the list.

3. Navigate to the Monitoring tab to view default monitoring metrics.

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#create_dashboard
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html#create_dashboard

Monitoring Dashboards - Alauda Container Platform

Metric interpretation

Monitoring . . . o
Metric Granularity Technical Definition
Resource
Utilization = Usage/Limit (limits)
Assess container limit configuration. High
CPU Utilization/Usage utilization indicates insufficient limits.
Usage represents actual resource
consumption.
Utilization = Usage/Limit (limits)
Memory Utilization/Usage Evaluation method same as CPU. High rate
may cause component instability.
) Inflow Rate/Outflow Network traffic (bytes/sec) flowing into/out of
Network Traffic
Rate pods.
Receiving Network packets (count/sec) received/sent
Network Packet .
Rate/Transmit Rate by pods.

)) Read/write throughput (bytes/sec) of
Disk Rate Read/Write
mounted volumes per workload.

. . Input/Output Operations Per Second (IOPS)
Disk IOPS Read/Write
of mounted volumes per workload.

Custom Monitoring Dashboard

4. Click the Toggle Icon to switch to custom dashboards. Refer to Add Panel in Custom

Dashboard to create dedicated Workload-Level monitoring dashboard.

I INFO

Hover over chart curves to view per-pod metrics and PromQL expressions at specific timestamps. If

exceeding 15 pods, only top 15 entries sorted in descending order are displayed.

http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html
http://localhost:4173/container_platform/observability/monitor/functions/manage_dashboard.html

Monitoring Dashboards - Alauda Container Platform

Logs - Alauda Container Platform

Q Alauda Container Platform Q

Logs

Aggregate container runtime logs with visual query capabilities. When applications, workloads,

or other resources exhibit abnormal behavior, log analysis helps diagnose root causes.

TOC

Procedure

Procedure

This procedure demonstrates how to view container runtime logs through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.
2. Click a Deployment name from the list.

3. Navigate to the Logs tab to view detailed records.

Operation Description

Switch between Pods and Containers using the dropdown selector to
Pod/Container

view the corresponding logs.

http://localhost:4173/container_platform/

Logs - Alauda Container Platform

Operation Description

Previous View logs from terminated containers (available when container
Logs restartCount > 0).

Lines Configure display log buffer size: 1k/10k/100k lines.

Wrap Line Toggle line wrapping for long log entries (enabled by default).
Find Full-text search with highlight matching and Enter-to-navigate.

Unprocessed log streams directly captured from container runtime

Raw
interfaces (CRI) without formatting, filtering, or truncation.
Export Download raw logs.
Full Screen Click truncated line to view full content in modal dialog.
I WARNING

e Truncation Handling: Log entries exceeding 2000 characters will be truncated with an ellipsis

« Trimmed portions cannot be matched by the page's find function.

e Click the ellipsis ... marker in truncated lines to view full content in a modal dialog.
» Copy Reliability: Avoid direct copying from rendered log viewer when seeing truncation

markers (...) or ANSI color codes. Always use Export, Raw function for complete logs.

» Retention Policy: Live logs follow Kubernetes log rotation configuration. For historical analysis,

use Logs under Observe.

http://localhost:4173/container_platform/observability/log/functions/log.html

Events - Alauda Container Platform

Q Alauda Container Platform Q

Events

Event information generated by Kubernetes resource state changes and operational status
updates, with integrated visual query interface.When applications, workloads, or other

resources encounter exceptions, real-time event analysis helps troubleshoot root causes.

TOC

Procedure

Event records interpretation

Procedure

This procedure demonstrates how to view container runtime evens through the Deployment

interface.

1. Container Platform, click Workloads > Deployments.
2. Click a Deployment name from the list.

3. Navigate to the Events tab to view detailed records.

Event records interpretation

http://localhost:4173/container_platform/

Events - Alauda Container Platform

Resource event records: Below the event summary panel, all matching events within the

specified time range are listed. Click event cards to view complete event details. Each card

displays:
* Resource Type: Kubernetes resource type represented by icon abbreviations:

P =Pod

RS = ReplicaSet

D = Deployment

SvC = Service

» Resource Name: Target resource named.

+ Event Reason: Kubernetes-reported reason (e.g., FailedScheduling).
+ Event Level: Event severity.

e Normal :Informational

e Warning : Requires immediate attention

e Time: Last Occurrence time, Occurrence Count.

I INFO

Kubernetes allows administrators to configure event retention periods through the Event TTL
controller with a default retention period of 1 hour. Expired events are automatically purged by the

system. For comprehensive historical records, access the All Events.

http://localhost:4173/container_platform/observability/event/event.html

Q Alauda Container Platform

Workloads

Deployments

Understanding Deployments
Creating Deployments
Managing Deployments

Troubleshooting by using CLI

Workloads - Alauda Container Platform

DaemonSets

Understanding DaemonSets
Creating DaemonSets

Managing DaemonSets

CronJobs

Understanding CronJobs
Creating CronJobs
Execute Immediately

Deleting CronJobs

StatefulSet:

Understanding
Creating Statefi

Managing State

Jobs

Understanding
YAML file exam

Execution Over

http://localhost:4173/container_platform/

Deployments - Alauda Container Platform

Q Alauda Container Platform

Deployments

TOC

Understanding Deployments
Creating Deployments
Creating a Deployment by using CLI
Prerequisites
YAML file example
Creating a Deployment via YAML
Creating a Deployment by using web console
Prerequisites
Procedure - Configure Basic Info
Procedure - Configure Pod
Procedure - Configure Containers
Reference Information
Heath Checks
Managing Deployments
Managing a Deployment by using CLI
Viewing a Deployment
Updating a Deployment
Scaling a Deployment
Rolling Back a Deployment
Deleting a Deployment
Managing a Deployment by using web console

Viewing a Deployment

http://localhost:4173/container_platform/

Deployments - Alauda Container Platform
Updating a Deployment
Deleting a Deployment
Troubleshooting by using CLI
Check Deployment status
Check ReplicaSet status
Check Pod status
View Logs
Enter Pod for debugging
Check Health configuration

Check Resource Limits

Understanding Deployments

Refer to the official Kubernetes documentation: Deployments ~

Deployment is a Kubernetes higher-level workload resource used to declaratively manage
and update Pod replicas for your applications. It provides a robust and flexible way to
define how your application should run, including how many replicas to maintain and how to

safely perform rolling updates.

A Deployment is an object in the Kubernetes API that manages Pods and ReplicaSets. When
you create a Deployment, Kubernetes automatically creates a ReplicaSet, which is then

responsible for maintaining the specified number of Pod replicas.
By using Deployments, you can:

¢ Declarative Management: Define the desired state of your application, and Kubernetes

automatically ensures the cluster's actual state matches the desired state.

¢ Version Control and Rollback: Track each revision of a Deployment and easily roll back to a

previous stable version if issues arise.

o Zero-Downtime Updates: Gradually update your application using a rolling update strategy

without service interruption.

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Deployments - Alauda Container Platform

¢ Self-Healing: Deployments automatically replace Pod instances if they crash, are
terminated, or are removed from a node, ensuring the specified number of Pods are always

available.
How it works:

1. You define the desired state of your application through a Deployment (e.g., which image to

use, how many replicas to run).
2. The Deployment creates a ReplicaSet to ensure the specified number of Pods are running.
3. The ReplicaSet creates and manages the actual Pod instances.

4. When you update a Deployment (e.g., change the image version), the Deployment creates
a new ReplicaSet and gradually replaces the old Pods with new ones according to the
predefined rolling update strategy until all new Pods are running, then it removes the old

ReplicaSet.

Creating Deployments

Creating a Deployment by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

Deployments - Alauda Container Platform

example-deployment.yaml
apiVersion: apps/vil
kind: Deployment
metadata:
name: nginx-deployment # Name of the Deployment
labels:
app: nginx # Labels for identification and selection
spec:
replicas: 3 # Desired number of Pod replicas
selector:
matchLabels:
app: nginx # Selector to match Pods managed by this Deployment
template:
metadata:
labels:
app: nginx # Pod's labels, must match selector.matchLabels
spec:
containers:
- name: nginx
image: nginx:1.14.2 # Container image
ports:
- containerPort: 80 # Container exposed port
resources: # Resource limits and requests
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 200m
memory: 256Mi

Creating a Deployment via YAML

Step 1: Create Deployment via yaml
kubectl apply -f example-deployment.yaml

Step 2: Check the Deployment status
kubectl get deployment nginx-deployment # View Deployment
kubectl get pod -1 app=nginx # View Pods created by this Deployment

Deployments - Alauda Container Platform

Creating a Deployment by using web console

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

» For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

e Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure - Configure Basic Info
1. Container Platform, navigate to Workloads > Deployments in the left sidebar.
2. Click on Create Deployment.

3. Select or Input an image, and click Confirm.

I INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

4. In the Basic Info section, configure declarative parameters for Deployment workloads:

Parameters Description

Defines the desired number of Pod replicas in the Deployment (default:

Replicas] .
1). Adjust based on workload requirements.

Parameters

More > Update
Strategy

Deployments - Alauda Container Platform

Description

Configures the rollingUpdate strategy for zero-downtime

deployments:

Max surge (maxSurge):

 Maximum number of Pods that can exceed the desired replica count
during an update.

» Accepts absolute values (e.g., 2) or percentages (e.g., 20%).

« Percentage calculation: ceil(current_replicas x percentage) .

e Example: 4.1 -~ 5 when calculated from 10 replicas.

Max unavailable (maxUnavailable):

 Maximum number of Pods that can be temporarily unavailable

during an update.

» Percentage values cannot exceed 100% .

o Percentage calculation: floor(current_replicas x

percentage) .

e Example: 4.9 - 4 when calculated from 10 replicas.

Notes:

1. Default values: maxSurge=1 , maxUnavailable=1 if not explicitly

set.

2. Non-running Pods (e.g., in Pending / CrashLoopBackOff states)
are considered unavailable.

3. Simultaneous constraints:

e maxSurge and maxUnavailable cannotbothbe 0 or 0% .

» If percentage values resolve to 0 for both parameters, Kubernetes

forces maxUnavailable=1 to ensure update progress.

Example:

For a Deployment with 10 replicas:

e maxSurge=2 - Total Pods during update: 10 + 2 = 12 .

Parameters

Deployments - Alauda Container Platform

Description

¢ maxUnavailable=3 - Minimum available Pods: 10 - 3 = 7 .

« This ensures availability while allowing controlled rollout.

Procedure - Configure Pod

Note: In mixed-architecture clusters deploying single-architecture images, ensure proper

Node Affinity Rules are configured for Pod scheduling.

1. Pod section, configure container runtime parameters and lifecycle management:

Parameters

Volumes

Pull Secret

Close Grace

Period

2. Node Affinity Rules

Description

Mount persistent volumes to containers. Supported volume types include
PVC , ConfigMap , Secret , emptyDir , hostPath , and so on. For

implementation details, see Volume Mounting Guide.

Required only when pulling images from third-party registries (via manual
image URL input).
Note: Secret for authentication when pulling image from a secured

registry.

Duration (default: 30s) allowed for a Pod to complete graceful shutdown
after receiving termination signal.

- During this period, the Pod completes inflight requests and releases
resources.

- Setting o forces immediate deletion (SIGKILL), which may cause

request interruptions.

Deployments - Alauda Container Platform

Parameters Description

Constrain Pods to nodes with specific labels (e.g. kubernetes.io/os:

More >
linux).
Node
Selector Node Selector: acp.cpaas.io/node-group-share-mode:Share x v
Define fine-grained scheduling rules based on existing.
Affinity Types:
« Pod Affinity: Schedule new Pods to nodes hosting specific Pods(same
topology domain).
« Pod Anti-affinity: Prevent co-location of new Pods with specific Pods.
Enforcement Modes:
e requiredDuringSchedulingIgnoredDuringExecution : Pods are
More >
Affinity scheduled only if rules are satisfied.

o preferredburingSchedulingIgnoredDuringExecution : Prioritize nodes

meeting rules, but allow exceptions.

Configuration Fields:

e topologyKey : Node label defining topology domains

(default: kubernetes.io/hostname).

e labelselector : Filters target Pods using label queries.

3. Network Configuration

¢ Kube-OVN
Parameters Description
Enforce QoS for Pod network traffic:
Bandwidth . . .
wh » Egress rate limit: Maximum outbound traffic rate (e.g., 10Mbps).
Limits

e Ingress rate limit: Maximum inbound traffic rate.

Deployments - Alauda Container Platform

Parameters Description

Assign IPs from a predefined subnet pool. If unspecified, uses the

Subnet

namespace's default subnet.

Bind persistent IP addresses to Pods:
Static IP » Multiple Pods across Deployments can claim the same IP, but only
Address one Pod can use it concurrently.

» Critical: Number of static IPs must = Pod replica count.

e Calico
Parameters Description
Assign fixed IPs with strict uniqueness:

Static IP Address « Each IP can be bound to only one Pod in the cluster.

e Critical: Static IP count must = Pod replica count.

Procedure - Configure Containers

1. Container section, refer to the following instructions to configure the relevant information.

Parameters Description

Resource Requests

o * Requests: Minimum CPU/memory required for container
& Limits
operation.

o Limits: Maximum CPU/memory allowed during container

execution. For unit definitions, see Resource Units.
Namespace overcommit ratio:

o Without overcommit ratio:

If namespace resource quotas exist: Container requests/limits

Parameters

Extended

Resources

Volume Mounts

Ports

Deployments - Alauda Container Platform

Description

inherit namespace defaults (modifiable).

No namespace quotas: No defaults; custom Request.

o With overcommit ratio:

Requests auto-calculated as Limits / Overcommit ratio

(immutable).

Constraints:

Request < Limit < Namespace quota maximum.

Overcommit ratio changes require pod recreation to take effect.

Overcommit ratio disables manual request configuration.

No namespace quotas — no container resource constraints.

Configure cluster-available extended resources (e.g., vGPU,

pGPU).

Persistent storage configuration. See Storage Volume Mounting

Instructions.

Operations:

Existing pod volumes: Click Add

No pod volumes: Click Add & Mount

Parameters:

mountPath : Container filesystem path (e.g., /data)

subPath : Relative file/directory path within volume.

For configMap / Secret : Select specific key

readonly : Mount as read-only (default: read-write)

See Kubernetes Volumes 7.

Expose container ports.

Example: Expose TCP port 6379 with name redis .

Fields:

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/

Parameters

Startup Commands

& Arguments

More >
Environment

Variables

More > Referenced

ConfigMaps

More > Health
Checks

More > Log Files

Deployments - Alauda Container Platform

Description

e protocol : TCP/UDP
e Port :Exposed port (e.g., 6379)

e name : DNS-compliant identifier (e.g., redis)

Override default ENTRYPOINT/CMD:

Example 1. Execute top -b

-Command: ["top", "-b"]

- OR Command: ["top"] ,Args: ["-b"]

Example 2: Output $MESSAGE :

/bin/sh -c "while true; do echo $(MESSAGE); sleep 10;
done"

See Defining Commands .

 Static values: Direct key-value pairs
» Dynamic values: Reference ConfigMap/Secret keys, pod fields

(fieldRef), resource metrics (resourceFieldRef)

Note: Env variables override image/configuration file settings.

Inject entire ConfigMap/Secret as env variables. Supported Secret

types: Opaque , kubernetes.io/basic-auth .

» Liveness Probe: Detect container health (restart if failing)

» Readiness Probe: Detect service availability (remove from

endpoints if failing)

See Health Check Parameters.

Configure log paths:

- Default: Collect stdout
- File patterns: e.g., /var/log/*.log

Requirements:

https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/
https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/

Deployments - Alauda Container Platform

Parameters Description

» Storage driver overlay2 : Supported by default
e devicemapper : Manually mount EmptyDir to log directory

» Windows nodes: Ensure parent directory is mounted (e.g.,

c:/a for c:/a/b/c/*.1log)

More > Exclude Log -~ '
Exclude specific logs from collection (e.g., /var/log/aaa.log).

Files
Execute commands before container termination.
More > Execute Example: echo "stop"
before Stopping Note: Command execution time must be shorter than pod's

terminationGracePeriodSeconds .

2. Click Add Container (upper right) OR Add Init Container.

See Init Containers . Init Container:

1. Start before app containers (sequential execution).
2. Release resources after completion.

3. Deletion allowed when:

¢ Pod has >1 app container AND =1 init container.

* Not allowed for single-app-container pods.
3. Click Create.
Reference Information
Storage Volume Mounting instructions

Type Purpose

Persistent Volume Binds an existing PVC to request persistent storage.
Claim

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/
http://localhost:4173/container_platform/configure/storage/functions/create_pvc.html

Type

ConfigMap

Secret

Ephemeral

Volumes

Empty Directory

Host Path

Heath Checks

Deployments - Alauda Container Platform

Purpose

Note: Only bound PVCs (with associated PV) are selectable. Unbound
PVCs will cause pod creation failures.

Mounts full/partial ConfigMap data as files:

« Full ConfigMap: Creates files named after keys under mount path

« Subpath selection: Mount specific key (e.g., my.cnf)

Mounts full/partial Secret data as files:

o Full Secret: Creates files named after keys under mount path

» Subpath selection: Mount specific key (e.g., tls.crt)

Cluster-provisioned temporary volume with features:

» Dynamic provisioning
« Lifecycle tied to pod

« Supports declarative configuration

Use Case: Temporary data storage. See Ephemeral Volumes

Ephemeral storage sharing between containers in same pod:
- Created on node when pod starts

- Deleted with pod removal

Use Case: Inter-container file sharing, temporary data storage. See
EmptyDir

Mounts host machine directory (must start with / , e.g.,

/volumepath).

o Health checks YAML file example

¢ Health checks configuration parameters in web console

http://localhost:4173/container_platform/configure/storage/how_to/generic_ephemeral_volumes.html
http://localhost:4173/container_platform/configure/storage/how_to/using_empty_dir.html

Managing Deployments
Managing a Deployment by using CLI

Viewing a Deployment

e Check the Deployment was created.
kubectl get deployments

¢ Get details of your Deployment.
kubectl describe deployments

Updating a Deployment

Follow the steps given below to update your Deployment:

1. Let's update the nginx Pods to use the nginx:1 .16.1 image.

kubectl set image deployment.vl.apps/nginx-deployment nginx=nginx:1.16.

1

or use the following command:

kubectl set image deployment/nginx-deployment nginx=nginx:1.16.1

Alternatively, you can edit the Deployment and change

.spec.template.spec.containers[0].image from nginx:1.14.2 to nginx:1.16.1 :

kubectl edit deployment/nginx-deployment

2. To see the rollout status, run:

Deployments - Alauda Container Platform

kubectl rollout status deployment/nginx-deployment

¢ Run kubectl get rs to see that the Deployment updated the Pods by creating a new
ReplicaSet and scaling it up to 3 replicas, as well as scaling down the old ReplicaSet to

O replicas.

kubectl get rs

¢ Running get pods should now show only the new Pods:

kubectl get pods

Scaling a Deployment

You can scale a Deployment by using the following command:

kubectl scale deployment/nginx-deployment --replicas=10

Rolling Back a Deployment

¢ Suppose that you made a typo while updating the Deployment, by putting the image name

as nginx:1.161 instead of nginx:1.16.1 :

kubectl set image deployment/nginx-deployment nginx=nginx:1.161

¢ The rollout gets stuck. You can verify it by checking the rollout status:

kubectl rollout status deployment/nginx-deployment

Deleting a Deployment

Deleting a Deployment will also delete its managed ReplicaSet and all associated Pods.

Deployments - Alauda Container Platform

kubectl delete deployment <deployment-name>

Managing a Deployment by using web console

Viewing a Deployment
You can view a deployment to get information of your application.

1. Container Platform, and navigate to Workloads > Deployments.
2. Locate the Deployment you wish to view.

3. Click the deployment name to see the Details, Topology, Logs, Events, Monitoring, etc.

Updating a Deployment

1. Container Platform, and navigate to Workloads > Deployments.

2. Locate the Deployment you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit Deployment page.

Deleting a Deployment

1. Container Platform, and navigate to Workloads > Deployments.
2. Locate the Deployment you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

Troubleshooting by using CLI

When a Deployment encounters issues, here are some common troubleshooting methods.

Check Deployment status

Deployments - Alauda Container Platform

kubectl get deployment nginx-deployment

kubectl describe deployment nginx-deployment

Check ReplicaSet status

kubectl get rs -1 app=nginx

kubectl describe rs <replicaset-name>

Check Pod status

kubectl get pods -1 app=nginx
kubectl describe pod <pod-name>

View Logs

kubectl logs <pod-name> -c <container-name>

kubectl logs <pod-name> --previous

Enter Pod for debugging

kubectl exec -it <pod-name> -- /bin/bash # Enter the container shell

Check Health configuration

Ensure livenessProbe and readinessProbe are correctly configured, and your application's

health check endpoints are responding properly. Troubleshooting probe failures

Deployments - Alauda Container Platform

Check Resource Limits

Ensure container resource requests and limits are reasonable and that containers are not

being killed due to insufficient resources.

DaemonSets - Alauda Container Platform

Q Alauda Container Platform

DaemonSets

TOC

Understanding DaemonSets
Creating DaemonSets
Creating a DaemonSet by using CLI
Prerequisites
YAML file example
Creating a DaemonSet via YAML
Creating a DaemonSet by using web console
Prerequisites
Procedure - Configure Basic Info
Procedure - Configure Pod
Procedure - Configure Containers
Procedure - Create
Managing DaemonSets
Managing a DaemonSet by using CLI
Viewing a DaemonSet
Updating a DaemonSet
Deleting a DaemonSet
Managing a DaemonSet by using web console
Viewing a DaemonSet
Updating a DaemonSet

Deleting a DaemonSet

http://localhost:4173/container_platform/

DaemonSets - Alauda Container Platform

Understanding DaemonSets

Refer to the official Kubernetes documentation: DaemonSets ~

A DaemonSet is a Kubernetes controller that ensures all (or a subset of) cluster nodes run
exactly one replica of a specified Pod. Unlike Deployments, DaemonSets are node-centric
rather than application-centric, making them ideal for deploying cluster-wide infrastructure

services such as log collectors, monitoring agents, or storage daemons.

I WARNING

DaemonSet Operational Notes
1. Behavior Characteristics

« Pod Distribution: A DaemonSet deploys exactly one Pod replica per schedulable Node that

matches its criteria:
» Deploys exactly one Pod replica per schedulable node matching:

» Matches nodeSelector or nodeAffinity criteria (if specified).
e Isnotinthe NotReady state.

e Does not have NoSchedule or NoExecute Taints unless corresponding
Tolerations are configured in the Pod Template.
» Pod Count Formula: The number of Pods managed by a DaemonSet equals the number
of qualified Nodes.

» Dual-Role Node Handling: Nodes serving both Control Plane and Worker Node roles will
only run one Pod instance of the DaemonSet, regardless of their role labels, provided they

are schedulable.
2. Key Constraints (Excluded Nodes)

+ Nodes explicitly marked Unschedulable: true (e.g.,via kubectl cordon).

o Nodes with a NotReady status.

https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/

DaemonSets - Alauda Container Platform

» Nodes having incompatible Taints without matching Tolerations configured in the

DaemonSet's Pod Template.

Creating DaemonSets

Creating a DaemonSet by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

DaemonSets - Alauda Container Platform

DaemonSets - Alauda Container Platform

example-daemonSet.yaml
apiVersion: apps/vil
kind: DaemonSet
metadata:
name: fluentd-elasticsearch
namespace: kube-system
labels:
k8s-app: fluentd-logging
spec:
selector: # defines how the DaemonSet identifies its managed Pods. Must
match “template.metadata.label’s.
matchLabels:
name: fluentd-elasticsearch
updateStrategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
template: # defines the Pod Template for the DaemonSet. Each Pod create
d by this DaemonSet will conform to this template
metadata:
labels:
name: fluentd-elasticsearch
spec:
tolerations: # these tolerations are to have the daemonset runnable
on control plane nodes, remove them if your control plane nodes should no
t run pods
- key: node-role.kubernetes.io/control-plane
operator: Exists
effect: NoSchedule
- key: node-role.kubernetes.io/master
operator: Exists
effect: NoSchedule
containers:
- name: fluentd-elasticsearch
image: quay.io/fluentd_elasticsearch/fluentd:v2.5.2
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
volumeMounts:
- name: varlog

DaemonSets - Alauda Container Platform

mountPath: /var/log

terminationGracePeriodSeconds: 30
volumes:
- name: varlog
hostPath:
path: /var/log

Creating a DaemonSet via YAML

kubectl apply -f example-daemonSet.yaml

kubectl get daemonset fluentd-elasticsearch

kubectl get pods -1 name=fluentd-elasticsearch -o wide

Creating a DaemonSet by using web console

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

o For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

o Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

Procedure - Configure Basic Info

DaemonSets - Alauda Container Platform

1. Container Platform, navigate to Workloads > DaemonSets in the left sidebar.
2. Click Create DaemonSet.

3. Select or Input an image, and click Confirm.

I INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for DaemonSet workloads:

Parameters Description

Configures the rollingUpdate strategy for zero-downtime updates of
DaemonSet Pods.

Max unavailable (maxUnavailable): The maximum number of Pods that
can be temporarily unavailable during an update. Accepts absolute values
(e.g., 1) or percentages (e.g., 10%).

Example: If there are 10 nodes and maxUnavailable is 10%, then floor(10 *

0.1) = 1 Pod can be unavailable.

Notes:

More > Update Default Values: If not explicitly set, maxSurge defaults to 0 and

Strategy
maxUnavailable defaultsto 1 (or 10% if maxUnavailable is specified

as a percentage).

* Non-running Pods: Pods in states like Pending or

CrashlLoopBackoff are considered unavailable.

o Simultaneous Constraints: maxSurge and maxUnavailable cannot

both be 0 or 0%. If percentage values resolve to 0 for both parameters,

Kubernetes forces maxUnavailable=1 to ensure update progress.

Procedure - Configure Pod

DaemonSets - Alauda Container Platform

Pod section, please refer to Deployment - Configure Pod

Procedure - Configure Containers

Containers section, please refer to Deployment - Configure Containers

Procedure - Create
Click Create.
After clicking Create, the DaemonSet will:

. Automatically deploy Pod replicas to all eligible Nodes meeting:

e nodeSelector criteria (if defined).

e tolerations configuration (allowing scheduling on tainted nodes).

e Nodeisin Ready state and Schedulable: true .
o X Excluded Nodes:

e Nodes with a NoSchedule taint (unless explicitly tolerated).
e Manually cordoned Nodes (kubectl cordon).

e Nodesin NotReady oOr Unschedulable states.

Managing DaemonSets

Managing a DaemonSet by using CLI

Viewing a DaemonSet

¢ To get a summary of all DaemonSets in a namespace.

kubectl get daemonsets -n <namespace>

DaemonSets - Alauda Container Platform

+ To get detailed information about a specific DaemonSet, including its events and Pod

status

kubectl describe daemonset <daemonset-name>

Updating a DaemonSet

When you modify the Pod Template of a DaemonSet (e.g., changing the container image or
adding a volume mount), Kubernetes automatically performs a rolling update by default (if

updateStrategy.type iS RollingUpdate , which is the default).

o First, edit the YAML file (e.g., example-daemonset.yaml) with the desired changes, then

apply it:
kubectl apply -f example-daemonset.yaml
¢ You can monitor the progress of the rolling update:
kubectl rollout status daemonset/<daemonset-name>
Deleting a DaemonSet
To delete a DaemonSet and all the Pods it manages:

kubectl delete daemonset <daemonset-name>

Managing a DaemonSet by using web console

Viewing a DaemonSet

1. Container Platform, and navigate to Workloads > DaemonSets.
2. Locate the DaemonSet you wish to view.

3. Click the DaemonSet name to see the Details, Topology, Logs, Events, Monitoring, etc.

DaemonSets - Alauda Container Platform

Updating a DaemonSet

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit DaemonSet page, you can

update Replicas , image , updateStrategy , etc.

Deleting a DaemonSet

1. Container Platform, and navigate to Workloads > DaemonSets.

2. Locate the DaemonSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and

confirm.

StatefulSets - Alauda Container Platform

Q Alauda Container Platform

StatefulSets

TOC

Understanding StatefulSets
Creating StatefulSets
Creating a StatefulSet by using CLI
Prerequisites
YAML file example
Creating a StatefulSet via YAML
Creating a StatefulSet by using web console
Prerequisites
Procedure - Configure Basic Info
Procedure - Configure Pod
Procedure - Configure Containers
Procedure - Create
Heath Checks
Managing StatefulSets
Managing a StatefulSet by using CLI
Viewing a StatefulSet
Scaling a StatefulSet
Updating a StatefulSet (Rolling Update)
Deleting a StatefulSet
Managing a StatefulSet by using web console
Viewing a StatefulSet

Updating a StatefulSet

http://localhost:4173/container_platform/

StatefulSets - Alauda Container Platform

Deleting a StatefulSet

Understanding StatefulSets

Refer to the official Kubernetes documentation: StatefulSets ~

StatefulSet is a Kubernetes workload API object designed to manage stateful applications by

providing:

+ Stable network identity: DNS hosthname <statefulset-name>-<ordinal>.<service-

name>.ns.svc.cluster.local .
o Stable persistent storage: via volumeClaimTemplates .
+ Ordered deployment/scaling: sequential Pod creation/deletion: Pod-0 - Pod-1 - Pod-N.

¢ Ordered rolling updates: reverse-ordinal Pod updates: Pod-N - Pod-O.

In distributed systems, multiple StatefulSets can be deployed as discrete components to

deliver specialized stateful services (e.g., Kafka brokers, MongoDB shards).

Creating StatefulSets

Creating a StatefulSet by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

StatefulSets - Alauda Container Platform

StatefulSets - Alauda Container Platform

example-statefulset.yaml
apiVersion: apps/vil
kind: StatefulSet
metadata:

name: web
spec:

selector:

matchLabels:
app: nginx # has to match .spec.template.metadata.labels

serviceName: 'nginx' # this headless Service is responsible for the net
work identity of the Pods
replicas: 3 # defines the desired number of Pod replicas (default: 1)
minReadySeconds: 10 # by default is 0
template: # defines the Pod template for the StatefulSet
metadata:
labels:
app: nginx # has to match .spec.selector.matchLabels
spec:
terminationGracePeriodSeconds: 10
containers:
- hame: nginx
image: registry.k8s.io/nginx-slim:0.24
ports:
- containerPort: 80

name: web
volumeMounts:
- name: www

mountPath: /usr/share/nginx/html
volumeClaimTemplates: # defines PersistentVolumeClaim (PVC) templates.
Each Pod gets a unique PersistentVolume (PV) dynamically provisioned base
d on these templates.
- metadata:
name: www
spec:
accessModes: ['ReadWriteOnce']
storageClassName: 'my-storage-class'
resources:
requests:
storage: 1Gi
example-service.yaml
apiVersion: vi
kind: Service

StatefulSets - Alauda Container Platform

metadata:
name: nginx
labels:

app: nginx

spec:
ports:
- port: 80
name: web

clusterIP: None
selector:

app: nginx

Creating a StatefulSet via YAML

kubectl apply -f example-statefulset.yaml

kubectl get statefulset web
kubectl get pods -1 app=nginx
kubectl get pvc -1 app=nginx

Creating a StatefulSet by using web console

Prerequisites

Obtain the image address. The source of the images can be from the image repository
integrated by the platform administrator through the toolchain or from third-party platforms’

image repositories.

o For the former, the Administrator typically assigns the image repository to your project, and
you can use the images within it. If the required image repository is not found, please

contact the Administrator for allocation.

o Ifitis a third-party platform's image repository, ensure that images can be pulled directly

from it in the current cluster.

StatefulSets - Alauda Container Platform

Procedure - Configure Basic Info

1. Container Platform, navigate to Workloads > StatefulSets in the left sidebar.

2. Click Create StatefulSet.

3. Select or Input an image, and click Confirm.

I INFO

Note: When using images from the image repository integrated into web console, you can filter
images by Already Integrated. The Integration Project Name, for example, images (docker-
registry-projectname), which includes the project name projectname in this web console and the

project name containers in the image repository.

In the Basic Info section, configure declarative parameters for StatefulSet workloads:

Parameters Description

Defines the desired number of Pod replicas in the StatefulSet (default: 1).

Replicas . .
Adjust based on workload requirements and expected request volume.
Controls phased updates during StatefulSet rolling updates. The
RollingUpdate strategy is default and recommended.
Partition value: Ordinal threshold for Pod updates.
e Pods with index = partition update immediately.
Update « Pods with index < partition retain previous spec.
Strategy
Example:
e Replicas=5 (Pods: web-0 ~web-4)
e Partition=3 (Updates web-3 & web-4 only)
Volume Claim volumeClaimTemplates is a critical feature of StatefulSets that enables
Templates dynamic per-Pod persistent storage provisioning. Each Pod replica in a

StatefulSet automatically gets its own dedicated PersistentVolumeClaim
(PVC) based on predefined templates.

StatefulSets - Alauda Container Platform

Parameters Description

« 1. Dynamic PVC Creation: Automatically creates unique PVCs for each

Pod with a naming pattern: <statefulset-name>-<claim-template-

name>-<pod-ordinal> . Example: web-www-web-0 , web-www-web-1 .

e 2. Access Modes: Supports all Kubernetes access modes.

* ReadWriteOnce (RWO - single-node read/write)
¢ ReadOnlyMany (ROX - multi-node read-only)

* ReadWriteMany (RWX - multi-node read/write).

» 3. Storage Class: Specify the storage backend via storageClassName. It
uses the cluster's default StorageClass if unspecified. Supports various

cloud/on-prem storage types (e.g., SSD, HDD).

« 4. Capacity: Configure storage capacity through
resources.requests.storage. Example: 1Gi. Supports dynamic volume

expansion if enabled by the StorageClass.

Procedure - Configure Pod

Pod section, please refer to Deployment - Configure Pod

Procedure - Configure Containers

Containers section, please refer to Deployment - Configure Containers

Procedure - Create

Click Create.

Heath Checks

¢ Health checks YAML file example

e Health checks configuration parameters in web console

StatefulSets - Alauda Container Platform

Managing StatefulSets

Managing a StatefulSet by using CLI

Viewing a StatefulSet
You can view a StatefulSet to get information of your application.

e Check the StatefulSet was created.

kubectl get statefulsets

¢ Get details of your StatefulSet.

kubectl describe statefulsets

Scaling a StatefulSet

¢ To change the number of replicas for an existing StatefulSet:

kubectl scale statefulset <statefulset-name> --replicas=<new-replica-co

unt>

o Example:

kubectl scale statefulset web --replicas=5

Updating a StatefulSet (Rolling Update)

When you modify the Pod template of a StatefulSet (e.g., changing the container image),

Kubernetes performs a rolling update by default (if updateStrategy is set to RollingUpdate,

which is the default).

StatefulSets - Alauda Container Platform

o First, edit the YAML file (e.g., example-statefulset.yaml) with the desired changes, then
apply it:

kubectl apply -f example-statefulset.yaml
e Then, you can monitor the progress of the rolling update:

kubectl rollout status statefulset/<statefulset-name>
Deleting a StatefulSet
To delete a StatefulSet and its associated Pods:

kubectl delete statefulset <statefulset-name>

By default, deleting a StatefulSet does not delete its associated PersistentVolumeClaims
(PVCs) or PersistentVolumes (PVs) to prevent data loss. To also delete the PVCs, you must

do so explicitly:

kubectl delete pvc -1 app=<label-selector-for-your-statefulset>

Alternatively, if your volumeClaimTemplates use a StorageClass witha reclaimPolicy

of Delete , the PVs and underlying storage will be deleted automatically when the PVCs are
deleted.

Managing a StatefulSet by using web console

Viewing a StatefulSet

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to view.

3. Click the statefulSet name to see the Details, Topology, Logs, Events, Monitoring, etc.

StatefulSets - Alauda Container Platform

Updating a StatefulSet

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to update.

3. In the Actions drop-down menu, select Update to view the Edit StatefulSet page, you can

update Replicas , image , updateStrategy , etc.

Deleting a StatefulSet

1. Container Platform, and navigate to Workloads > StatefulSets.

2. Locate the StatefulSet you wish to delete.

3. In the Actions drop-down menu, Click the Delete button in the operations column and
confirm.

CronJobs - Alauda Container Platform

Q Alauda Container Platform

CronJobs

TOC

Understanding CronJobs
Creating CronJobs
Creating a CronJob by using CLI
Prerequisites
YAML file example
Creating a CronJobs via YAML
Creating CronJobs by using web console
Prerequisites
Procedure - Configure basic info
Procedure - Configure Pod
Procedure - Configure Containers
Create
Execute Immediately
Locate the CronJob resource
Initiate ad-hoc execution
Verify Job details:
Monitor execution status
Deleting CronJobs
Deleting CronJobs by using web console

Deleting CronJobs by using CLI

http://localhost:4173/container_platform/

CronJobs - Alauda Container Platform

Understanding CronJobs

Refer to the official Kubernetes documentation:

e CronJobs ”

¢ Running Automated Tasks with a CronJob ~

CronJob define tasks that run to completion and then stop. They allow you to run the same

Job multiple times according to a schedule.

A CronJob is a type of workload controller in Kubernetes. You can create a CronJob through
the web console or CLI to periodically or repeatedly run a non-persistent program, such as

scheduled backups, scheduled clean-ups, or scheduled email dispatches.

Creating CronJobs

Creating a CronJob by using CLI

Prerequisites

e Ensure you have kubectl configured and connected to your cluster.

YAML file example

https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/
https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/

CronJobs - Alauda Container Platform

apiVersion: batch/v1i
kind: CronJob
metadata:
name: hello
spec:
schedule: "* * * * *u
jobTemplate:
spec:
template:
spec:
containers:
- name: hello
image: busybox:1.28
imagePullPolicy: IfNotPresent
command:
- /bin/sh
- -C
- date; echo Hello from the Kubernetes cluster
restartPolicy: OnFailure

Creating a CronJobs via YAML

kubectl apply -f example-cronjob.yaml

Creating CronJobs by using web console

Prerequisites

Obtain the image address. Images can be sourced from an image registry integrated by the

platform administrator via a toolchain, or from third-party image registries.

+ For images from an integrated registry, the Administrator typically assigns the image
registry to your project, allowing you to use the images within it. If the required image

registry is not found, please contact the Administrator for allocation.

« If using a third-party image registry, ensure that images can be pulled directly from it within
the current cluster.

CronJobs - Alauda Container Platform

Procedure - Configure basic info

1. Container Platform, navigate to Workloads > CronJobs in the left sidebar.
2. Click on Create CronJob.

3. Select or Input an image, and click Confirm.

Note: Image filtering is available only when using images from the platform's integrated
image registry. For example, an integrated project name like containers (docker-registry-
projectname) indicates the platform’'s project name projectname and the image registry's

project name containers.

4. In the Cron Configuration section, configure the task execution method and associated

parameters.
Execute Type:
+ Manual: Manual execution requires explicit manual triggering for each task run.

e Scheduled: Scheduled execution requires configuring the following scheduling

parameters:
Parameter Description
Define the cron schedule using Crontab syntax . The CronJob
controller calculates the next execution time based on the selected
timezone.
Notes:
Schedule
o For Kubernetes clusters < v1.25: Timezone selection is
unsupported; schedules MUST use UTC.
o For Kubernetes clusters = v1.25: Timezone-aware scheduling is
supported (default: user's local timezone).
Concurrency Specify how concurrent Job executions are handled (Allow ,

Policy Forbid , or Replace per K8s spec).

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy
https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/#concurrency-policy

CronJobs - Alauda Container Platform

Job History Retention:

e Set retention limits for completed Jobs:

¢ History Limits: Successful jobs history limit (default: 20)

¢ Failed Jobs: Failed jobs history limit** (default: 20)

¢ When retention limits are exceeded, the oldest jobs are garbage-collected first.

5. In the Job Configuration section, select the job type. A CronJob manages Jobs composed

of Pods. Configure the Job template based on your workload type:

Parameter Description

Select Job completion mode (Non-parallel , Parallel with fixed

Job Type

completion count ,or Indexed Job per K8s Job patterns).
Backoff

Set the maximum number of retry attempts before marking a Job as failed.
Limit

Procedure - Configure Pod

e Pod section, please refer to Deployment - Configure Pod

Procedure - Configure Containers

+ Container section, please refer to Deployment - Configure Containers

Create

¢ Click Create.

Execute Immediately

Locate the CronJob resource

https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns
https://kubernetes.io/docs/concepts/workloads/controllers/job/#job-patterns

CronJobs - Alauda Container Platform

+ web console: Container Platform, and navigate to Workloads > CronJobs in the left

sidebar.

e CLI:

kubectl get cronjobs -n <namespace>

Initiate ad-hoc execution

+ web console: Execute Immediately

1. Click the vertical ellipsis (:) on the right side of the cronjob list.

2. Click Execute Immediately. (Alternatively, from the CronJob details page, click Actions

in the upper-right corner and select Execute Immediately).

e CLI

kubectl create job --from=cronjob/<cronjob-name> <job-name> -n <namespa

ce>

Verify Job details:

kubectl describe job/<job-name> -n <namespace>

kubectl logs job/<job-name> -n <namespace>

Monitor execution status

Status Description
Pending The Job has been created but not yet scheduled.
Running The Job Pod(s) are actively executing.

Succeeded All Pods associated with the Job completed successfully (exit code 0).

CronJobs - Alauda Container Platform

Status Description

- At least one Pod associated with the Job terminated unsuccessfully (non-zero
aile

exit code).

Deleting CronJobs

Deleting CronJobs by using web console

1. Container Platform, and navigate to Workloads > CronJobs.
2. Locate the CronJobs you wish to delete.

3. In the Actions drop-down menu, Click the Delete button and confirm.

Deleting CronJobs by using CLI

kubectl delete cronjob <cronjob-name>

Jobs - Alauda Container Platform

Q Alauda Container Platform Q

Jobs

TOC

Understanding Jobs
YAML file example

Execution Overview

Understanding Jobs

Refer to the official Kubernetes documentation: Jobs ~

A Job provide different ways to define tasks that run to completion and then stop. You can use

a Job to define a task that runs to completion, just once.

¢ Atomic Execution Unit: Each Job manages one or more Pods until successful
completion.

¢ Retry Mechanism: Controlled by spec.backoffLimit (default: 6).

o Completion Tracking: Use spec.completions to define required success count.

YAML file example

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
http://localhost:4173/container_platform/

Jobs - Alauda Container Platform

apiVersion: batch/v1i
kind: Job
metadata:
name: data-processing-job
spec:
completions: 1
parallelism: 1
backoffLimit: 3
template:
spec:
restartPolicy: Never
containers:

- name: processor
image: alpine:3.14
command: ['/bin/sh', '-c']
args:

- echo "Processing data..."; sleep 30; echo "Job completed"

Execution Overview

Each Job execution in Kubernetes creates a dedicated Job object, enabling users to:

Creating a job via

kubectl apply -f example-job.yaml

Track job lifecycle via

kubectl get jobs

Inspect execution details via

kubectl describe job/<job-name>

View Pod logs via

Jobs - Alauda Container Platform

kubectl logs <pod-name>

Working with Helm charts - Alauda Container Platform

0 Alauda Container Platform

Working with Helm charts

TOC

1. Understanding Helm

1.1. Key features

1.2. Catalog
Terminology Definitions

1.3 Understanding HelmRequest
Differences Between HelmRequest and Helm
HelmRequest and Application Integration
Deployment Workflow
Component Definitions

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

2.2 Preparing the Chart

2.3 Packaging the Chart

2.4 Obtaining an API Token

2.5 Creating a Chart Repository

2.6 Uploading the Chart

2.7 Uploading Related Images

2.8 Deploying the Application

2.9 Updating the Application

2.10 Uninstalling the Application

2.11 Deleting the Chart Repository

3. Deploying Helm Charts as Applications via Ul

http://localhost:4173/container_platform/

Working with Helm charts - Alauda Container Platform

3.1 Workflow Overview

3.2 Prerequisites

3.3 Adding Templates to Manageable Repositories
3.4 Deleting Specific Versions of Templates

Steps to Operate

1. Understanding Helm

Helm is a package manager that simplifies the deployment of applications and services on
Alauda Container Platform clusters. Helm uses a packaging format called charts. A Helm chart
is a collection of files that describe Kubernetes resources. Creating a chart in a cluster
generates a chart running instance called a release. Each time a chart is created, or a release

is upgraded or rolled back, an incremental revision is created.

1.1. Key features

Helm provides the ability to:

e Search for a large collection of charts in chart repositories
* Modify existing charts
e Create your own charts using Kubernetes resources

o Package applications and share them as charts

1.2. Catalog

The Catalog is built on Helm and provides a comprehensive Chart distribution management
platform, extending the limitations of the Helm CLI tool. The platform enables developers to

more conveniently manage, deploy, and use charts through a user-friendly interface.

Terminology Definitions

Working with Helm charts - Alauda Container Platform

Term Definition Notes
Application
A one-stop management platform for Helm Charts
Catalog
Helm Charts An application packaging format

CRD. Defines the configuration needed to deploy Template
HelmRequest D
a Helm Chart Application
) Template
ChartRepo CRD. Corresponds to a Helm charts repository)
Repository
Chart CRD. Corresponds to Helm Charts Template

1.3 Understanding HelImRequest

In Alauda Container Platform, Helm deployments are primarily managed through a custom
resource called HelmRequest. This approach extends standard Helm functionality and

integrates it seamlessly into the Kubernetes native resource model.

Differences Between HelmRequest and Helm

Standard Helm uses CLI commands to manage releases, while Alauda Container Platform
uses HelmRequest resources to define, deploy, and manage Helm charts. Key differences

include:

1. Declarative vs Imperative: HelmRequest provides a declarative approach to Helm

deployments, while traditional Helm CLI is imperative.

2. Kubernetes Native: HelmRequest is a custom resource directly integrated with the
Kubernetes API.

3. Continuous Reconciliation: Captain continuously monitors and reconciles HeImRequest

resources with their desired state.

4. Multi-cluster Support: HelmRequest supports deployments across multiple clusters

through the platform.

5. Platform Feature Integration: HeImRequest can be integrated with other platform

features, such as Application resources.

Working with Helm charts - Alauda Container Platform

HelmRequest and Application Integration

HelmRequest and Application resources have conceptual similarities, and users may want to
view them uniformly. The platform provides a mechanism to synchronize HelmRequest as

Application resources.

Users can mark a HeImRequest to be deployed as an Application by adding the following

annotation:

alauda.io/create-app: "true"

When this feature is enabled, the platform Ul displays additional fields and links to the

corresponding Application page.

Deployment Workflow
The workflow for deploying charts via HelmRequest includes:

1. User creates or updates a HelmRequest resource

2. HelmRequest contains chart references and values to apply

3. Captain processes the HelmRequest and creates a Helm Release
4. Release contains the deployed resources

5. Metis monitors HelImRequests with application annotations and synchronizes them to

Applications

6. Application provides a unified view of deployed resources

Component Definitions
+ HelmRequest: Custom resource definition that describes the desired Helm chart
deployment

¢ Captain: Controller that processes HelmRequest resources and manages Helm releases

(source code available at https://github.com/alauda/captain)
* Release: Deployed instance of a Helm chart

+ Charon: Component that monitors HeImRequests and creates corresponding Application

resources

https://github.com/alauda/captain
https://github.com/alauda/captain
https://github.com/alauda/captain

Working with Helm charts - Alauda Container Platform

+ Application: Unified representation of deployed resources, providing additional

management capabilities

« Archon-api: Component responsible for specific advanced API functions within the

platform

2 Deploying Helm Charts as Applications via CLI

2.1 Workflow Overview

Prepare chart — Package chart — Obtain API token — Create chart repository - Upload
chart — Upload related images — Deploy application - Update application — Uninstall

application - Delete chart repository

2.2 Preparing the Chart

Helm uses a packaging format called charts. A chart is a collection of files that describe
Kubernetes resources. A single chart can be used to deploy anything from a simple pod to a

complex application stack.

Refer to the official documentation: Helm Charts Documentation ~

Example chart directory structure:

https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/
https://helm.sh/docs/topics/charts/

Working with Helm charts - Alauda Container Platform

Working with Helm charts - Alauda Container Platform

nginx/

— Chart. lock

— Chart.yaml

— README.md

— charts/
L— common/

— Chart.yaml

— README.md

— templates/
F— _affinities.tpl
F— _capabilities.tpl
F— _errors.tpl
— _images.tpl
F— _ingress.tpl
F— _labels.tpl

F— _names.tpl
F— _secrets.tpl

|

|

|

|

|

|

|

|

| — _storage.tpl

| |— _tplvalues.tpl

| |— _utils.tpl

| F— _warnings.tpl

| L— validations/

| — _cassandra.tpl
| F— _mariadb.tpl

| F— _mongodb.tpl

| — _postgresql.tpl
| F— _redis.tpl

| L— _validations.tpl
L— values.yaml

F— ct-values.yaml

L— values-with-ingress-metrics-and-serverblock.yaml
templates/

— NOTES. txt

— _helpers.tpl

— deployment.yaml

— extra-list.yaml

— health-ingress.yaml

— hpa.yaml

— ingress.yaml

— ldap-daemon-secrets.yaml

— pdb.yaml
|— server-block-configmap.yaml

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
F— ci/
|
|
—
|
|
|
|
|
|
|
|
|
|

Working with Helm charts - Alauda Container Platform

— serviceaccount.yaml
— servicemonitor.yaml
F— svc.yaml

L— tls-secrets.yaml
values.descriptor.yaml

values.schema. json

T

values.yaml

Key file descriptions:

e values.descriptor.yaml (optional): Works with ACP Ul to display user-friendly forms
e values.schema.json (optional): Validates values.yaml content and renders a simple Ul

e values.yaml (required): Defines chart deployment parameters

2.3 Packaging the Chart

Use the helm package command to package the chart:

helm package nginx

2.4 Obtaining an API Token

1. In Alauda Container Platform, click the avatar in the top-right corner => Profile
2. Click Add Api Token
3. Enter appropriate Description & Remaining Validity

4. Save the displayed token information (only shown once)

2.5 Creating a Chart Repository

Create a local chart repository via API:

Working with Helm charts - Alauda Container Platform

curl -k --request POST \
--url https://$ACP_DOMAIN/catalog/vl/chartrepos \
--header 'Authorization:Bearer $API_TOKEN' \
--header 'Content-Type: application/json' \
--data '{
"apiVersion": "v1",
"kind": "ChartRepoCreate",
"metadata": {
"name": "test",
"namespace": '"cpaas-system"
3
"spec": {
"chartRepo": {
"apiVersion": "app.alauda.io/vilbetal,
"kind": "ChartRepo",
"metadata": {
"name": "test",
"namespace": '"cpaas-system",
"labels": {
"project.cpaas.io/catalog": "true"
}
3
"spec": {
"type": "Local",
"url": null,

"source": null

2.6 Uploading the Chart

Upload the packaged chart to the repository:

curl -k --request POST \

--url https://$ACP_DOMAIN/catalog/vl/chartrepos/cpaas-system/test/charts
\

--header 'Authorization:Bearer $API_TOKEN' \
--data-binary @"/root/charts/nginx-8.8.0.tgz"

Working with Helm charts - Alauda Container Platform

2.7 Uploading Related Images

1. Pull the image: docker pull nginx
2. Save as tar package: docker save nginx > nginx.latest.tar

3. Load and push to private registry:

docker load -i nginx.latest.tar

docker tag nginx:latest 192.168.80.8:30050/nginx: latest
docker push 192.168.80.8:30050/nginx: latest

2.8 Deploying the Application

Create Application resource via API:

curl -k --request POST \
--url https://$ACP_DOMAIN/acp/vl/kubernetes/$CLUSTER_NAME/namespaces/$NAM
ESPACE/applications \
--header 'Authorization:Bearer $API_TOKEN' \
--header 'Content-Type: application/json' \
--data '{
"apiVersion": "app.k8s.io/vilbetal",
"kind": "Application",
"metadata": {
"name": "test",
"namespace": '"catalog-ns",
"annotations": {
"app.cpaas.io/chart.source": "test/nginx",
"app.cpaas.io/chart.version": "8.8.0",
"app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"IfNotPre
sent\"}}"
I
"labels": {

"sync-from-helmrequest": "true"

Working with Helm charts - Alauda Container Platform

2.9 Updating the Application

Update the application using PATCH request:

curl -k --request PATCH \

--url https://$ACP_DOMAIN/acp/vl/kubernetes/$CLUSTER_NAME/namespaces/$NAM
ESPACE/applications/test \

--header 'Authorization:Bearer $API_TOKEN' \

--header 'Content-Type: application/merge-patch+json' \
--data '{

"apiVersion": "app.k8s.io/vilbetal",
"kind": "Application",
"metadata": {

"annotations": {

"app.cpaas.io/chart.values": "{\"image\":{\"pullPolicy\":\"Always
\Il}}ll
}

2.10 Uninstalling the Application

Delete the Application resource:

curl -k --request DELETE \

--url https://$ACP_DOMAIN/acp/vl/kubernetes/$CLUSTER_NAME/namespaces/$NAM
ESPACE/applications/test \

--header 'Authorization:Bearer $API_TOKEN'

2.11 Deleting the Chart Repository

curl -k --request DELETE \

--url https://$ACP_DOMAIN/apis/app.alauda.io/vibetal/namespaces/cpaas-sys
tem/chartrepos/test \

--header 'Authorization:Bearer $API_TOKEN'

Working with Helm charts - Alauda Container Platform

3. Deploying Helm Charts as Applications via Ul

3.1 Workflow Overview

Add templates to manageable repositories — Upload templates - Manage template versions

3.2 Prerequisites

Template repositories are added by platform administrators. Please contact the platform
administrator to obtain the available Chart or OCI Chart type template repository names with

Management permissions.

3.3 Adding Templates to Manageable Repositories

1. Go to Catalog.
2. In the left navigation bar, click Helm Charts.

3. Click Add Template in the upper right corner of the page, and select the template

repository based on the parameters below.

Parameter Description

Synchronize the template directly to a Chart or OCI Chart type template

Template
repository with Management permissions. Project owners assigned to this
Repository
Template Repository can directly use the template.
When the selected template repository type is OCI Chart, a directory to
store the Helm Chart must be selected or manually entered.
Template
Note: When manually entering a new template directory, the platform will
Directory

create this directory in the template repository, but there is a risk of

creation failure.

4. Click Upload Template and upload the local template to the repository.

5. Click Confirm. The template upload process may take a few minutes, please be patient.

Working with Helm charts - Alauda Container Platform

Note: When the template status changes from Uploading to Upload Successful , it

indicates that the template has been uploaded successfully.
6. If the upload fails, please troubleshoot according to the following prompts.
Note: An illegal file format means there is an issue with the files in the uploaded

compressed package, such as missing content or incorrect formatting.

3.4 Deleting Specific Versions of Templates

If a version of a template is no longer applicable, it can be deleted.

Steps to Operate

1. Go to Catalog.

2. In the left navigation bar, click Helm Charts.
3. Click on the Chart card to view details.

4. Click Manage Versions.

5. Find the template that is no longer applicable, click Delete, and confirm.

After deleting the version, the corresponding application will not be able to be updated.

Q Alauda Container Platform

Pod

Introduction

Introduction

Pod Parameters

Pod Parameters

Deleting Pods

Deleting Pods

Use Cases

Procedure

Container

Pod - Alauda Container Platform

http://localhost:4173/container_platform/

Pod - Alauda Container Platform

Introduction Debug Container (Alpha) Entering the
Implementation Principle Entering the Cc
Notes Entering the Cc
Use Cases

Procedure

Introduction - Alauda Container Platform

Q Alauda Container Platform

Introduction

Refer to the official Kubernetes website documentation: Pod ~

https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
http://localhost:4173/container_platform/

Pod Parameters - Alauda Container Platform

Q Alauda Container Platform Q

Pod Parameters

The platform interface provides various information about the pods for quick reference. Below

are some parameter explanations.

Parameter Description
Resource The effective resource (CPU, memory) requests and limits values for the
Requests/Limits pods. The calculation method for requests and limits values is the same;

this document introduces using the limit values as an example, and the

specific rules and algorithms are as follows:

» When the pods only contains business containers (containers), the
CPU/memory limit value is the sum of the CPU/memory limit values
of all containers within the pods. For example: If the pods includes
two business containers with CPU/memory limit values of
100m/100Mi and 50m/200Mi, the pods's CPU/memory limit value will
be 150m/300Mi.

« When the pods contains both init containers (initContainers) and
business containers, the calculation steps for the pods's

CPU/memory limit values are as follows:

1. Take the maximum value of the CPU/memory limit values of all init

containers.

2. Take the sum of CPUImemory limit values of all business

containers.

3. Compare the results and take the maximum values of CPU and
memory from both init containers and business containers as the

pods's CPU/memory limit values.

Calculation Example: If the pods contains two init containers with

CPU/memory limit values of 100m/200Mi and 200m/100Mi, the

http://localhost:4173/container_platform/

Parameter

Source

Restart Count

Node

Service Account

Pod Parameters - Alauda Container Platform

Description

maximum CPU/memory limit value for the init containers would be
200m/200Mi. At the same time, if the pods also contains two business
containers with CPU/memory limit values of 200m/100Mi and
50m/200Mi, the total limit value for the business containers will be
150m/300Mi. Therefore, the comprehensive CPUImemory limit value

for the pods would be 200m/300Mi.

The computing component to which the pods belongs.

The number of restarts when the pods's status is abnormal.

The name of the node where the pods is located.

The Service Account is an account that allows processes and services in
the Pod to access the Kubernetes APIServer, providing an identity for the
processes and services. The Service Account field is visible only when
the currently logged-in user has either the platform administrator role or
the platform auditor role, and the YAML file of the Service Account can be

viewed.

Deleting Pods - Alauda Container Platform

Q Alauda Container Platform Q

Deleting Pods

Deleting pods may affect the operation of computing components; please proceed with

caution.

TOC

Use Cases

Procedure

Use Cases

e Restore the pods to its desired state promptly: If a pods remains in a state that affects
business operations, such as Pending or CrashLoopBack0ff , manually deleting the
pods after addressing the error message can help it quickly return to its desired state, such

as Running . At this time, the deleted pods will be rebuilt on the current node or

rescheduled.

+ Resource cleanup for operations management: Some podss reach a designated stage
where they no longer change, and these groups often accumulate in large numbers,
complicating the management of other podss. The podss to be cleaned up may include
those inthe Evicted status due to insufficient node resources or those in the

Completed status triggered by recurring scheduled tasks. In this case, the deleted podss

will no longer exist.

http://localhost:4173/container_platform/

Deleting Pods - Alauda Container Platform

Note: For scheduled tasks, if you need to check the logs of each task execution, it is not

recommended to delete the corresponding Completed status podss.

Procedure

1. Go to Container Platform.
2. In the left navigation bar, click Workloads > Pods.

3. (Delete individually) Click the : on the right side of the pods to be deleted > Delete, and

confirm.

4. (Delete in bulk) Select the podss to be deleted, click Delete above the list, and confirm.

Q Alauda Container Platform

Container

Introduction

Container - Alauda Container Platform

Debug Container (Alpha)

Implementation Principle
Notes
Use Cases

Procedure

Entering th

Entering the Cc

Entering the Cc

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Q Alauda Container Platform

Introduction

Refer to the official Kubernetes website documentation: Containers .

https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
http://localhost:4173/container_platform/

Debug Container (Alpha) - Alauda Container Platform

Q Alauda Container Platform Q

Debug Container (Alpha)

The Debug feature provides relevant tools for debugging running containers, including

system, network, and disk utilities.

TOC

Implementation Principle
Notes
Use Cases

Procedure

Implementation Principle

The Debug feature is implemented through Ephemeral Containers. An Ephemeral Container
is a type of container that shares resources with business containers. You can add an
Ephemeral Container (for example, Container A-debug) to a pod and use debugging tools
within that container. The debugging results will be directly applied to the business container

(such as Container A).

http://localhost:4173/container_platform/

Debug Container (Alpha) - Alauda Container Platform

Pods

. =€ @ Container C E Container C—debug | XEC
EXE 5) h- b ;
- @ Container B Resource sharing 1 Container B-debug ' 'EXEC
EXE 3 i —
@ Container A Container A-debug NEC
@ ConfigMaps @ Secrets @ Services
@ Load Balancers ® Ingress @ CRDs

Notes

¢ You cannot add an Ephemeral Container by directly updating the pod configuration; make

sure to enable the Ephemeral Container through the Debug feature.

+ The Ephemeral Containers enabled by the Debug feature do not have resource or
scheduling guarantees and will not restart automatically. Please avoid running business

applications in them, except for debugging purposes.

* Please use the Debug feature cautiously if the resources on the node where the pod is

located are about to be exhausted, as it may lead to the eviction of the pod.

Use Cases

Although you can also log into containers and debug using the EXEC feature, many container
images do not include the required debugging tools (such as bash, net-tools, etc.) for the sake
of image size reduction. In contrast, the Debug feature, which comes pre-installed with

debugging tools, is more suitable for the following scenarios.

Debug Container (Alpha) - Alauda Container Platform

o Fault Diagnosis: If a business container encounters an issue, in addition to checking events
and logs, you may need to conduct more detailed troubleshooting and resolution within the

container.

« Configuration Tuning: If there are flaws in the current business solution, you might want to
perform configuration tuning on the business components within the container to devise a

new configuration scheme that helps the business run more effectively.

Procedure

1. Enter the Container Platform.

2. In the left navigation bar, click Workloads > Pods.

3. Locate the pod and click : > Debug.

4. Select the container you wish to debug.

5. (Optional) If prompted by the interface that initialization is required, click Initialize.

Note: After initializing the Debug feature, as long as the pod is not recreated, you can

directly enter the Ephemeral Container (for example, Container A-debug) for debugging.
6. Wait for the debugging window to be ready, and then begin debugging.

Tip: Click the command query in the upper right corner to view common tools and their

usage.

7. Once finished, close the debugging window.

Entering the Container via EXEC - Alauda Container Platform

Q Alauda Container Platform Q

Entering the Container via EXEC

TOC

Entering the Container through Applications
Prerequisites
Procedure

Entering the Container through the Pod
Prerequisites

Procedure

Entering the Container through Applications

You can enter the internal instance of the container using the kubectl exec command,
allowing you to execute command-line operations in the Web console window. Additionally,

you can easily upload and download files within the container using the file transfer feature.

Prerequisites

e The container must be running properly.

* When using the file transfer feature, the tar tool must be available in the container, and

the container's operating system cannot be Windows.

Procedure

http://localhost:4173/container_platform/

Entering the Container via EXEC - Alauda Container Platform

1. Enter Container Platform.

2. In the left navigation bar, click Application > Applications.

3. Click on Application Name.

4. Locate the workload and click EXEC > Pod Name.

5. Enter the command you wish to execute.

6. Click OK to enter the Web console window and execute command-line operations.

7. Click File Transfer. Enter Upload Path to upload files for testing into the container; or
enter Download Path to download logs and other files from the container to your local

machine for analysis.

Entering the Container through the Pod

You can enter the internal instance of the container using the kubectl exec command,
allowing you to execute command-line operations in the Web console window. Additionally,

you can easily upload and download files within the container using the file transfer feature.

Prerequisites

e The container must be running properly.
* When using the file transfer feature, the tar tool must be available in the container, and

the container's operating system cannot be Windows.

Procedure

1. In the left navigation bar, click Workloads > Pods.
2. Click : > EXEC > Container Name.
3. Enter the command you wish to execute.

4. Click OK to enter the Web console window and execute command-line operations.

Entering the Container via EXEC - Alauda Container Platform

5. Click File Transfer. Enter Upload Path to upload files for testing into the container; or
enter Download Path to download logs and other files from the container to your local

machine for analysis.

How To - Alauda Container Platform

Q Alauda Container Platform

How To

Setting Scheduled Task Trigger Rules

Time Conversion

Writing Crontab Expressions

http://localhost:4173/container_platform/

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Q Alauda Container Platform Q

Setting Scheduled Task Trigger Rules

The scheduled task trigger rules support the input of Crontab expressions.

TOC

Time Conversion

Writing Crontab Expressions

Time Conversion

Time conversion rule: Local time - time zone offset = UTC
Taking Beijing time to UTC time as an example:

Beijing is in the East Eight Time Zone, with a time difference of 8 hours between Beijing time

and UTC. The time conversion rule is:
Beijing Time - 8 = UTC

Example 1: Beijing time 9:42 converts to UTC time: 42 09 - 00 08 = 42 01, which means the
UTC time is 1:42 AM.

Example 2: Beijing time 4:32 AM converts to UTC time: 32 04 - 00 08 = -68 03. If the result is
negative, it indicates the previous day, requiring another conversion: -68 03 + 00 24 = 32 20,

which means the UTC time is 8:32 PM of the previous day.

http://localhost:4173/container_platform/

Setting Scheduled Task Trigger Rules - Alauda Container Platform

Writing Crontab Expressions

Basic format and value range of Crontab: minute hour day month weekday , with the

corresponding value ranges as shown in the table below:

Minute Hour Day Month Weekday

[0-59] [0-23] [1-31] [1-12] or [JAN-DEC] [0-6] or [SUN-SAT]

The special characters allowed in the minute hour day month weekday fields include:

, - Value list separator, used to specify multiple values. For example: 1,2,5,7,8,9 .
- : User-defined value range. For example: 2-4 , which represents 2, 3, 4.

* . Represents the entire time period. For example, when used for minutes, it means

every minute.

/ : Used to specify the increment of values. For example: n/m indicates starting from n,

increasing by m each time.

Conversion tool reference ~

Common Examples:

Input 30 18 25 12 * indicates a task triggers at 18:30:00 on December 25th .

Input 30 18 25 * 6 indicates a task triggers at 18:30:00 every Saturday .

Input 30 18 * * 6 indicates a task triggers at 18:30:00 on Saturdays .

Input * 18 * * * indicates a task triggers every minute starting from 18:00:00

(including 18:00:00).

Input © 18 1,10,22 * * indicates a task triggers at 18:00:00 on the 1st, 10th, and

22nd of every month .

Input 0,30 18-23 * * * indicates a task triggers at 00 minutes and 30 minutes of

each hour between 18:00 and 23:00 daily .

Input * */1 * * * indicates a task triggers every minute.

https://crontab.guru/
https://crontab.guru/
https://crontab.guru/

Setting Scheduled Task Trigger Rules - Alauda Container Platform

e Input * 2-7/1 * * * indicates a task triggers every minute between 2 AM and 7 AM

daily.

e Input 0 11 4 * mon-wed indicates a task triggers at 11:00 AM on the 4th of every

month and on every Monday to Wednesday .

Registry - Alauda Container Platform

Q Alauda Container Platform Q

Registry

Introduction

Introduction

Principles and namespace isolation
Authentication and authorization
Advantages

Application Scenarios

Install
Install Via YAML Install Via Web UI
When to Use This Method? When to Use This Method?
Prerequisites Prerequisites

Installing Alauda Container Platform Regis Installing Alauda Container Platform Registry cluster plugin us

Updating/Uninstalling Alauda Container Pl Updating/Uninstalling Alauda Container Platform Registry

http://localhost:4173/container_platform/

Registry - Alauda Container Platform

How To

Common CLI Command Operai Using Alauda Container Platform Registry in |

Logging in Registry Registry Access Guidelines
Add namespace permissions for users Deploy Sample Application
Add namespace permissions for a service Cross-Namespace Access

Pulling Images Best Practices

Pushing Images Verification Checklist

Troubleshooting

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

Building, storing and managing container images is a core part of the cloud-native application
development process. Alauda Container Platform(ACP) provides a high-performance, highly-
available, built-in container image repository service designed to provide users with a secure
and convenient image storage and management experience, greatly simplifying application
development, continuous integration/continuous deployment (CI/CD) and application
deployment processes within the platform. CD) and application deployment processes within

the platform.

Deeply integrated into the platform architecture, Alauda Container Platform Registry provides
tighter platform collaboration, simplified configuration, and greater internal access efficiency

than an external, independently deployed image repository.

TOC

Principles and namespace isolation
Authentication and authorization
Authentication
Authorization
Advantages

Application Scenarios

Principles and nhamespace isolation

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Alauda Container Platform's built-in image repository, as one of the core components of the
platform, runs inside the cluster in a highly-available manner and utilizes the persistent
storage capabilities provided by the platform to ensure that the image data is secure and

reliable.

One of its core design concepts is logical isolation and management based on Namespace.
Within the Registry, image repositories are organized by namespace. This means that each
namespace can be considered as a separate “zone” for images belonging to that namespace,
and images between different namespaces are isolated by default, unless explicitly

authorized.

Authentication and authorization

The authentication and authorization mechanism of Alauda Container Platform Registry is
deeply integrated with ACP's platform-level authentication and authorization system, enabling

access control as granular as the namespace:

Authentication

Users or automated processes (e.g., CI/CD pipelines on the platform, automated build tasks,
etc.) do not need to maintain a separate set of account passwords for the Registry. They are
authenticated through the platform's standard authentication mechanisms (e.g., using
platform-provided API tokens, integrated enterprise identity systems, etc.). When accessing
Alauda Container Platform Registry through the CLI or other tools, it is common to utilize

existing platform login sessions or ServiceAccount tokens for transparent authentication.

Authorization

Authorization control is implemented at the namespace level. Pull or Push permissions for an
image repository in Alauda Container Platform Registry depend on the platform role and

permissions that the user or ServiceAccount has in the corresponding namespace.

* Typically, the owner or developer role of a namespace is automatically granted Push and

Pull permissions to image repositories under that namespace.

Introduction - Alauda Container Platform

+ Users in other namespaces or users who wish to pull images across namespaces
need to be explicitly granted the appropriate permissions by the administrator of the target
namespace (e.g., bind a role that allows pulling of images via RBAC) before they can

access images within that namespace.

+ This namespace-based authorization mechanism ensures isolation of images between

namespaces, improving security and avoiding unauthorized access and modification.

Advantages

Core advantages of Alauda Container Platform Registry:

Ready-to-Use: Rapidly deploy a private image registry without complex configurations.

Flexible Access: Supports both intra-cluster and external access modes.

Security Assurance: Provides RBAC authorization and image scanning capabilities.

High Availability: Ensures service continuity through replication mechanisms.

Production-Grade: Validated in enterprise environments with SLA guarantees.

Application Scenarios

* Lightweight Deployment: Implement streamlined registry solutions in low-traffic

environments to accelerate application delivery.

+ Edge Computing: Enable autonomous management for edge clusters with dedicated

registries.

+ Resource Optimization: Demonstrate full workflow capabilities through integrated Source

to Image (S2I) solutions when underutilizing infrastructure.

Install - Alauda Container Platform

Q Alauda Container Platform Q

Install

Install Via YAML Install Via Web UI
When to Use This Method? When to Use This Method?
Prerequisites Prerequisites

Installing Alauda Container Platform Regis Installing Alauda Container Platform Registry cluster plugin us

Updating/Uninstalling Alauda Container Pl Updating/Uninstalling Alauda Container Platform Registry

http://localhost:4173/container_platform/

Install Via YAML - Alauda Container Platform

Q Alauda Container Platform Q

Install Via YAML

TOC

When to Use This Method?
Prerequisites
Installing Alauda Container Platform Registry via YAML
Procedure
Configuration Reference
Mandatory Fields
Verification
Updating/Uninstalling Alauda Container Platform Registry
Update

Uninstall

When to Use This Method?

Recommended for:

Advanced users with Kubernetes expertise who prefer a manual approach.
Production-grade deployments requiring enterprise storage (NAS, AWS S3, Ceph, etc.).
Environments needing fine-grained control over TLS, ingress.

Full YAML customization for advanced configurations.

http://localhost:4173/container_platform/

Install Via YAML - Alauda Container Platform

Prerequisites

 Install the Alauda Container Platform Registry cluster plugin to a target cluster.
¢ Access to the target Kubernetes cluster with kubectl configured.

e Cluster admin permissions to create cluster-scoped resources.

¢ Obtain a registered domain (e.g., registry.yourcompany.com) Create a Domain

e Provide valid NAS storage (e.g., NFS, GlusterFS, etc.).

+ (Optional) Provide valid S3 storage (e.g., AWS S3, Ceph, etc.). If no existing S3 storage is
available, deploy a MinlO (Built-in S3) instance in the cluster Deploy MinlO.

Installing Alauda Container Platform Registry via
YAML

Procedure

1. Create a YAML configuration file named registry-plugin.yaml with the following template:

http://localhost:4173/container_platform/configure/networking/functions/create_domain.html
http://localhost:4173/container_platform/storage/storagesystem_minio/installation.html

Install Via YAML - Alauda Container Platform

Install Via YAML - Alauda Container Platform

apiVersion: cluster.alauda.io/vilalphal
kind: ClusterPluginInstance
metadata:
annotations:
cpaas.io/display-name: internal-docker-registry
labels:
create-by: cluster-transformer
manage-delete-by: cluster-transformer
manage-update-by: cluster-transformer
name: internal-docker-registry
spec:
config:
access:
address: ""
enabled: false
fake:
replicas: 2
global:
expose: false
isIPv6: false
replicas: 2
resources:
limits:
cpu: 500m
memory: 512Mi
requests:
cpu: 250m
memory: 256Mi
ingress:
enabled: true
hosts:
- name: <YOUR-DOMAIN> # [REQUIRED] Customize domain
tlsCert: <NAMESPACE>/<TLS-SECRET> # [REQUIRED] Namespace/Sec
retName
ingressClassName: "<INGRESS-CLASS-NAME>" # [REQUIRED] IngressCla
ssName
insecure: false
persistence:
accessMode: ReadWriteMany
nodes: ""
path: <YOUR-HOSTPATH> # [REQUIRED] Local path for LocalVolume
size: <STORAGE-SIZE> # [REQUIRED] Storage size (e.g., 10Gi)
storageClass: <STORAGE-CLASS-NAME> # [REQUIRED] StorageClass nam

Install Via YAML - Alauda Container Platform

type: StorageClass
s3storage:

bucket: <S3-BUCKET-NAME>

enabled: false

env.

REGISTRY_STORAGE_S3_SKIPVERIFY: false

region: <S3-REGION>
regionEndpoint: <S3-ENDPOINT>
secretName: <S3-CREDENTIALS-SECRET>

service:
nodePort: ""
type: ClusterIP

pluginName: internal-docker-registry

2. Customize the following fields according to your environment:

Install Via YAML - Alauda Container Platform

spec:
config:
ingress:
hosts:
- name: "<YOUR-DOMAIN>"
tlsCert: "<NAMESPACE>/<TLS-SECRET>"
ingressClassName: "<INGRESS-CLASS-NAME>"
persistence:
size: "<STORAGE-SIZE>"
storageClass: '"<STORAGE-CLASS-NAME>"
s3storage:

bucket: "<S3-BUCKET-NAME>"
region: "<S3-REGION>"
regionEndpoint: "<S3-ENDPOINT>"

secretName: "<S3-CREDENTIALS-SECRET>"

env:
REGISTRY_STORAGE_S3_SKIPVERIFY: "true"

3. How to create a secret for S3 credentials:

kubectl create secret generic <S3-CREDENTIALS-SECRET> \
--from-literal=access-key-id=<YOUR-S3-ACCESS-KEY-ID> \
--from-literal=secret-access-key=<YOUR-S3-SECRET-ACCESS-KEY> \

-n cpaas-system

Replace <S3-CREDENTIALS-SECRET> with the name of your S3 credentials secret.

4. Apply the configuration to your cluster:

kubectl apply -f registry-plugin.yaml

Configuration Reference

Install Via YAML - Alauda Container Platform

Mandatory Fields

Parameter Description Example Value

Custom domain for
spec.config.ingress.hosts[0].name) registry.yourcompany.
registry access

TLS certificate

secret reference cpaas-system/registry
spec.config.ingress.hosts[0].tlsCert

(namespace/secret- tls

name)

. . Ingress class name
spec.config.ingress.ingressClassName) cluster-alb-1
for the registry

Storage size for the
spec.config.persistence.size) 10G1i
registry

StorageClass name
spec.config.persistence.storageClass) nfs-storage-sc
for the registry

S3 bucket name for
spec.config.s3storage.bucket) prod-image-store
Image storage

AWS region for S3
spec.config.s3storage.region us-west-1
storage

S3 service endpoint
spec.config.s3storage.regionEndpoint URL https://s3.amazonaws.

Secret containing
spec.config.s3storage.secretName) s3-access-keys
S3 credentials

Verification

1. Check plugin:

kubectl get clusterplugininstances internal-docker-registry -o yaml

Install Via YAML - Alauda Container Platform

2. Verify registry pods:

kubectl get pods -n cpaas-system -1 app=internal-docker-registry

Updating/Uninstalling Alauda Container Platform
Registry

Update

Execute the following command on the global cluster::

kubectl edit -n cpaas-system \
$(kubectl get moduleinfo -n cpaas-system -1 cpaas.io/cluster-name=<CLUS

TER-NAME>, cpaas.io/module-name=internal-docker-registry -o name)

Uninstall

Execute the following command on the global cluster:

kubectl get moduleinfo -n cpaas-system -1 cpaas.io/cluster-name=<CLUSTER-
NAME>, cpaas.io/module-name=internal-docker-registry -o name | xargs kubec

tl delete -n cpaas-system

Install Via Web Ul - Alauda Container Platform

Q Alauda Container Platform

Install Via Web Ul

TOC

When to Use This Method?

Prerequisites

Installing Alauda Container Platform Registry cluster plugin using the web console

Procedure
Verification

Updating/Uninstalling Alauda Container Platform Registry

When to Use This Method?

Recommended for:

« First-time users who prefer a guided, visual interface.

¢ Quick proof-of-concept setups in non-production environments.

+ Teams with limited Kubernetes expertise seeking a simplified deployment process.

¢ Scenarios requiring minimal customization (e.g., default storage configurations).
+ Basic networking setups without specific ingress rules.

o StorageClass configurations for high availability.

Not Recommended for:

¢ Production environments requiring advanced storage(S3 storage) configurations.

http://localhost:4173/container_platform/

Install Via Web Ul - Alauda Container Platform

o Networking setups needing specific ingress rules.

Prerequisites

 Install the Alauda Container Platform Registry cluster plugin to a target cluster using the

Cluster Plugin mechanism.

Installing Alauda Container Platform Registry

cluster plugin using the web console

Procedure

1. Log in and navigate to the Administrator page.
2. Click Marketplace > Cluster Plugins to access the Cluster Plugins list page.

3. Locate the Alauda Container Platform Registry cluster plugin, click Install, then proceed

to the installation page.

4. Configure parameters according to the following specifications and click Install to complete

the deployment.

The parameter descriptions are as follows:

Parameter Description
Once enabled, administrators can manage the image repository externally
Expose Service using the access address. This poses significant security risks and should
be enabled with extreme caution.

Enable IPv6 Enable this option when the cluster uses IPv6 single-stack networking.

When Expose Service is enabled, configure NodePort to allow external
NodePort . o
access to the Registry via this port.

Storage Type Select a storage type. Supported types: LocalVolume and StorageClass.

http://localhost:4173/container_platform/extend/cluster_plugin.html

Install Via Web Ul - Alauda Container Platform

Parameter Description

Select a node to run the Registry service for image storage and

Nodes o . .
distribution. (Available only when Storage Type is LocalVolume)
Select a StorageClass. When replicas exceed 1, select storage with RWX
StorageClass (ReadWriteMany) capability (e.g., File Storage) to ensure high availability.
(Available only when Storage Type is StorageClass)
Storage Size Storage capacity allocated to the Registry (Unit: Gi).
Configure the number of replicas for the Registry Pod:
Replicas » LocalVolume: Default is 1 (fixed)
» StorageClass: Default is 3 (adjustable)
Resource Define CPU and Memory resource requests and limits for the Registry
Requirements Pod.
Verification

1. Navigate to Marketplace > Cluster Plugins and confirm the plugin status shows Installed.
2. Click the plugin name to view its details.

3. Copy the Registry Address and use the Docker client to push/pull images.

Updating/Uninstalling Alauda Container Platform
Registry

You can update or uninstall the Alauda Container Platform Registry plugin from either the

list page or details page.

How To - Alauda Container Platform

0 Alauda Container Platform Q

How To

Common CLI Command Operai Using Alauda Container Platform Registry in |

Logging in Registry Registry Access Guidelines
Add namespace permissions for users Deploy Sample Application
Add namespace permissions for a service Cross-Namespace Access

Pulling Images Best Practices

Pushing Images Verification Checklist

Troubleshooting

http://localhost:4173/container_platform/

Common CLI Command Operations - Alauda Container Platform

Q Alauda Container Platform Q

Common CLI Command Operations

The Alauda Container Platform provides command line tools for users to interact with the
Alauda Container Platform Registry. The following are some examples of common operations

and commands:

Let's assume that Alauda Container Platform Registry for the cluster has a service address of

registry.cluster.local and the namespace you are currently working on is my-ns.

Contact technical services to acquire the kubectl-acp plugin and ensure it is properly

installed in your environment.

TOC

Logging in Registry

Add namespace permissions for users

Add namespace permissions for a service account
Pulling Images

Pushing Images

Logging in Registry
Log in to the cluster's Registry by logging in to the ACP.

kubectl acp login <ACP-endpoint>

http://localhost:4173/container_platform/

Common CLI Command Operations - Alauda Container Platform

Add namespace permissions for users

Add namespace pull permission for a user.

kubectl create rolebinding <binding-name> --clusterrole=system:image-pull

er --user=<username> -n <pnamespace>

Add namespace push permissions to a user.

kubectl create rolebinding <binding-name> --clusterrole=system:image-push

er --user=<username> -n <namespace>

Add namespace permissions for a service

account

Add namespace pull permission for a service account.

kubectl create rolebinding <binding-name> --clusterrole=system:image-pull

er —-serviceaccount:<namespace>:<serviceaccount—name> -n <namespace>

Add namespace push permission for a service account.

kubectl create rolebinding <binding-name> --clusterrole=system:image-push

er --serviceaccount=<namespace>:<serviceaccount-name> -n <namespace>

Pulling Images

Pulls an image from the registry to inside the cluster (e.g., for Pod deployment).

Common CLI Command Operations - Alauda Container Platform

kubectl acp pull registry.cluster.local/my-ns/my-app: latest

kubectl acp pull registry.cluster.local/shared-ns/base-image: latest

This command verifies your identity and pull permissions in the target namespace, and then

pulls the image from the Registry.

Pushing Images

Pushes locally built images or images pulled from elsewhere to a specific namespace in the

registry.

You need to first tag (tag) the local image with the address and namespace format of the

target Registry using a standard container command line tool such as docker.

docker tag my-app:latest registry.cluster.local/my-ns/my-app:vl

kubectl acp push registry.cluster.local/my-ns/my-app:vl

Pushes an image from a remote image repository to a specific namespace in the Alauda

Container Platform Registry.

kubectl acp push remote.registry.io/demo/my-app:latest registry.cluster.l

ocal/my-ns/my-app: latest

Common CLI Command Operations - Alauda Container Platform

This command verifies your identity and push permissions within the my-ns namespace, and

then uploads the locally tagged image to Registry.

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

Q Alauda Container Platform Q

Using Alauda Container Platform Registry

In Kubernetes Clusters

The Alauda Container Platform (ACP) Registry provides secure container image management

for Kubernetes workloads.

TOC

Registry Access Guidelines

Deploy Sample Application

Cross-Namespace Access
Example Role Binding

Best Practices

Verification Checklist

Troubleshooting

Registry Access Guidelines

¢ Internal Address Recommended: For images stored in the cluster's registry, always
prioritize using the internal service address internal-docker-registry.cpaas-
system.svc when deploying within the cluster. This ensures optimal network performance

and avoids unnecessary external routing.

o External Address Usage: The external ingress domain (e.g. registry.cluster.local)

IS primarily intended for:

http://localhost:4173/container_platform/

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform
» Image pushes/pulls from outside the cluster (e.g., developer machines, CI/CD systems)

o Cluster-external operations requiring registry access

Deploy Sample Application

1. Create an application named my-app inthe my-ns namespace.

2. Store the application image in the registry at internal-docker-registry.cpaas-

system.svc/my-ns/my-app:vl .

3. The default ServiceAccount in each namespace is automatically configured with an
imagePullSecret for accessing images from internal-docker-registry.cpaas-

system.svc .

Example Deployment:

apiVersion: apps/vil
kind: Deployment
metadata:

name: my-app

namespace: my-ns
spec:

replicas: 3

selector:
matchLabels:
app: my-app
template:
metadata:
labels:
app: my-app
spec:
containers:

- hame: main-container
image: internal-docker-registry.cpaas-system.svc/my-ns/my-app:vl
ports:

- containerPort: 8080

Cross-Namespace Access

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

To allow users from my-ns to pull images from shared-ns , the administrator of shared-

ns can create a role binding to grant the necessary permissions.

Example Role Binding

kubectl create rolebinding cross-ns-pull \
--clusterrole=system:image-puller \
--serviceaccount=my-ns:default \
-n shared-ns

Best Practices

* Registry Usage: Always use internal-docker-registry.cpaas-system.svc for

deployments to ensure security and performance.

« Namespace Isolation: Leverage namespace isolation for better security and management

of images.

¢ Use namespace-based image paths: internal-docker-registry.cpaas-

system.svc/<namespace>/<image>:<tag> .

¢ Access Control: Use role bindings to manage cross-namespace access for users and

service accounts.

Verification Checklist

1. Validate image accessibility for the default ServiceAccount in my-ns :

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --as
=system:serviceaccount:my-ns:default

2. Validate image accessibility for a userin my-ns :

Using Alauda Container Platform Registry in Kubernetes Clusters - Alauda Container Platform

kubectl auth can-i get images.registry.alauda.io --namespace my-ns --as

=<username>

Troubleshooting

+ Image Pull Errors: Check the imagePullSecrets in the pod spec and ensure they are

correctly configured.

+ Permission Denied: Ensure the user or ServiceAccount has the necessary role bindings in

the target namespace.

+ Network Issues: Verify network policies and service configurations to ensure connectivity

to the internal registry.

¢ DNS Failures: Check the content of /etc/hosts file on the node, ensure DNS resolution

for the internal-docker-registry.cpaas-system.svc is correctly configured.

» Verify node's /etc/hosts configuration to ensure correct DNS resolution of internal-

docker-registry.cpaas-system.svc

o Example showing registry service mapping (ClusterlP of internal-docker-registry

service):

127.0.0.1 localhost localhost.localdomain
10.4.216.11 internal-docker-registry.cpaas-system internal-docker-reg
istry.cpaas-system.svc internal-docker-registry.cpaas-system.svc.clus

ter.local

e Howto get internal-docker-registry current ClusterlP:

kubectl get svc -n cpaas-system internal-docker-registry -o jsonpath

='{.spec.clusterIP}'

Source to Image - Alauda Container Platform

0 Alauda Container Platform

Source to Image

Introduction

Introduction

Source to Image Concept
Core Features

Core Benefits

Application scenarios

Usage Limitations

Install

Installing Alauda Container Platform Builds

Prerequisites

Procedure

Architecture

http://localhost:4173/container_platform/

Source to Image - Alauda Container Platform

Architecture

Guides

Managing applications created from Code

Key Features
Advantages
Prerequisites
Procedure

Related operations

How To

Creating an application from Code

Prerequisites

Procedure

Introduction - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Introduction

Alauda Container Platform Builds is a cloud-native container tool provided by Alauda
Container Platform that integrates Source to Image (S2I) capabilities with automated
pipelines. It accelerates enterprise cloud-native journeys by enabling fully automated CI/CD
pipelines that support multiple programming languages, including Java, Go, Python, and
Node.js. Additionally, Alauda Container Platform Builds offers visual release management and
seamless integration with Kubernetes-native tools like Helm and GitOps, ensuring efficient

application lifecycle management from development to production.

TOC

Source to Image Concept
Core Features

Core Benefits

Application scenarios

Usage Limitations

Source to Image Concept

Source to Image (S2I) is a tool and workflow for building reproducible container images from
source code. It injects the application's source code into a predefined builder image and
automatically completes steps such as compilation and packaging, ultimately generating a
runnable container image. This allows developers to focus more on business code

development without worrying about the details of containerization.

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

Core Features

Alauda Container Platform Builds facilitates a full-stack, cloud-native workflow from code to
application, enabling multi-language builds and visual release management. It leverages
Kubernetes-native capabilities to convert source code into runnable container images,

ensuring seamless integration into a comprehensive cloud-native platform.

+ Multi-language Builds: Supports building applications in various programming languages

such as Java, Go, Python, and Node.js, accommodating diverse development needs.

« Visual Interface: Provides an intuitive interface that allows you to easily create, configure,

and manage build tasks without deep technical knowledge.

¢ Full Lifecycle Management: Covers the entire lifecycle from code commit to application

deployment, automating build, deployment, and operational management.

+ Deep Integration: Seamlessly integrates with your Container Platform product, providing a

seamless development experience.

« High Extensibility: Supports custom plugins and extensions to meet your specific needs.

Core Benefits

» Accelerated Development: Streamlines the build process, speeding up application

delivery.
o Enhanced Flexibility: Supports building in multiple programming languages.

* Improved Efficiency: Automates build and deployment processes, reducing manual

intervention.

* Increased Reliability: Provides detailed build logs and visual monitoring for easy

troubleshooting.

Application scenarios

The main application scenarios for S2I are as follows:

» Web applications

Introduction - Alauda Container Platform

S2| supports various programming languages, such as Java, Go, Python, and Node.js. By
leveraging the Alauda Container Platform application management capabilities, it allows for
rapid building and deployment of web applications simply by entering the code repository
URL.

e CI/ICD

S2l integrates seamlessly with DevOps pipelines, leveraging Kubernetes-native tools like
Helm and GitOps to automate the image building and deployment processes. This enables

continuous integration and continuous deployment of applications.

Usage Limitations

The current version only supports Java, Go, Python, and Node.js languages.

I WARNING

Prerequisites: Tekton Operator is now available in the cluster OperatorHub.

Install - Alauda Container Platform

Q Alauda Container Platform

Install

Installing Alauda Container Platform Builds

Prerequisites

Procedure

http://localhost:4173/container_platform/

Installing Alauda Container Platform Builds - Alauda Container Platform

Q Alauda Container Platform Q

Installing Alauda Container Platform Builds

TOC

Prerequisites

Procedure
Install the Alauda Container Platform Builds Operator
Install the Shipyard instance

Verification

Prerequisites

Alauda Container Platform Builds is a container tool offered by Alauda Container Platform

that integrates building (capable of Source to Image) and create application.

1. Download the latest version package of Alauda Container Platform Builds that matches
your platform. If the Tekton operator has not been installed on the Kubernetes cluster, it is

recommended to download it together.

2. Utilize the violet CLI tool to upload Alauda Container Platform Builds and Tekton
packages to your target cluster. For detailed instructions on using violet , please refer to

the CLI.

Procedure

http://localhost:4173/container_platform/ui/cli_tools/index.html
http://localhost:4173/container_platform/

Installing Alauda Container Platform Builds - Alauda Container Platform

Install the Alauda Container Platform Builds Operator

1. Log in, and navigate to the Platform Management page.

2. Click Marketplace > OperatorHub.

3. Find the Alauda Container Platform Builds operator, click Install, and enter the Install

page.

Configuration Parameters:

Parameter

Channel

Version

Installation
Mode

Namespace

Upgrade
Strategy

Recommended Configuration

Alpha : The default Channel is set to alpha.

Please select the latest version.

Cluster :Asingle Operator is shared across all namespaces in the cluster

for instance creation and management, resulting in lower resource usage.

Recommended : It is recommended to use the shipyard-operator

namespace; it will be created automatically if it does not exist.

Please select the Manual .

e Manual : When a new version is available in the OperatorHub

» the Upgrade action will not be executed automatically.

4. On the Install page, select default configuration, click Install, and complete the installation

of the Alauda Container Platform Builds Operator.

Install the Shipyard instance

1. Click on Marketplace > OperatorHub.

2. Find the installed Alauda Container Platform Builds operator, navigate to All Instances.

3. Click Create Instance button, and click Shipyard card in the resource area.

Installing Alauda Container Platform Builds - Alauda Container Platform

4. On the parameter configuration page for the instance, you may use the default

configuration unless there are specific requirements.

5. Click Create.

Verification

o After the instance is successfully creted, wait approximately "20 mins" before switching to

Container Platform > Applications > Applications and click on Create.

¢ You should see the entry for Create from Code. At this time, the installation of Alauda
Container Platform Builds is successful, and you can start your S2I journey with the

Creating an application from Code.

Architecture - Alauda Container Platform

0 Alauda Container Platform Q

Architecture
{,f"_"x\ﬁ {,x"'_"‘“\\
(ﬁ) —create> | ']
\ J \ /
e e
ACP Builds TaskRun
Wa|.t|:h
N TN TN
I,f \‘-. I,r’ \‘-. I,f \‘-.
|| ? || Clone——» || @ || +——Run l. % ||
\ / \ / \ /
- e -
Git Repo Pod Tektan
DL|.|1put
f,f"_"x\ TN
—
l. .“]] .l —Push—m l. |"I .l
KLVJ,? \ /
S —
Container Image
Image Registry

Source to Image (S2I) capability is implemented through the Alauda Container Platform
Builds operator, enabling automated container image builds from Git repository source code

and subsequent pushes to a designated image registry. The core components include:

+ Alauda Container Platform Builds operator: Manages the end-to-end build lifecycle and

orchestrates Tekton pipelines.

http://localhost:4173/container_platform/

Architecture - Alauda Container Platform

+ Tekton pipelines: Executes S21 workflows via Kubernetes-native TaskRun resources.

Guides - Alauda Container Platform

Q Alauda Container Platform

Guides

Managing applications created from Code

Key Features
Advantages
Prerequisites
Procedure

Related operations

http://localhost:4173/container_platform/

Managing applications created from Code - Alauda Container Platform

Q Alauda Container Platform Q

Managing applications created from Code

TOC

Key Features
Advantages
Prerequisites
Procedure

Related operations

Build

Key Features

¢ Input the code repository URL to trigger the S2I process, which converts the source code

into a image and publishes it as an application.

* When the source code is updated, initiate the Rebuild action via the visual interface to

update the application version with a single click.

Advantages

+ Simplifies the process of creating and upgrading applications from code.

¢ Lowers the barrier for developers, eliminating the need to understand the details of

containerization.

http://localhost:4173/container_platform/

Managing applications created from Code - Alauda Container Platform

¢ Provides a visual construction process and operational management, facilitating problem

localization, analysis, and troubleshooting.

Prerequisites

¢ Installing Alauda Container Platform Builds is completed.

¢ Access to a image repository is required; if unavailable, contact the Administrator to

Installing Alauda Container Platform Registry

Procedure

1. Container Platform, navigate to Application > Application.

2. Click Create.

3. Select the Create from Code.

4. Refer to the parameter descriptions below to complete the configuration.

Region Parameter

Code

Repository
Type
Integrated
Project

Name

Description

« Platform Integrated: Choose a code repository that
is integrated with the platform and already allocated
for the current project; the platform supports GitLab,

GitHub, and Bitbucket.

« Input: Use a code repository URL that is not

integrated with the platform.

The name of the integration tool project assigned or

associated with the current project by the Administrator.

Managing applications created from Code - Alauda Container Platform

Repository
Address

Version

Identifier

Context dir

Secret

Builder

Image

Select or input the address of the code repository that

stores the source code.

Supports creating applications based on branches, tags,

or commits in the code repository. Among them:

* When the version identifier is a branch, only the
latest commit under the selected branch is supported

for creating applications.

« When the version identifier is a tag or commit, the
latest tag or commit in the code repository is
selected by default. However, you can also choose

other versions as needed.

Optional directory for the source code, used as a

context directory for build.

When using an input code repository, you can add an

authentication secret as needed.

» An image that includes specific programming
language runtime environments, dependency
libraries, and S2I scripts. Its main purpose is to
convert source code into runnable application

images.

» The supported builder images, include: Golang,

Java, Node.js, and Python.

Build

Managing applications created from Code - Alauda Container Platform

Version

Build Type

Select the runtime environment version that is
compatible with your source code to ensure smooth

application execution.

Currently, only the Build method is supported for
constructing application images. This method simplifies
and automates the complex image building process,
allowing developers to focus solely on code

development. The general process is as follows:

1. After installed Alauda Container Platform Builds and

creating the Shipyard instance, the system
automatically generates cluster-level resources, such
as ClusterBuildStrategy, and defines a standardized
build process. This process includes detailed build
steps and necessary build parameters, thereby
enabling Source-to-Image (S2l) builds. For detailed
information, refer to: Installing Alauda Container

Platform Builds

. Create Build type resources based on the above

strategies and the information provided in the form.
These resources specify build strategies, build
parameters, source code repositories, output image

repositories, and other relevant information.

. Create BuildRun type resources to initiate specific

build instances, which coordinate the entire build

process.

. After completing the BuildRun creation, the system

will automatically generate the corresponding
TaskRun resource instance. This TaskRun instance
triggers the Tekton pipeline build and creates a Pod

to execute the build process. The Pod is responsible

Managing applications created from Code - Alauda Container Platform

for the actual build work, which includes: Pulling the

source code from the code repository.

Calling the specified builder image.

Executing the build process.

After the build is complete, specify the target image
Image URL

repository address for the application.

Fill in the application configuration as needed. For
Application - specific details, refer to the parameter descriptions in

the Creating applications from Image documentation.

o Target Port: The actual port that the application
inside the container listens on. When external

access is enabled, all matching traffic will be

Network - forwarded to this port to provide external services.
o Other Parameters: Please refer to the parameter
descriptions in the Creatinglngress documentation.
Label

- Fill in the relevant labels and annotations as needed.
Annotations

5. After filling in the parameters, click on Create.

6. You can view the corresponding deployment on the Details page.

http://localhost:4173/container_platform/configure/networking/functions/configure_ingress.html

Managing applications created from Code - Alauda Container Platform

Related operations

Build
After the application has been created, the corresponding information can be viewed on the
details page.

Parameter Description

Build Click the link to view the specific build (Build) and build task (BuildRun) resource

ui
information and YAML.
Start When the build fails or the source code changes, you can click this button to re-

Build execute the build task.

How To - Alauda Container Platform

Q Alauda Container Platform

How To

Creating an application from Code

Prerequisites

Procedure

http://localhost:4173/container_platform/

Creating an application from Code - Alauda Container Platform

Q Alauda Container Platform Q

Creating an application from Code

Using the powerful capabilities of Alauda Container Platform Builds installation to achieve
the entire process from Java source code to create an application, and ultimately enable

the application to run efficiently in a containerized manner on Kubernetes.

TOC

Prerequisites

Procedure

Prerequisites

Before using this functionality, ensure that:

¢ Installing Alauda Container Platform Builds

e There is an accessible image repository on the platform. If not, please contact the

Administrator to Installing Alauda Container Platform Registry

Procedure

1. Container Platform, click Applications > Applications.

2. Click Create.

http://localhost:4173/container_platform/

Creating an application from Code - Alauda Container Platform

3. Select the Create from Code.

4. Complete the configuration according to the parameters below:

Parameter Recommended Configuration
Type: Input
Code)
Repository URL: https://github.com/alauda/spring-boot-hello-
Repository
wor 1d
Build Method Build
Image
Contact the Administrator.
Repository
Application: spring-boot-hello-world
Application Name: spring-boot-hello-world
Resource Limits: Use the default value.
Network Target Port: 8080

5. After filling in the parameters, click Create.

6. You can check the corresponding application status on the Details page.

Node Isolation Strategy - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Node Isolation Strategy

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

Introduction

Introduction

Advantages

Application Scenarios

Architecture

Architecture

Concepts

Core Concepts

Node Isolation

http://localhost:4173/container_platform/

Node Isolation Strategy - Alauda Container Platform

Guides

Create Node Isolation Strategy

Create Node Isolation Strategy

Delete Node Isolation Strategy

Permissions

Permissions

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

Node Isolation Strategy provides a project-level node isolation strategy that allows projects to

exclusively use cluster nodes.

TOC

Advantages

Application Scenarios

Advantages

Conveniently allocate nodes to projects in an exclusive or shared manner, preventing

resource contention between projects.

Application Scenarios

Node Isolation Strategy is suitable for scenarios where enhanced resource isolation between
projects is required, and where there is a desire to prevent other projects' components from
occupying nodes, which could lead to resource constraints or inability to meet performance

requirements.

http://localhost:4173/container_platform/

Architecture - Alauda Container Platform

0 Alauda Container Platform Q

Architecture

5

Kubernetes
Cluster

Project A Project B

Node Isolation Strategy is implemented based on the Container Platform Cluster Core
component, providing the capability of node isolation between projects by allocating nodes on
each workload cluster. When containers are created in a project, they are forcibly scheduled

to the nodes allocated to that specific project.

http://localhost:4173/container_platform/

0 Alauda Container Platform

Concepts

Core Concepts

Node Isolation

Concepts - Alauda Container Platform

http://localhost:4173/container_platform/

Core Concepts - Alauda Container Platform

Q Alauda Container Platform Q

Core Concepts

TOC

Node Isolation

Node Isolation

Node Isolation refers to isolating nodes in a cluster to prevent containers from different

projects from simultaneously using the same node, thereby avoiding resource contention and

performance degradation.

http://localhost:4173/container_platform/

Guides - Alauda Container Platform

Q Alauda Container Platform

Guides

Create Node Isolation Strategy

Create Node Isolation Strategy

Delete Node Isolation Strategy

http://localhost:4173/container_platform/

Create Node Isolation Strategy - Alauda Container Platform

Q Alauda Container Platform Q

Create Node Isolation Strategy

Create a node isolation policy for the current cluster, allowing specified projects to have
exclusive access to the nodes of grouped resources within the cluster, thereby restricting the
runnable nodes for Pods under the project, achieving physical resource isolation between

projects.

TOC

Create Node Isolation Strategy

Delete Node Isolation Strategy

Create Node Isolation Strategy

1. In the left navigation bar, click on Security > Node Isolation Strategy.
2. Click on Create Node Isolation Strategy.

3. Refer to the instructions below to configure the relevant parameters.

Parameter Description

Project Whether to enable or disable the switch for the nodes contained in the

Exclusivity project isolation policy configured in the strategy; click to toggle on or off,
default is on.

When the switch is on, only Pods under the specified project in the policy

http://localhost:4173/container_platform/

Create Node Isolation Strategy - Alauda Container Platform

Parameter Description

can run on the nodes included in the policy; when off, Pods under other
projects in the current cluster can also run on the nodes included in the

policy apart from the specified project.

The project that is configured to use the nodes in the policy.
Click the Project dropdown selection box, and check the checkbox before

the project name to select multiple projects.

Note:

Project
A project can only have one node isolation policy set; if a project has
already been assigned a node isolation policy, it cannot be selected;
Supports entering keywords in the dropdown selection box to filter and
select projects.
The IP addresses of the compute nodes allocated for use by the project in
the policy.
Click the Node dropdown selection box, and check the checkbox before
the node name to select multiple nodes.

Node Note:

A node can belong to only one isolation policy; if a node already belongs to
another isolation policy, it cannot be selected;
Supports entering keywords in the dropdown selection box to filter and

select nodes.

4. Click Create.

Note:

o After the policy is created, existing Pods in the project that do not comply with the
current policy will be scheduled to the nodes included in the current policy after they are

rebuilt;

e When Project Exclusivity is on, currently existing Pods on the nodes will not be

automatically evicted; manual scheduling is required if eviction is needed.

Create Node Isolation Strategy - Alauda Container Platform

Delete Node Isolation Strategy

Note: After the node isolation policy is deleted, the project will no longer be restricted to run

on specific nodes, and the nodes will no longer be exclusively used by the project.
1. In the left navigation bar, click on Security > Node Isolation Strategy.

2. Locate the node isolation policy, click : > Delete.

Permissions - Alauda Container Platform

Q Alauda Container Platform Q

Permissions

. . Platform Platform Project Namespace
Function Action . . L.
Administrator auditors Manager Administrator
View v v v v
nodegroups Create v X X X
acp-
nodegroups Update v X X X

Delete v X X X

http://localhost:4173/container_platform/

FAQ - Alauda Container Platform

Q Alauda Container Platform Q

FAQ

TOC

Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?

Why shouldn't multiple LimitRanges exist or a LimitRange that is not named default in anamespace

when importing it?

Why shouldn't multiple ResourceQuotas exist in a

namespace when importing it?

When importing a namespace, if the namespace contains multiple ResourceQuota resources,
the platform will select the smallest value for each quota item among all ResourceQuotas and

merge them, ultimately creating a single ResourceQuota named default .
Example:

The namespace to-import to be imported contains the following resourcequota

resources:

http://localhost:4173/container_platform/

FAQ - Alauda Container Platform

apiVersion: vi
kind: ResourceQuota
metadata:
name: a
namespace: to-import
spec:
hard:
requests.cpu: "1"
requests.memory: "500Mi"
limits.cpu: "3"
limits.memory: "1Gi"
apiVersion: vi
kind: ResourceQuota
metadata:
name: b
namespace: to-import
spec:
hard:
requests.cpu: "2"
requests.memory: "300Mi"
limits.cpu: "2"
limits.memory: "2Gi"

After importing the to-import namespace, the following default ResourceQuota will be

created in that namespace:

apiVersion: vi
kind: ResourceQuota
metadata:
name: default
namespace: to-import
spec:
hard:
requests.cpu: "1"
requests.memory: "300Mi"
limits.cpu: "2"

limits.memory: "1Gi"

FAQ - Alauda Container Platform

For each ResourceQuota, the quotas of resources is the minimum value between a and b .

When multiple ResourceQuotas exist in a namespace, Kubernetes validates each
ResourceQuota independently. Therefore, after importing a namespace, it is recommended to
delete all ResourceQuotas except for the default one. This helps avoid complications in

guota calculations due to multiple ResourceQuotas, which can easily lead to errors.

Why shouldn't multiple LimitRanges exist or a
LimitRange that is not named default Ina

namespace when importing it?

When importing a namespace, if the namespace contains multiple LimitRange resources, the
platform cannot merge them into a single LimitRange. Since Kubernetes independently
validates each LimitRange when multiple exist, and the behavior of which LimitRange's

default values Kubernetes selects is unpredictable.

The platform will create a LimitRange named default when creating a namespace.
Therefore, before importing a namespace, only a single LimitRange named default should

exist in the namespace.

	Developer
	Overview
	Quick Start
	Building Applications
	Registry
	Source to Image
	Node Isolation Strategy
	FAQ

	Overview
	Introduction
	Concepts
	Features

	Introduction
	Advantages
	Use Cases
	Cross-Cutting Cloud-Native Principles

	Concepts
	Resource Unit Description
	Application Types
	Workload Types
	Features
	Building Application
	Namespace Management
	Application Observability
	Source to Image
	Registry
	Node Isolation Strategy
	OAM Application

	Quick Start
	Creating a simple application via image
	Introduction
	Use Cases
	Time Commitment

	Important Notes
	Prerequisites
	Workflow Overview
	Procedure
	Create namespace
	Configure Image Repository
	Method 1: Integrated Registry via Toolchain
	Method 2: External Registry Services

	Create application via Deployment
	Expose Service via NodePort
	Validate Application Accessibility

	Building Applications
	Overview
	Concepts
	Guides
	How To

	Overview
	Namespace Management
	Application Lifecycle Management
	Application Creation Patterns
	Application Operations
	Application Observability

	Kubernetes Workload Management

	Concepts
	Understanding Parameters
	Overview
	Core Concepts
	What are Parameters?
	Relationship with Docker

	Use Cases and Scenarios
	1. Application Configuration
	2. Environment-Specific Deployment
	3. Database Connection Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Parameter Examples
	Web Server with Custom Configuration
	Application with Multiple Parameters

	Best Practices
	1. Parameter Design Principles
	2. Security Considerations
	3. Configuration Management

	Troubleshooting Common Issues
	1. Parameter Not Recognized
	2. Parameter Override Not Working
	3. Debugging Parameter Issues

	Advanced Usage Patterns
	1. Conditional Parameters with Init Containers
	2. Parameter Templating with Helm

	Understanding Startup Commands
	Overview
	Core Concepts
	What are Startup Commands?
	Relationship with Docker and Parameters
	Command vs Args Interaction

	Use Cases and Scenarios
	1. Custom Application Startup
	2. Debugging and Troubleshooting
	3. Initialization Scripts
	4. Multi-Purpose Images

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create job
	Complex Startup Command Examples
	Multi-Step Initialization
	Conditional Startup Logic

	Best Practices
	1. Signal Handling and Graceful Shutdown
	2. Error Handling and Logging
	3. Security Considerations
	4. Resource Management

	Advanced Usage Patterns
	1. Init Containers with Custom Commands
	2. Sidecar Containers with Different Commands
	3. Job Patterns with Custom Commands

	Understanding Environment Variables
	Overview
	Core Concepts
	What are Environment Variables?
	Environment Variable Sources in Kubernetes
	Environment Variable Precedence

	Use Cases and Scenarios
	1. Application Configuration
	2. Database Configuration
	3. Dynamic Runtime Information
	4. Environment-Specific Configuration

	CLI Examples and Practical Usage
	Using kubectl run
	Using kubectl create
	Complex Environment Variable Examples
	Microservices with Service Discovery
	Multi-Container Pod with Shared Configuration

	Best Practices
	1. Security Best Practices
	2. Configuration Organization
	3. Environment Variable Naming
	4. Default Values and Validation

	Guides
	Namespaces
	Pre-Application-Creation Preparation
	Creating Applications
	Post-Application-Creation Configuration
	Operation and Maintenance
	Application Observability
	Workloads
	Working with Helm charts
	Pod

	Namespaces
	Creating Namespaces
	Understanding namespaces
	Creating namespaces by using web console
	Creating namespace by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Importing Namespaces
	Overview
	Use Cases
	Prerequisites
	Procedure

	Resource Quota
	Understanding Resource Requests & Limits
	Quotas
	Resource Quotas
	YAML file example
	Create resouce quota by using CLI

	Storage Quotas

	Extended Resources Quotas
	Other Quotas

	Limit Range
	Understanding Limit Range
	Create Limit Range by using CLI
	YAML file examples
	Create via YAML file
	Create via command line directly

	Pod Security Admission
	Security Modes
	Security Standards
	Configuration
	Namespace Labels
	Exemptions

	Overcommit Ratio
	UnderStanding Namespace Resource Overcommit Ratio
	CRD Define
	Creating overcommit ratio by using CLI
	Creating/Updating Overcommit Ratio by using web console
	Precautions
	Procedure

	Managing Namespace Members
	Importing Members
	Constraints and Limitations
	Prerequisites
	Procedure

	Adding Members
	Procedure

	Removing Members
	Procedure

	Updating Namespaces
	Updating Quotas
	Updating a Resource Quota by using web console
	Updating a Resource Quota by using CLI

	Updating Container LimitRanges
	Updating a LimitRange by using web console
	Updating a LimitRange by using CLI

	Updating Pod Security Admission
	Updating a Pod Security Admission by using web console
	Updating a Pod Security Admission by using CLI

	Deleting/Removing Namespaces
	Deleting Namespaces
	Removing Namespaces

	Pre-Application-Creation Preparation
	Configuring ConfigMap
	Understanding Config Maps
	Config Map Restrictions
	ConfigMap vs Secret
	Creating a ConfigMap by using the web console
	Creating a ConfigMap by using the CLI
	Operations
	View, Edit and Delete by using the CLI
	Ways to Use a ConfigMap in a Pod
	As Environment Variables
	As Files in a Volume
	As Individual Environment Variables

	Configuring Secrets
	Understanding Secrets
	Usage Characteristics
	Supported Types
	Usage Methods

	Creating an Opaque type Secret
	Creating a Docker registry type Secret
	Creating a Basic Auth type Secret
	Creating a SSH-Auth type Secret
	Creating a TLS type Secret
	Creating a Secret by using the web console
	How to Use a Secret in a Pod
	As Environment Variables
	As Mounted Files (Volume)

	Follow-up Actions
	Operations

	Creating Applications
	Creating applications from Image
	Prerequisites
	Procedure 1 - Workloads
	Workload 1 - Configure Basic Info
	Workload 2 - Configure Pod
	Workload 3 - Configure Containers

	Procedure 2 - Services
	Procedure 3 - Ingress
	Application Management Operations
	Reference Information
	Storage Volume Mounting Instructions
	Health Check Parameters
	Common Parameters
	Protocol-Specific Parameters

	Creating applications from Chart
	Precautions
	Prerequisites
	Procedure
	Status Analysis Reference

	Creating applications from YAML
	Precautions
	Prerequisites
	Procedure

	Creating applications from Code
	Prerequisites
	Procedure

	Creating applications from Operator Backed
	Procedure
	Troubleshooting

	Creating applications by using CLI
	Prerequisites
	Procedure
	Example
	YAML
	kubectl commands

	Reference

	Post-Application-Creation Configuration
	Configuring HPA
	Understanding Horizontal Pod Autoscalers
	How Does the HPA Work?
	Supported Metrics

	Prerequisites
	Creating a Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console
	Using Custom Metrics for HPA
	Requirements
	Traditional (Core Metrics) HPA
	Custom Metrics HPA
	Trigger Condition Definition
	Custom Metrics HPA Compatibility
	Updates in autoscaling/v2beta2

	Calculation Rules

	Configuring VerticalPodAutoscaler (VPA)
	Understanding VerticalPodAutoscalers
	How Does the VPA Work?
	Supported Features

	Prerequisites
	Installing the Vertical Pod Autoscaler Plugin

	Creating a VerticalPodAutoscaler
	Using the CLI
	Using the Web Console
	Advanced VPA Configuration
	Update Policy Options
	Container Policy Options

	Follow-Up Actions

	Configuring CronHPA
	Understanding Cron Horizontal Pod Autoscalers
	How Does the CronHPA Work?

	Prerequisites
	Creating a Cron Horizontal Pod Autoscaler
	Using the CLI
	Using the Web Console

	Schedule Rule Explanation

	Operation and Maintenance
	Status Description
	Applications

	Deployment
	Starting and Stopping Applications
	Starting the Application
	Stopping the Application

	Updating Applications
	Importing Resources
	Removing/Batch Removing Resources

	Exporting Applications
	Exporting Helm Charts
	Procedure
	Follow-Up Actions

	Exporting YAML to Local
	Steps
	Method 1
	Method 2

	Follow-Up Actions

	Exporting YAML to Code Repository (Alpha)
	Precautions
	Steps
	Follow-Up Actions

	Updating and deleting Chart Applications
	Important Notes
	Prerequisites
	Status Analysis Description

	Version Management for Applications
	Creating a Version Snapshot
	Procedure

	Rolling Back to a Historical Version
	Procedure

	Deleting Applications
	Health Checks
	Understanding Health Checks
	Probe Types
	HTTP GET Action
	exec Action
	TCP Socket Action

	Best Practices

	YAML file example
	Health Checks configuration parameters by using web console
	Common parameters
	Protocol specific parameters

	Troubleshooting probe failures
	Check pod events
	View container logs
	Test probe endpoint manually
	Review probe configuration
	Check application code
	Resource constraints
	Network issues

	Application Observability
	Monitoring Dashboards
	Prerequisites
	Namespace-Level Monitoring Dashboards
	Procedure
	Creating Namespace-Level Monitoring Dashboard

	Workload-Level Monitoring
	Default Monitoring Dashboard
	Procedure
	Metric interpretation

	Custom Monitoring Dashboard

	Logs
	Procedure

	Events
	Procedure
	Event records interpretation

	Workloads
	Deployments
	Understanding Deployments
	Creating Deployments
	Creating a Deployment by using CLI
	Prerequisites
	YAML file example
	Creating a Deployment via YAML

	Creating a Deployment by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Reference Information
	Storage Volume Mounting instructions

	Heath Checks

	Managing Deployments
	Managing a Deployment by using CLI
	Viewing a Deployment
	Updating a Deployment
	Scaling a Deployment
	Rolling Back a Deployment
	Deleting a Deployment

	Managing a Deployment by using web console
	Viewing a Deployment
	Updating a Deployment
	Deleting a Deployment

	Troubleshooting by using CLI
	Check Deployment status
	Check ReplicaSet status
	Check Pod status
	View Logs
	Enter Pod for debugging
	Check Health configuration
	Check Resource Limits

	DaemonSets
	Understanding DaemonSets
	Creating DaemonSets
	Creating a DaemonSet by using CLI
	Prerequisites
	YAML file example
	Creating a DaemonSet via YAML

	Creating a DaemonSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create

	Managing DaemonSets
	Managing a DaemonSet by using CLI
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	Managing a DaemonSet by using web console
	Viewing a DaemonSet
	Updating a DaemonSet
	Deleting a DaemonSet

	StatefulSets
	Understanding StatefulSets
	Creating StatefulSets
	Creating a StatefulSet by using CLI
	Prerequisites
	YAML file example
	Creating a StatefulSet via YAML

	Creating a StatefulSet by using web console
	Prerequisites
	Procedure - Configure Basic Info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Procedure - Create
	Heath Checks

	Managing StatefulSets
	Managing a StatefulSet by using CLI
	Viewing a StatefulSet
	Scaling a StatefulSet
	Updating a StatefulSet (Rolling Update)
	Deleting a StatefulSet

	Managing a StatefulSet by using web console
	Viewing a StatefulSet
	Updating a StatefulSet
	Deleting a StatefulSet

	CronJobs
	Understanding CronJobs
	Creating CronJobs
	Creating a CronJob by using CLI
	Prerequisites
	YAML file example
	Creating a CronJobs via YAML

	Creating CronJobs by using web console
	Prerequisites
	Procedure - Configure basic info
	Procedure - Configure Pod
	Procedure - Configure Containers
	Create

	Execute Immediately
	Locate the CronJob resource
	Initiate ad-hoc execution
	Verify Job details:
	Monitor execution status

	Deleting CronJobs
	Deleting CronJobs by using web console
	Deleting CronJobs by using CLI

	Jobs
	Understanding Jobs
	YAML file example
	Execution Overview

	Working with Helm charts
	1. Understanding Helm
	1.1. Key features
	1.2. Catalog
	Terminology Definitions

	1.3 Understanding HelmRequest
	Differences Between HelmRequest and Helm
	HelmRequest and Application Integration
	Deployment Workflow
	Component Definitions

	2 Deploying Helm Charts as Applications via CLI
	2.1 Workflow Overview
	2.2 Preparing the Chart
	2.3 Packaging the Chart
	2.4 Obtaining an API Token
	2.5 Creating a Chart Repository
	2.6 Uploading the Chart
	2.7 Uploading Related Images
	2.8 Deploying the Application
	2.9 Updating the Application
	2.10 Uninstalling the Application
	2.11 Deleting the Chart Repository

	3. Deploying Helm Charts as Applications via UI
	3.1 Workflow Overview
	3.2 Prerequisites
	3.3 Adding Templates to Manageable Repositories
	3.4 Deleting Specific Versions of Templates
	Steps to Operate

	Pod
	Introduction
	Pod Parameters
	Deleting Pods
	Container

	Introduction
	Pod Parameters
	Deleting Pods
	Use Cases
	Procedure

	Container
	Introduction
	Debug Container (Alpha)
	Implementation Principle
	Notes
	Use Cases
	Procedure

	Entering the Container via EXEC
	Entering the Container through Applications
	Prerequisites
	Procedure

	Entering the Container through the Pod
	Prerequisites
	Procedure

	How To
	Setting Scheduled Task Trigger Rules
	Time Conversion
	Writing Crontab Expressions

	Registry
	Introduction
	Install
	How To

	Introduction
	Principles and namespace isolation
	Authentication and authorization
	Authentication
	Authorization

	Advantages
	Application Scenarios

	Install
	Install Via YAML
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry via YAML
	Procedure
	Configuration Reference
	Mandatory Fields

	Verification

	Updating/Uninstalling Alauda Container Platform Registry
	Update
	Uninstall

	Install Via Web UI
	When to Use This Method?
	Prerequisites
	Installing Alauda Container Platform Registry cluster plugin using the web console
	Procedure
	Verification

	Updating/Uninstalling Alauda Container Platform Registry

	How To
	Common CLI Command Operations
	Logging in Registry
	Add namespace permissions for users
	Add namespace permissions for a service account
	Pulling Images
	Pushing Images

	Using Alauda Container Platform Registry in Kubernetes Clusters
	Registry Access Guidelines
	Deploy Sample Application
	Cross-Namespace Access
	Example Role Binding

	Best Practices
	Verification Checklist
	Troubleshooting

	Source to Image
	Introduction
	Install
	Architecture
	Guides
	How To

	Introduction
	Source to Image Concept
	Core Features
	Core Benefits
	Application scenarios
	Usage Limitations

	Install
	Installing Alauda Container Platform Builds
	Prerequisites
	Procedure
	Install the Alauda Container Platform Builds Operator
	Install the Shipyard instance
	Verification

	Architecture
	Guides
	Managing applications created from Code
	Key Features
	Advantages
	Prerequisites
	Procedure
	Related operations
	Build

	How To
	Creating an application from Code
	Prerequisites
	Procedure

	Node Isolation Strategy
	Introduction
	Architecture
	Concepts
	Guides
	Permissions

	Introduction
	Advantages
	Application Scenarios

	Architecture
	Concepts
	Core Concepts
	Node Isolation

	Guides
	Create Node Isolation Strategy
	Create Node Isolation Strategy
	Delete Node Isolation Strategy

	Permissions
	FAQ
	Why shouldn't multiple ResourceQuotas exist in a namespace when importing it?
	Why shouldn't multiple LimitRanges exist or a LimitRange that is not named default in a namespace when importing it?

