
Networking

Introduction

Architecture

Introduction

Advantages

Application Scenarios

Usage Limitations

Understanding Kube-OVN

Upstream OVN/OVS Components

Core Controller and Agent

Monitoring, Operation and Maintenance Tools and Extension Components

Understanding ALB

Core components

Quick Start

ALB Common Concepts

Relationship between ALB, ALB Instance, Frontend/FT, Rule, 

ALB Leader

Additional resources:

Understand

Terminology

Principles of Hig

MetalLB's Algor

External Addres

Additional resou

Alauda Container Platform

Networking - Alauda Container Platform

http://localhost:4173/container_platform/


Concepts

Guides

Auth

Basic Concept

Quick Start

Related Ingress Annotations

forward-auth

basic-auth

CR

ALB Special Ingress Annotation

Ingress-Nginx Auth Related Other Features

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Ingress-nginx Annotation Compatibility

Basic concepts

Supported ingress-nginx annotations

TCP/HTTP K

Basic Concept

CRD

ModSecurit

Terminology

Procedure to O

Related Explan

Configuration E

Comparison Among Different Ingress Method

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

HTTP Redir

Basic Concept

CRD

Ingress Annotat

Port Level Redi

Rule Level Red

L4/L7 Timeout

Basic Concept

CRD

What Timeout Means

Ingress Annotation

Port Level Timeout

GatewayAPI

OTel

Terminology

Prerequisites

Procedure

Related Operations

Additional Notes

Configuration Example

Networking - Alauda Container Platform



Creating Services

Why Service is Needed

Example ClusterIP type Service:

Headless Services

Creating a service by using the web console

Creating a service by using the CLI

Example: Accessing an Application Within the Cluste

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

Creating Ingresses

Implementation Method

Prerequisites

Example Ingress:

Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Configure G

Terminology

Prerequisites

Example Gatew

Creating Gatew

Creating Gatew

Viewing Resour

Updating Gatew

Updating Gatew

Add Listener

Add Listener by

Add Listener by

Creating Route 

Example HTTP

Creating Route 

Creating Route 

Creating a Domain Name

Example Domain custom resource (CR)

Creating Domain by using the web console

Creating Domain by using the CLI

Subsequent Actions

Additional resources

Creating Certificates

Creating a certificate by using the web console

Creating External IP Address Pool

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web conso

Creating an External IP Address Pool by using the CLI

View Alarm Policy

Creating BGP Peers

Terminology

Prerequisites

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Configure S

IP Allocation Ru

Calico Network

Kube-OVN Netw

Subnet Manage

Configure N

Networking - Alauda Container Platform



How To

Creating Netwo

Creating Netwo

Reference

Creating Admin Network Policies

Notes

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Configure Cluster Network Policies

Notes

Procedure

Deploy High Available VIP for ALB

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

Soft Data Center LB Solution (Alpha)

Prerequisites

Procedure

Verification

Preparing K

Usage Instructio

Terminology Ex

Environment Re

Configuration E

Automatic Interconnection of Underlay and Ov

ProcedureUse OAuth Proxy with ALB

Overview

Procedure

Result

Creating Ga

Deploy MetalLB

Set Pod Securit

Configure a Load Balancer

Prerequisites

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

Creating a Load Balancer by using the CLI.

How to properly allocate CPU and memory resources

Small Production Environment

Medium Production Environment

Forwarding

Configuration M

Networking - Alauda Container Platform



Trouble Shooting

Update Load Balancer by using the web console

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by using the web console

Creating Listener Ports (Frontend) by using the CLI

Subsequent Actions

Related Operations

Example Rule custom resource (CR)

Creating Rule by using web console

Creating Rule by using the CLI

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Additional resources

Large Production Environment

Special Scenario Deployment Recommendations

Load Balancer Usage Mode Selection

Result Verificati

Calico Netw

Installation Stat

Terminology

Notes

Prerequisites

Procedure

Result Verificati

Kube-OVN Overlay Network Supports IPsec Encryption

Terminology

Notes

Prerequisites

Procedure

ALB Monito

Terminology

Procedure

Monitoring Metr

Networking - Alauda Container Platform



How to Solve Inter-node Communication Issues in ARM Environments?Find Who Cause the Error

Networking - Alauda Container Platform



Introduction

The container network is a comprehensive networking solution designed for cloud-native

applications, ensuring seamless east-west communication within clusters and efficient north-

south traffic management across external networks, while providing essential networking

functionalities. It consists of these core components:

Container Network Interfaces (CNIs) for east-west traffic management within the cluster.

Ingress Gateway Controller ALB for managing HTTPS ingress traffic.

MetalLB for handling LoadBalancer type Services.

Additionally, it provides robust network security and encryption features to ensure secure

communication.

TOC

Advantages

The container network offers the following core advantages:

Flexible Network Management

Advantages

Application Scenarios

Usage Limitations

Alauda Container Platform

Introduction - Alauda Container Platform

http://localhost:4173/container_platform/


With support for multiple CNIs, he container network supports both overlay, underlay and

routing modes, providing flexibility to adapt to diverse network environments. It also offers

fine-grained IP allocation and robust egress management. As the founding team of Kube-

OVN, we bring extensive hands-on experience in building and maintaining large-scale

networks, ensuring reliable and performant connectivity.

Isolation, Multi-Tenant, and API Flexibility for Ingress Gateway

With the ALB operator, multiple ALB instances can be created and managed within one

cluster. Each tenant can have a dedicated group of ALB instances as ingress gateway,

ensuring effective isolation and resource management. Additionally, users can flexibly

choose between Ingress and Gateway API based on their preferences and operational

requirements, ensuring seamless traffic management and enhanced flexibility. As the

founding team of ALB, we can guaranteeing a robust and scalable solution.

Comprehensive Network Security

Container network provides a multi-layered security framework to ensure protection across

all levels. In the CNI layer, we support multiple security policy models, including

NetworkPolicy and AdminNetworkPolicy, to enforce fine-grained network access controls.

For secure data transmission, the network incorporates robust traffic encryption. At the

Ingress Gateway layer, we provide advanced security mechanisms such as TLS

termination and support for ModSecurity, offering comprehensive protection for external-

facing applications. With built-in network policy enforcement, encryption, and traffic

monitoring, it ensures protection against unauthorized access and maintains compliance

with security standards.

Application Scenarios

The container network is particularly suitable for the following scenarios:

East-West Traffic Management

Leveraging CNIs to provide efficient pod-to-pod communication within clusters, with

support for both overlay and underlay network modes to meet different deployment needs.

North-South Traffic Control

Introduction - Alauda Container Platform



Using ALB as the Ingress Gateway Controller to manage external HTTPS traffic, with

flexible API choices and multi-tenant isolation capabilities for different teams.

Load Balancer Service Exposure

Utilizing MetalLB to provide high availability for LoadBalancer type Services, enabling

reliable external access to cluster services through virtual IP addresses.

Network Security and Encryption

Implementing comprehensive security through NetworkPolicy, AdminNetworkPolicy, and

traffic encryption to ensure secure communication across the network infrastructure.

Usage Limitations

While the container network provides extensive functionalities, the following limitations should

be noted:

Underlay Network Requirement

Some underlay network capabilities, such as Kube-OVN Underlay Subnet, Egress IP, and

MetalLB, require underlying L2 network support. These features cannot be used in public

cloud providers and certain virtualized environments like AWS and GCP.

With its versatile design and comprehensive feature set, the container network empowers

organizations to build, scale, and manage secure, reliable, and high-performance

containerized applications.

Introduction - Alauda Container Platform



Architecture

Understanding Kube-OVN

Upstream OVN/OVS Components

Core Controller and Agent

Monitoring, Operation and Maintenance Tools and Extension Components

Understanding ALB

Core components

Quick Start

ALB Common Concepts

Relationship between ALB, ALB Instance, Frontend/FT, Rule, 

ALB Leader

Additional resources:

Understand

Terminology

Principles of Hig

MetalLB's Algor

External Addres

Additional resou

Alauda Container Platform

Architecture - Alauda Container Platform

http://localhost:4173/container_platform/


Understanding Kube-OVN

This document describes the general architecture of Kube-OVN, the functionality of each

component and how they interact with each other.

Overall, Kube-OVN serves as a bridge between Kubernetes and OVN, combining proven SDN

with Cloud Native. This means that Kube-OVN not only implements network specifications

under Kubernetes, such as CNI, Service and Networkpolicy, but also brings a large number of

SDN domain capabilities to cloud-native, such as logical switches, logical routers, VPCs,

gateways, QoS, ACLs and traffic mirroring.

Kube-OVN also maintains a good openness to integrate with many technology solutions, such

as Cilium, Submariner, Prometheus, KubeVirt, etc.

The components of Kube-OVN can be broadly divided into three categories.

Upstream OVN/OVS components.

Core Controller and Agent.

Monitoring, operation and maintenance tools and extension components.

Alauda Container Platform

Understanding Kube-OVN - Alauda Container Platform

http://localhost:4173/container_platform/


TOC

Upstream OVN/OVS Components

Upstream OVN/OVS Components

ovn-central

ovs-ovn

Core Controller and Agent

kube-ovn-controller

kube-ovn-cni

Monitoring, Operation and Maintenance Tools and Extension Components

kube-ovn-speaker

kube-ovn-pinger

kube-ovn-monitor

kubectl-ko

Understanding Kube-OVN - Alauda Container Platform



This type of component comes from the OVN/OVS community with specific modifications for

Kube-OVN usage scenarios. OVN/OVS itself is a mature SDN system for managing virtual

machines and containers, and we strongly recommend that users interested in the Kube-OVN

implementation read ovn-architecture(7)  first to understand what OVN is and how to

integrate with it. Kube-OVN uses the northbound interface of OVN to create and coordinate

virtual networks and map the network concepts into Kubernetes.

All OVN/OVS-related components have been packaged into images and are ready to run in

Kubernetes.

ovn-central

The ovn-central  Deployment runs the control plane components of OVN, including ovn-

nb , ovn-sb , and ovn-northd .

ovn-nb : Saves the virtual network configuration and provides an API for virtual network

management. kube-ovn-controller  will mainly interact with ovn-nb  to configure the

virtual network.

ovn-sb : Holds the logical flow table generated from the logical network of ovn-nb , as

well as the actual physical network state of each node.

ovn-northd : translates the virtual network of ovn-nb  into a logical flow table in ovn-

sb .

Multiple instances of ovn-central  will synchronize data via the Raft protocol to ensure high

availability.

ovs-ovn

ovs-ovn  runs as a DaemonSet on each node, with openvswitch , ovsdb , and ovn-

controller  running inside the Pod. These components act as agents for ovn-central  to

translate logical flow tables into real network configurations.

Core Controller and Agent

↗

Understanding Kube-OVN - Alauda Container Platform

https://www.mankier.com/7/ovn-architecture
https://www.mankier.com/7/ovn-architecture
https://www.mankier.com/7/ovn-architecture


This part is the core component of Kube-OVN, serving as a bridge between OVN and

Kubernetes, bridging the two systems and translating network concepts between them. Most

of the core functions are implemented in these components.

kube-ovn-controller

This component performs the translation of all resources within Kubernetes to OVN resources

and acts as the control plane for the entire Kube-OVN system. The kube-ovn-controller

listens for events on all resources related to network functionality and updates the logical

network within the OVN based on resource changes. The main resources listened including:

Pod, Service, Endpoint, Node, NetworkPolicy, VPC, Subnet, Vlan, ProviderNetwork.

Taking the Pod event as an example, kube-ovn-controller  listens to the Pod creation

event, allocates the address via the built-in in-memory IPAM function, and calls ovn-

central  to create logical ports, static routes and possible ACL rules. Next, kube-ovn-

controller  writes the assigned address and subnet information such as CIDR, gateway,

route, etc. to the annotation of the Pod. This annotation is then read by kube-ovn-cni  and

used to configure the local network.

kube-ovn-cni

This component runs on each node as a DaemonSet, implements the CNI interface, and

operates the local OVS to configure the local network.

This DaemonSet copies the kube-ovn  binary to each machine as a tool for interaction

between kubelet  and kube-ovn-cni . This binary sends the corresponding CNI request to

kube-ovn-cni  for further operation. The binary will be copied to the /opt/cni/bin

directory by default.

kube-ovn-cni  will configure the specific network to perform the appropriate traffic

operations, and the main tasks including:

1. Config ovn-controller  and vswitchd .

2. Handle CNI Add/Del requests:

1. Create or delete veth pair and bind or unbind to OVS ports.

Understanding Kube-OVN - Alauda Container Platform



2. Configure OVS ports

3. Update host iptables/ipset/route rules.

3. Dynamically update the network QoS.

4. Create and configure the ovn0  NIC to connect the container network and the host

network.

5. Configure the host NIC to implement Vlan/Underlay/EIP.

6. Dynamically config inter-cluster gateways.

Monitoring, Operation and Maintenance Tools and
Extension Components

These components provide monitoring, diagnostics, operations tools, and external interface to

extend the core network capabilities of Kube-OVN and simplify daily operations and

maintenance.

kube-ovn-speaker

This component is a DaemonSet running on a specific labeled nodes that publish routes to

the external, allowing external access to the container directly through the Pod IP.

kube-ovn-pinger

This component is a DaemonSet running on each node to collect OVS status information,

node network quality, network latency, etc.

kube-ovn-monitor

This component collects OVN status information and the monitoring metrics.

kubectl-ko

This component is a kubectl plugin, which can quickly run common operations.

Understanding Kube-OVN - Alauda Container Platform



Understanding Kube-OVN - Alauda Container Platform



Understanding ALB

ALB (Another Load Balancer) is a Kubernetes Gateway powered by OpenResty with years of

production experience from Alauda.

TOC

Core components

Quick Start

Deploy the ALB Operator

Deploy an ALB Instance

Run a demo application

ALB Common Concepts

Auth

Network Mode

Host Network Mode

Container Network Mode

Frontend

Additional resources

Rules

dslx

Project Isolation

Project Mode

Port Project Mode

Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project

Ingress

Alauda Container Platform

Understanding ALB - Alauda Container Platform

http://localhost:4173/container_platform/


Core components

ALB Operator: An operator that manage the lifecycle of ALB instances. It is responsible for

watching ALB CRs and then creating and updating ALB instances for different tenants.

ALB Instance: The ALB instance includes an Openresty that act as the data plan and a Go

controller as the controller plan. The Go controller monitors various CRs (Ingress, Gateway,

Rule, etc.) and converts them into ALB-specific DSL rules. OpenResty then uses these

DSL rules to match and process incoming requests.

Ingress Controller

ALB

ALB Instance

ALB-Operator

Frontend (abbreviation: FT)

RULE

ALB Leader

Project

Additional resources:

Understanding ALB - Alauda Container Platform



Quick Start

Deploy the ALB Operator

1. Create a cluster.

2. 

3. 

Deploy an ALB Instance

Run a demo application

 helm repo add alb https://alauda.github.io/alb/;helm repo update;helm 

search repo|grep alb

 helm install alb-operator alb/alauda-alb2

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2beta1

kind: ALB2

metadata:

    name: alb-demo

    namespace: kube-system

spec:

    address: "172.20.0.5"  # the ip address of node where alb been deploy

ed

    type: "nginx"

    config:

        networkMode: host

        loadbalancerName: alb-demo

        projects:

        - ALL_ALL

        replicas: 1

EOF

Understanding ALB - Alauda Container Platform



Understanding ALB - Alauda Container Platform



cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

  name: hello-world

  labels:

    k8s-app: hello-world

spec:

  replicas: 1

  selector:

    matchLabels:

      k8s-app: hello-world

  template:

    metadata:

      labels:

        k8s-app: hello-world

    spec:

      terminationGracePeriodSeconds: 60

      containers:

      - name: hello-world

        image: docker.io/crccheck/hello-world:latest

        imagePullPolicy: IfNotPresent

---

apiVersion: v1

kind: Service

metadata:

  name: hello-world

  labels:

    k8s-app: hello-world

spec:

  ports:

  - name: http

    port: 80

    targetPort: 8000

  selector:

    k8s-app: hello-world

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: hello-world

spec:

  rules:

h

Understanding ALB - Alauda Container Platform



Now you can access the app via curl http://${ip}

ALB Common Concepts

The following defines common concepts in the ALB.

Auth

Auth is a mechanism that performs authentication before a request reaches the actual

service. It allows you to handle authentication at the ALB level uniformly, without implementing

authentication logic in each backend service.

Learn more about ALB Auth.

Network Mode

An ALB instance could be deployed in two modes: host network mode and container network

mode.

Host Network Mode

Directly use the node's network stack, sharing the IP address and port with the node.

In this mode, the load balancer instance directly binds to the node's port, without port mapping

or similar container network encapsulation conversion.

  - http:

      paths:

      - path: /

        pathType: Prefix

        backend:

          service:

            name: hello-world

            port:

              number: 80

EOF

Understanding ALB - Alauda Container Platform



To avoid port conflicts, only one ALB instance is allowed to be deployed on a single node.

In host-network mode ALB instance will listen to all the NIC of the node by default.

Advantages:

1. Best network performance.

2. Could be accessed by node's IP address.

Disadvantages:

1. Only one ALB instance is allowed to be deployed on a single node.

2. Port might conflict with other processes.

Container Network Mode

Unlike host network mode, container network mode deploys ALB using container networking.

NOTE

Understanding ALB - Alauda Container Platform



Advantages:

1. Supports deploying multiple ALB instances on a single node.

2. ALB provides integration with MetalLB, which can provide VIP for ALB.

3. Port will not conflict with other processes.

Disadvantages:

1. Slightly lower performance.

2. Must access ALB through LoadBalancer service.

Frontend

We define a resource called frontend (abbreviated as ft), which is used to declare all the ports

that all the alb should listen to.

Each frontend corresponds to a listening port on the load balancer (LB). A Frontend is

associated with the ALB via labels.

Understanding ALB - Alauda Container Platform



1. Required, indicate the ALB instance to which this Frontend belongs to.

2. Format as $alb_name-$port .

3. Format as $secret_ns/$secret_name .

4. Protocol of this Frontend itself.

http|https|grpc|grpcs  for l7 proxy.

tcp|udp  for l4 proxy.

5. For l4 proxy, serviceGroup  is required. For l7 proxy, serviceGroup  is. optional. When a

request arrives, ALB will first try to match it against rules associated with this Frontend.

Only if the request doesn't match any rule, ALB will then forward it to the default

serviceGroup  specified in the Frontend configuration.

6. weight  configuration applicable to Round Robin and Weighted Round Robin scheduling

algorithms.

ALB listens to ingress and automatically creates a Frontend  or Rule. source  field is defined as

follows:

NOTE

apiVersion: crd.alauda.io/v1

kind: Frontend

metadata:

  labels:

    alb2.cpaas.io/name: alb-demo 1

  name: alb-demo-00080 2

  namespace: cpaas-system

spec:

  backendProtocol: "http"

  certificate_name: "" 3

  port: 80

  protocol: http 4

  serviceGroup: 5

    services:

      - name: hello-world

        namespace: default

        port: 80

        weight: 100 6

Understanding ALB - Alauda Container Platform



1. spec.source.type  currently only supports ingress .

2. spec.source.name  is ingress name.

3. spec.source.namespace  is ingress namespace.

Additional resources

L4/L7 timeout

Keepalive

Rules

We define a resource called rule, which is used to describe how an alb instance should handle

a 7-layer request.

Complex traffic matching and distribution patterns can be configured by Rule. When the traffic

arrives, it hits the traffic according to the internal rules and does the corresponding forwarding,

and provides some additional functions such as cors, url rewrite and so on.

Understanding ALB - Alauda Container Platform



Understanding ALB - Alauda Container Platform



apiVersion: crd.alauda.io/v1

kind: Rule

metadata:

  labels:

    alb2.cpaas.io/frontend: alb-demo-00080 1

    alb2.cpaas.io/name: alb-demo 2

  name: alb-demo-00080-test

  namespace: kube-system

spec:

  backendProtocol: "" 3

  certificate_name: "" 4

  dslx:

    - type: METHOD

      values:

        - - EQ

          - POST

    - type: URL

      values:

        - - STARTS_WITH

          - /app-a

        - - STARTS_WITH

          - /app-b

    - type: PARAM

      key: group

      values:

        - - EQ

          - vip

    - type: HOST

      values:

        - - ENDS_WITH

          - .app.com

    - type: HEADER

      key: LOCATION

      values:

        - - IN

          - east-1

          - east-2

    - type: COOKIE

      key: uid

      values:

        - - EXIST

    - type: SRC_IP

      values:

Understanding ALB - Alauda Container Platform



1. Required, indicate the Frontend to which this rule belongs.

2. Required, indicate the ALB to which this rule belongs.

3. As same as Frontend.

4. As same as Frontend.

5. The lower the number, the higher the priority.

6. As same as Frontend.

dslx

dslx is a domain specific language, it is used to describe the matching criteria.

For example, below rule matches a request that satisfies all the following criteria:

url starts with /app-a or /app-b

method is post

url param's group is vip

host is *.app.com

header's location is east-1 or east-2

has a cookie name is uid

source IPs come from 1.1.1.1-1.1.1.100

        - - RANGE

          - "1.1.1.1"

          - "1.1.1.100"

  enableCORS: false

  priority: 4 5

  serviceGroup: 6

    services:

      - name: hello-world

        namespace: default

        port: 80

        weight: 100

Understanding ALB - Alauda Container Platform



Project Isolation

For rule, default is project isolation, each user can only see the rule of their own project.

dslx:

  - type: METHOD

    values:

      - - EQ

        - POST

  - type: URL

    values:

      - - STARTS_WITH

        - /app-a

      - - STARTS_WITH

        - /app-b

  - type: PARAM

    key: group

    values:

      - - EQ

        - vip

  - type: HOST

    values:

      - - ENDS_WITH

        - .app.com

  - type: HEADER

    key: LOCATION

    values:

      - - IN

        - east-1

        - east-2

  - type: COOKIE

    key: uid

    values:

      - - EXIST

  - type: SRC_IP

    values:

      - - RANGE

        - "1.1.1.1"

        - "1.1.1.100"

Understanding ALB - Alauda Container Platform



Project Mode

An ALB can be shared by multiple projects, and these projects can control this ALB. All ports

of the ALB are visible to these projects.

Port Project Mode

A port of a ALB can belong to different projects. This deployment mode is called Port Project

Mode. The administrator needs to specify the port segment that each project can use. The

users of this project can only create ports within this port segment, and can only see the ports

within this port segment.

Relationship between ALB, ALB Instance,
Frontend/FT, Rule, Ingress, and Project

LoadBalancer is a key component in modern cloud-native architectures, serving as an

intelligent traffic router and load balancer.

To understand how ALB works in a Kubernetes cluster, we need to understand several core

concepts and their relationships:

ALB itself

Frontend (FT)

Rules

Ingress resources

Projects

These components work together to enable flexible and powerful traffic management

capabilities.

Next introduces how these concepts work together and what roles they play in the request-

calling chain. Detailed introductions for each concept will be covered in other articles.

Understanding ALB - Alauda Container Platform



Kubernetes cluster
Svc-A

network-request route to pod via ingressclient alb-instance SvcAPod1

SvcAPod2

In a request-calling chain:

1. A client sends an HTTP/HTTPS/other protocol request, and finally the request will arrive

on a pod of ALB, and the pod (an ALB instance) will start to handle this request.

2. This ALB instance finds a rule which could match this request.

3. If needed, modify/redirect/rewrite the request based on the rule.

4. Find and select one pod IP from the services which the rule configured. And forward the

request to the pod.

Ingress

Ingress is a resource in Kubernetes, used to describe what request should be sent to which

service.

Ingress Controller

A program that understands Ingress resource and will proxy request to service.

ALB

ALB is an Ingress controller.

In Kubernetes cluster, we use the alb2  resource to operate an ALB. You could use kubectl

get alb2 -A  to view all the ALBs in the cluster.

ALBs are created by users manually. Each ALB has its own IngressClass. When you create

an Ingress, you can use .spec.ingressClassName  field to indicate which Ingress controller

Understanding ALB - Alauda Container Platform



should handle this Ingress.

ALB Instance

ALB also is a Deployment (bunch of pods) running in the cluster. Each pod is called an ALB

instance.

Each ALB instance handles requests independently, but all instances share Frontend (FT),

Rule, and other configurations belonging to the same ALB.

ALB-Operator

ALB-Operator, a default component deployed in the cluster, is an operator for ALB. It will

create/update/delete Deployment and other related resources for each ALB according to the

ALB resource.

Frontend (abbreviation: FT)

FT is a resource defined by ALB itself. It is used to represent the ALB instance listening ports.

FT could be created by ALB-Leader or user manually.

Cases of FT created by ALB-Leader:

1. If Ingress has certificate, we will create FT 443 (HTTPS).

2. If Ingress has no certificate, we will create FT 80 (HTTP).

RULE

RULE is a resource defined by ALB itself. It takes the same role as the Ingress, but it is more

specific. A RULE is uniquely associated with a FT.

RULE could be created by ALB-Leader or user manually.

Cases of RULE created by ALB-Leader:

1. Sync Ingress to RULE.

Understanding ALB - Alauda Container Platform



ALB Leader

In multiple ALB instances, one will be elected as leader. The leader is responsible for:

1. Translating the Ingress into Rules. We will create Rule for each path in the Ingress.

2. Creating FT needed by Ingress. For example, if Ingress has certificate we will create FT

443 (HTTPS), if Ingress has no certificate we will create FT 80 (HTTP).

Project

From the perspective of ALB, Project is a set of namespaces.

You could configure one or more Projects in an ALB. When ALB Leader translates the Ingress

into Rules, it will ignore Ingress in namespaces which do not belong to the Project.

Additional resources:

Configure a Load Balancer

Understanding ALB - Alauda Container Platform



Understanding MetalLB

TOC

Terminology

VIP
A Virtual IP Address (VIP) is the IP address assigned by MetalLB for the

LoadBalancer type internal routing, providing a unified access point for external

traffic to access services within the cluster.

ARP
The Address Resolution Protocol (ARP) is utilized to map network layer IP

addresses to data link layer MAC addresses.

Terminology

Principles of High Availability in MetalLB

MetalLB's Algorithm for Selecting VIP Host Nodes

External Address Pools and Number of Nodes

Calculation Formula

Application Example

Additional resources

Term Description

Alauda Container Platform

Understanding MetalLB - Alauda Container Platform

http://localhost:4173/container_platform/


GARP

Gratuitous ARP (GARP) is a special ARP request used to inform other nodes in

the network about the binding of an IP address to a MAC address. Unlike

normal ARP requests, GARP does not wait for responses but actively sends

information across the network.

ARP
Responder

A component of MetalLB responsible for responding to ARP requests by

mapping the VIP to the node's MAC address. When a node needs to

communicate with the VIP, it sends ARP requests to retrieve the MAC address

corresponding to the VIP. Each available node has an ARP Responder that

responds to these requests, mapping the VIP to the node's MAC address.

Controller

A component of MetalLB that dynamically allocates VIPs from the external

address pool for LoadBalancer type internal routing. The Controller listens for

creation and deletion events of internal routes in the cluster to allocate or free

VIPs as required.

Speaker

A component of MetalLB that determines, based on policies or algorithms,

whether nodes should host a VIP and send GARP. It ensures a certain level of

balance among nodes, and when a node becomes unavailable, other nodes

can take over the VIP and send GARP, thereby achieving high availability.

Principles of High Availability in MetalLB

Term Description

Understanding MetalLB - Alauda Container Platform



By default, the platform uses MetalLB's ARP mode, and the specific implementation process

and principles are as follows:

The Controller component of MetalLB selects an IP address from the external address pool

and allocates it to the LoadBalancer type internal routing as a VIP.

MetalLB selects an available node to host the VIP based on the algorithm, which then

forwards the traffic.

The Speaker component on this node actively sends GARP, establishing a mapping

relationship between the VIP and MAC address across all nodes.

Nodes within the same subnet, upon learning the mapping between the VIP and the

available node's MAC address, will communicate directly with this node when accessing

the VIP.

Nodes in different subnets will route traffic to the gateway of their subnet first, which will

then forward the traffic to the node hosting the VIP.

When this node encounters a failure, MetalLB selects another available node to host the

VIP, thereby ensuring high availability.

Upon reaching the node, Kube-Proxy forwards the traffic to the corresponding Pod.

Understanding MetalLB - Alauda Container Platform



MetalLB's Algorithm for Selecting VIP Host Nodes

MetalLB hashes all available nodes corresponding to the external address pool with the VIP

and sorts them according to a specific algorithm, choosing the first available node as the host

for the VIP.

External Address Pools and Number of Nodes

Create an external address pool and add available nodes. All available nodes maintain a

backup relationship, meaning only the node hosting the VIP can forward traffic, requiring it to

handle all traffic for the VIPs in the external address pool.

Calculation Formula

The formula is: Number of external address pools = ceil(n-vip / n-node), where ceil rounds

up.

Note: If using virtual machines, the number of virtual machines = Number of external address

pools * n. Here, n must be greater than 2, with a maximum of one node failure allowed.

n-vip: Represents the number of VIPs.

n-node: Represents the number of VIPs a single node can handle.

Application Example

If a company has 10 VIPs, and each available node can handle 5 VIPs, allowing for one node

failure, how should the company plan the number of external address pools and available

nodes?

Analysis:

A total of two external address pools and four available nodes are needed.

Each available node can handle a maximum of 5 VIPs, meaning one external address pool

can accommodate 5 VIPs, so two external address pools are required for 10 VIPs.

Understanding MetalLB - Alauda Container Platform



Allowing one node failure means that each address pool must include one node hosting the

VIP and one backup node, resulting in two available nodes for each of the two external

address pools.

Additional resources

Creating External IP Address Pool

Creating BGP Peers

Understanding MetalLB - Alauda Container Platform



Concepts

Auth

Basic Concept

Quick Start

Related Ingress Annotations

forward-auth

basic-auth

CR

ALB Special Ingress Annotation

Ingress-Nginx Auth Related Other Features

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Ingress-nginx Annotation Compatibility

Basic concepts

Supported ingress-nginx annotations

TCP/HTTP K

Basic Concept

CRD

ModSecurit

Terminology

Procedure to O

Related Explan

Configuration E

Comparison Among Different Ingress Method

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

HTTP Redir

Basic Concept

CRD

Ingress Annotat

Port Level Redi

Rule Level Red

L4/L7 Timeout

Basic Concept

CRD

What Timeout Means

Ingress Annotation

Port Level Timeout

GatewayAPI

OTel

Terminology

Prerequisites

Procedure

Related Operations

Additional Notes

Alauda Container Platform

Concepts - Alauda Container Platform

http://localhost:4173/container_platform/


Configuration Example

Concepts - Alauda Container Platform



Auth

TOC

Basic Concept

What is Auth

Supported Auth Methods

Auth Configuration Methods

Auth Result Handling

Quick Start

Deploy ALB

Configure Secret and Ingress

Verify

Related Ingress Annotations

forward-auth

Construct Related Annotations

auth-url

auth-method

auth-proxy-set-headers

Construct app-request related annotations

auth-response-headers

cookie handling

Redirect sign related configuration

auth-signin

auth-signin-redirect-param

auth-request-redirect

Alauda Container Platform

Auth - Alauda Container Platform

http://localhost:4173/container_platform/


Basic Concept

What is Auth

Auth is a mechanism that performs authentication before a request reaches the actual

service. It allows you to handle authentication at the ALB level uniformly, without implementing

authentication logic in each backend service.

Supported Auth Methods

ALB supports two main authentication methods:

1. Forward Auth (External Authentication)

Send a request to an external authentication service to verify the user's identity

Applicable scenarios: Need complex authentication logic, such as OAuth, SSO, etc.

Workflow:

basic-auth

auth-realm

auth-type

auth-secret

auth-secret-type

CR

ALB Special Ingress Annotation

Auth-Enable

Ingress-Nginx Auth Related Other Features

Global-Auth

No-Auth-Locations

Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Auth - Alauda Container Platform



1. User request arrives at ALB

2. ALB forwards the authentication information to the authentication service

3. The authentication service returns the verification result

4. Based on the authentication result, decide whether to allow access to the backend

service

2. Basic Auth (Basic Authentication)

A simple authentication mechanism based on username and password

Applicable scenarios: Simple access control, development environment protection

Workflow:

1. User request arrives at ALB

2. ALB checks the username and password in the request

3. Compare with the configured authentication information

4. If the verification passes, forward to the backend service

Auth Configuration Methods

1. Global Auth

Configure at the ALB level, applicable to all services

Configure at the ALB or FT CR

2. Path-level Auth

Configure at the specific Ingress path

Configure at the specific Rule

Can override the global auth configuration

3. Disable Auth

Disable auth for a specific path

Configure at the Ingress with annotation: alb.ingress.cpaas.io/auth-enable:

"false"

Auth - Alauda Container Platform



Configure at the Rule with CR

Auth Result Handling

Auth success: Request will be forwarded to the backend service

Auth failed: Return 401 unauthorized error

Can configure the redirect behavior after auth failed (applicable to Forward Auth)

Quick Start

Configure Basic Auth with ALB

Deploy ALB

Configure Secret and Ingress

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

  name: auth

  namespace: cpaas-system

spec:

  config:

    networkMode: container

    projects:

    - ALL_ALL

    replicas: 1

    vip:

      enableLbSvc: false

  type: nginx

EOF

export ALB_IP=$(kubectl get pods -n cpaas-system -l service_name=alb2-aut

h -o jsonpath='{.items[*].status.podIP}');echo $ALB_IP

Auth - Alauda Container Platform



Verify

# echo "Zm9vOiRhcHIxJHFJQ05aNjFRJDJpb29pSlZVQU1tcHJxMjU4L0NoUDE=" | base6

4 -d #  foo:$apr1$qICNZ61Q$2iooiJVUAMmprq258/ChP1

# openssl passwd -apr1 -salt qICNZ61Q bar # $apr1$qICNZ61Q$2iooiJVUAMmprq

258/ChP1

kubectl apply -f - <<'END'

apiVersion: v1

kind: Secret

metadata:

  name: auth-file

type: Opaque

data:

  auth: Zm9vOiRhcHIxJHFJQ05aNjFRJDJpb29pSlZVQU1tcHJxMjU4L0NoUDE=

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: auth-file

  annotations:

    "nginx.ingress.kubernetes.io/auth-type": "basic"

    "nginx.ingress.kubernetes.io/auth-secret": "default/auth-file"

    "nginx.ingress.kubernetes.io/auth-secret-type": "auth-file"

spec:

  rules:

  - http:

      paths:

      - path: /app-file

        pathType: Prefix

        backend:

          service:

            name: app-server

            port:

              number: 80

END

Auth - Alauda Container Platform



Related Ingress Annotations

Ingress-nginx defines a series of annotations to configure the specific details of the

authentication process. Below is a list of annotations that ALB supports, where "v" indicates

support and "x" indicates no support.

forward-auth
forward auth by

sending http request

nginx.ingress.kubernetes.io/auth-url v string

nginx.ingress.kubernetes.io/auth-

method
v string

nginx.ingress.kubernetes.io/auth-

signin
v string

nginx.ingress.kubernetes.io/auth-

signin-redirect-param
v string

nginx.ingress.kubernetes.io/auth-

response-headers
v string

nginx.ingress.kubernetes.io/auth-

proxy-set-headers
v string

nginx.ingress.kubernetes.io/auth-

request-redirect
v string

support type note

# echo "Zm9vOiJhYXIi" | base64 -d # foo:bar

curl -v -X GET -H "Authorization: Basic Zm9vOmJhcg==" http://$ALB_IP:80/a

pp-file # should return 200

# wrong password

curl -v -X GET -H "Authorization: Basic XXXXOmJhcg==" http://$ALB_IP:80/a

pp-file # should return 401

Auth - Alauda Container Platform



nginx.ingress.kubernetes.io/auth-

always-set-cookie
v boolean

nginx.ingress.kubernetes.io/auth-

snippet
x string

basic-auth
auth by username and

password secret

nginx.ingress.kubernetes.io/auth-

realm
v string

nginx.ingress.kubernetes.io/auth-

secret
v string

nginx.ingress.kubernetes.io/auth-

secret-type
v string

nginx.ingress.kubernetes.io/auth-type -
"basic" or

"digest"

basic: supports apr1

digest: not supported

auth-cache

nginx.ingress.kubernetes.io/auth-

cache-key
x string

nginx.ingress.kubernetes.io/auth-

cache-duration
x string

auth-keepalive

keepalive when

sending request.

specify keepalive

behavior through a

series of annotations

nginx.ingress.kubernetes.io/auth-

keepalive
x number

nginx.ingress.kubernetes.io/auth-

keepalive-share-vars
x

"true" or

"false"

support type note

Auth - Alauda Container Platform



nginx.ingress.kubernetes.io/auth-

keepalive-requests
x number

nginx.ingress.kubernetes.io/auth-

keepalive-timeout
x number

auth-tls

when request is https,

extra verify the

certificate.

nginx.ingress.kubernetes.io/auth-tls-

secret
x string

nginx.ingress.kubernetes.io/auth-tls-

verify-depth
x number

nginx.ingress.kubernetes.io/auth-tls-

verify-client
x string

nginx.ingress.kubernetes.io/auth-tls-

error-page
x string

nginx.ingress.kubernetes.io/auth-tls-

pass-certificate-to-upstream
x

"true" or

"false"

nginx.ingress.kubernetes.io/auth-tls-

match-cn
x string

forward-auth

support type note

↗

Auth - Alauda Container Platform

https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication


appauth-serveralbclient

appauth-serveralbclient

client request (cli-request)

alb request to auth-server (auth-request)

auth-server reply 200 (auth-response)

app-request

app-response

cli-response

Related annotations:

nginx.ingress.kubernetes.io/auth-url

nginx.ingress.kubernetes.io/auth-method

nginx.ingress.kubernetes.io/auth-signin

nginx.ingress.kubernetes.io/auth-signin-redirect-param

nginx.ingress.kubernetes.io/auth-response-headers

nginx.ingress.kubernetes.io/auth-proxy-set-headers

nginx.ingress.kubernetes.io/auth-request-redirect

nginx.ingress.kubernetes.io/auth-always-set-cookie

These annotations describe the modifications made to auth-request, app-request, and cli-

response in the above diagram.

Construct Related Annotations

auth-url

Auth-request's URL, value can be a variable.

auth-method

Auth-request's method.

auth-proxy-set-headers

Auth - Alauda Container Platform



The value is a ConfigMap reference in the format ns/name . By default, all headers from the

cli-request will be sent to the auth-server. Additional headers can be configured through

proxy_set_header. The following headers are sent by default:

Construct app-request related annotations

auth-response-headers

Value is a comma-separated string, allowing us to bring specific headers from auth-response

to app-request. example:

When ALB initiates an app-request, it will include the Remote-User and Remote-Name from

the auth-response headers.

cookie handling

auth-response and app-response can both set cookies. By default, only when app-

response.success, the auth-response.set-cookie will be merged into cli-response.set-cookie.

enable always-set-cookie

app-response.set-cookie

merge cookie

auth-response.set-cookie

cli-response.set-cookie

not enable always-set-

cookie

Yes

No

app-response.set-cookie

app-response.success?

auth-response.set-cookie

merge cookie

only use app-response.set-

cookie

cli-response.set-cookie

X-Original-URI          $request_uri;

X-Scheme                $pass_access_scheme;

X-Original-URL          $scheme://$http_host$request_uri;

X-Original-Method       $request_method;

X-Sent-From             "alb";

X-Real-IP               $remote_addr;

X-Forwarded-For         $proxy_add_x_forwarded_for;

X-Auth-Request-Redirect $request_uri;

nginx.ingress.kubernetes.io/auth-response-headers: Remote-User,Remote-Nam

e

Auth - Alauda Container Platform



Redirect sign related configuration

When the auth-server returns 401, we can set the redirect header in the cli-response to

instruct the browser to redirect to the url specified by auth-signin for verification.

auth-serveralbclient

auth-serveralbclient

client request (cli-request)

alb request to auth-server (auth-request)

auth-server reply not 200 (auth-response)

in case of auth failed, alb reply cli-response (with location header to redirect)

auth-signin

Value is a url, specify the location header in cli-response.

auth-signin-redirect-param

The name of the query parameter in the signin-url, default is rd. if the signin-url does not

contain the auth-signin-redirect-param  specified parameter name, alb will automatically

add the parameter. The parameter value will be set to

$pass_access_scheme://$http_host$escaped_request_uri , used to record the original

request URL.

auth-request-redirect

Set the x-auth-request-redirect  header in auth-request.

basic-auth

basic-auth is the authentication process described in RFC 7617 . The interaction process is

as follows:

↗

Auth - Alauda Container Platform

https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617


albclient

albclient

client request (cli-request)

check the username and password in the request

cli-response

auth-realm

description of the protected area  Which is the realm value in the WWW-Authenticate

header of cli-response. WWW-Authenticate: Basic realm="$realm"

auth-type

The type of the authentication scheme, currently only supports basic

auth-secret

The secret refs of the username and password, format is ns/name

auth-secret-type

Secret supports two types:

1. auth-file: secret's data only contains one key "auth", and its value is the string of Apache

htpasswd format. for example:

↗

data:

  auth: "user1:$apr1$xyz..."

Auth - Alauda Container Platform

https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm


2. auth-map: secret's data each key represents a username, and the corresponding value is

the password hash (without the username in htpasswd format). for example:

Note: Currently, only htpasswd format password hashes generated using the apr1 algorithm

are supported.

CR

ALB CR has added auth-related configuration items that can be configured on

ALB/Frontend/Rule CRs. During runtime, ALB will convert the annotations on Ingress into

rules.

data:

  user1: "$apr1$xyz...."

  user2: "$apr1$abc...."

Auth - Alauda Container Platform



Auth supports configuration on:

auth:

  # Basic authentication configuration

  basic:

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-type: ba

sic

    auth_type: "basic"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-realm

    realm: "Restricted Access"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-secret

    secret: "ns/name"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-secret-t

ype

    secret_type: "auth-map|auth-file"

  # Forward authentication configuration

  forward:

    #  boolean; corresponding to nginx.ingress.kubernetes.io/auth-always-

set-cookie

    always_set_cookie: true

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-proxy-se

t-headers

    auth_headers_cm_ref: "ns/name"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-request-

redirect

    auth_request_redirect: "/login"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-method

    method: "GET"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-signin

    signin: "/signin"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-signin-r

edirect-param

    signin_redirect_param: "redirect_to"

    #  []string; corresponding to nginx.ingress.kubernetes.io/auth-respon

se-headers

    upstream_headers:

      - "X-User-ID"

      - "X-User-Name"

      - "X-User-Email"

    #  string; corresponding to nginx.ingress.kubernetes.io/auth-url

    url: "http://auth-service/validate"

Auth - Alauda Container Platform



Alb CR's .spec.config.auth

Frontend CR's .spec.config.auth

Rule CR's .spec.config.auth

The inheritance order is Alb > Frontend > Rule. If a child cr is not configured, the configuration

of the parent cr will be used.

ALB Special Ingress Annotation

In the process of handling Ingress, ALB determines the priority based on the prefix of the

annotation. The priority from high to low is:

index.$rule_index-$path_index.alb.ingress.cpaas.io

alb.ingress.cpaas.io

nginx.ingress.kubernetes.io

This can handle the compatibility problem with ingress-nginx and specify the auth

configuration on a specific Ingress path.

Auth-Enable

A new annotation added by ALB, used to specify whether to enable authentication

functionality for the Ingress.

Ingress-Nginx Auth Related Other Features

Global-Auth

In ingress-nginx, you can set a global auth through the ConfigMap. This is equivalent to

configuring auth for all Ingresses. In ALB, you can configure auth on the ALB2 and FT CRs.

alb.ingress.cpaas.io/auth-enable: "false"

Auth - Alauda Container Platform



The rules under them will inherit these configurations.

No-Auth-Locations

In ALB, you can disable the auth function of this Ingress by configuring the annotation:

alb.ingress.cpaas.io/auth-enable: "false"  on the Ingress.

Note: Incompatible Parts with Ingress-Nginx

1. Does not support auth-keepalive

2. Does not support auth-snippet

3. Does not support auth-cache

4. Does not support auth-tls

5. Basic-auth only supports basic, does not support digest

6. Basic-auth basic only supports apr1 algorithm, does not support bcrypt sha256, etc.

Troubleshooting

1. Check ALB pod Nginx container log

2. Check the X-ALB-ERR-REASON  header in the return

Auth - Alauda Container Platform



Ingress-nginx Annotation Compatibility

TOC

Basic concepts

ingress-nginx is a commonly used Ingress Controller in Kubernetes, and defines many

annotations to implement various functions beyond the official ingress definition.

Supported ingress-nginx annotations

nginx.ingress.kubernetes.io/app-root string x

nginx.ingress.kubernetes.io/affinity cookie

o ingress does not

support. alb rule can

configure cookie hash

Basic concepts

Supported ingress-nginx annotations

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Alauda Container Platform

Ingress-nginx Annotation Compatibility - Alauda Container Platform

http://localhost:4173/container_platform/


nginx.ingress.kubernetes.io/use-regex bool

nginx.ingress.kubernetes.io/affinity-mode

"balanced"

or

"persistent"

o ingress does not

support. alb rule can

configure session

persistence

nginx.ingress.kubernetes.io/affinity-canary-

behavior

"sticky" or

"legacy"

o ingress does not

support. alb rule can

configure session

persistence

nginx.ingress.kubernetes.io/auth-realm string v auth

nginx.ingress.kubernetes.io/auth-secret string v auth

nginx.ingress.kubernetes.io/auth-secret-type string v auth

nginx.ingress.kubernetes.io/auth-type
"basic" or

"digest"
v auth

nginx.ingress.kubernetes.io/auth-tls-secret string x

nginx.ingress.kubernetes.io/auth-tls-verify-

depth
number x

nginx.ingress.kubernetes.io/auth-tls-verify-

client
string x

nginx.ingress.kubernetes.io/auth-tls-error-

page
string x

nginx.ingress.kubernetes.io/auth-tls-pass-

certificate-to-upstream

"true" or

"false"
x

nginx.ingress.kubernetes.io/auth-tls-match-cn string x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/auth-url string v

nginx.ingress.kubernetes.io/auth-cache-key string x

nginx.ingress.kubernetes.io/auth-cache-

duration
string x

nginx.ingress.kubernetes.io/auth-keepalive number x

nginx.ingress.kubernetes.io/auth-keepalive-

share-vars

"true" or

"false"
x

nginx.ingress.kubernetes.io/auth-keepalive-

requests
number x

nginx.ingress.kubernetes.io/auth-keepalive-

timeout
number x

nginx.ingress.kubernetes.io/auth-proxy-set-

headers
string v

nginx.ingress.kubernetes.io/auth-snippet string x

nginx.ingress.kubernetes.io/enable-global-

auth

"true" or

"false"
o auth

nginx.ingress.kubernetes.io/backend-protocol string v

nginx.ingress.kubernetes.io/canary
"true" or

"false"
x

nginx.ingress.kubernetes.io/canary-by-header string x

nginx.ingress.kubernetes.io/canary-by-header-

value
string x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/canary-by-header-

pattern
string x

nginx.ingress.kubernetes.io/canary-by-cookie string x

nginx.ingress.kubernetes.io/canary-weight number x

nginx.ingress.kubernetes.io/canary-weight-

total
number x

nginx.ingress.kubernetes.io/client-body-buffer-

size
string x

nginx.ingress.kubernetes.io/configuration-

snippet
string x

nginx.ingress.kubernetes.io/custom-http-errors []int x

nginx.ingress.kubernetes.io/custom-headers string o

nginx.ingress.kubernetes.io/default-backend string
o can use ingress's

default-backend

nginx.ingress.kubernetes.io/enable-cors
"true" or

"false"
v

nginx.ingress.kubernetes.io/cors-allow-origin string v

nginx.ingress.kubernetes.io/cors-allow-

methods
string v

nginx.ingress.kubernetes.io/cors-allow-

headers
string v

nginx.ingress.kubernetes.io/cors-expose-

headers
string x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/cors-allow-

credentials

"true" or

"false"
x

nginx.ingress.kubernetes.io/cors-max-age number x

nginx.ingress.kubernetes.io/force-ssl-redirect
"true" or

"false"
v redirect

nginx.ingress.kubernetes.io/from-to-www-

redirect

"true" or

"false"
x

nginx.ingress.kubernetes.io/http2-push-

preload

"true" or

"false"
x

nginx.ingress.kubernetes.io/limit-connections number x

nginx.ingress.kubernetes.io/limit-rps number x

nginx.ingress.kubernetes.io/global-rate-limit number x

nginx.ingress.kubernetes.io/global-rate-limit-

window
duration x

nginx.ingress.kubernetes.io/global-rate-limit-

key
string x

nginx.ingress.kubernetes.io/global-rate-limit-

ignored-cidrs
string x

nginx.ingress.kubernetes.io/permanent-

redirect
string v redirect

nginx.ingress.kubernetes.io/permanent-

redirect-code
number v redirect

nginx.ingress.kubernetes.io/temporal-redirect string v redirect

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/preserve-trailing-

slash

"true" or

"false"
x

nginx.ingress.kubernetes.io/proxy-body-size string x

nginx.ingress.kubernetes.io/proxy-cookie-

domain
string x

nginx.ingress.kubernetes.io/proxy-cookie-path string x

nginx.ingress.kubernetes.io/proxy-connect-

timeout
number v timeout

nginx.ingress.kubernetes.io/proxy-send-

timeout
number v timeout

nginx.ingress.kubernetes.io/proxy-read-

timeout
number v timeout

nginx.ingress.kubernetes.io/proxy-next-

upstream
string x

nginx.ingress.kubernetes.io/proxy-next-

upstream-timeout
number x

nginx.ingress.kubernetes.io/proxy-next-

upstream-tries
number x

nginx.ingress.kubernetes.io/proxy-request-

buffering
string x

nginx.ingress.kubernetes.io/proxy-redirect-

from
string x

nginx.ingress.kubernetes.io/proxy-redirect-to string x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/proxy-http-version "1.0" or "1.1" x

nginx.ingress.kubernetes.io/proxy-ssl-secret string x

nginx.ingress.kubernetes.io/proxy-ssl-ciphers string x

nginx.ingress.kubernetes.io/proxy-ssl-name string x

nginx.ingress.kubernetes.io/proxy-ssl-

protocols
string x

nginx.ingress.kubernetes.io/proxy-ssl-verify string x

nginx.ingress.kubernetes.io/proxy-ssl-verify-

depth
number x

nginx.ingress.kubernetes.io/proxy-ssl-server-

name
string x

nginx.ingress.kubernetes.io/enable-rewrite-log
"true" or

"false"
x

nginx.ingress.kubernetes.io/rewrite-target URI v

nginx.ingress.kubernetes.io/satisfy string x

nginx.ingress.kubernetes.io/server-alias string x

nginx.ingress.kubernetes.io/server-snippet string x

nginx.ingress.kubernetes.io/service-upstream
"true" or

"false"
x

nginx.ingress.kubernetes.io/session-cookie-

change-on-failure

"true" or

"false"
x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/session-cookie-

conditional-samesite-none

"true" or

"false"
x

nginx.ingress.kubernetes.io/session-cookie-

domain
string x

nginx.ingress.kubernetes.io/session-cookie-

expires
string x

nginx.ingress.kubernetes.io/session-cookie-

max-age
string x

nginx.ingress.kubernetes.io/session-cookie-

name
string x

nginx.ingress.kubernetes.io/session-cookie-

path
string x

nginx.ingress.kubernetes.io/session-cookie-

samesite
string x

nginx.ingress.kubernetes.io/session-cookie-

secure
string x

nginx.ingress.kubernetes.io/ssl-redirect
"true" or

"false"
v

nginx.ingress.kubernetes.io/ssl-passthrough
"true" or

"false"
x

nginx.ingress.kubernetes.io/stream-snippet string x

nginx.ingress.kubernetes.io/upstream-hash-by string x

nginx.ingress.kubernetes.io/x-forwarded-prefix string x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/load-balance string x

nginx.ingress.kubernetes.io/upstream-vhost string v

nginx.ingress.kubernetes.io/denylist-source-

range
CIDR

o can achieve similar

effect through

modsecurity

nginx.ingress.kubernetes.io/whitelist-source-

range
CIDR

o can achieve similar

effect through

modsecurity

nginx.ingress.kubernetes.io/proxy-buffering string x

nginx.ingress.kubernetes.io/proxy-buffers-

number
number x

nginx.ingress.kubernetes.io/proxy-buffer-size string x

nginx.ingress.kubernetes.io/proxy-max-temp-

file-size
string x

nginx.ingress.kubernetes.io/ssl-ciphers string x

nginx.ingress.kubernetes.io/ssl-prefer-server-

ciphers

"true" or

"false"
x

nginx.ingress.kubernetes.io/connection-proxy-

header
string x

nginx.ingress.kubernetes.io/enable-access-log
"true" or

"false"

o default enable

access_log, format is

fixed

nginx.ingress.kubernetes.io/enable-

opentelemetry

"true" or

"false"
v otel

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



nginx.ingress.kubernetes.io/opentelemetry-

trust-incoming-span

"true" or

"false"
v otel

nginx.ingress.kubernetes.io/enable-

modsecurity
bool v modsecurity

nginx.ingress.kubernetes.io/enable-owasp-

core-rules
bool v modsecurity

nginx.ingress.kubernetes.io/modsecurity-

transaction-id
string v modsecurity

nginx.ingress.kubernetes.io/modsecurity-

snippet
string v modsecurity

nginx.ingress.kubernetes.io/mirror-request-

body
string x

nginx.ingress.kubernetes.io/mirror-target string x

nginx.ingress.kubernetes.io/mirror-host string x

Name type

Support (v supports x
does not support o
partially supports or can
be achieved by
configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform



TCP/HTTP Keepalive

TOC

Basic Concept

1. ALB supports keepalive configuration at the port level. It can be configured on the frontend.

2. Keepalive is between the client and ALB, not between ALB and the backend.

3. It is implemented through the Nginx configuration, and Nginx needs and will

automatically reload when the configuration is changed.

4. TCP keepalive and HTTP keepalive are two different concepts:

1. TCP keepalive is a TCP protocol feature that sends periodic probe packets to check if

the connection is still alive when there is no data transmission. It helps detect and clean

up dead connections.

2. HTTP keepalive (also known as persistent connections) allows multiple HTTP requests

to reuse the same TCP connection, avoiding the overhead of establishing new

connections. This improves performance by reducing latency and resource usage.

CRD

Basic Concept

CRD

Alauda Container Platform

TCP/HTTP Keepalive - Alauda Container Platform

http://localhost:4173/container_platform/


It can only be configured on the Frontend .spec.config.keepalive .

keepalive:

  properties:

    http:

      description: Downstream L7 keepalive

      properties:

        header_timeout:

          description: Keepalive header timeout. Default is not set.

          type: string

        requests:

          description: Keepalive requests. Default is 1000.

          type: integer

        timeout:

          description: Keepalive timeout. Default is 75s.

          type: string

      type: object

    tcp:

      description: TCPKeepAlive defines TCP keepalive parameters (SO_KEEP

ALIVE)

      properties:

        count:

          description: The TCP_KEEPCNT socket option.

          type: integer

        idle:

          description: The TCP_KEEPIDLE socket option.

          type: string

        interval:

          description: The TCP_KEEPINTVL socket option.

          type: string

      type: object

  type: object

TCP/HTTP Keepalive - Alauda Container Platform



ModSecurity

ModSecurity is an open-source Web Application Firewall (WAF) designed to protect web

applications from malicious attacks. It is maintained by the open-source community and

supports various programming languages and web servers. The platform Load Balancer

(ALB) supports configuring ModSecurity, allowing for individual configurations at the Ingress

level.

TOC

Terminology

owasp-core-
rules

The OWASP Core Rule Set is an open-source ruleset used to detect and

prevent common web application attacks.

Terminology

Procedure to Operate

Method One: Add Annotations

Method Two: Configure CR

Related Explanations

Override

Configuration Example

Term Explanation

Alauda Container Platform

ModSecurity - Alauda Container Platform

http://localhost:4173/container_platform/


Procedure to Operate

Configure ModSecurity by adding annotations to the corresponding resource's YAML file or by

configuring CR.

Method One: Add Annotations

Add the following annotations to the metadata.annotations field of the corresponding YAML file

to configure ModSecurity.

Ingress-Nginx Compatible Annotations

nginx.ingress.kubernetes.io/enable-

modsecurity
bool Ingress

Enable

ModSecurity.

nginx.ingress.kubernetes.io/enable-

owasp-core-rules
bool Ingress

Enable the

OWASP Core

Rule Set.

nginx.ingress.kubernetes.io/modsecurity-

transaction-id
string Ingress

Used to

identify unique

transaction

IDs for each

request,

aiding in

logging and

debugging.

nginx.ingress.kubernetes.io/modsecurity-

snippet

string Ingress,

ALB, FT,

Rule

Allows users

to insert

custom

ModSecurity

configurations

to meet

Annotation Type
Applicable

Object
Explanation

ModSecurity - Alauda Container Platform



specific

security

requirements.

ALB Special Annotations

alb.modsecurity.cpaas.io/use-

recommend
bool Ingress

Enable or disable

recommended

ModSecurity rules; set to

true  to apply a

predefined set of security

rules.

alb.modsecurity.cpaas.io/cmref string Ingress

Reference specific

configurations, e.g.,

custom security

configurations can be

loaded by specifying the

ConfigMap's reference

path

( $ns/$name#$section ).

Method Two: Configure CR

1. Open the ALB, FT, or Rule configuration file that needs to be configured.

2. Add the following fields under spec.config as required.

Annotation Type
Applicable

Object
Explanation

Annotation Type
Applicable

Object
Explanation

ModSecurity - Alauda Container Platform



3. Save and apply the configuration file.

Related Explanations

Override

If ModSecurity is not configured in the Rule, it will attempt to find the configuration in FT; if

there is no configuration in FT, it will use the configuration from ALB.

Configuration Example

The following example deploys an ALB named waf-alb  and a demo backend application

named hello . Additionally, an Ingress named ing-waf-enable  is deployed, which defines

the /waf-enable  route and configures ModSecurity rules. Any request containing the query

parameter test , where the value includes the string test , will be blocked.

{ "modsecurity": {

      "enable": true, # Enable or disable ModSecurity

      "transactionId": "$xx", # Use ID from Nginx

      "useCoreRules": true, # Add modsecurity_rules_file /etc/nginx/owa

sp-modsecurity-crs/nginx-modsecurity.conf

      "useRecommend": true, # Add modsecurity_rules_file /etc/nginx/mod

security/modsecurity.conf

      "cmRef": "$ns/$name#$section", # Add configuration from ConfigMap

    } }

ModSecurity - Alauda Container Platform



ModSecurity - Alauda Container Platform



cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

  name: waf-alb

  namespace: cpaas-system

spec:

  config:

    loadbalancerName: waf-alb

    projects:

      - ALL_ALL

    replicas: 1

  type: nginx

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  annotations:

    nginx.ingress.kubernetes.io/enable-modsecurity: "true"

    nginx.ingress.kubernetes.io/modsecurity-transaction-id: "$request_id"

    nginx.ingress.kubernetes.io/modsecurity-snippet: |

      SecRuleEngine On

      SecRule ARGS:test "@contains test" "id:1234,deny,log"

  name: ing-waf-enable

spec:

  ingressClassName: waf-alb

  rules:

    - http:

        paths:

          - backend:

              service:

                name: hello

                port:

                  number: 80

            path: /waf-enable

            pathType: ImplementationSpecific

---

ModSecurity - Alauda Container Platform



Comparison Among Different Ingress
Method

The Alauda Container Platform supports multiple ingress traffic specifications in Kubernetes

ecosystem. This document compares them (Service, Ingress, Gateway API, and ALB Rule) to

help users make the right choice.

TOC

For L4(TCP/UDP) Traffic

Services of type LoadBalancer, Gateway API, and ALB Rules can all expose L4 traffic

externally. Here we recommend using the LoadBalancer type Service approach. Both

Gateway API and ALB Rules are implemented by ALB, which is a userspace proxy, and their

performance degrades significantly when handling L4 traffic compared to LoadBalancer type

Services.

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

Ingress

GatewayAPI

ALB Rule

Alauda Container Platform

Comparison Among Different Ingress Method - Alauda Container Platform

http://localhost:4173/container_platform/


For L7(HTTP/HTTPS) Traffic

While Ingress, GatewayAPI, and ALB Rules can all expose L7 traffic externally, they differ in

their capabilities and isolation models.

Ingress

Ingress is the standard specification adopted by the Kubernetes community and are

recommended for default use. The Ingress is handled by ALB instances that are managed by

the platform administrator.

GatewayAPI

GatewayAPI provides more flexible isolation mode, however they are not as mature as

Ingress. By using GatewayAPI developer can create their own isolated ALB instances to

handle GatewayAPI rules. Therefore, if you need to delegate the creation and management of

ALB instances to developers, you need to choose to use GatewayAPI.

ALB Rule

ALB Rule(Load Balancer in the UI) provides the most flexible traffic match rules and the most

capabilities. In fact, both Ingress and GatewayAPI are implemented by translating them to

ALB Rules. However, the ALB Rule is more complex than Ingress and GatewayAPI and is not

a community-standard API. Therefore, we recommend using it only when Ingress and

GatewayAPI don't meet your needs.

Comparison Among Different Ingress Method - Alauda Container Platform



HTTP Redirect

TOC

Basic Concept

HTTP redirect is a feature provided by ALB. It will directly return a 30x HTTP code for the

request that matches the rule. The Location header will be used to instruct the client to

redirect to the new URL.

ALB supports redirect configuration at the port and rule levels.

CRD

Basic Concept

CRD

Ingress Annotation

SSL-Redirect

Port Level Redirect

Rule Level Redirect

Alauda Container Platform

HTTP Redirect - Alauda Container Platform

http://localhost:4173/container_platform/


Redirect could be configured on:

Frontend: .spec.config.redirect

Rule: .spec.config.redirect

Ingress Annotation

nginx.ingress.kubernetes.io/permanent-redirect
Corresponds to URL in CR, will set code to

301 by default

nginx.ingress.kubernetes.io/permanent-

redirect-code
Corresponds to code in CR

nginx.ingress.kubernetes.io/temporal-redirect
Corresponds to URL in CR, will set code to

302 by default

nginx.ingress.kubernetes.io/temporal-redirect-

code
Corresponds to code in CR

Annotation Description

redirect:

  properties:

    code:

      type: integer

    host:

      type: string

    port:

      type: integer

    prefix_match:

      type: string

    replace_prefix:

      type: string

    scheme:

      type: string

    url:

      type: string

  type: object

HTTP Redirect - Alauda Container Platform



nginx.ingress.kubernetes.io/ssl-redirect
Corresponds to scheme in CR, will set

scheme to HTTPS by default

nginx.ingress.kubernetes.io/force-ssl-redirect
Corresponds to scheme in CR, will set

scheme to HTTPS by default

SSL-Redirect

1. SSL-redirect and force-ssl-redirect differ in that SSL-redirect only takes effect when the

ingress has a certificate for the corresponding domain, while force-ssl-redirect takes effect

regardless of whether there is a certificate.

2. For HTTPS ports, if only SSL-redirect is configured, the redirect will not be set.

Port Level Redirect

When redirect is configured at the port level, all requests to this port will be redirected

according to the redirect configuration.

Rule Level Redirect

When redirect is configured at the rule level, the request matching this rule will be redirected

according to the redirect configuration.

Annotation Description

HTTP Redirect - Alauda Container Platform



L4/L7 Timeout

TOC

Basic Concept

L4/L7 timeout is a feature provided by ALB. It is used to configure the timeout time for L4/L7

proxy.

Timeout is implemented through a Lua script, and Nginx does not need to reload when it is

changed.

CRD

Basic Concept

CRD

What Timeout Means

Ingress Annotation

Port Level Timeout

Alauda Container Platform

L4/L7 Timeout - Alauda Container Platform

http://localhost:4173/container_platform/


Config can be configured on:

Frontend: .spec.config.timeout

Rule: .spec.config.timeout

What Timeout Means

There are three types of timeouts:

1. proxy_connect_timeout_ms: Defines the timeout for establishing a connection with the

upstream server. If the connection cannot be established within this time, the request will

fail.

2. proxy_read_timeout_ms: Defines the timeout for reading a response from the upstream

server. The timeout is set between two successive read operations, not for the entire

response. If no data is received within this time, the connection is closed.

3. proxy_send_timeout_ms: Defines the timeout for sending a request to the upstream

server. Similar to the read timeout, this is set between two successive write operations. If

no data can be sent within this time, the connection is closed.

Ingress Annotation

timeout:

  properties:

    proxy_connect_timeout_ms:

      type: integer

    proxy_read_timeout_ms:

      type: integer

    proxy_send_timeout_ms:

      type: integer

  type: object

L4/L7 Timeout - Alauda Container Platform



nginx.ingress.kubernetes.io/proxy-connect-

timeout

Corresponds to proxy_connect_timeout_ms

in CR

nginx.ingress.kubernetes.io/proxy-read-timeout
Corresponds to proxy_read_timeout_ms in

CR

nginx.ingress.kubernetes.io/proxy-send-

timeout

Corresponds to proxy_send_timeout_ms in

CR

Port Level Timeout

You can configure timeout on a port directly, which is used as an L4 timeout.

Annotation Description

L4/L7 Timeout - Alauda Container Platform



GatewayAPI

GatewayAPI  is a new standard for Kubernetes ingress.

ALB supports GatewayAPI as well. Each Gateway resource will be translated into an ALB

resource.

Listener and Router will be handled in ALB directly. They will not be translated into Frontend

and Rule .

↗

Alauda Container Platform

GatewayAPI - Alauda Container Platform

https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
http://localhost:4173/container_platform/


OTel

OpenTelemetry (OTel) is an open-source project aimed at providing a vendor-neutral standard

for collecting, processing, and exporting telemetry data in distributed systems, such as

microservices architectures. It helps developers analyze the performance and behavior of

software more easily, thus facilitating the diagnosis and resolution of application issues.

TOC

Terminology

Terminology

Prerequisites

Procedure

Update ALB Configuration

Related Operations

Configuring OTel in Ingress

Using OTel in Applications

Inheritance

Additional Notes

Sampling Strategies

Attributes

Configuration Example

Alauda Container Platform

OTel - Alauda Container Platform

http://localhost:4173/container_platform/


Trace
The data submitted to the OTel Server, which is a collection of related events

or operations used to track the flow of requests in distributed systems; each

Trace consists of multiple Spans.

Span
An independent operation or event within a Trace that includes start time,

duration, and other relevant information.

OTel Server
An OTel server capable of receiving and storing Trace data, such as Jaeger,

Prometheus, etc.

Jaeger
An open-source distributed tracing system used for monitoring and

troubleshooting microservices architectures, supporting integration with

OpenTelemetry.

Attributes
Key-value pairs attached to a Trace or Span to provide additional contextual

information. This includes Resource Attributes and Span Attributes; see

Attributes for more information.

Sampler
A strategy component that determines whether to sample and report a Trace.

Different sampling strategies can be configured, such as full sampling,

proportional sampling, etc.

ALB
(Another
Load
Balancer)

A software or hardware device that distributes network requests across

available nodes in a cluster; the load balancer (ALB) used in the platform is a

layer 7 software load balancer, which can be configured to monitor traffic with

OTel. ALB supports submitting Traces to a specified Collector and allows

different sampling strategies; it also supports configuring whether to submit

Traces at the Ingress level.

FT
(Frontend)

The port configuration for ALB, specifying port-level configurations.

Rule Routing rules on the port (FT) used to match specific routes.

HotROD
(Rides on
Demand)

A sample application provided by Jaeger to demonstrate the use of distributed

tracing; refer to Hot R.O.D. - Rides on Demand  for more details.

hotrod-with-
proxy

Specifies the addresses of HotROD's internal microservices via environment

variables; refer to hotrod-with-proxy  for more details.

Term Explanation

↗

↗

OTel - Alauda Container Platform

https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53


Prerequisites

Ensure that an operable ALB exists: Create or use an existing ALB, where the name of

the ALB is replaced with <otel-alb>  in this document. For instructions on creating an

ALB, refer to Creating Load Balancer.

Ensure that there is an OTel data reporting server address: This address will

hereinafter be referred to as <jaeger-server> .

Procedure

Update ALB Configuration

1. On the Master node of the cluster, use the CLI tool to execute the following command to

edit the ALB configuration.

2. Add the following fields under the spec.config  section.

Example configuration once completed:

kubectl edit alb2 -n cpaas-system <otel-alb> # Replace <otel-alb> with 

the actual ALB name

otel:

  enable: true

  exporter:

    collector:

      address: "<jaeger-server>" # Replace <jaeger-server> with the act

ual OTel data reporting server address

      request_timeout: 1000

OTel - Alauda Container Platform



3. Execute the following command to save the updates. After the update, the ALB will default

to enabling OpenTelemetry, and all request Trace information will be reported to the Jaeger

Server.

Related Operations

Configuring OTel in Ingress

Enable or Disable OTel on Ingress

By configuring whether to enable OTel on Ingress, you can better monitor and debug the

request flow of applications, identifying performance bottlenecks or errors by tracing

requests as they propagate between different services.

Procedure

Add the following configuration under the metadata.annotations field of Ingress:

spec:

  address: 192.168.1.1

  config:

    otel:

     enable: true

     exporter:

       collector:

         address: "http://jaeger.default.svc.cluster.local:4318"

         request_timeout: 1000

    antiAffinityKey: system

    defaultSSLCert: cpaas-system/cpaas-system

    defaultSSLStrategy: Both

    gateway:

    ...

type: nginx

:wq

OTel - Alauda Container Platform



Parameter Explanation:

nginx.ingress.kubernetes.io/enable-opentelemetry: When set to true , it indicates

that the Ingress controller enables OpenTelemetry functionality while processing

requests through this Ingress, which means request Trace information will be collected

and reported. When set to false  or this annotation is removed, it means that request

Trace information will not be collected or reported.

Enable or Disable OTel Trust on Ingress

OTel Trust determines whether Ingress trusts and uses the Trace information (e.g., trace

ID) from incoming requests.

Procedure

Add the following configuration under the metadata.annotations field of Ingress:

Parameter Explanation:

nginx.ingress.kubernetes.io/opentelemetry-trust-incoming-span: When set to

true , the Ingress continues to use already existing Trace information, helping maintain

consistency in cross-service tracing, allowing the entire request chain to be fully traced

and analyzed in the distributed tracing system. When set to false , it will generate new

tracing information for the request, which may cause the request to be treated as part of

a new tracing chain after entering the Ingress, interrupting cross-service trace continuity.

Add Different OTel Configurations on Ingress

This configuration allows you to customize OTel's behavior and data export methodology

for different Ingress resources, enabling fine-grained control over each service's tracing

strategy or target.

Procedure

nginx.ingress.kubernetes.io/enable-opentelemetry: "true"

nginx.ingress.kubernetes.io/opentelemetry-trust-incoming-span: "true"

OTel - Alauda Container Platform



Add the following configuration under the metadata.annotations field of Ingress:

Parameter Explanation:

exporter: Specifies how the collected Trace data is sent to the OTel Collector (the OTel

data reporting server).

address: Specifies the address of the OTel Collector.

request_timeout: Specifies the request timeout.

Using OTel in Applications

The following configuration shows the complete OTel configuration structure, which can be

used to define how to enable and use OTel features in applications.

On the cluster Master node, use the CLI tool to execute the following command to get the

complete OTel configuration structure.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  annotations:

    alb.ingress.cpaas.io/otel: >

      {

         "enable": true,

         "exporter": {

             "collector": {

                 "address": "<jaeger-server>", # Replace <jaeger-server

> with the actual OTel data reporting server address, e.g., "address": 

"http://128.0.0.1:4318"

                 "request_timeout": 1000

             }

         }

      }

kubectl get crd alaudaloadbalancer2.crd.alauda.io -o json|jq ".spec.versi

ons[2].schema.openAPIV3Schema.properties.spec.properties.config.propertie

s.otel"

OTel - Alauda Container Platform



Echoed Result:

Parameter Explanation:

otel.enable Whether to enable OTel functionality.

exporter.collector.address
The address of the OTel data reporting server,

supporting http/https protocols and domain names.

flags.hide_upstream_attrs Whether to report information about upstream rules.

flag.notrust_incoming_span
Whether to trust and use the OTel Trace information

(e.g., trace ID) from incoming requests.

flags.report_http_request_header Whether to report request headers.

Parameter Description

{

    "otel": {

        "enable": true

    }

    "exporter": {

        "collector": {

            "address": ""

          },

    },

    "flags": {

        "hide_upstream_attrs": false

        "notrust_incoming_span": false

        "report_http_request_header": false

        "report_http_response_header": false

    },

    "sampler": {

        "name": "",

        "options": {

            "fraction": ""

            "parent_name": ""

          },

      },

 }

OTel - Alauda Container Platform



flags.report_http_response_header Whether to report response headers.

sampler.name
Sampling strategy name; see Sampling Strategies for

details.

sampler.options.fraction Sampling rate.

sampler.options.parent_name
The parent strategy for parent_base sampling

strategies.

Inheritance

By default, if the ALB configures certain OTel parameters and FT is not configured, FT will

inherit the parameters from the ALB as its own configuration; that is, FT inherits the ALB

configuration, while Rule can inherit configurations from both ALB and FT.

ALB: The configuration on the ALB is typically global and default. You can configure global

parameters such as Collector addresses here, which will be inherited by the lower-level FT

and Rule.

FT: FT can inherit configurations from ALB, meaning that certain OTel parameters that are

not configured on FT will use the configuration from ALB. However, FT can also be refined

further; for instance, you can choose to selectively enable or disable OTel on FT without

affecting other FT or the global settings of ALB.

Rule: Rule can inherit configurations from both ALB and FT. However, Rule can also be

refined further; for instance, a specific Rule can choose not to trust the incoming OTel

Trace information or to adjust the sampling strategies.

Procedure

By configuring the spec.config.otel  field in the YAML files of ALB, FT, and Rule, you can

add OTel-related configuration.

Additional Notes

Parameter Description

OTel - Alauda Container Platform



Sampling Strategies

always on Always report all tracing data.

always off Never report tracing data.

traceid-
ratio

Decide whether to report based on traceid . The format of traceparent  is

xx-traceid-xx-flag , where the first 16 characters of traceid  represent a

32-bit hexadecimal integer. If this integer is less than fraction  multiplied by

4294967295 (i.e., (2^32-1)), it will be reported.

parent-
base

Decide whether to report based on the flag part of the traceparent in the request.

When the flag is 01, it will be reported; for example: curl -v

"http://$ALB_IP/" -H 'traceparent: 00-xx-xx-01' ; when the flag is 02, it

will not be reported; for example: curl -v "http://$ALB_IP/" -H

'traceparent: 00-xx-xx-02' .

Attributes

Resource Attributes

These attributes are reported by default.

hostname The hostname of the ALB Pod

service.name The name of the ALB

service.namespace The namespace where the ALB resides

service.type Default is ALB

service.instance.id The name of the ALB Pod

Span Attributes

Parameter Explanation

Parameter Description

OTel - Alauda Container Platform



Attributes reported by default:

http.status_code Status code

http.request.resend_count Retry count

alb.rule.rule_name The name of the rule matched by this request

alb.rule.source_type
The type of the rule matched by this request, currently

only Ingress

alb.rule.source_name The name of the Ingress

alb.rule.source_ns The namespace where the Ingress resides

Attributes reported by default but can be excluded by modifying the

flag.hide_upstream_attrs field:

alb.upstream.svc_name
The name of the Service (internal route) to which traffic is

forwarded

alb.upstream.svc_ns
The namespace where the Service (internal route) being

forwarded resides

alb.upstream.peer The IP address and port of the Pod being forwarded to

Attributes not reported by default but can be reported by modifying the

flag.report_http_request_header field:

**http.request.header.<header>** Request Header

Parameter Description

Parameter Description

Parameter Description

OTel - Alauda Container Platform



Attributes not reported by default but can be reported by modifying the

flag.report_http_response_header field:

**http.response.header.<header>** Response Header

Configuration Example

The following YAML configuration deploys an ALB and uses Jaeger as the OTel server, with

Hotrod-proxy as the demonstration backend. By configuring Ingress rules, when clients

request the ALB, the traffic will be forwarded to HotROD. Additionally, the communication

between internal microservices of HotROD is also routed through the ALB.

1. Save the following YAML as a file named all.yaml.

Parameter Description

OTel - Alauda Container Platform



OTel - Alauda Container Platform



apiVersion: apps/v1

kind: Deployment

metadata:

  name: hotrod

spec:

  replicas: 1

  selector:

    matchLabels:

      service.cpaas.io/name: hotrod

      service_name: hotrod

  template:

    metadata:

      labels:

        service.cpaas.io/name: hotrod

        service_name: hotrod

    spec:

      containers:

        - name: hotrod

          env:

            - name: PROXY_PORT

              value: "80"

            - name: PROXY_ADDR

              value: "otel-alb.default.svc.cluster.local:"

            - name: OTEL_EXPORTER_OTLP_ENDPOINT

              value: "http://jaeger.default.svc.cluster.local:4318"

          image: theseedoaa/hotrod-with-proxy:latest

          imagePullPolicy: IfNotPresent

          command: ["/bin/hotrod", "all", "-v"]

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: hotrod-frontend

spec:

  ingressClassName: otel-alb

  rules:

    - http:

        paths:

          - backend:

              service:

                name: hotrod

                port:

                  number: 8080

h /di h

OTel - Alauda Container Platform



            path: /dispatch

            pathType: ImplementationSpecific

          - backend:

              service:

                name: hotrod

                port:

                  number: 8080

            path: /frontend

            pathType: ImplementationSpecific

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: hotrod-customer

spec:

  ingressClassName: otel-alb

  rules:

    - http:

        paths:

          - backend:

              service:

                name: hotrod

                port:

                  number: 8081

            path: /customer

            pathType: ImplementationSpecific

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: hotrod-route

spec:

  ingressClassName: otel-alb

  rules:

    - http:

        paths:

          - backend:

              service:

                name: hotrod

                port:

                  number: 8083

            path: /route

            pathType: ImplementationSpecific

---

OTel - Alauda Container Platform



apiVersion: v1

kind: Service

metadata:

  name: hotrod

spec:

  internalTrafficPolicy: Cluster

  ipFamilies:

    - IPv4

  ipFamilyPolicy: SingleStack

  ports:

    - name: frontend

      port: 8080

      protocol: TCP

      targetPort: 8080

    - name: customer

      port: 8081

      protocol: TCP

      targetPort: 8081

    - name: router

      port: 8083

      protocol: TCP

      targetPort: 8083

  selector:

    service_name: hotrod

  sessionAffinity: None

  type: ClusterIP

---

apiVersion: apps/v1

kind: Deployment

metadata:

  name: jaeger

spec:

  replicas: 1

  selector:

    matchLabels:

      service.cpaas.io/name: jaeger

      service_name: jaeger

  template:

    metadata:

      labels:

        service.cpaas.io/name: jaeger

        service_name: jaeger

    spec:

      containers:

OTel - Alauda Container Platform



        - name: jaeger

          env:

            - name: LOG_LEVEL

              value: debug

          image: jaegertracing/all-in-one:1.58.1

          imagePullPolicy: IfNotPresent

      hostNetwork: true

      tolerations:

        - operator: Exists

---

apiVersion: v1

kind: Service

metadata:

  name: jaeger

spec:

  internalTrafficPolicy: Cluster

  ipFamilies:

    - IPv4

  ipFamilyPolicy: SingleStack

  ports:

    - name: http

      port: 4318

      protocol: TCP

      targetPort: 4318

  selector:

    service_name: jaeger

  sessionAffinity: None

  type: ClusterIP

---

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

  name: otel-alb

spec:

  config:

    loadbalancerName: otel-alb

    otel:

      enable: true

      exporter:

        collector:

          address: "http://jaeger.default.svc.cluster.local:4318"

          request_timeout: 1000

    projects:

      - ALL_ALL

OTel - Alauda Container Platform



2. In the CLI tool, execute the following command to deploy Jaeger, ALB, HotROD, and all

necessary CRs for testing.

3. Execute the following command to get the access address of Jaeger.

4. Execute the following command to obtain the access address of otel-alb.

5. Execute the following command to send a request to HotROD via ALB. Here, ALB will

report the Trace to Jaeger.

    replicas: 1

    resources:

      alb:

        limits:

          cpu: 200m

          memory: 2Gi

        requests:

          cpu: 50m

          memory: 128Mi

      limits:

        cpu: "1"

        memory: 1Gi

      requests:

        cpu: 50m

        memory: 128Mi

  type: nginx

kubectl apply ./all.yaml

export JAEGER_IP=$(kubectl get po -A -o wide |grep jaeger | awk '{print 

$7}');echo "http://$JAEGER_IP:16686"

export ALB_IP=$(kubectl get po -A -o wide|grep otel-alb | awk '{print 

$7}');echo $ALB_IP

curl -v "http://<$ALB_IP>:80/dispatch?customer=567&nonse=" # Replace <

$ALB_IP> in the command with the access address of otel-alb obtained in 

the previous procedure

OTel - Alauda Container Platform



6. Open the access address of Jaeger obtained in Step 3 to view the results.

OTel - Alauda Container Platform



OTel - Alauda Container Platform



Guides

Creating Services

Why Service is Needed

Example ClusterIP type Service:

Headless Services

Creating a service by using the web console

Creating a service by using the CLI

Example: Accessing an Application Within the Cluste

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

Creating Ingresses

Implementation Method

Prerequisites

Example Ingress:

Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Configure G

Terminology

Prerequisites

Example Gatew

Creating Gatew

Creating Gatew

Viewing Resour

Updating Gatew

Updating Gatew

Add Listener

Add Listener by

Add Listener by

Creating Route 

Example HTTP

Creating Route 

Creating Route 

Creating a Domain Name

Example Domain custom resource (CR)

Creating Domain by using the web console

Creating Domain by using the CLI

Subsequent Actions

Additional resources

Creating Certificates

Creating a certificate by using the web console

Creating External IP Address Pool

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Creating BGP Peers

Terminology

Prerequisites

Alauda Container Platform

Guides - Alauda Container Platform

http://localhost:4173/container_platform/


Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web conso

Creating an External IP Address Pool by using the CLI

View Alarm Policy

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Configure S

IP Allocation Ru

Calico Network

Kube-OVN Netw

Subnet Manage

Configure N

Creating Netwo

Creating Netwo

Reference

Creating Admin Network Policies

Notes

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Configure Cluster Network Policies

Notes

Procedure

Guides - Alauda Container Platform



Creating Services

In Kubernetes, a Service is a method for exposing a network application that is running as one

or more Pods in your cluster.

TOC

Why Service is Needed

1. Pods have their own IPs, but:

Why Service is Needed

Example ClusterIP type Service:

Headless Services

Creating a service by using the web console

Creating a service by using the CLI

Example: Accessing an Application Within the Cluste

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

AWS EKS Cluster

Huawei Cloud CCE Cluster

Azure AKS Cluster

Google GKE Cluster

Alauda Container Platform

Creating Services - Alauda Container Platform

http://localhost:4173/container_platform/


Pod IPs are not stable (they change if the Pod is recreated).

Directly accessing Pods becomes unreliable.

2. Service solves this by providing:

A stable IP and DNS name.

Automatic load balancing to the matching Pods.

Example ClusterIP type Service:

1. The available type values and their behaviors are ClusterIP , NodePort ,

LoadBalancer , ExternalName

2. The set of Pods targeted by a Service is usually determined by a selector that you define.

3. Service  port.

4. Bind targetPort  of the Service to the Pod containerPort . In addition, you can

reference port.name  under the pod container.

Headless Services

# simple-service.yaml

apiVersion: v1

kind: Service

metadata:

  name: my-service

spec:

  type: ClusterIP 1

  selector: 2

    app.kubernetes.io/name: MyApp

  ports:

    - protocol: TCP

      port: 80 3

      targetPort: 80 4

Creating Services - Alauda Container Platform



Sometimes you don't need load-balancing and a single Service IP. In this case, you can

create what are termed headless Services:

Headless Services are useful when:

You want to discover individual Pod IPs, not just a single service IP.

You need direct connections to each Pod (e.g., for databases like Cassandra or

StatefulSets).

You're using StatefulSets where each Pod must have a stable DNS name.

Creating a service by using the web console

1. Go to Container Platform.

2. In the left navigation bar, click Network > Services.

3. Click Create Service.

4. Refer to the following instructions to configure the relevant parameters.

Virtual IP

Address

If enabled, a ClusterIP will be allocated for this Service, which can be used

for service discovery within the cluster.

If disabled, a Headless Service will be created, which is usually used by

StatefulSet.

Type
ClusterIP: Exposes the Service on a cluster-internal IP. Choosing this

value makes the Service only reachable from within the cluster.

NodePort: Exposes the Service on each Node's IP at a static port (the

NodePort).

Parameter Description

spec:

  clusterIP: None

Creating Services - Alauda Container Platform



ExternalName: Maps the Service to the contents of the externalName

field (for example, to the hostname api.foo.bar.example).

LoadBalancer: Exposes the Service externally using an external load

balancer. Kubernetes does not directly offer a load balancing

component; you must provide one, or you can integrate your Kubernetes

cluster with a cloud provider.

Target

Component

Workload: The Service will forward requests to a specific workload,

which matches the labels like project.cpaas.io/name: projectname

and service.cpaas.io/name: deployment-name .

Virtualization: The Service will forward requests to a specific virtual

machine or virtual machine group.

Label Selector: The Service will forward requests to a certain type of

workload with specified labels, for example, environment: release .

Parameter Description

Creating Services - Alauda Container Platform



Port

Used to configure the port mapping for this Service. In the following

example, other podss within the cluster can call this Service via the virtual

IP (if enabled) and TCP port 80; the access requests will be forwarded to

the externally exposed TCP port 6379 or redis of the target component's

pods.

Protocol: The protocol used by the Service, supported protocols

include: TCP , UDP , HTTP , HTTP2 , HTTPS , gRPC .

Service Port: The service port number exposed by the Service within

the cluster, that is, Port, e.g., 80.

Container Port: The target port number (or name) that the service port

maps to, that is, targetPort, e.g., 6379 or redis.

Service Port Name: Will be generated automatically. The format is

<protocol>-<service port>-<container port> , for example: tcp-

80-6379 or tcp-80-redis.

Session

Affinity

Session affinity based on the source IP address (ClientIP). If enabled, all

access requests from the same IP address will be kept on the same server

during load balancing, ensuring that requests from the same client are

forwarded to the same server for processing.

5. Click Create.

Creating a service by using the CLI

Create a service based on an existing deployment resource my-app .

Parameter Description

kubectl apply -f simple-service.yaml

Creating Services - Alauda Container Platform



Example: Accessing an Application Within the
Cluste

kubectl expose deployment my-app \

  --port=80 \

  --target-port=8080 \

  --name=test-service \

  --type=NodePort \

  -n p1-1

Creating Services - Alauda Container Platform



1. Apply this YAML:

2. Starting another Pod:

# access-internal-demo.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: nginx-deployment

spec:

  replicas: 2

  selector:

    matchLabels:

      app: nginx

  template:

    metadata:

      labels:

        app: nginx

    spec:

      containers:

        - name: nginx

          image: nginx:1.25

          ports:

            - containerPort: 80

---

apiVersion: v1

kind: Service

metadata:

  name: nginx-clusterip

spec:

  type: ClusterIP

  selector:

    app: nginx

  ports:

    - port: 80

      targetPort: 80

kubectl apply -f access-internal-demo.yaml

Creating Services - Alauda Container Platform



3. Accessing the nginx-clusterip  service in test-pod  Pod:

You should see a HTML response containing text like "Welcome to nginx!".

Example: Accessing an Application Outside the
Cluste

kubectl run test-pod --rm -it --image=busybox -- /bin/sh

wget -qO- http://nginx-clusterip

# or using DNS records created automatically by Kubernetes: <service-na

me>.<namespace>.svc.cluster.local

wget -qO- http://nginx-clusterip.default.svc.cluster.local

Creating Services - Alauda Container Platform



1. Apply this YAML:

2. Checking Pods:

# access-external-demo.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: nginx-deployment

spec:

  replicas: 2

  selector:

    matchLabels:

      app: nginx

  template:

    metadata:

      labels:

        app: nginx

    spec:

      containers:

        - name: nginx

          image: nginx:1.25

          ports:

            - containerPort: 80

---

apiVersion: v1

kind: Service

metadata:

  name: nginx-nodeport

spec:

  type: NodePort

  selector:

    app: nginx

  ports:

    - port: 80

      targetPort: 80

      nodePort: 30080

kubectl apply -f access-external-demo.yaml

Creating Services - Alauda Container Platform



3. curl Service:

You should see a HTML response containing text like "Welcome to nginx!".

Of course, it is also possible to access the application from outside the cluster by creating a

Service of type LoadBalancer.

Note: Please configure the LoadBalancer service beforehand.

kubectl get pods -l app=nginx -o wide

curl http://{NodeIP}:{nodePort}

Creating Services - Alauda Container Platform



1. Apply this YAML:

2. Get external ip address:

# access-external-demo-with-loadbalancer.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

  name: nginx-deployment

spec:

  replicas: 2

  selector:

    matchLabels:

      app: nginx

  template:

    metadata:

      labels:

        app: nginx

    spec:

      containers:

        - name: nginx

          image: nginx:1.25

          ports:

            - containerPort: 80

---

apiVersion: v1

kind: Service

metadata:

  name: nginx-lb-service

spec:

  type: LoadBalancer

  selector:

    app: nginx

  ports:

    - port: 80

      targetPort: 80

kubectl apply -f access-external-demo-with-loadbalancer.yaml

Creating Services - Alauda Container Platform



EXTERNAL-IP  is the address you access from your browser.

You should see a HTML response containing text like "Welcome to nginx!".

If EXTERNAL-IP is pending , the Loadbalancer service is not currently deployed on the

cluster.

Example: ExternalName type of Servce

1. Apply this YAML:

2. Try to resolve inside a Pod in the cluster:

kubectl get svc nginx-lb-service

NAME            TYPE           CLUSTER-IP       EXTERNAL-IP     PORT(S)    

AGE

nginx-service   LoadBalancer   10.0.2.57        34.122.45.100   80:3000

5/TCP   30s

curl http://34.122.45.100

apiVersion: v1

kind: Service

metadata:

  name: my-external-service

  namespace: default

spec:

  type: ExternalName

  externalName: example.com

kubectl apply -f external-service.yaml

Creating Services - Alauda Container Platform



then:

You'll see that it resolves to example.com .

LoadBalancer Type Service Annotations

AWS EKS Cluster

For detailed explanations of the EKS LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation  .

service.beta.kubernetes.io/aws-

load-balancer-type

external: Use the

official AWS

LoadBalancer

Controller.

Specifies the controller for

the LoadBalancer type.

Note: Please contact the

platform administrator in

advance to deploy the

AWS LoadBalancer

Controller.

↗

Key Value Description

kubectl run test-pod --rm -it --image=busybox -- sh

nslookup my-external-service.default.svc.cluster.local

Creating Services - Alauda Container Platform

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/


service.beta.kubernetes.io/aws-

load-balancer-nlb-target-type

instance: Traffic will

be sent to the pods

via NodePort.

ip: Traffic routes

directly to the pods

(the cluster must

use Amazon VPC

CNI).

Specifies how traffic

reaches the pods.

service.beta.kubernetes.io/aws-

load-balancer-scheme

internal: Private

network.

internet-facing:

Public network.

Specifies whether to use a

private network or a public

network.

service.beta.kubernetes.io/aws-

load-balancer-ip-address-type

IPv4

dualstack

Specifies the supported IP

address stack.

Huawei Cloud CCE Cluster

For detailed explanations of the CCE LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation  .

kubernetes.io/elb.id

Key Value Description

↗

Key Value

Creating Services - Alauda Container Platform

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html


kubernetes.io/elb.autocreate

Example: {"type":"public","bandwidth_name":"cce-bandwidth

1551163379627","bandwidth_chargemode":"bandwidth","bandwi

["cn-north-4b"],"l4_flavor_name":"L4_flavor.elb.s1.small"

Note: Please read the Filling Instructions  first and adjust the exam

kubernetes.io/elb.subnet-id

kubernetes.io/elb.class
union: Shared load balancing.

performance: Exclusive load balancing, only supported in Kubern

Key Value

↗

Creating Services - Alauda Container Platform

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8


kubernetes.io/elb.enterpriseID

Azure AKS Cluster

For detailed explanations of the AKS LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation  .

service.beta.kubernetes.io/azure-load-

balancer-internal

true: Private

network.

false: Public

network.

Specifies whether to use a

private network or a public

network.

Google GKE Cluster

For detailed explanations of the GKE LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation  .

Key Value

↗

Key Value Description

↗

Creating Services - Alauda Container Platform

https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn


networking.gke.io/load-

balancer-type
Internal Specifies the use of a private network.

loud.google.com/l4-rbs enabled
Defaults to public. If this parameter is

configured, traffic will route directly to the pods.

Key Value Description

Creating Services - Alauda Container Platform



Creating Ingresses

Ingress rules (Kubernetes Ingress) expose HTTP/HTTPS routes from outside the cluster to

internal routing (Kubernetes Service), enabling control of external access to computing

components.

Create an Ingress to manage the external HTTP/HTTPS access to a Service.

When creating multiple ingresses within the same namespace, different ingresses MUST NOT have

the same Domain, Protocol, and Path (i.e., duplicate access points are not allowed).

TOC

Implementation Method

WARNING

Implementation Method

Quick Start

Prerequisites

Example Ingress:

Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Alauda Container Platform

Creating Ingresses - Alauda Container Platform

http://localhost:4173/container_platform/


Ingress rules depend on the implementation of the Ingress Controller, which is responsible for

listening to changes in Ingress and Service. After a new Ingress rule is created, a forwarding

rule matching the Ingress rule is automatically generated within the Ingress Controller. When

the Ingress Controller receives a request, it matches the forwarding rule from the Ingress rule

and distributes the traffic to the specified internal routes, as shown in the diagram below.

For the HTTP protocol, Ingress only supports the 80 port as the external port. For the HTTPS

protocol, Ingress only supports the 443 port as the external port. The platform's load balancer will

automatically add the 80 and 443 listening ports.

Quick Start

Next, we will use the community version of Ingress-NGINX to demonstrate how to access your

own application using the NGINX controller.

1. deploy Ingress-NGINX  controller.

NOTE

Creating Ingresses - Alauda Container Platform



The following resources are automatically created after using this command:

Namespace ingress-nginx
Resources for Isolating

Controllers

ServiceAccount ingress-nginx
Service account for the

controller

ClusterRole ingress-nginx Cluster-wide permissions

ClusterRoleBinding ingress-nginx Bind ClusterRole to SA

ConfigMap
ingress-nginx-

controller

Configure controller behaviour

(e.g. logging levels, proxy

timeout, etc.)

ValidatingWebhookConfig
ingress-nginx-

admission

Webhook to verify Ingress

configuration legitimacy

(optional)

Service  (TCP/UDP)
ingress-nginx-

controller

The type defaults to

LoadBalancer  and can be

changed to NodePort .

Deployment
ingress-nginx-

controller

Pod
ingress-nginx-

controller-xxx

Role / RoleBinding admission 相关 Support for webhook

Kind Name Description

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-n

ginx/controller-v1.12.2/deploy/static/provider/cloud/deploy.yaml

Creating Ingresses - Alauda Container Platform



Job
ingress-nginx-

admission-create
webhook Registration

If you want to change the default registry address, you can use curl  to download the

YAML file, change it, and then apply the YAML file.

Waiting for the ingress-nginx-controller-xxx  Pod to run

2. Local testing

Creating a simple web server and the associated service:

Creating an ingress resource. This example uses a host that maps to localhost :

Forward a local port to the ingress controller:

Accessing your deployment using curl:

Kind Name Description

curl -O https://raw.githubusercontent.com/kubernetes/ingress-nginx/cont

roller-v1.12.2/deploy/static/provider/cloud/deploy.yaml

kubectl create deployment demo --image=nginx --port=80

kubectl expose deployment demo

kubectl create ingress demo-localhost --class=nginx \

  --rule="demo.local/*=demo:80"

kubectl port-forward --namespace=ingress-nginx service/ingress-nginx-

controller 8080:80

curl --resolve demo.local:8080:127.0.0.1 http://demo.local:8080

Creating Ingresses - Alauda Container Platform



Note: This parameter temporarily resolves the domain name demo.local to IP 127.0.0.1

and is used on port 8080. When you visit http://demo.local:8080 , you are actually

visiting http://127.0.0.1:8080 . On the other hand, you should configure hosts :

Final you should see a HTML response containing text like "Welcome to nginx!".

Then you can access website http://demo.local:8080/ .

ingress-nginx-controller  default type is LoadBalancer , If EXTERNAL-IP  field shows

pending , this means that your Kubernetes cluster wasn't able to provision the load balancer.

If you're integrating with a provider that supports specifying the load balancer IP address(es) for

a Service via a (provider specific) annotations, you should switch to doing that.

3. Online testing

When your ingress-nginx-controller  (Service of LoadBalancer type) exists an

EXTERNAL-IP , Then you can create an ingress resource. The following example assumes

that you have set up a DNS record for www.developer.io :

You can access http://www.developer.io  to see the same output.

Prerequisites

There must be an available Service in the current namespace.

Please confirm with the administrator that a usable domain name has been allocated for

the project associated with the current namespace.

↗

↗

INFO

echo "127.0.0.1 demo.local" | sudo tee -a /etc/hosts

kubectl create ingress demo --class=nginx \

  --rule="www.developer.io/*=demo:80"

Creating Ingresses - Alauda Container Platform

http://demo.local:8080/
http://demo.local:8080/
http://demo.local:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/


To access the domain via HTTPS, you need to first save the HTTPS certificate as a TLS

secret.

Example Ingress:

1. To see more configurations please refer to nginx-configuration .

2. Using ingress-nginx  controller.

3. If you only want to run ingress locally, configure the hosts  beforehand.

Creating a Ingress by using the web console

1. Access the Container Platform.

2. In the left navigation bar, click Network > Ingress.

↗

# nginx-ingress.yaml

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: nginx-ingress

  namespace: k-1

  annotations:

    nginx.ingress.kubernetes.io/rewrite-target: / 1

spec:

  ingressClassName: nginx 2

  rules:

    - host: demo.local 3

      http:

        paths:

          - path: /

            pathType: Prefix

            backend:

              service:

                name: nginx-service

                port:

                  number: 80

Creating Ingresses - Alauda Container Platform

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/


3. Click Create Ingress.

4. Reference the instructions below to configure certain parameters.

Ingress Class

Ingresses can be implemented by different controllers with different

IngressClass  name. If multiple ingress controllers are available on the

platform, the user can select which one to use with this option.

Domain Name

Hosts can be precise matches (for example foo.bar.com ) or a wildcard

(for example *.foo.com ). The domain names available are allocated by

platform administrator.

Certificates TLS secret or Certificates allocated by platform administrator.

Match Type

and Path

Prefix: Matches path prefixes, e.g., /abcd  can match /abcd/efg

or /abcde .

Exact: Matches exact paths, e.g., /abcd .

Implementation specific: If you are using a custom Ingress controller

to manage the Ingress rules, you may choose to have the controller

decide.

Service External traffic will be forwarded to this Service.

Service Port Specify which Service port the traffic will be forwarded to.

5. Click Create.

Creating a Ingress by using the CLI

Parameter Description

kubectl apply -f nginx-ingress.yaml

Creating Ingresses - Alauda Container Platform



If the ingress has no Ingress Class, all the ALB instances that are allocated to this project will

handle this ingress.

NOTE

Creating Ingresses - Alauda Container Platform



Configure Gateway

An inbound gateway (Gateway) is an instance deployed from the Gateway Class. It creates

listeners to capture external traffic on specified domain names and ports. Together with

routing rules, it can route the specified external traffic to the corresponding backend instances.

Create an inbound gateway to enable more granular allocation of network resources.

TOC

Terminology

Prerequisites

Example Gateway and Alb2 custom resource (CR)

Creating Gateway by using the web console

Creating Gateway by using the CLI

Viewing Resources Created by the Platform

Updating Gateways

Updating Gateway by using the web console

Add Listener

Prerequisites

Add Listener by using the web console

Add Listener by using the CLI

Creating Route Rules

Example HTTPRoute custom resource (CR)

Creating Route by using the web console

Creating Route by using the CLI

Alauda Container Platform

Configure Gateway - Alauda Container Platform

http://localhost:4173/container_platform/


Terminology

Gateway
Class

In the standard Gateway API documentation, the

Gateway Class is defined as a template for creating

gateways. Different templates can create inbound

gateways for different business scenarios, facilitating

rapid traffic management.

The platform

includes dedicated

Gateway Classes.

Inbound
Gateway

The inbound gateway corresponds to specific

resource instances, and users can exclusively utilize

all listening and computing resources of this inbound

gateway. It is a configuration of routing rules effective

for the listener. When external traffic is detected by

the gateway, it will be distributed to backend

instances according to the routing rules.

It can be viewed as a

load balancer

instance.

Route
Rule

Route rules define a series of guidelines for traffic

distribution from the gateway to services. The

currently standard supported types of routing rules in

the Gateway API include HTTPRoute, TCPRoute,

UDPRoute, etc.

The platform

currently supports

listening to HTTP,

HTTPS, TCP, and

UDP protocols.

Prerequisites

The platform administrator must ensure that the cluster supports LoadBalancer type internal

routing. For public cloud clusters, the LoadBalancer Service Controller must be installed. In

non-public cloud clusters, the platform provides the external address pool feature, which

allows LoadBalancer type internal routing to automatically obtain an IP from the external

address pool for external access after configuration is complete.

Example Gateway and Alb2 custom resource (CR)

Resource
Name

Overview Usage Instructions

Configure Gateway - Alauda Container Platform



Configure Gateway - Alauda Container Platform



# demo-gateway.yaml

apiVersion: gateway.networking.k8s.io/v1beta1

kind: Gateway

metadata:

  namespace: k-1

  name: test

  annotations:

    cpaas.io/display-name: ces

    listeners.cpaas.io/creationTimestamp: '["2025-05-26T02:05:56.135Z"]'

    listeners.cpaas.io/display-name: '[""]'

  labels:

    alb.cpaas.io/alb-ref: test-o93q7

spec:

  gatewayClassName: exclusive-gateway 1

  listeners:

    - allowedRoutes:

        namespaces:

          from: All

      name: gateway-metric

      protocol: TCP

      port: 11782

---

apiVersion: crd.alauda.io/v2beta1

kind: ALB2

metadata:

  namespace: k-1

  name: test-o93q7 2

spec:

  type: nginx

  config:

    enableAlb: false

    networkMode: container

    resources:

      limits:

        cpu: 200m

        memory: 256Mi

      requests:

        cpu: 200m

        memory: 256Mi

    vip:

      enableLbSvc: true

      lbSvcAnnotations: {}

    gateway:

d d l

Configure Gateway - Alauda Container Platform



1. See Gateway Class introduction below.

2. alb2  name is formatted as {gatewayName}-{random} .

3. gateway  name.

Creating Gateway by using the web console

1. Go to Container Platform.

2. In the left navigation bar, click Network > Inbound Gateway.

3. Click Create Inbound Gateway.

4. Refer to the following instructions to configure specific parameters.

Name The name of the inbound gateway.

Gateway Class

The gateway class defines the behavior of the gateway, similar to the

concept of storage classes (StorageClasses); it is a cluster resource.

Dedicated: The inbound gateway will correspond to a specific

resource instance, and the user can utilize all listeners and computing

resources of this gateway.

Specification
You can choose the recommended usage scenario based on your

needs or customize the resource limits.

Access Address
The address of the inbound gateway, which is automatically obtained

by default.

Internal Routing

Annotation

Used to declare the configuration or capabilities for LoadBalancer type

internal routing. For specific annotation information, please refer to

LoadBalancer type internal routing annotation instructions.

Parameter Description

      mode: standalone

      name: test 3

Configure Gateway - Alauda Container Platform



5. Click Create.

Creating Gateway by using the CLI

Viewing Resources Created by the Platform

After the inbound gateway is created, the platform automatically creates many resources. Do

not delete the resources below.

ALB2 Type Resource name-lb-random

Deployment name-lb-random

Internal Routing
name-lb-random

name-lb-random-lb-random

Configuration Dictionary
name-lb-random-port-info

name-lb-random

Service Account name-lb-random-serviceaccount

Updating Gateways

Default Created Resources Name

NOTE

kubectl apply -f demo-gateway.yaml

Configure Gateway - Alauda Container Platform



Updating the inbound gateway will cause a service interruption of 3-5 minutes. Please choose an

appropriate time for this operation.

Updating Gateway by using the web console

1. Access the Container Platform.

2. In the left navigation bar, click Network > Inbound Gateway.

3. Click ⋮ > Update.

4. Update the inbound gateway configuration as needed.

Note: Please set the specifications reasonably based on business requirements.

5. Click Update.

Add Listener

Monitor traffic under specified domain names and forward it to backend instances according to

the bound routing rules.

Prerequisites

If you need to monitor HTTP protocol, please contact the administrator in advance to

prepare the domain name.

If you need to monitor HTTPS protocol, please contact the administrator in advance to

prepare the domain name and certificate.

Add Listener by using the web console

1. In the left navigation bar, click Network > Inbound Gateway.

Configure Gateway - Alauda Container Platform



2. Click Inbound Gateway Name.

3. Click Add Listener.

4. Refer to the following instructions to configure specific parameters.

Listener Protocol

and Port

Currently supports monitoring HTTP, HTTPS, TCP, and UDP

protocols, and you can custom input the port to be monitored, for

example: 80 .

Note:

When the ports are the same, HTTP, HTTPS, and TCP listener

types cannot coexist; you can only select one of the protocols.

When using HTTP or HTTPS protocol, if the ports are the same,

the domain names must be different.

Domain Name

Select an available domain name in the current namespace, used to

monitor network traffic accessing this domain name.

Hint: TCP and UDP protocols do not support selecting domain names.

5. Click Create.

Add Listener by using the CLI

Parameter Description

Configure Gateway - Alauda Container Platform



Creating Route Rules

kubectl patch gateway test \

  -n k-1 \

  --type=merge \

  -p '{

    "metadata": {

      "annotations": {

        "listeners.cpaas.io/creationTimestamp": "[\"2025-05-26T02:05:56.1

35Z\",\"2025-05-26T03:33:52.431Z\"]",

        "listeners.cpaas.io/display-name": "[\"\",\"\" ]"

      }

    },

    "spec": {

      "listeners": [

        {

          "allowedRoutes": {

            "namespaces": {

              "from": "All"

            }

          },

          "name": "gateway-metric",

          "protocol": "TCP",

          "port": 11782

        },

        {

          "allowedRoutes": {

            "namespaces": {

              "from": "All"

            }

          },

          "name": "demo-listener",

          "protocol": "HTTP",

          "port": 8088,

          "hostname": "developer.test.cn"

        }

      ]

    }

  }'

Configure Gateway - Alauda Container Platform



Route rules provide routing policies for incoming traffic, similar to inbound rules (Kubernetes

Ingress). They expose network traffic monitored by the gateway to the internal routing of the

cluster (Kubernetes Service), facilitating routing forwarding strategies. The key difference is

that they target different service objects: inbound rules serve the Ingress Controller, while

route rules serve the Ingress Gateway.

Once the listening is set up in the ingress gateway, the gateway will monitor traffic from

specified domains and ports in real-time. The route rules can forward the incoming traffic to

backend instances as desired.

Example HTTPRoute custom resource (CR)

Configure Gateway - Alauda Container Platform



1. The available types are: HTTPRoute , TCPRoute , UDPRoute .

2. Gateway  listener name.

If there is no matching rule for the Path object in the HTTPRoute type route rule, a matching rule

with PathPrefix mode and a value of / will be automatically added.

Creating Route by using the web console

NOTE

# example-httproute.yaml

apiVersion: gateway.networking.k8s.io/v1beta1

kind: HTTPRoute 1

metadata:

  namespace: k-1

  name: example-http-route

  annotations:

    cpaas.io/display-name: ""

spec:

  hostnames:

    - developer.test.cn

  parentRefs:

    - kind: Gateway

      namespace: k-1

      name: test

      sectionName: demo-listener 2

  rules:

    - matches:

        - path:

            type: Exact

            value: "/demo"

      filters: []

      backendRefs:

        - kind: Service

          name: test-service

          namespace: k-1

          port: 80

          weight: 100

Configure Gateway - Alauda Container Platform



1. Access the Container Platform.

2. In the left navigation bar, click Network > Route Rules.

3. Click Create Route Rule.

4. Follow the instructions below to configure some parameters.

Route Type

The currently supported route types are: HTTPRoute, TCPRoute,

UDPRoute.

Tip: HTTPRoute supports publishing to HTTP and HTTPS protocol

listeners.

Publish to

Listener

In the left selection box, select the created Ingress Gateway, and in the

right selection box, select the created Listener. The platform will publish the

created route rules to the listener below, enabling the gateway to forward

captured traffic to specified backend instances.

Note: It is not allowed to publish route rules to a listener that is on port

11782 or has already mounted TCP or UDP routes.

Match You can add one or more matching rules to capture traffic that meets the

requirements. For example, capture traffic with specified Path, capture

traffic with specified method, etc.

Note:

Click Add; when adding multiple route rules, the relationship between

the rules is 'AND', and all rules must be matched to be effective.

Click Add Match; when adding multiple groups of route rules, the

relationship between the groups is 'OR', and any group matching can be

effective.

TCPRoute and UDPRoute do not support configuring match rules.

When the matching object is path, and the matching method is Exact or

PathPrefix, the input value must start with "/" and disallow characters

Parameter Description

Configure Gateway - Alauda Container Platform



like "//", "/./", "/../", "%2f", "%2F", "#", "/..", "/." etc.

Action

You can add one or more actions to process the captured traffic.

Header: The header of the HTTP message contains much metadata that

provides additional information about the request or response. By

modifying header fields, the server can influence how the request and

response are processed.

Redirect: The matched URL will be processed in the specified manner,

then the request will be initiated again.

Rewrite: The matched URL will be processed in the specified manner,

then the request will be redirected to a different resource path or

filename.

Note:

Click Add; when adding multiple action rules, the platform will execute all

actions in order based on the displayed sequence of the rules.

TCPRoute and UDPRoute do not support configuring action rules.

Within the same route rule, there cannot be multiple Header type actions

with the same value.

Within the same route rule, only one type of either Redirect or Rewrite,

and only one mode of either FullPath or PrefixPath can exist.

If you wish to use the PrefixPath operation, please first add a matching

rule of PathPrefix mode.

Backend

Instance

After the rule takes effect, it will forward to the backend instance according

to the selected internal routes and ports in the current namespace. You can

also set weights, with higher weight values resulting in a higher probability

of being polled.

Tip: The percentage next to the weight indicates the probability of

Parameter Description

Configure Gateway - Alauda Container Platform



forwarding to that instance, calculated as the ratio of the current weight

value to the sum of all weight values.

5. Click Create.

Creating Route by using the CLI

Parameter Description

kubectl apply -f example-httproute.yaml

Configure Gateway - Alauda Container Platform



Creating a Domain Name

Add domain name resources to the platform and allocate domains for use by all projects

under a cluster or resources under a specific project. When creating a domain name, binding

a certificate is supported.

The domain names created on the platform should be resolved to the cluster's load balancing

address before they can be accessed via the domain name. Therefore, you need to ensure that the

domain names added on the platform have been successfully registered and that the domain

names resolve to the cluster's load balancing address.

Successfully created and allocated domain names on the platform can be utilized in the

following features of Container Platform:

Create Inbound Rules: Network Management > Inbound Rules > Create Inbound Rule

Create Native Applications: Application Management > Native Applications > Create

Native Application > Add Inbound Rule

Add Listening Ports for Load Balancing: Network Management > Load Balancer

Details > Add Listening Port

Once the domain name is bound to a certificate, application developers can simply select the

domain name when configuring the load balancer and inbound rules, allowing the use of the

certificate that comes with the domain name for https support.

TOC

NOTE

Alauda Container Platform

Creating a Domain Name - Alauda Container Platform

http://localhost:4173/container_platform/


Example Domain custom resource (CR)

1. If certificates are enabled, an LTS-type Secret must be created in advance. The secret-

ref  is secret name.

Creating Domain by using the web console

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > Domain Names.

3. Click Create Domain Name.

4. Configure the relevant parameters according to the following instructions.

Example Domain custom resource (CR)

Creating Domain by using the web console

Creating Domain by using the CLI

Subsequent Actions

Additional resources

# test-domain.yaml

apiVersion: crd.alauda.io/v2

kind: Domain

metadata:

  name: "00000000003075575260129686e67ed4-917a-454a-8553-d55fc4030f81"

  annotations:

    cpaas.io/secret-ref: developer.test.cn-xfd8x 1

  labels:

    cluster.cpaas.io/name: global

    project.cpaas.io/name: cong

spec:

  name: developer.test.cn

  kind: full

Creating a Domain Name - Alauda Container Platform



Type

Domain: A complete domain name, e.g., developer.test.cn .

Wildcard Domain: A wildcard domain with a wildcard (*) character, e.g.,

*.test.cn , which includes all subdomains under the domain

test.cn .

Domain
Enter a complete domain name or domain suffix based on the selected

domain name type.

Allocate

Cluster

If a cluster is allocated, you also need to select a project associated with the

allocated cluster, such as all projects associated with the cluster.

Certificate

Includes the public key (tls.crt) and private key (tls.key) for creating a

domain name-bound certificate. The project to which the certificate is

allocated is the same as the bound domain name.

Notes:

Binary file imports are not supported.

The bound certificate should meet the conditions of correct format, within

the validity period, and signed for the domain name, etc.

After creating the bound certificate, the name format of the bound

certificate is: domain name - random characters.

After creating the bound certificate, the bound certificate can be viewed

in the certificate list, but updates and deletions of the bound certificate

are only supported on the domain detail page.

After creating the bound certificate, updating the certificate content is

supported, but replacing other certificates is not supported.

5. Click Create.

Creating Domain by using the CLI

Parameter Description

Creating a Domain Name - Alauda Container Platform



Subsequent Actions

Domain Registration: Register the domain if the created domain has not been registered.

Domain Resolution: Perform domain resolution if the domain does not point to the

platform cluster's load balancing address.

Additional resources

Configure Certificate

kubectl apply -f test-domain.yaml

Creating a Domain Name - Alauda Container Platform



Creating Certificates

After the platform administrator imports the TLS certificate and assigns it to a specified

project, developers with corresponding project permissions can use the certificate imported

and assigned by the platform administrator when using inbound rules and load balancing

functionalities. Subsequently, in scenarios such as certificate expiration, the platform

administrator can update the certificate centrally.

The certificate functionality is currently not supported for use in public cloud clusters. You can

create TLS type secret dictionaries as needed within the specified namespace.

TOC

Creating a certificate by using the web console

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > Certificates.

3. Click Create Certificate.

4. Refer to the instructions below to configure the relevant parameters.

NOTE

Creating a certificate by using the web console

Alauda Container Platform

Creating Certificates - Alauda Container Platform

http://localhost:4173/container_platform/


Assign

Project

All Projects: Assign the certificate for use in all projects associated with

the current cluster.

Specified Project: Assign the certificate for use in the specified project.

No Assignment: Do not assign a project for now. After the certificate

creation is completed, you can update the projects that can use the

certificate through the Update Project operation.

Public Key
This refers to tls.crt. When importing the public key, binary files are not

supported.

Private Key
This refers to tls.key. When importing the private key, binary files are not

supported.

5. Click Create.

Parameter Description

Creating Certificates - Alauda Container Platform



Creating External IP Address Pool

An external IP address pool is a collection of IPs that MetalLB utilizes to obtain external

access IPs for LoadBalancer type internal routes.

TOC

Prerequisites

If you need to use a BGP type external IP address pool, please contact the administrator to

enable the relevant features.

Constraints and Limitations

The IP resources for the external address must meet the following conditions:

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web console

Creating an External IP Address Pool by using the CLI

View Alarm Policy

Alauda Container Platform

Creating External IP Address Pool - Alauda Container Platform

http://localhost:4173/container_platform/


The external address pool must be layer 2 (L2) interconnected with available nodes.

The IPs must be usable by the platform and cannot include IPs already in use by the

physical network, such as gateway IPs.

There must be no overlap with the networks used by the cluster, including Cluster CIDR,

Service CIDR, subnets, etc.

In a dual-stack environment, ensure that both IPv4 and IPv6 addresses exist

simultaneously in the same external address pool, and their counts are both greater than 0.

Otherwise, dual-stack LoadBalancer type internal routes will not be able to obtain external

access addresses.

In an IPv6 environment, nodes' DNS must support IPv6; otherwise, the MetalLB plugin

cannot be successfully deployed.

Deploying the MetalLB Plugin

Using the external address pool relies on the MetalLB plugin.

1. Go to Platform Management.

2. In the left navigation bar, click Marketplace > Cluster Plugin.

3. Search MetalLB, click on MetalLB to the right of ⋮ > Deploy.

4. Wait until the deployment status shows Deployment Successful to complete the

deployment.

Example IPAddressPool custom resource (CR)

Creating External IP Address Pool - Alauda Container Platform



BGP mode:

# ippool-with-L2advertisement.yaml

kind: IPAddressPool

apiVersion: metallb.io/v1beta1

metadata:

  name: test-ippool

  namespace: metallb-system

spec:

  addresses:

    - 13.1.1.1/24

  avoidBuggyIPs: true

---

kind: L2Advertisement

apiVersion: metallb.io/v1beta1

metadata:

  name: test-ippool

  namespace: metallb-system

spec:

  ipAddressPools:

    - test-ippool 1

  nodeSelectors:

    - matchLabels: {}

      matchExpressions:

        - key: kubernetes.io/hostname

          operator: In

          values:

            - 192.168.66.210

Creating External IP Address Pool - Alauda Container Platform



1. Ip pool reference.

Q: What is L2Advertisement ?

A:

1. L2Advertisement  is a Custom Resource (CRD) provided by the MetalLB to control which IP

address pool addresses should be broadcast via ARP (IPv4) or NDP (IPv6) in Layer 2 mode.

Q: What is the purpose of L2Advertisement ?

A:

1. Specifying which IP addresses in the IPAddressPool to L2 broadcast to (ARP/NDP

advertisements);

INFO

# ippool-with-bgpadvertisement.yaml

kind: IPAddressPool

apiVersion: metallb.io/v1beta1

metadata:

  name: test-pool-bgp

  namespace: metallb-system

spec:

  addresses:

    - 4.4.4.3/23

  avoidBuggyIPs: true

---

kind: BGPAdvertisement

apiVersion: metallb.io/v1beta1

metadata:

  name: test-pool-bgp

  namespace: metallb-system

spec:

  ipAddressPools:

    - test-pool-bgp

  nodeSelectors:

    - matchLabels:

        alertmanager: "true"

  peers:

    - test-bgp-example

Creating External IP Address Pool - Alauda Container Platform



2. Control broadcast behaviour to prevent IP conflicts or cross-segment broadcasts;

3. Restricting the broadcast range in multi-NIC, multi-network environments.

In short, it tells MetalLB: which IPs can broadcast and to whom (e.g., which nodes).

Without defining a L2Advertisement  in Layer2 mode, MetalLB will not advertise any addresses.

Q: What is BGPAdvertisement  in MetalLB?

A:

BGPAdvertisement  is a Kubernetes Custom Resource Definition (CRD) used in MetalLB , a

load-balancer implementation for bare-metal Kubernetes clusters. It controls how IP address

ranges (defined in IPAddressPool ) are advertised to external networks via BGP (Border Gateway

Protocol).

Q: Why is BGPAdvertisement  Important?

A:

In MetalLB's BGP mode, the controller peers with external routers using BGP and advertises the

IPs assigned to Kubernetes Service  objects. The BGPAdvertisement  resource allows you to:

Control which address pools are advertised

Customize route advertisement settings like:

Route aggregation

BGP communities

Local preference (BGP priority)

Without defining a BGPAdvertisement , MetalLB will not advertise any addresses, even if you

have configured BGP peers.

Creating an External IP Address Pool by using the
web console

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > External IP Address Pool.

↗

Creating External IP Address Pool - Alauda Container Platform

https://metallb.io/
https://metallb.io/
https://metallb.io/


3. Click Create External IP Address Pool.

4. Refer to the following instructions to configure certain parameters.

Type

L2: Communication and forwarding based on MAC addresses, suitable

for small-scale or local area networks that require simple and fast layer 2

switching, with advantages in simple configuration and low latency.

BGP (Alpha): Routing and forwarding based on IP addresses, using BGP

protocol to exchange routing information, suitable for large-scale

networks requiring complex routing across multiple autonomous systems,

with advantages in high scalability and reliability.

IP

Resources

Support input in CIDR and IP range formats. Click Add to support multiple

entries, examples as follows:

CIDR: 192.168.1.1/24 .

IP Range: 192.168.2.1  ~ 192.168.2.255 .

Available

Nodes

In L2 mode, available nodes are those used to carry all VIP traffic; in BGP

mode, available nodes are those used to carry VIPs, establish BGP

connections with peers, and announce routes externally.

Node Name: Select available nodes based on node names.

Label Selector: Select available nodes based on labels.

Show Node Details: View final available nodes in a list format.

Note:

When using BGP type, the available nodes are the next-hop nodes;

ensure that the selected available nodes are a subset of the BGP

Connection Nodes.

You can configure either the label selector or the node name separately

to choose available nodes; if both are configured simultaneously, the final

available nodes are the intersection of both.

Parameter Description

Creating External IP Address Pool - Alauda Container Platform



BGP Peers Select BGP peers; please refer to BGP Peers for specific configurations.

5. Click Create.

Creating an External IP Address Pool by using the
CLI

View Alarm Policy

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > External IP Address Pool.

3. Click View Alarm Policy in the upper right corner of the page to view the general alarm

policy for MetalLB.

Parameter Description

kubectl apply -f ippool-with-L2advertisement.yaml -f ippool-with-bgpadver

tisement.yaml

Creating External IP Address Pool - Alauda Container Platform



Creating BGP Peers

Nodes that establish connections to exchange routing information either between different AS

or within the same AS, which communicate via the BGP protocol.

TOC

Terminology

AS
Number

AS refers to a collection of routers managed by the same technical administrative

organization that use a unified routing policy. Each AS in a BGP network is

assigned a unique AS number to distinguish it from different ASs. AS numbers are

divided into 2-byte AS numbers and 4-byte AS numbers.

The range of 2-byte AS numbers is 1~65535, where 1~64511 are registered

public AS numbers on the Internet, similar to public IP addresses; 64512~65535

are private AS numbers, similar to private IP addresses.

The range of 4-byte AS numbers is 1~4294967295.

Terminology

Prerequisites

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Term Explanation

Alauda Container Platform

Creating BGP Peers - Alauda Container Platform

http://localhost:4173/container_platform/


Devices that support 4-byte AS numbers can be compatible with devices that

support 2-byte AS numbers.

Prerequisites

Please contact the administrator to enable the relevant features.

Example BGPPeer custom resource (CR)

Creating a BGPPeer by using the web console.

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > BGP Peers.

3. Click Create BGP Peer.

4. Refer to the instructions below to configure the parameters.

Term Explanation

# test-bgb-example.yaml

apiVersion: metallb.io/v1beta2

kind: BGPPeer

metadata:

  name: example

  namespace: metallb-system

spec:

  myASN: 64512

  peerASN: 64512

  peerAddress: 172.30.0.3

  peerPort: 180

  nodeSelectors:

    - matchLabels:

        alertmanager: "true"

Creating BGP Peers - Alauda Container Platform



Local AS

Number

The AS number of the AS where the BGP connected node resides.

Note: If there are no special requirements, it is recommended to use an

IBGP configuration, meaning the local AS number should be consistent

with the peer AS number.

Peer AS

Number
The AS number of the AS where the BGP peer resides.

Peer IP
The IP address of the BGP peer, which must be a valid IP address capable

of establishing a BGP connection.

Local IP

The IP address of the BGP connected node. When the BGP connected

node has multiple IPs, select the specified local IP to establish a BGP

connection with the peer.

Peer Port The port number of the BGP peer.

BGP

Connected

Node

The node that establishes the BGP connection. If this parameter is not

configured, all nodes will establish BGP connections.

eBGP Multi-

Hop

Allows the establishment of BGP sessions between BGP routers that are

not directly connected. When this feature is enabled, the default TTL value

of BGP packets is 5, allowing the establishment of BGP peer relationships

across multiple intermediate network devices, making network design more

flexible.

RouterID

A 32-bit numeric value (usually represented in dotted-decimal format,

similar to IPv4 address format) used to uniquely identify a BGP router in the

BGP network, generally used for establishing BGP neighbor relationships,

detecting routing loops, selecting optimal paths, and troubleshooting

network issues.

5. Click Create.

Parameter Description

Creating BGP Peers - Alauda Container Platform



Creating a BGPPeer by using the CLI

kubectl apply -f test-bgb-example.yaml

Creating BGP Peers - Alauda Container Platform



Configure Subnets

TOC

IP Allocation Rules

Calico Network

Constraints and Limitations

Example Subnet custom resource (CR) with Calico Network

Creating a Subnet in the Calico network by using the web console

Creating a Subnet in the Calico network by using the CLI

Reference Content

Kube-OVN Network

Example Subnet custom resource (CR) with Kube-OVN Overlay Network

Creating a Subnet in the Kube-OVN Overlay Network by using the web console

Creating a Subnet in the Kube-OVN Overlay Network by using the the CLI

Underlay Network

Usage Instructions

Add Bridge Network by using the web console (Optional)

Add Bridge Network by using the CLI

Add VLAN by using the web console (Optional)

Add VLAN by using the CLI

Example Subnet custom resource (CR) with Kube-OVN Underlay Network

Creating a Subnet in the Kube-OVN Underlay Network by using the web console

Creating a Subnet in the Kube-OVN Underlay Network by using the CLI

Related Operations

Subnet Management

Alauda Container Platform

Configure Subnets - Alauda Container Platform

http://localhost:4173/container_platform/


IP Allocation Rules

If a project or namespace is assigned multiple subnets, an IP address will be randomly selected

from one of the subnets.

Project Allocation:

If a project is not bound to a subnet, Pods in all namespaces under that project can only

use IP addresses from the default subnet. If there are insufficient IP addresses in the

default subnet, the Pods will not be able to start.

If a project is bound to a subnet, Pods in all namespaces under that project can only use

IP addresses from that specific subnet.

Namespace Allocation:

Updating Gateway by using the web console

Updating Gateway by using the CLI

Updating Reserved IPs by using the web console

Updating Reserved IPs by using the CLI

Assigning Projects by using the web console

Assigning Projects by using the CLI

Assigning Namespaces by using the web console

Assigning Namespaces by using the CLI

Expanding Subnets by using the web console

Expanding Subnets by using the CLI

Managing Calico Networks

Delete Subnet by using the web console

Delete Subnet by using the CLI

NOTE

Configure Subnets - Alauda Container Platform



If a namespace is not bound to a subnet, Pods in that namespace can only use IP

addresses from the default subnet. If there are insufficient IP addresses in the default

subnet, the Pods will not be able to start.

If a namespace is bound to a subnet, Pods in that namespace can only use IP

addresses from that specific subnet.

Calico Network

Creating subnets in the Calico network to achieve finer granularity of network isolation for

resources within the cluster.

Constraints and Limitations

In an IPv6 cluster environment, the subnets created within the Calico network, by default, use

VXLAN encapsulation. The ports required for VXLAN encapsulation differ from those of IPIP

encapsulation. You need to ensure that UDP port 4789 is open.

Example Subnet custom resource (CR) with Calico
Network

1. When default  If true, use VXLAN encapsulation.

# test-calico-subnet.yaml

apiVersion: kubeovn.io/v1

kind: Subnet

metadata:

  name: test-calico

spec:

  cidrBlock: 10.1.1.1/24

  default: false 1

  ipipMode: Always 2

  natOutgoing: true 3

  private: false

  protocol: Dual

  v4blockSize: 30

Configure Subnets - Alauda Container Platform



2. See Encapsulation Mode parameters and Encapsulation Protocol parameters.

3. See Outbound Traffic NAT parameters.

Creating a Subnet in the Calico network by using the web
console

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > Subnets.

3. Click Create Subnet.

4. Refer to the following instructions to configure the relevant parameters.

CIDR

After allocating the subnet to a project or namespace, the container

groups within the namespace will randomly use IP addresses within this

CIDR for communication.

Note: For the correspondence between CIDR and BlockSize, please

refer to Reference Content.

Encapsulation

Protocol

Select the encapsulation protocol. IPIP is not supported in dual-stack

mode.

IPIP: Implements inter-segment communication using the IPIP

protocol.

VXLAN (Alpha): Implements inter-segment communication using

the VXLAN protocol.

No Encapsulation: Directly connected through routing forwarding.

Encapsulation

Mode

When the encapsulation protocol is IPIP or VXLAN, the encapsulation

mode must be set, defaulting to Always.

Always: Always enable IPIP / VXLAN tunnels.

Parameter Description

Configure Subnets - Alauda Container Platform



Cross Subnet: Enable IPIP / VXLAN tunnels only when the host is

in different subnets; direct connection via routing forwarding when

the host is in the same subnet.

Outbound

Traffic NAT

Choose whether to enable outbound traffic NAT (Network Address

Translation), which is enabled by default.

It is primarily used to set the access addresses exposed to the external

network when the subnet container group accesses the external

network.

When outbound traffic NAT is enabled, the host IP will be used as the

access address for the current subnet container group; when not

enabled, the IPs of the container groups in the subnet will be directly

exposed to the external network.

5. Click Confirm.

6. On the subnet details page, select Actions > Allocate Project / Allocate Namespace.

7. Complete the configuration and click Allocate.

Creating a Subnet in the Calico network by using the CLI

Reference Content

The dynamic matching relationship between CIDR and blockSize is shown in the table below.

prefix<=16 26 1024+ 64

16<prefix<=19 27 256~1024 32

Parameter Description

CIDR blockSize Size Number of Hosts Size of a Single IP Pool

kubectl apply -f test-calico-subnet.yaml

Configure Subnets - Alauda Container Platform



prefix=20 28 256 16

prefix=21 29 256 8

prefix=22 30 256 4

prefix=23 30 128 4

prefix=24 30 64 4

prefix=25 30 32 4

prefix=26 31 32 2

prefix=27 31 16 2

prefix=28 31 8 2

prefix=29 31 4 2

prefix=30 31 2 2

prefix=31 31 1 2

Subnet configurations with prefixes greater than 31 are not supported.

Kube-OVN Network

Creating a subnet in the Kube-OVN Overlay Network to achieve more granular network

isolation of resources in the cluster.

CIDR blockSize Size Number of Hosts Size of a Single IP Pool

NOTE

NOTE

Configure Subnets - Alauda Container Platform



The platform has a built-in join subnet for communication between nodes and Pods; please avoid

conflicts in network segments between join and newly created subnets.

Example Subnet custom resource (CR) with Kube-OVN
Overlay Network

1. See Outbound Traffic NAT parameters.

2. See Reserved IP parameters.

3. See Gateway Type parameters. The available values are distributed  or

centralized .

4. See Gateway Nodes parameters.

5. See ECMP parameters. Provided that you contact the administrator to enable the feature

gate.

Creating a Subnet in the Kube-OVN Overlay Network by
using the web console

1. Go to Platform Management.

# test-overlay-subnet.yaml

apiVersion: kubeovn.io/v1

kind: Subnet

metadata:

  name: test-overlay-subnet

spec:

  default: false

  protocol: Dual

  cidrBlock: 10.1.0.0/23

  natOutgoing: true 1

  excludeIps: 2

    - 10.1.1.2

  gatewayType: distributed 3

  gatewayNode: "" 4

  private: false

  enableEcmp: false 5

Configure Subnets - Alauda Container Platform



2. In the left navigation bar, click on Network Management > Subnet.

3. Click on Create Subnet.

4. Refer to the following instructions to configure the related parameters.

Network

Segment

After assigning the subnet to the project or namespace, IPs within this

segment will be randomly allocated for use by Pods.

Reserved IP
The set reserved IP will not be automatically allocated. For example, it can

be used as the IP address for computing components' fixed IP.

Gateway

Type

Select the type of gateway for the subnet to control the outbound traffic.

- Distributed: Each host in the cluster can act as an outbound node for

Pods on the current host, enabling distributed egress.

- Centralized: All Pods in the cluster use one or more specific hosts as

outbound nodes, facilitating external auditing and firewall control. Setting

multiple centralized gateway nodes can achieve high availability.

ECMP

(Alpha)

When choosing a Centralized gateway, the ECMP feature can be used. By

default, the gateway operates in master-slave mode, with only the master

gateway processing traffic. When enabling ECMP (Equal-Cost Multipath

Routing), outbound traffic will be routed through multiple equal-cost paths to

all available gateway nodes, thereby increasing the total throughput of the

gateway.

Note: Please enable ECMP-related features in advance.

Gateway

Nodes

When using a Centralized gateway, select one or more specific hosts as

gateway nodes.

Outbound

Traffic NAT

Choose whether to enable outbound traffic NAT (Network Address

Translation). By default, it is enabled.

It is mainly used to set the access address exposed to the external network

when the Pods in the subnet access the internet.

When outbound traffic NAT is enabled, the host IP will be used as the

Parameter Description

Configure Subnets - Alauda Container Platform



access address for the Pods in the current subnet; when not enabled, the

IPs of the Pods within the subnet will be directly exposed to the external

network. In this case, using a centralized gateway is recommended.

5. Click Confirm.

6. On the subnet details page, select Actions > Allocate Project / Namespace.

7. Complete the configuration and click Allocate.

Creating a Subnet in the Kube-OVN Overlay Network by
using the the CLI

Underlay Network

Creating subnets in the Kube-OVN Underlay network not only enables finer-grained network

isolation for resources but also provides a better performance experience.

The container network in Kube-OVN Underlay requires support from the physical network. Please

refer to the best practices Preparing the Kube-OVN Underlay Physical Network to ensure network

connectivity.

Usage Instructions

The general process for creating subnets in the Kube-OVN Underlay network is: Add Bridge

Network > Add VLAN > Create Subnet.

1. Default Network Card Name.

Parameter Description

INFO

kubectl apply -f test-overlay-subnet.yaml

Configure Subnets - Alauda Container Platform



2. Configure Network Card by Node.

Add Bridge Network by using the web console (Optional)

1. Default Network Card Name.

2. Configure Network Card by Node.

A bridge network refers to a bridge, and after binding the network card to the bridge, it can

forward container network traffic, achieving intercommunication with the physical network.

Procedure:

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > Bridge Network.

3. Click Add Bridge Network.

4. Configure the relevant parameters based on the following instructions.

Note:

Target Pod refers to all Pods scheduled on the current node or Pods in namespaces

bound to specific subnets scheduled to the current node. This depends on the scope of

the subnet under the bridge network.

# test-provider-network.yaml

kind: ProviderNetwork

apiVersion: kubeovn.io/v1

metadata:

  name: test-provider-network

spec:

  defaultInterface: eth1 1

  customInterfaces: 2

    - interface: eth2

      nodes:

        - node1

  excludeNodes:

    - node2

Configure Subnets - Alauda Container Platform



The nodes in the Underlay subnet must have multiple network cards, and the network

card used by the bridge network must be exclusively assigned to the Underlay and

cannot carry other traffic, such as SSH. For example, if the bridge network has three

nodes planning for eth0, eth0, eth1 for exclusive use by the Underlay, then the default

network card can be set as eth0, and the network card for node three can be eth1.

Default Network

Card Name

By default, the target Pod will use this as the bridge network card for

intercommunication with the physical network.

Configure

Network Card by

Node

The target Pods on the configured nodes will bridge to the specified

network card instead of the default network card.

Exclude Nodes

When nodes are excluded, all Pods scheduled to these nodes will not

bridge to any network card on these nodes.

Note: Pods on excluded nodes will not be able to communicate with

the physical network or cross-node container networks, and care

should be taken to avoid scheduling related Pods to these nodes.

5. Click Add.

Add Bridge Network by using the CLI

Add VLAN by using the web console (Optional)

Parameter Description

kubectl apply -f test-provider-network.yaml

Configure Subnets - Alauda Container Platform



1. VLAN ID.

2. Bridge network reference.

The platform has a pre-configured ovn-vlan virtual LAN, which will connect to the provider

bridge network. You can also configure a new VLAN to connect to other bridge networks,

thereby achieving network isolation between VLANs.

Procedure:

1. Navigate to Platform Management.

2. In the left navigation bar, click Network Management > VLAN.

3. Click Add VLAN.

4. Configure the relevant parameters based on the following instructions.

VLAN ID
The unique identifier for this VLAN, which will be used to differentiate

different virtual LANs.

Bridge

Network

The VLAN will connect to this bridge network for intercommunication with

the physical network.

5. Click Add.

Add VLAN by using the CLI

Parameter Description

# test-vlan.yaml

kind: Vlan

apiVersion: kubeovn.io/v1

metadata:

  name: test-vlan

spec:

  id: 0 1

  provider: test-provider-network 2

Configure Subnets - Alauda Container Platform



Example Subnet custom resource (CR) with Kube-OVN
Underlay Network

1. VLAN reference.

Creating a Subnet in the Kube-OVN Underlay Network by
using the web console

The platform also pre-configures a join subnet for communication between nodes and Pods in

Overlay transport mode. This subnet will not be used in Underlay transport mode, so it is crucial to

avoid IP segment conflicts between join and other subnets.

Procedure:

NOTE

kubectl apply -f test-vlan.yaml

# test-underlay-network.yaml

apiVersion: kubeovn.io/v1

kind: Subnet

metadata:

  name: test-underlay-network

spec:

  default: false

  protocol: Dual

  cidrBlock: 11.1.0.0/23

  gateway: 11.1.0.1

  excludeIps:

    - 11.1.0.3

  private: false

  allowSubnets: []

  vlan: test-vlan 1

  enableEcmp: false

Configure Subnets - Alauda Container Platform



1. Navigate to Platform Management.

2. In the left navigation bar, click Network Management > Subnet.

3. Click Create Subnet.

4. Configure the relevant parameters based on the following instructions.

VLAN The VLAN to which the subnet belongs.

Subnet
After assigning the subnet to a project or namespace, IPs within the physical

subnet will be randomly allocated for use by Pods.

Gateway The physical gateway within the above subnet.

Reserved

IP

The specified reserved IP will not be automatically assigned. For example, it

can be used as the IP for the compute component fixed IP.

5. Click Confirm.

6. On the subnet details page, select Action > Assign Project / Namespace.

7. Complete the configuration and click Assign.

Creating a Subnet in the Kube-OVN Underlay Network by
using the CLI

Related Operations

When both Underlay and Overlay subnets exist in a cluster, you can configure the Automatic

Intercommunication Between Underlay and Overlay Subnets as needed.

Parameter Description

kubectl apply -f test-underlay-network.yaml

Configure Subnets - Alauda Container Platform



Subnet Management

Updating Gateway by using the web console

This includes changing the outbound traffic method, gateway nodes, and NAT configuration.

1. Go to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Update Gateway.

5. Update the parameter configurations; refer to the Parameter Description for details.

6. Click OK.

Updating Gateway by using the CLI

Updating Reserved IPs by using the web console

The gateway IP cannot be removed from the reserved IPs, while other reserved IPs can be

edited, deleted, or added freely.

1. Go to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

kubectl patch subnet test-overlay-subnet --type=json -p='[

  {"op": "replace", "path": "/spec/gatewayType", "value": "centralized"},

  {"op": "replace", "path": "/spec/gatewayNode", "value": "192.168.66.21

0"},

  {"op": "replace", "path": "/spec/natOutgoing", "value": true},

  {"op": "replace", "path": "/spec/enableEcmp", "value": true}

]'

Configure Subnets - Alauda Container Platform



4. Select Action > Update Reserved IP.

5. After completing the updates, click Update.

Updating Reserved IPs by using the CLI

Assigning Projects by using the web console

Assigning subnets to specific projects helps teams better manage and isolate network traffic

for different projects, ensuring that each project has sufficient network resources.

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Assign Project.

5. After adding or removing projects, click Assign.

Assigning Projects by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

  {

    "op": "replace",

    "path": "/spec/excludeIps",

    "value": ["10.1.0.1", "10.1.1.2", "10.1.1.4"]

  }

]'

Configure Subnets - Alauda Container Platform



Assigning Namespaces by using the web console

Assigning subnets to specific namespaces allows for finer network isolation.

Note: The assignment process will rebuild the gateway, and outbound data packets will be

discarded! Please ensure no business applications are currently accessing external clusters.

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Assign Namespace.

5. After adding or removing namespaces, click Assign.

Assigning Namespaces by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[

  {

    "op": "replace",

    "path": "/spec/namespaceSelectors",

    "value": [

      {

        "matchLabels": {

          "cpaas.io/project": "cong"

        }

      }

    ]

  }

]'

Configure Subnets - Alauda Container Platform



Expanding Subnets by using the web console

When the reserved IP range of a subnet reaches its usage limit or is about to be exhausted, it

can be expanded based on the original subnet range without affecting the normal operation of

existing services.

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Expand Subnet.

5. Complete the configuration and click Update.

Expanding Subnets by using the CLI

Managing Calico Networks

kubectl patch subnet test-overlay-subnet --type=json -p='[

  {

    "op": "replace",

    "path": "/spec/namespaces",

    "value": ["cert-manager"]

  }

]'

kubectl patch subnet test-overlay-subnet --type=json -p='[

  {

    "op": "replace",

    "path": "/spec/cidrBlock",

    "value": "10.1.0.0/22"

  }

]'

Configure Subnets - Alauda Container Platform



Support for assigning projects and namespaces; for details, please refer to the project

assignment and namespace assignment.

Delete Subnet by using the web console

When a subnet is deleted, if there are still container groups using the IPs within the subnet, the

container groups can continue to run and the IP addresses will remain unchanged, but they will

be unable to communicate over the network. The container groups can be rebuilt to use IPs

within the default subnet, or assign a new subnet to the namespace where the container groups

reside for usage.

The default subnet cannot be deleted.

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > Subnets.

3. Click ⋮ > Delete, and proceed with the deletion.

Delete Subnet by using the CLI

NOTE

kubectl delete subnet test-overlay-subnet

Configure Subnets - Alauda Container Platform



Creating Network Policies

The platform now provides two different UIs for Network Policies. The old one is maintained for

compatibility reasons, while the new one is more flexible and provides a native YAML editor. We

recommend using the new version.

Please contact the platform administrator to enable the network-policy-next  feature gate to

access the new UI.

NetworkPolicy is a namespace-scoped Kubernetes resource and implemented by CNI

plugins. Through network policies, you can control network traffic of Pods, achieving network

isolation and reducing the risk of attacks.

By default, all Pods can communicate freely, allowing ingress and egress traffic from any

source. When a NetworkPolicy is applied, the targeted Pods will only accept traffic that

matches the spec.

Network policies only apply to container traffic. They don't affect Pods running in hostNetwork

mode.

Example NetworkPolicy:

INFO

WARNING

Alauda Container Platform

Configure Network Policies - Alauda Container Platform

http://localhost:4173/container_platform/


1. from  and 'to' peer support namespaceSelector , podSelector , 'ipBlock'

TOC

Creating NetworkPolicy by using the web console

Creating NetworkPolicy by using the CLI

# example-network-policy.yaml

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

  name: example

  namespace: demo-1

  annotations:

    cpaas.io/display-name: test

spec:

  podSelector:

    matchLabels:

      pod-template-hash: 55c84b59bb

  ingress:

    - ports:

        - protocol: TCP

          port: 8989

      from: 1

        - podSelector:

            matchLabels:

              kubevirt.io/vm: test

  egress:

    - ports:

        - protocol: TCP

          port: 80

      to:

        - ipBlock:

            cidr: 192.168.66.221/23

            except: []

  policyTypes:

    - Ingress

    - Egress

Configure Network Policies - Alauda Container Platform



Creating NetworkPolicy by using the web console

1. Enter Container Platform.

2. In the left navigation bar, click Network > Network Policies.

3. Click Create Network Policy.

4. Refer to the following instructions to complete the relevant configuration.

Target

Pod

Pod Selector

Enter the labels of the target Pods in

key-value form; if not set, it will apply to

all Pods in the current namespace.

Preview of Target Pods Affected by

Current Policy

Click Preview to see the target Pods

affected by this network policy.

Ingress Block all ingress traffic Block all ingress traffic to the target Pod.

Note:

If Ingress is added to the

spec.policyTypes  field in YAML

without configuring specific rules, the

Block all ingress traffic option will

automatically be checked when

switching back to the form.

If the spec.ingress ,

spec.egress , and

spec.policyTypes  fields are

simultaneously deleted in YAML, the

Block all ingress traffic option will

Reference

Area Parameter Description

Configure Network Policies - Alauda Container Platform



automatically be checked when

switching back to the form.

Rules

Description: If

multiple sources

are added in the

rules, there is a

logical OR
relationship

between them.

Pods in

Current

Namespace

Match Pods with specified labels in the

current namespace; only matched Pods

can access the target Pod. You can click

Preview to see the Pods affected by the

current rule. If this item is not

configured, all Pods in the current

namespace are allowed to access the

target Pod by default.

Pods in

Current

Cluster

Match namespaces or Pods with

specified labels in the cluster; only

matched Pods can access the target

Pod. You can click Preview to see the

Pods affected by the current rule.

If both namespace and Pod selectors

are configured, it will take the

intersection of the two, meaning

Pods with specified labels will be

selected from the specified

namespace.

If this item is not configured, all Pods

from all namespaces in the cluster

can access the target Pod by default.

Area Parameter Description

Configure Network Policies - Alauda Container Platform



IP Range

Enter the CIDR that can access the

target Pod and can exclude CIDR

ranges that are not allowed to access

the target Pod. If this item is not

configured, any traffic can access the

target Pod.

Description: You can add exclusion

items in the form of example_ip/32 to

exclude a single IP address.

Port

Match traffic on specified protocols and

ports; numeric ports or port names on

Pods can be added. If this item is not

configured, all ports will be matched.

Egress

Block all egress traffic

Block all egress traffic to the target Pod.

Note:

If Egress is added to the

spec.policyTypes  field in YAML

without configuring specific rules, the

Block all egress traffic option will

automatically be checked when

switching back to the form.

Other Parameters
Similar to the Ingress parameters, this

will not be elaborated on here.

5. Click Create.

Creating NetworkPolicy by using the CLI

Area Parameter Description

kubectl apply -f example-network-policy.yaml

Configure Network Policies - Alauda Container Platform



Reference

If you want more details, check out the official docs on Network Policies .↗

Configure Network Policies - Alauda Container Platform

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/


Creating Admin Network Policies

The platform now provides two different UIs for Cluster Network Policies. The old one is maintained

for compatibility reasons, while the new one is more flexible and provides a native YAML editor. We

recommend using the new version.

Please contact the platform administrator to enable the cluster-network-policy  and cluster-

network-policy-next  feature-gate to access the new UI.

The new cluster network policy adopts the Kubernetes community's Admin Network Policy

standard design, providing more flexible configuration methods and rich configuration options.

When multiple network policies are applied, they follow a strict priority order: Admin Network

Policy takes precedence over Network Policy, which in turn takes precedence over Baseline

Admin Network Policy.

The procedure is as follows:

INFO

↗

Alauda Container Platform

Creating Admin Network Policies - Alauda Container Platform

https://network-policy-api.sigs.k8s.io/api-overview/
https://network-policy-api.sigs.k8s.io/api-overview/
https://network-policy-api.sigs.k8s.io/api-overview/
http://localhost:4173/container_platform/


Evaluated First

Evaluated Last

AdminNetworkPolicy

NetworkPolicy

BaselineAdminNetworkPolicy

    Existing NetworkPolicy API Object

 AdminNetworkPolicy API Object

🔒💻
Sys Admin

💻💻
Developer

🔒💻
Sys Admin

User
P

rio
rit

y

TOC

Notes

Only Kube-OVN CNI supports admin network policies.

In Kube-OVN network mode, this feature is at Alpha maturity level.

Only one Baseline Admin Network Policy can exist in the cluster.

Notes

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console

Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Creating Admin Network Policies - Alauda Container Platform



AdminNetworkPolicy

1. The lower the number, the higher the priority.

# example-anp.yaml

apiVersion: policy.networking.k8s.io/v1alpha1

kind: AdminNetworkPolicy

metadata:

  name: example-anp

spec:

  priority: 3 1

  subject: 2

    pods:

      namespaceSelector:

        matchLabels: {}

      podSelector:

        matchLabels:

          pod-template-hash: 55f66dd67d

  ingress:

    - name: ingress1

      action: Allow 3

      ports:

        - portNumber:

            protocol: TCP

            port: 8090

      from: 4

        - pods:

            namespaceSelector:

              matchLabels: {}

            podSelector:

              matchLabels:

                pod-template-hash: 55c84b59bb

  egress:

    - name: egress1

      action: Allow

      ports:

        - portNumber:

            protocol: TCP

            port: 8080

      to: 5

        - networks:

            - 10.1.1.1/23

Creating Admin Network Policies - Alauda Container Platform



2. subject : At most one of namespace selector or pod selector can be specified.

3. action : The available values are Allow, Deny, and Pass. Allow for allowing traffic access,

Deny for denying traffic access, Pass for allowing the traffic and skip subsequent low

priority cluster network policies and continue to have the traffic handled by other policies

(NetworkPolicy and BaselineAdminNetworkpolicy).

4. The available values are Namespace Selector, Pod Selector.

5. The available values are Namespace Selector, Pod Selector, Node Selector, IP Block.

BaselineAdminNetworkpolicy:

Creating Admin Network Policies - Alauda Container Platform



1. Only one baseline admin network policy with metadata.name= default  can be created in

the cluster.

2. The available values are Allow, Deny.

# default.yaml

apiVersion: policy.networking.k8s.io/v1alpha1

kind: BaselineAdminNetworkPolicy

metadata:

  name: default 1

spec:

  subject:

    pods:

      namespaceSelector:

        matchLabels: {}

      podSelector:

        matchLabels:

          pod-template-hash: 55c84b59bb

  ingress:

    - name: ingress1

      action: Allow

      ports:

        - portNumber:

            protocol: TCP

            port: 8888

      from:

        - pods:

            namespaceSelector:

              matchLabels: {}

            podSelector:

              matchLabels:

                pod-template-hash: 55f66dd67d

  egress:

    - name: egress1

      action: Allow 2

      ports:

        - portNumber:

            protocol: TCP

            port: 8080

      to:

        - networks:

            - 3.3.3.3/23

Creating Admin Network Policies - Alauda Container Platform



Creating AdminNetworkPolicy or
BaselineAdminNetworkPolicy by using the web
console

1. Go to Platform Management.

2. In the left navigation bar, click Network > Cluster Network Policies.

3. Click Create Admin Network Policies or Configure the Baseline Admin Network

Policy.

4. Follow the instructions below to complete the relevant configuration.

Basic

Information

Name

The name of the Admin Network

Policy or Baseline Admin Network

Policy.

Priority

Determines the order in which

policies are evaluated and

applied. Lower numerical values

indicate higher priority.

Note: The baseline admin

network policy does not have a

priority.

Target Pod

Namespace Selector

Enter the labels of the target

Namespaces in key-value form. If

not set, the policy will apply to all

Namespaces in the current

cluster. When specified, the

policy will only apply to pods

within the namespaces that

match these selectors.

Area Parameter Description

Creating Admin Network Policies - Alauda Container Platform



Preview of Target Pods Affected by

Current Policy

Click Preview to see the target

Pods affected by this network

policy.

Pod Selector

Enter the labels of the target

Pods in key-value form. If not set,

the policy will apply to all Pods in

the current namespace.

Preview of Target Pods Affected by

Current Policy

Click Preview to see the target

Pods affected by this network

policy.

Ingress

Traffic Action

Specifies how to handle incoming

traffic to target Pods. Has three

modes: Allow (permits traffic),

Deny (blocks traffic), and Pass

(skips all lower-priority admin

network policies, allowing the

traffic to be handled by Network

Policy, or if no Network Policy

exists, by Baseline Admin

Network Policy).

Note: The baseline admin

network policy does not have

action Pass.

Rule

Description: If

multiple sources

are added in the

rule, there is a

logical OR

Pod

Selector

Matches namespaces or Pods

with specified labels in the

cluster; only matching Pods can

access the target Pod. You can

click Preview to see the Pods

affected by the current rule.

Area Parameter Description

Creating Admin Network Policies - Alauda Container Platform



relationship

between them.

If both namespace and Pod

selectors are configured, their

intersection will be taken,

meaning Pods with specified

labels will be selected from

the specified namespaces.

If this item is not configured,

all Pods in all namespaces in

the cluster can access the

target Pod by default.

Namespace

Selector

Matches Pods with specified

labels in the current namespace;

only matching Pods can access

the target Pod. You can click

Preview to see the Pods affected

by the current rule. If this item is

not configured, all Pods in the

current namespace are allowed

to access the target Pod by

default.

Ports

Matches traffic on specified

protocols and ports; you can add

numeric ports or port names on

Pods. If this item is not

configured, all ports will be

matched.

Egress Rule

Description: If

multiple sources

Node

Selector

Specifies which node IPs the

target Pods are allowed to

access. You can select nodes by

Area Parameter Description

Creating Admin Network Policies - Alauda Container Platform



are added in the

rule, there is a

logical OR

relationship

between them.

their labels to control which node

IPs are accessible from the Pods.

IP Range

Specify CIDR ranges that target

Pods are allowed to connect to. If

this item is not configured, target

Pods can connect to any IP by

default.

Other

Parameters

Similar to the Ingress

parameters, with the same

configuration options and

behavior.

Creating AdminNetworkPolicy or
BaselineAdminNetworkPolicy by using the CLI

Additional resource

Configure Cluster Network Policies

Area Parameter Description

kubectl apply -f example-anp.yaml -f default.yaml

Creating Admin Network Policies - Alauda Container Platform



Configure Cluster Network Policies

Cluster network policies are responsible for managing project-level access control rules.

When this feature is enabled, different projects are isolated from each other by default, and

compute components in different projects cannot access each other over the network.

Communication can be achieved by adding single project access or IP segment access

rules.

Once configured, the cluster network policies will be synchronized to the namespaces under

the cluster, and can be viewed in the Network Policies feature module of the container

platform.

TOC

Notes

The effectiveness of the cluster network policies depends on whether the network plugin

used by the cluster supports network policies.

Kube-OVN and Calico support network policies.

Flannel does not support network policies.

When accessing the cluster or using a custom network plugin, you can refer to the

relevant documentation to confirm support.

Notes

Procedure

Alauda Container Platform

Configure Cluster Network Policies - Alauda Container Platform

http://localhost:4173/container_platform/


The functionality is in Alpha maturity under the Kube-OVN network mode.

Procedure

1. Go to Platform Management.

2. In the left navigation bar, click on Network Management > Cluster Network Policies.

3. Click Configure Now.

4. Follow the instructions below to complete the relevant configuration.

Complete

Isolation

Between

Projects

Whether to enable the complete isolation switch between projects,

which is enabled by default and can be turned off by clicking. When

enabled, network isolation is achieved between all projects in the

current cluster, and other resources are not allowed to access any

project within the cluster (e.g., external IPs, load balancers). This does

not affect projects' access to resources outside the cluster.

Single Project

Access

This parameter is only effective when the Complete Isolation

Between Projects switch is enabled.

Configure the source project and target project for one-way access.

Click Add to add a configuration record, supporting multiple records.

In the source project dropdown, select a project that will access the

target project or select all projects; in the target project dropdown,

select the target project to be accessed.

IP Segment

Access

This parameter is only effective when the Complete Isolation

Between Projects switch is enabled.

Configure the specific IP/segment and target project for one-way

access.

Click Add to add a configuration record, supporting multiple records.

In the source IP segment input box, enter the IP or CIDR segment to

Configuration

Item
Description

Configure Cluster Network Policies - Alauda Container Platform



access the target project; in the target project dropdown, select the

target project to be accessed.

5. Click Configure.

Configuration

Item
Description

Configure Cluster Network Policies - Alauda Container Platform



How To

Deploy High Available VIP for ALB

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

Soft Data Center LB Solution (Alpha)

Prerequisites

Procedure

Verification

Preparing K

Usage Instructio

Terminology Ex

Environment Re

Configuration E

Automatic Interconnection of Underlay and Ov

ProcedureUse OAuth Proxy with ALB

Overview

Procedure

Result

Creating Ga

Deploy MetalLB

Set Pod Securit

Configure a Load Balancer

Prerequisites

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

Creating a Load Balancer by using the CLI.

Update Load Balancer by using the web console

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by using the web console

How to properly allocate CPU and memory resources

Small Production Environment

Medium Production Environment

Large Production Environment

Special Scenario Deployment Recommendations

Load Balancer Usage Mode Selection

Forwarding

Configuration M

Result Verificati

Calico Netw

Installation Stat

Terminology

Alauda Container Platform

How To - Alauda Container Platform

http://localhost:4173/container_platform/


Creating Listener Ports (Frontend) by using the CLI

Subsequent Actions

Related Operations

Example Rule custom resource (CR)

Creating Rule by using web console

Creating Rule by using the CLI

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Additional resources

Notes

Prerequisites

Procedure

Result Verificati

Kube-OVN Overlay Network Supports IPsec Encryption

Terminology

Notes

Prerequisites

Procedure

ALB Monito

Terminology

Procedure

Monitoring Metr

How To - Alauda Container Platform



Deploy High Available VIP for ALB

The high availability of the Load Balancer requires a VIP. There are two ways to obtain a VIP.

TOC

Method 1: Use LoadBalancer type internal routing
to provide VIP

When creating a load balancer, the internal routing option is enabled, and the system

automatically creates a LoadBalancer type internal routing to provide a VIP for the load

balancer. Before using it, ensure that the current cluster supports LoadBalancer type internal

routing. You can use the platform's built-in LoadBalancer internal routing implementation, for

specific configuration, please refer to External Address Pool; if the internal routing option is

disabled, you need to configure an access address for the load balancer.

Method 2: Use external load balancer device to
provide VIP

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

Alauda Container Platform

Deploy High Available VIP for ALB - Alauda Container Platform

http://localhost:4173/container_platform/


Please confirm with the network engineer the IP address (public IP, private IP, VIP) or

domain name of the load balancer service before deployment. If you want to use a domain

name as the address for external traffic to access the load balancer, you need to apply for

a domain name in advance and configure domain name resolution. It is recommended to

use a commercial load balancer device to provide a VIP, if not, you can use the Pure

Software Data Center LB Solution (Alpha)

According to the business scenario, the external load balancer needs to configure health

checks for all the ports in use to reduce the downtime of ALB upgrade. The health check

configuration is as follows:

Port
For global clusters, fill in: 11782.

For business clusters, fill in: 1936.

Protocol The protocol type of the health check, it is recommended to use TCP.

Response

Timeout

The time required to receive the health check response, it is

recommended to configure it to 2 seconds.

Check Interval
The time interval for the health check, it is recommended to configure it

to 5 seconds.

Unhealthy

Threshold

The number of consecutive failures after which the health check status

of the backend server is determined to be failed, it is recommended to

configure it to 3 times.

Health Check

Parameters
Description

Deploy High Available VIP for ALB - Alauda Container Platform



Soft Data Center LB Solution (Alpha)

Deploy a pure software data center load balancer (LB) by creating a highly available load

balancer outside the cluster, providing load balancing capabilities for multiple ALBs to ensure

stable business operations. It supports configuration for IPv4 only, IPv6 only, or both IPv4 and

IPv6 dual stack.

TOC

Prerequisites

1. Prepare two or more host nodes as LB. It is recommended to install Ubuntu 22.04

operating system on LB nodes to reduce the time for LB to forward traffic to abnormal

backend nodes.

2. Pre-install the following software on all host nodes of the external LB (this chapter takes

two external LB host nodes as an example):

ipvsadm

Docker (20.10.7)

Prerequisites

Procedure

Verification

Alauda Container Platform

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

http://localhost:4173/container_platform/


3. Ensure that the Docker service starts on boot for each host using the following command:

sudo systemctl enable docker.service .

4. Ensure that the clock of each host node is synchronized.

5. Prepare the image for Keepalived, used to start the external LB service; the platform

already contains this image. The image address is in the following format: <image

repository address>/tkestack/keepalived:<version suffix> . The version suffix may

vary slightly among different versions. You can obtain the image repository address and

version suffix as follows. This document uses build-

harbor.alauda.cn/tkestack/keepalived:v3.16.0-beta.3.g598ce923  as an example.

In the global cluster, execute kubectl get prdb base -o json | jq

.spec.registry.address  to get the image repository address parameter.

In the directory where the installation package is extracted, execute cat

./installer/res/artifacts.json |grep keepalived -C 2|grep tag|awk '{print

$2}'|awk -F '"' '{print $2}'  to get the version suffix.

Procedure

Note: The following operations must be executed once on each external LB host node, and

the hostname  of the host nodes must not be duplicated.

1. Add the following configuration information to the file /etc/modules-

load.d/alive.kmod.conf .

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



2. Add the following configuration information to the file

/etc/sysctl.d/alive.sysctl.conf .

3. Restart using the reboot  command.

4. Create a folder for the Keepalived configuration file.

5. Modify the configuration items according to the comments in the following file and save

them in the /etc/keepalived/  folder, naming the file alive.yaml .

ip_vs

ip_vs_rr

ip_vs_wrr

ip_vs_sh

nf_conntrack_ipv4

nf_conntrack

ip6t_MASQUERADE

nf_nat_masquerade_ipv6

ip6table_nat

nf_conntrack_ipv6

nf_defrag_ipv6

nf_nat_ipv6

ip6_tables

net.ipv4.ip_forward = 1

net.ipv4.conf.all.arp_accept = 1

net.ipv4.vs.conntrack = 1

net.ipv4.vs.conn_reuse_mode = 0

net.ipv4.vs.expire_nodest_conn = 1

net.ipv4.vs.expire_quiescent_template = 1

net.ipv6.conf.all.forwarding=1

mkdir -p /etc/keepalived

mkdir -p /etc/keepalived/kubecfg

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



Soft Data Center LB Solution (Alpha) - Alauda Container Platform



instances:

  - vip: # Multiple VIPs can be configured

      vip: 192.168.128.118 # VIPs must be different

      id: 20 # Each VIP's ID must be unique, optional

      interface: "eth0"

      check_interval: 1 # optional, default 1: interval to execute chec

k script

      check_timeout: 3  # optional, default 3: check script timeout per

iod

      name: "vip-1" # Identifier for this instance, can only contain al

phanumeric characters and hyphens, cannot start with a hyphen

      peer: [ "192.168.128.116", "192.168.128.75" ] # Keepalived node I

P, actual generated keepalived.conf will remove all IPs on the interfac

e https://github.com/osixia/docker-keepalived/issues/33

      kube_lock:

        kubecfgs: # The kube-config list used by kube-lock will sequent

ially attempt these kubecfgs for leader election in Keepalived

          - "/live/cfg/kubecfg/kubecfg01.conf"

          - "/live/cfg/kubecfg/kubecfg02.conf"

          - "/live/cfg/kubecfg/kubecfg03.conf"

    ipvs: # Configuration for option IPVS

      ips: [ "192.168.143.192", "192.168.138.100","192.168.129.100" ] # 

IPVS backend, change k8s master node IP to ALB node's node IP

      ports: # Configure health check logic for each port on the VIP

        - port: 80 # The port on the virtual server must match the real 

server's port

          virtual_server_config: |

            delay_loop 10  # Interval for performing health checks on t

he real server

            lb_algo rr

            lb_kind NAT

            protocol TCP

          raw_check: |

            TCP_CHECK {

                connect_timeout 10

                connect_port 1936

            }

  - vip:

      vip: 2004::192:168:128:118

      id: 102

      interface: "eth0"

      peer: [ "2004::192:168:128:75","2004::192:168:128:116" ]

      kube_lock:

k b f h k b fi li d b k b l k ill

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



6. Execute the following command in the business cluster to check the certificate expiration

date in the configuration file, ensuring that the certificate is still valid. The LB functionality

will become unavailable after the certificate expires, requiring contact with the platform

administrator for a certificate update.

7. Copy the /etc/kubernetes/admin.conf  file from the three Master nodes in the

Kubernetes cluster to the /etc/keepalived/kubecfg  folder on the external LB nodes,

naming them with an index, e.g., kubecfg01.conf , and modify the apiserver  node

addresses in these three files to the actual node addresses of the Kubernetes cluster.

Note: After the platform certificate is updated, this step needs to be executed again,

overwriting the original files.

8. Check the validity of the certificates.

1. Copy /usr/bin/kubectl  from the Master node of the business cluster to the LB node.

        kubecfgs: # The kube-config list used by kube-lock will sequent

ially attempt these kubecfgs for leader election in Keepalived

          - "/live/cfg/kubecfg/kubecfg01.conf"

          - "/live/cfg/kubecfg/kubecfg02.conf"

          - "/live/cfg/kubecfg/kubecfg03.conf"

    ipvs:

      ips: [ "2004::192:168:143:192","2004::192:168:138:100","2004::19

2:168:129:100" ]

      ports:

        - port: 80

          virtual_server_config: |

            delay_loop 10

            lb_algo rr

            lb_kind NAT

            protocol TCP

          raw_check: |

            TCP_CHECK {

                connect_timeout 1

                connect_port 1936

            }

openssl x509 -in <(cat /etc/kubernetes/admin.conf | grep client-certifi

cate-data | awk '{print $NF}' | base64 -d ) -noout -dates

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



2. Execute chmod +x /usr/bin/kubectl  to grant execution permissions.

3. Execute the following commands to confirm certificate validity.

If the following results are returned, the certificate is valid.

9. Upload the Keepalived image to the external LB node and run Keepalived using Docker.

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg01.conf get node

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg02.conf get node

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg03.conf get node

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg01.conf get node

## Output

NAME              STATUS   ROLES                  AGE     VERSION

192.168.129.100   Ready    <none>                 7d22h   v1.25.6

192.168.134.167   Ready    control-plane,master   7d22h   v1.25.6

192.168.138.100   Ready    <none>                 7d22h   v1.25.6

192.168.143.116   Ready    control-plane,master   7d22h   v1.25.6

192.168.143.192   Ready    <none>                 7d22h   v1.25.6

192.168.143.79    Ready    control-plane,master   7d22h   v1.25.6

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg02.conf get node

## Output

NAME              STATUS   ROLES                  AGE     VERSION

192.168.129.100   Ready    <none>                 7d22h   v1.25.6

192.168.134.167   Ready    control-plane,master   7d22h   v1.25.6

192.168.138.100   Ready    <none>                 7d22h   v1.25.6

192.168.143.116   Ready    control-plane,master   7d22h   v1.25.6

192.168.143.192   Ready    <none>                 7d22h   v1.25.6

192.168.143.79    Ready    control-plane,master   7d22h   v1.25.6

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg03.conf get node

## Output

NAME              STATUS   ROLES                  AGE     VERSION

192.168.129.100   Ready    <none>                 7d22h   v1.25.6

192.168.134.167   Ready    control-plane,master   7d22h   v1.25.6

192.168.138.100   Ready    <none>                 7d22h   v1.25.6

192.168.143.116   Ready    control-plane,master   7d22h   v1.25.6

192.168.143.192   Ready    <none>                 7d22h   v1.25.6

192.168.143.79    Ready    control-plane,master   7d22h   v1.25.6

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



10. Run the following command on the node accessing keepalived : sysctl -w

net.ipv4.conf.all.arp_accept=1 .

Verification

1. Run the command ipvsadm -ln  to view the IPVS rules, and you will see IPv4 and IPv6

rules applicable to the business cluster ALBs.

2. Shut down the LB node where the VIP is located and test whether the VIP of both IPv4 and

IPv6 can successfully migrate to another node, typically within 20 seconds.

3. Use the curl  command on a non-LB node to test if communication with the VIP is

normal.

docker run -dt --restart=always --privileged --network=host -v /etc/kee

palived:/live/cfg build-harbor.alauda.cn/tkestack/keepalived:v3.16.0-be

ta.3.g598ce923

IP Virtual Server version 1.2.1 (size=4096)

Prot LocalAddress:Port Scheduler Flags

  -> RemoteAddress:Port           Forward Weight        ActiveConn InAc

tConn

TCP  192.168.128.118:80 rr

  -> 192.168.129.100:80           Masq    1      0          0

  -> 192.168.138.100:80           Masq    1      0          0

  -> 192.168.143.192:80           Masq    1      0          0

TCP  [2004::192:168:128:118]:80 rr

  -> [2004::192:168:129:100]:80   Masq    1      0          0

  -> [2004::192:168:138:100]:80   Masq    1      0          0

  -> [2004::192:168:143:192]:80   Masq    1      0          0

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



curl 192.168.128.118

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed 

and working. Further configuration is required.</p>

<p>For online documentation and support please refer to <a href="htt

p://nginx.org/">nginx.org</a>.<br/>

Commercial support is available at <a href="http://nginx.com/">nginx.co

m</a>.</p>

<p><em>Thank you for using nginx.</em></p>

</body>

</html>

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



curl -6 [2004::192:168:128:118]:80 -g

<!DOCTYPE html>

<html>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }

</style>

</head>

<body>

<h1>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed 

and working. Further configuration is required.</p>

<p>For online documentation and support please refer to <a href="htt

p://nginx.org/">nginx.org</a>.<br/>

Commercial support is available at<a href="http://nginx.com/">nginx.com

</a>.</p>

<p><em>Thank you for using nginx.</em></p>

</body>

</html>

Soft Data Center LB Solution (Alpha) - Alauda Container Platform



Preparing Kube-OVN Underlay Physical
Network

The container network under Kube-OVN Underlay transport mode relies on physical network

support. Before deploying the Kube-OVN Underlay network, please collaborate with the

network administrator to plan and complete the relevant configurations of the physical network

in advance, ensuring network connectivity.

TOC

Usage Instructions

Kube-OVN Underlay requires deployment with multiple network interface cards (NICs), and

the Underlay subnet must exclusively use one NIC. No other types of traffic, such as SSH,

should be on that NIC; they should utilize other NICs.

Usage Instructions

Terminology Explanation

Environment Requirements

Configuration Example

Switch Configuration

Check Network Connectivity

Platform Configuration

Alauda Container Platform

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

http://localhost:4173/container_platform/


Before use, ensure that the node server has at least a dual-NIC environment, and it is

recommended that the NIC speed is at least 10 Gbps or higher (e.g., 10 Gbps, 25 Gbps, 40

Gbps).

NIC One: The NIC with the default route, configured with an IP address, interconnected

with the external switch interface, which is set to Access mode.

NIC Two: The NIC without the default route and not configured with an IP address,

interconnected with the external switch interface, which is set to Trunk mode. The Underlay

subnet exclusively uses NIC Two.

Terminology Explanation

VLAN (Virtual Local Area Network) is a technology that logically divides a local area network

into multiple segments (or smaller LANs) to facilitate data exchange for virtual workgroups.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform



The emergence of VLAN technology allows administrators to logically segment different users

within the same physical local area network into distinct broadcast domains based on actual

application needs. Each VLAN comprises a group of computer workstations with similar

requirements and possesses the same properties as a physically formed LAN. Since VLANs

are logically divided rather than physically, workstations within the same VLAN are not

confined to the same physical area; they can exist across different physical LAN segments.

The main advantages of VLANs include:

Port Segmentation. Even on the same switch, ports in different VLANs cannot

communicate with each other. A physical switch can function as multiple logical switches.

This is commonly used to control mutual access between different departments and sites in

a network.

Network Security. Different VLANs cannot communicate directly, eliminating the insecurity

of broadcast information. Broadcast and unicast traffic within a VLAN will not be forwarded

to other VLANs, helping control traffic, reduce equipment investments, simplify network

management, and improve network security.

Flexible Management. When changing a user's network affiliation, there's no need to

replace ports or cables; it merely requires a software configuration change.

Environment Requirements

In Underlay mode, Kube-OVN bridges a physical NIC to OVS and sends packets directly to

the external through that physical NIC. The L2/L3 forwarding capability relies on the

underlying network devices. The corresponding gateway, VLAN, and security policies need to

be pre-configured on the underlying network devices.

Network Configuration Requirements

Kube-OVN checks the gateway's connectivity via ICMP protocol when starting

containers; the underlying gateway must respond to ICMP requests.

For service access traffic, Pods will first send packets to the gateway, which must have

the ability to forward packets back to the local subnet.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform



When the switch or bridge has Hairpin functionality enabled, Hairpin must be disabled.

If using a VMware virtual machine environment, set

Net.ReversePathFwdCheckPromisc on the VMware host to 1, and Hairpin does not

need to be disabled.

The bridging NIC cannot be a Linux Bridge.

NIC bonding modes support Mode 0 (balance-rr), Mode 1 (active-backup), Mode 4

(802.3ad), Mode 6 (balance-alb), with a recommendation to use 0 or 1. Other bonding

modes have not been tested; please use them with caution.

IaaS (Virtualization) Layer Configuration Requirements

For OpenStack VM environments, the PortSecurity for the corresponding network port

needs to be disabled.

For VMware's vSwitch network, MAC Address Changes, Forged Transmits, and

Promiscuous Mode Operation must all be set to Accept.

For public clouds such as AWS, GCE, and Alibaba Cloud, Underlay mode networks

cannot be supported due to their lack of user-defined MAC address capabilities.

Configuration Example

The nodes in this example are dual-NIC physical machines. NIC One is the NIC with the

default route; NIC Two is the NIC without the default route and is not configured with an IP

address, exclusively used for the Underlay subnet. NIC Two is interconnected with the

external switch.

On the switch side, the interface connected to NIC Two should be configured in Trunk

mode, allowing the corresponding VLANs to pass through.

Configure the gateway address of the cluster subnet on the corresponding vlan-interface

interface. If dual-stack is needed, the IPv6 gateway address can also be configured

simultaneously.

If the gateway is behind a firewall, access from node nodes to the cluster-cidr network must

be permitted.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform



No configuration is needed for server NICs.

Switch Configuration

Configure the VLAN Interface:

Configure the interface connected to NIC Two:

Check Network Connectivity

Test if NIC Two can communicate with the gateway address:

#

interface Vlan-interface74

  ip address 192.168.74.254 255.255.255.0   //IPv4 gateway address

  ipv6 address 2074::192:168:74:254/64  //IPv6 gateway address

#

#

interface Ten-GigabitEthernet1/0/19

  port link mode bridge

  port link-type trunk  // Configure the interface to Trunk mode

  undo port trunk permit vlan 1

  port trunk permit vlan 74  // Allow the corresponding VLAN to pass thro

ugh

#

ip link add ens224.74 link ens224 type vlan id 74  // The NIC name is ens

224, and the VLAN ID is 74

ip link set ens224.74 up

ip addr add 192.168.74.200/24 dev ens224.74  // Select a test address wit

hin the Underlay subnet, here it's 192.168.74.200/24

ping 192.168.74.254  // If able to ping the gateway, it confirms that the 

physical environment meets deployment requirements

ip addr del 192.168.74.200/24 dev ens224.74  // Delete the test address a

fter testing

ip link del ens224.74  // Delete the sub-interface after testing

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform



Platform Configuration

In the left navigation bar, click Cluster Management > Cluster, then click Create Cluster.

For specific configuration procedures, please refer to the Create Cluster document, with

container network configuration shown in the image below.

Note: The Join subnet has no practical significance in the Underlay environment and primarily

serves to create an Overlay subnet later, providing the IP address range necessary for

communication between nodes and container groups.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform



Automatic Interconnection of Underlay and
Overlay Subnets

If a cluster has both Underlay and Overlay subnets, by default, Pods under the Overlay

subnet can access Pods' IPs in the Underlay subnet through a gateway using NAT. However,

Pods in the Underlay subnet need to configure node routing to access Pods in the Overlay

subnet.

To achieve automatic interconnection between Underlay and Overlay subnets, you can

manually modify the YAML file of the Underlay subnet. Once configured, Kube-OVN will also

use an additional Underlay IP to connect the Underlay subnet and the ovn-cluster logical

router, setting the corresponding routing rules to enable interconnection.

TOC

Procedure

1. Go to Platform Management.

2. In the left navigation bar, click on Cluster Management > Resource Management.

3. Enter Subnet to filter resource objects.

4. Click on ⋮ > Update next to the Underlay subnet to be modified.

Procedure

Alauda Container Platform

Automatic Interconnection of Underlay and Overlay Subnets - Alauda Container Platform

http://localhost:4173/container_platform/


5. Modify the YAML file, adding the field u2oInterconnection: true  in the Spec .

6. Click Update.

Note: Existing compute components in the Underlay subnet need to be recreated for the

changes to take effect.

Automatic Interconnection of Underlay and Overlay Subnets - Alauda Container Platform



Use OAuth Proxy with ALB

TOC

Overview

This document demonstrates how to use OAuth Proxy with ALB to implement external

authentication.

Procedure

Follow these steps to use the feature:

1. Deploy kind

2. Deploy alb

Overview

Procedure

Result

kind create cluster --name alb-auth --image=kindest/node:v1.28.0

kind get kubeconfig --name=alb-auth > ~/.kube/config

Alauda Container Platform

Use OAuth Proxy with ALB - Alauda Container Platform

http://localhost:4173/container_platform/


3. Deploy test application

Create github oauth app

Note that $GITHUB_CLIENT_ID  $GITHUB_CLIENT_SECRET  will be obtained in this

step, which needs to be set in the environment variable

Configure dns

Here we use echo.com as the application domain, auth.alb.echo.com and

alb.echo.com

Deploy oauth-proxy

oauth2-proxy needs to access github, which may require setting the HTTPS_PROXY

environment variable

↗

helm repo add alb https://alauda.github.io/alb/;helm repo update;helm s

earch repo|grep alb

helm install alb-operator alb/alauda-alb2

alb_ip=$(docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddr

ess}}{{end}}' alb-auth-control-plane)

echo $alb_ip

cat <<EOF | kubectl apply -f -

apiVersion: crd.alauda.io/v2

kind: ALB2

metadata:

    name: alb-auth

spec:

    address: "$alb_ip"

    type: "nginx"

    config:

        networkMode: host

        loadbalancerName: alb-demo

        projects:

        - ALL_ALL

        replicas: 1

EOF

Use OAuth Proxy with ALB - Alauda Container Platform

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app


Use OAuth Proxy with ALB - Alauda Container Platform



COOKIE_SECRET=$(python -c 'import os,base64; print(base64.urlsafe_b64en

code(os.urandom(32)).decode())')

OAUTH2_PROXY_IMAGE="quay.io/oauth2-proxy/oauth2-proxy:v7.7.1"

kind load docker-image $OAUTH2_PROXY_IMAGE --name alb-auth

cat <<EOF | kubectl apply -f -

apiVersion: apps/v1

kind: Deployment

metadata:

  labels:

    k8s-app: oauth2-proxy

  name: oauth2-proxy

spec:

  replicas: 1

  selector:

    matchLabels:

      k8s-app: oauth2-proxy

  template:

    metadata:

      labels:

        k8s-app: oauth2-proxy

    spec:

      containers:

        - args:

            - --http-address=0.0.0.0:4180

            - --redirect-url=http://auth.alb.echo.com/oauth2/callback

            - --provider=github

            - --whitelist-domain=.alb.echo.com

            - --email-domain=*

            - --upstream=file:///dev/null

            - --cookie-domain=.alb.echo.com

            - --cookie-secure=false

            - --reverse-proxy=true

          env:

            - name: OAUTH2_PROXY_CLIENT_ID

              value: $GITHUB_CLIENT_ID

            - name: OAUTH2_PROXY_CLIENT_SECRET

              value: $GITHUB_CLIENT_SECRET

            - name: OAUTH2_PROXY_COOKIE_SECRET

              value: $COOKIE_SECRET

          image: $OAUTH2_PROXY_IMAGE

          imagePullPolicy: IfNotPresent

          name: oauth2-proxy

          ports:

i

Use OAuth Proxy with ALB - Alauda Container Platform



4. Configure ingress

We will configure two ingresses, auth.alb.echo.com and alb.echo.com

          - containerPort: 4180

            name: http

            protocol: TCP

          - containerPort: 44180

            name: metrics

            protocol: TCP

---

apiVersion: v1

kind: Service

metadata:

  labels:

    k8s-app: oauth2-proxy

  name: oauth2-proxy

spec:

 ports:

 - appProtocol: http

   name: http

   port: 80

   protocol: TCP

   targetPort: http

 - appProtocol: http

   name: metrics

   port: 44180

   protocol: TCP

   targetPort: metrics

 selector:

   k8s-app: oauth2-proxy

EOF

Use OAuth Proxy with ALB - Alauda Container Platform



Use OAuth Proxy with ALB - Alauda Container Platform



cat <<EOF | kubectl apply -f -

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  annotations:

    nginx.ingress.kubernetes.io/auth-url: "https://auth.alb.echo.com/oa

uth2/auth"

    nginx.ingress.kubernetes.io/auth-signin: "https://auth.alb.echo.co

m/oauth2/start?rd=http://\$host\$request_uri"

  name: echo-resty

spec:

  ingressClassName: alb-auth

  rules:

    - host: alb.echo.com

      http:

        paths:

          - path: /

            pathType: Prefix

            backend:

              service:

                name: echo-resty

                port:

                  number: 80

---

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

  name: oauth2-proxy

spec:

  ingressClassName: alb-auth

  rules:

    - host: auth.alb.echo.com

      http:

        paths:

          - path: /

            pathType: Prefix

            backend:

              service:

                name: oauth2-proxy

                port:

                  number: 80

EOF

Use OAuth Proxy with ALB - Alauda Container Platform



Result

After the operation is complete, an alb, oauth-proxy, and test application will be deployed.

After accessing alb.echo.com, you will be redirected to the github authentication page, and

after verification, you can see the output of the application

Use OAuth Proxy with ALB - Alauda Container Platform



Creating GatewayAPI Gateway

GatewayAPI is a new API for Kubernetes that provides a more flexible and extensible way to

manage ingress traffic. It allows you to define routing rules, traffic policies, and other

configurations in a more declarative manner.

This document provides a step-by-step guide on how to create a GatewayAPI gateway in the

Alauda Container Platform Kubernetes cluster.

Requirements

TOC

Deploy MetalLB

The GatewayAPI gateway requires MetalLB to allocate an IP address. Please refer to Create

MetalLB for instructions on how to deploy MetalLB.

Set Pod Security Policies to Privileged Mode

If the namespace where you want to deploy the gateway is created via the UI, you need to

update its Pod Security Policy (PSP) to privileged mode.

Deploy MetalLB

Set Pod Security Policies to Privileged Mode

Alauda Container Platform

Creating GatewayAPI Gateway - Alauda Container Platform

http://localhost:4173/container_platform/


Procedure

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Inbound Gateways.

3. Click on Create Inbound Gateways.

4. Follow the instructions below to complete the network configuration:

Name The name of the gateway.

GatewayClass

The embedded exclusive-gateway  is provided by Alauda Container

Platform and backed by ALB. It will create a container-network-mode ALB

to implement the GatewayAPI gateway specification.

Specification

Set the specifications appropriately based on your business needs. You

can also refer to How to properly allocate CPU and memory resources for

guidance.

5. Click Create. The creation process may take some time; please be patient.

Parameter Description

Creating GatewayAPI Gateway - Alauda Container Platform



Creating GatewayAPI Gateway - Alauda Container Platform



Configure a Load Balancer

A Load Balancer is a service that distributes traffic to container instances. By utilizing load

balancing functionality, it automatically allocates access traffic for computing components and

forwards it to the container instances of those components. Load balancing can improve the

fault tolerance of computing components, scale the external service capability of those

components, and enhance the availability of applications.

Platform administrators can create single-point or high-availability load balancers for any

cluster on the platform, and uniformly manage and allocate load balancer resources. For

example, load balancing can be assigned to projects, ensuring that only users with the

appropriate project permissions can utilize the load balancing.

Please refer to the table below for explanations of related concepts in this section.

Load
Balancer

A software or hardware device that distributes network requests to available

nodes in a cluster. The load balancer used in the platform is a Layer 7 software

load balancer.

VIP
Virtual IP address (Virtual IP Address) is an IP address that does not correspond

to a specific computer or a specific network interface card. When the load

balancer is of high-availability type, the access address should be the VIP.

TOC

Parameter Description

Prerequisites

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

Alauda Container Platform

Configure a Load Balancer - Alauda Container Platform

http://localhost:4173/container_platform/


Prerequisites

The high availability of the Load Balancer requires a VIP. Please refer to Configure VIP.

Example ALB2 custom resource (CR)

Creating a Load Balancer by using the CLI.

Update Load Balancer by using the web console

Delete Load Balancer by using the web console

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

Prerequisites

Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by using the web console

Creating Listener Ports (Frontend) by using the CLI

Subsequent Actions

Related Operations

Example Rule custom resource (CR)

dslx

Creating Rule by using web console

Creating Rule by using the CLI

Logs and Monitoring

Viewing Logs

Monitoring Metrics

Additional resources

Configure a Load Balancer - Alauda Container Platform



1. When enableLbSvc  is true, it will create an internal LoadBalancer type service for the

load balancer's access address. lbSvcAnnotations  Configuration Reference

LoadBalancer Type Service Annotations.

2. Check the Network Mode configuration below.

3. Check the Resource Allocation Method below.

4. Check the Assigned Project below.

5. Check the Specification below.

# test-alb.yaml

apiVersion: crd.alauda.io/v2beta1

kind: ALB2

metadata:

  name: alb-demo

  namespace: cpaas-system

  annotations:

    cpaas.io/display-name: ""

spec:

  address: 192.168.66.215

  config:

    vip: 1

      enableLbSvc: false

      lbSvcAnnotations: {}

    networkMode: host 2

    enablePortProject: false 3

    nodeSelector:

      cpu-model.node.kubevirt.io/Nehalem: "true"

    projects: 4

      - ALL_ALL

    replicas: 1

    resources: 5

      limits:

        cpu: 200m

        memory: 256Mi

      requests:

        cpu: 200m

        memory: 256Mi

  type: nginx

Configure a Load Balancer - Alauda Container Platform



Creating a Load Balancer by using the web
console.

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Load Balancer.

3. Click on Create Load Balancer.

4. Follow the instructions below to complete the network configuration.

Network Mode

Host Network Mode: Only one load balancer replica is allowed to be

deployed on a single node, with multiple services sharing one ALB,

resulting in superior network performance.

Container Network Mode: Multiple load balancer replicas can be

deployed on a single node to meet the requirements of separate

ALBs for each service, with slightly lower network performance.

Service and

Annotations

(Alpha)

Service: When enabled, it will create an internal LoadBalancer type

service for the load balancer's access address. Before use, ensure

that the current cluster supports LoadBalancer type service. You can

implement the platform's built-in LoadBalancer type service; when

disabled, you need to configure an External Address Pool for the load

balancer.

Annotations: Used to declare the configuration or capabilities of

Internal LoadBalancer type routing; for specifics, please refer to

Annotations for Internal LoadBalancer Type Routing.

Access

Address

The access address for load balancing, i.e., the service address of the

load balancer instance. After the load balancer is successfully created, it

can be accessed via this address.

Parameter Description

Configure a Load Balancer - Alauda Container Platform



In host network mode, please fill out according to actual conditions; it

can be a domain name or an IP address (internal IP, external IP, VIP).

In container network mode, it will be acquired automatically.

5. Follow the instructions below to complete the resource configuration.

Specification

Please set the specifications reasonably according to business needs.

You can also refer to How to properly allocate CPU and memory

resources for reference.

Deployment

Type

Single Point: The container group of the load balancer is deployed

on a single node, which may result in the risk of load balancer

unavailability if a machine failure occurs.

High Availability: Multiple container groups of the load balancer are

deployed across the corresponding number of nodes, usually 3. This

satisfies the load balancing needs of large business volumes while

providing emergency disaster recovery capabilities.

Replicas

The number of replicas is the number of container groups for the load

balancer.

Tip: To ensure high availability of the load balancer, it is recommended

that the number of replicas be no less than 3.

Node Labels

Filter nodes using labels to deploy the load balancer.

Tip:

It is recommended that the number of nodes meeting the

requirements be greater than the number of load balancer replicas.

A label with the same key can only select one (if multiple are

selected, no matching hosts will be available).

Parameter Description

Parameter Description

Configure a Load Balancer - Alauda Container Platform



Resource

Allocation

Method

Instance: Any port within the range of 1-65535 that the load

balancer instance can listen on can be provided for project use.

Port (Alpha): Only ports within the specified range can be allocated

for project use. This method allows for finer-grained resource control

when port resources are limited.

Assigned

Project

When Resource Allocation Method is set to Instance, the load

balancer can be allocated to all projects associated with the current

cluster or to specified projects. In allocated projects, all Pods in all

namespaces can receive requests distributed by the load balancer.

All Projects: Allocates the load balancer for use by all projects

associated with the current cluster.

Specified Projects (Alpha): Click the dropdown box under

Specified Projects and click the checkbox on the left of the

project name to select one or more projects, allocating the load

balancer for use by those specified projects.

Tip: You can filter projects by entering project names in the

dropdown box.

No Allocation (Alpha): Temporarily does not allocate any

project. After the load balancer is created, you can use the

Update Project operation to update the allocation project

parameters for the created load balancer.

When Resource Allocation Method is set to Port, this item does

not need to be configured. Please manually allocate port information

after creating the load balancer.

6. Click Create. The creation process will take some time; please be patient.

Creating a Load Balancer by using the CLI.

Parameter Description

Configure a Load Balancer - Alauda Container Platform



Update Load Balancer by using the web console

Updating the load balancer will cause a service interruption for 3 to 5 minutes. Please choose an

appropriate time for this operation!

1. Enter Platform Management.

2. In the left navigation bar, click Network Management > Load Balancer.

3. Click ⋮ > Update.

4. Update the network and resource configuration as needed.

Please set specifications reasonably according to business needs. You can also refer to

the relevant How to properly allocate CPU and memory resources for guidance.

Internal routing only supports updating from Disabled state to Enabled state.

5. Click Update.

Delete Load Balancer by using the web console

After deleting the load balancer, the associated ports and rules will also be deleted and cannot be

restored.

1. Enter Platform Management.

2. In the left navigation bar, click Network Management > Load Balancer.

NOTE

NOTE

kubectl apply -f test-alb.yaml -n cpaas-system

Configure a Load Balancer - Alauda Container Platform



3. Click ⋮ > Delete, and confirm.

Delete Load Balancer by using the CLI

Configure Listener Ports (Frontend)

The load balancer supports receiving client connection requests through listener ports and

corresponding protocols, including HTTPS, HTTP, gRPC, TCP, and UDP.

Prerequisites

If you need to add an HTTPS listener port, you should also contact the administrator to assign

a TLS certificate to the current project for encryption.

Example Frontend custom resource (CR)

kubectl delete alb2 test-alb -n cpaas-system

Configure a Load Balancer - Alauda Container Platform



1. Required, indicate the ALB instance to which this Frontend  belongs to.

2. Format as $alb_name-$port .

3. Format as $secret_ns/$secret_name .

4. Protocol of this Frontend  itself.

http|https|grpc|grpcs  for l7 proxy.

tcp|udp  for l4 proxy.

5. For l4 proxy, serviceGroup  is required. For l7 proxy, serviceGroup  is. optional. When a

request arrives, ALB will first try to match it against rules associated with this Frontend .

Only if the request doesn't match any rule, ALB will then forward it to the default

serviceGroup  specified in the Frontend  configuration.

6. weight  configuration applicable to Round Robin and Weighted Round Robin scheduling

algorithms.

NOTE

# alb-frontend-demo.yaml

apiVersion: crd.alauda.io/v1

kind: Frontend

metadata:

  labels:

    alb2.cpaas.io/name: alb-demo 1

  name: alb-demo-00080 2

  namespace: cpaas-system

spec:

  backendProtocol: "http"

  certificate_name: "" 3

  port: 80

  protocol: http 4

  serviceGroup: 5

    services:

      - name: hello-world

        namespace: default

        port: 80

        weight: 100 6

Configure a Load Balancer - Alauda Container Platform



ALB listens to ingress and automatically creates a Frontend  or Rule. source  field is defined as

follows:

1. spec.source.type  currently only supports ingress .

2. spec.source.name  is ingress name.

3. spec.source.namespace  is ingress namespace.

Creating Listener Ports (Frontend) by using the
web console

1. Go to Container Platform.

2. In the left navigation bar, click Network > Load Balancing.

3. Click the name of the load balancer to enter the details page.

4. Click Add Listener Port.

5. Refer to the following instructions to configure the relevant parameters.

Protocol Supported protocols include HTTPS, HTTP, gRPC, TCP, and UDP. When

selecting HTTPS, a certificate must be added; adding a certificate is

optional for the gRPC protocol.

Note:

When selecting the gRPC protocol, the backend protocol defaults to

gRPC, which does not support session persistence.

If a certificate is set for the gRPC protocol, the load balancer will

unload the gRPC certificate and forward the unencrypted gRPC traffic

to the backend service.

Parameter Description

Configure a Load Balancer - Alauda Container Platform



If using a Google GKE cluster, a load balancer of the same container

network type cannot have both TCP and UDP listener protocols

simultaneously.

Internal

Routing

Group

- When the load balancing algorithm is set to Round Robin (RR), traffic

will be distributed to the internal routing ports in the order of the internal

routing group.

- When the load balancing algorithm is set to Weighted Round Robin

(WRR), internal routes with higher weight values have a higher probability

of being selected; traffic will be distributed to the internal routing ports

based on the configured weight.

Tip: The probability calculation is the ratio of the current weight value to

the sum of all weight values.

Session

Persistence

Always forward specific requests to the backend service corresponding to

the aforementioned internal routing group.

Specific requests include (choose one):

Source Address Hash: All requests from the same IP address.

Note: In public cloud environments, the source address often changes,

which may cause requests from the same client to have different

source IP addresses at different times, leading to the source address

hash technique not achieving the expected effect.

Cookie key: Requests that carry a specified cookie.

Header name: Requests that carry a specified header.

Backend

Protocol

The protocol used for forwarding traffic to the backend services. For

example, if forwarding to backend Kubernetes or dex services, the

HTTPS protocol must be selected.

6. Click OK.

Parameter Description

Configure a Load Balancer - Alauda Container Platform



Creating Listener Ports (Frontend) by using the
CLI

Subsequent Actions

For traffic from HTTP, gRPC, and HTTPS ports, in addition to the default internal routing

group, you can set more varied back-end service matching rules. The load balancer will

initially match the corresponding backend service according to the set rules; if the rule match

fails, it will then match the backend services corresponding to the aforementioned internal

routing group.

Related Operations

You can click the ⋮ icon on the right side of the list page or click Actions in the upper right

corner of the details page to update the default route or delete the listener port as needed.

If the resource allocation method of the load balancer is Port, only administrators can delete the

related listener ports in the Platform Management view.

Configure Rules

Add forwarding rules for the listener ports of HTTPS, HTTP, and gRPC protocols. The load

balancer will match the backend services based on these rules.

NOTE

NOTE

kubectl apply -f alb-frontend-demo.yaml -n cpaas-system

Configure a Load Balancer - Alauda Container Platform



Forwarding rules cannot be added for TCP and UDP protocols.

Example Rule custom resource (CR)

Configure a Load Balancer - Alauda Container Platform



Configure a Load Balancer - Alauda Container Platform



# alb-rule-demo.yaml

apiVersion: crd.alauda.io/v1

kind: Rule

metadata:

  labels:

    alb2.cpaas.io/frontend: alb-demo-00080 1

    alb2.cpaas.io/name: alb-demo 2

  name: alb-demo-00080-test

  namespace: cpaas-system

spec:

  backendProtocol: "" 3

  certificate_name: "" 4

  dslx:

    - type: METHOD

      values:

        - - EQ

          - POST

    - type: URL

      values:

        - - STARTS_WITH

          - /app-a

        - - STARTS_WITH

          - /app-b

    - type: PARAM

      key: group

      values:

        - - EQ

          - vip

    - type: HOST

      values:

        - - ENDS_WITH

          - .app.com

    - type: HEADER

      key: LOCATION

      values:

        - - IN

          - east-1

          - east-2

    - type: COOKIE

      key: uid

      values:

        - - EXIST

    - type: SRC_IP

l

Configure a Load Balancer - Alauda Container Platform



1. Required, indicate the Frontend  to which this rule belongs.

2. Required, indicate the ALB to which this rule belongs.

3. As same as Frontend .

4. As same as Frontend .

5. The lower the number, the higher the priority.

6. As same as Frontend .

dslx

dslx is a domain specific language, it is used to describe the matching criteria.

For example, below rule matches a request that satisfies all the following criteria:

url starts with /app-a or /app-b

method is post

url param's group is vip

host is *.app.com

header's location is east-1 or east-2

has a cookie name is uid

source IPs come from 1.1.1.1-1.1.1.100

      values:

        - - RANGE

          - "1.1.1.1"

          - "1.1.1.100"

  enableCORS: false

  priority: 4 5

  serviceGroup: 6

    services:

      - name: hello-world

        namespace: default

        port: 80

        weight: 100

Configure a Load Balancer - Alauda Container Platform



Creating Rule by using web console

1. Go to Container Platform.

dslx:

  - type: METHOD

    values:

      - - EQ

        - POST

  - type: URL

    values:

      - - STARTS_WITH

        - /app-a

      - - STARTS_WITH

        - /app-b

  - type: PARAM

    key: group

    values:

      - - EQ

        - vip

  - type: HOST

    values:

      - - ENDS_WITH

        - .app.com

  - type: HEADER

    key: LOCATION

    values:

      - - IN

        - east-1

        - east-2

  - type: COOKIE

    key: uid

    values:

      - - EXIST

  - type: SRC_IP

    values:

      - - RANGE

        - "1.1.1.1"

        - "1.1.1.100"

Configure a Load Balancer - Alauda Container Platform



2. Click on Network > Load Balancing in the left navigation bar.

3. Click on the name of the load balancer.

4. Click on the name of the listener port.

5. Click Add Rule.

6. Refer to the following descriptions to configure the relevant parameters.

Internal Route

Group

- When the load balancing algorithm selects Round Robin (RR), the

access traffic will be distributed to the ports of the internal routes in the

order of the internal route group.

- When the load balancing algorithm selects Weighted Round Robin

(WRR), the higher the weight value of the internal route, the higher the

probability it will be polled, and the access traffic will be distributed to the

ports of the internal routes according to the probability calculated based

on the configured weight.

Tip: The calculation method for probability is the ratio of the current

weight value to the sum of all weight values.

Rule Refers to the criteria for the load balancer to match backend services,

including rule indicators and their values. The relationship between

different rule indicators is 'and'.

Domain Name: Supports adding wildcard domains and exact

domain names. In cases of equal priority for the same rule, if both

wildcard and exact domain name rule configurations exist, the exact

domain name forwarding rule will take effect first.

URL: RegEx corresponds to URL regular expressions starting with

/ ; StartsWith corresponds to URL prefixes starting with / .

IP: Equal corresponds to a specific IP address; Range corresponds

to an IP address range.

Header: In addition to entering the key of the header, matching rules

must also be set. Equal corresponds to the specific value of the

Parameter Description

Configure a Load Balancer - Alauda Container Platform



header; Range corresponds to the range of the header value; RegEx

corresponds to the header's regular expression.

Cookie: In addition to entering the key of the cookie, matching rules

must also be set. Equal corresponds to the specific value of the

cookie.

URL Param: In matching rules, Equal corresponds to a specific URL

parameter; Range corresponds to the URL parameter range.

Service Name: The Service Name refers to the name of the service

that uses the gRPC protocol. When using the gRPC protocol, this

item can be configured, enabling traffic to be forwarded to the

corresponding service based on the provided Service Name, for

example: /helloworld.Greeter .

Session

Persistence

Always forwards specific access requests to the backend services

corresponding to the aforementioned internal route group.

Specific access requests refer to (choose one):

Source Address Hash: All access requests originating from the same

IP address.

Cookie Key: Access requests carrying the specified cookie.

Header Name: Access requests carrying the specified header.

URL Rewrite

Rewrites the accessed address to the address of the platform's backend

service. This feature requires the StartsWith rule indicator of the URL to

be configured, and the rewrite address (rewrite-target) must start with /.

For example: After setting the domain name to bar.example.com and the

starting path of the URL to / , enabling the URL Rewrite functionality

and setting the rewrite address to /test. The access to bar.example.com

will rewrite the URL to bar.example.com/test.

Parameter Description

Configure a Load Balancer - Alauda Container Platform



Backend

Protocol

The protocol used to forward access traffic to the backend service. For

example: If forwarding to the backend's Kubernetes or dex service,

choose HTTPS protocol.

Redirection

Forwards access traffic to a new redirected address rather than the

backend services corresponding to the internal route group.

For example: When a page at the original access address is upgraded or

updated, to avoid users receiving a 404 or 503 error page, the traffic can

be redirected to the new address by configuration.

HTTP Status Code: The status code presented to the user by the

browser before redirecting to the new address.

Redirect Address: When entering a relative address (for example,

/index.html), the purpose of the forwarded traffic will be load balancer

address/index.html; when entering an absolute address (for example,

https://www.example.com ), the purpose of the forwarded traffic will

be the entered address.

Rule Priority

The priority of rule matching: there are 10 levels from 1 to 10, with 1

being the highest priority, and the default priority is 5.

When two or more rules are satisfied at the same time, the higher priority

rule is selected and applied; if the priority is the same, the system uses

the default matching rule.

Cross-Origin

Resource

Sharing

(CORS)

CORS (Cross-origin resource sharing) is a mechanism that utilizes

additional HTTP headers to instruct the browser that a web application

running on one origin (domain) is permitted to access specified

resources from a different origin server. When a resource requests

another resource that is from a server with a different domain, protocol,

or port than its own, it initiates a cross-origin HTTP request.

Parameter Description

↗

Configure a Load Balancer - Alauda Container Platform

https://www.example.com/
https://www.example.com/
https://www.example.com/


Allowed

Origins

Used to specify the origins that are allowed to access.

*: Allows requests from any origin.

Domain Name: Allows requests from the current domain.

Allowed

Headers

Used to specify the HTTP request headers allowed in CORS (Cross-

Origin Resource Sharing) to avoid unnecessary preflight requests and

improve request efficiency. Example entries are as follows:

Note: Other commonly used or custom request headers will not be listed

one by one here; please fill in according to actual conditions.

Origin: Indicates the origin of the request, i.e., the domain that sends

the request.

Authorization: Used to specify the authorization information for the

request, usually for identification, such as Basic Authentication or

Token.

Content-Type: Used to specify the content type of the

request/response, such as application/json, application/x-www-form-

urlencoded, etc.

Accept: Used to specify the content types that the client can accept,

typically used when the client hopes to receive a specific type of

response.

7. Click Add.

Creating Rule by using the CLI

Parameter Description

kubectl apply -f alb-rule-demo.yaml -n cpaas-system

Configure a Load Balancer - Alauda Container Platform



Logs and Monitoring

By combining visualized logs and monitoring data, issues or failures with the load balancer

can be quickly identified and resolved.

Viewing Logs

1. Go to Platform Management.

2. In the left navigation bar, click on Network Management > Load Balancer.

3. Click on Load Balancer Name.

4. In the Logs tab, view the logs of the load balancer's runtime from the container's

perspective.

Monitoring Metrics

The cluster where the load balancer is located must deploy monitoring services.

1. Go to Platform Management.

2. In the left navigation bar, click on Network Management > Load Balancer.

3. Click on Load Balancer Name.

4. In the Monitoring tab, view the metric trend information of the load balancer from the

node's perspective.

Usage Rate: The real-time usage of CPU and memory by the load balancer on the

current node.

Throughput: The overall incoming and outgoing traffic of the load balancer instance.

NOTE

Configure a Load Balancer - Alauda Container Platform



Additional resources

ALB Monitoring

Configure a Load Balancer - Alauda Container Platform



How to properly allocate CPU and memory
resources

For the platform's proposed specifications for small, medium, large, and custom production

environments, as well as the resource allocation methods for instances and ports, the

following suggestions can be referenced for deployment.

TOC

Small Production Environment

For smaller business scales, such as having no more than 5 nodes in the cluster and only

used for running standard applications, a single load balancer is sufficient. It is recommended

to use it in a high availability mode with at least 2 replicas to ensure stability in the

environment.

You can isolate the load balancer using port isolation, allowing multiple projects to share it.

Small Production Environment

Medium Production Environment

Large Production Environment

Special Scenario Deployment Recommendations

Load Balancer Usage Mode Selection

Alauda Container Platform

How to properly allocate CPU and memory resources - Alauda Container Platform

http://localhost:4173/container_platform/


The peak QPS measured in a lab environment for this specification is approximately 300

requests per second.

Medium Production Environment

When the business volume reaches a certain scale, such as having no more than 30 nodes in

the cluster and needing to handle high-concurrency business alongside running standard

applications, a single load balancer will still be adequate. It is advisable to employ a high

availability mode with at least 3 replicas to maintain stability in the environment.

You can utilize either port isolation or instance allocation methods to share the load balancer

among multiple projects. Of course, you can also create new load balancers for dedicated use

by core projects.

The peak QPS measured in a lab environment for this specification is around 10,000 requests

per second.

How to properly allocate CPU and memory resources - Alauda Container Platform



Large Production Environment

For larger business volumes, such as having more than 30 nodes in the cluster and needing

to handle high-concurrency business as well as long-lived data connections, it is

recommended to use multiple load balancers, each in a high availability type with at least 3

replicas to ensure stability in the environment.

You can isolate the load balancer using either port isolation or instance allocation methods

for multiple projects to share it. You may also create new load balancers for exclusive use by

core projects.

The peak QPS measured in a lab environment for this specification is approximately 20,000

requests per second.

How to properly allocate CPU and memory resources - Alauda Container Platform



Special Scenario Deployment Recommendations

Function
Testing

It is advisable to deploy a single instance of the load balancer.

Testing
Environment

If the testing environment meets the definitions of small or medium as

stated above, using a single point load balancer is sufficient. The load

balancer instance can be shared among multiple projects.

Core
Applications

It is recommended to use specific load balancers exclusively for core

applications.

Transferring
Large Scale
Data

Due to minimal memory consumption caused by the load balancer itself, it

is sufficient to reserve 2Gi of memory even for the large specification.

However, if the business requires transferring large-scale data, which will

lead to substantial memory consumption, the memory allocation for the load

balancer should be increased accordingly.

It is recommended to gradually expand the memory of the load balancer in

Scenario Deployment Recommendations

How to properly allocate CPU and memory resources - Alauda Container Platform



custom specification scenarios, closely monitoring memory usage to

ultimately arrive at an acceptable memory size for reasonable usage rates.

Load Balancer Usage Mode Selection

(Recommended)
Allocate the load
balancer as an instance
resource to a single
project

Management is

relatively simple.

Each project has its

own load balancer,

ensuring rule isolation

and resource

separation, with no

interference.

In host network mode, the cluster

must possess a significant

number of nodes available for the

load balancer, resulting in high

resource consumption

requirements.

Scenario Deployment Recommendations

Usage Mode Advantages Disadvantages

How to properly allocate CPU and memory resources - Alauda Container Platform



Allocate the load
balancer as an instance
resource to multiple
projects

Management is relatively

straightforward.

Since all assigned projects hold

full permissions for the load

balancer instance, when one

project configures the ports and

rules of the load balancer, the

following situations may arise:

The rules configured by that

project may affect other

projects.

Mis-operations during load

balancer configuration might

alter other projects' settings.

Traffic requests from a

particular business may

impact the overall availability

of the load balancer instance.

Dynamically allocate
load balancer resources
by port, with different
projects using different
ports

The rules between

projects isolate them,

ensuring no interference.

Management complexity

increases. Platform

administrators must actively

plan and allocate ports for

projects and configure

external service mappings.

The maturity of port-based

allocation is lower. Currently, it

is used by fewer clients and

requires further refining of

features.

Resource conflicts. All

services using the same load

balancer may face scenarios

where a single service

Usage Mode Advantages Disadvantages

How to properly allocate CPU and memory resources - Alauda Container Platform



negatively impacts the entire

load balancer.

Usage Mode Advantages Disadvantages

How to properly allocate CPU and memory resources - Alauda Container Platform



Forwarding IPv6 Traffic to IPv4 Addresses
within the Cluster

By configuring an external load balancer for the cluster, we can forward IPv6 traffic to the

internal IPv4 addresses within the cluster. This allows us to introduce IPv6 capabilities over

the existing IPv4 network, providing greater flexibility and scalability to our system

architecture, and better addressing diverse network demands.

TOC

Configuration Method

Result Verification

Alauda Container Platform

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster - Alauda Container Platform

http://localhost:4173/container_platform/


Configuration Method

1. Configure the IPv6 address for the node where the load balancer is located.

2. Ensure that the external load balancer has an IPv6 address, and make sure that traffic

accessing the load balancer's IPv6 address can be forwarded to the IPv6 address of the

node where the load balancer resides.

Once the above configuration is completed, the IPv4 services mounted on the load balancer

can provide external IPv6 access capabilities through the load balancer.

Result Verification

After the configuration, accessing the IPv6 address of the external load balancer should allow

normal access to the application.

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster - Alauda Container Platform



Calico Network Supports WireGuard
Encryption

Calico supports WireGuard encryption for both IPv4 and IPv6 traffic, which can be

independently enabled via parameters in the FelixConfiguration resource.

TOC

Installation Status

Default Installation

Installation Status

Default Installation

Not Installed by Default

Terminology

Notes

Prerequisites

Procedure

Result Verification

IPv4 Traffic Verification

Alauda Container Platform

Calico Network Supports WireGuard Encryption - Alauda Container Platform

http://localhost:4173/container_platform/


Linux 5.6 and above are installed by default

Ubuntu 20.04 5.4.0-135-generic

Kylin Linux Advanced Server V10 - SP3 4.19.90-52.22.v2207.ky10.x86_64

Not Installed by Default

openEuler 4.18.0-147.5.2.13.h996.eulerosv2r10.x86_64

CentOS 7 3.10.0-1160.el7.x86_64

Redhat 8.7 4.18.0-425.3.1.el8.x86_64

Kylin Linux Advanced Server V10 - SP2 4.19.90-24.4.v2101.ky10.x86_64

Kylin Linux Advanced Server V10 - SP1 4.19.90-23.8.v2101.ky10.x86_64

Kylin Linux Advanced Server V10 4.19.90-11.ky10.x86_64

Terminology

wireguardEnabled Enable encryption for IPv4 traffic over the IPv4 Underlay network.

wireguardEnabledV6 Enable encryption for IPv6 traffic over the IPv6 Underlay network.

Notes

Operating System Kernel Version

Operating System Kernel Version

Term Explanation

Calico Network Supports WireGuard Encryption - Alauda Container Platform



1. When using the Calico network plugin, ensure that the natOutgoing  parameter is set to

true  to support WireGuard encryption. By default, this parameter is correctly configured

for the Calico subnet when creating the cluster, requiring no additional configuration.

2. WireGuard supports encryption for both IPv4 and IPv6 traffic; if you need to encrypt both

types of traffic, configuration must be done separately. For detailed parameter

configuration, refer to the Felix Configuration Documentation , configuring both

wireguardEnabled  and wireguardEnabledV6  parameters.

3. If WireGuard is not installed by default, refer to the WireGuard Installation Guide  for

manual installation, although there may be cases where manual installation of the

WireGuard module fails.

4. Traffic between containers across nodes will be encrypted, including network traffic from

one host to another; however, communication between Pods on the same node and traffic

between a Pod and its host node will not be encrypted.

Prerequisites

WireGuard must be installed on all nodes in the cluster beforehand. For details, refer to the

WireGuard Installation Documentation . Nodes without WireGuard installed do not support

encryption.

Procedure

1. Enable or disable IPv4 and IPv6 encryption.

Note: The following commands must be executed in the CLI tool on the Master node where

the node resides.

Enable IPv4 encryption only

↗

↗

↗

kubectl patch felixconfiguration default --type='merge' -p '{"spec":

{"wireguardEnabled":true}}'

Calico Network Supports WireGuard Encryption - Alauda Container Platform

https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/


Enable IPv6 encryption only

Enable both IPv4 and IPv6 encryption

Disable both IPv4 and IPv6 encryption

Method 1: Execute the command in the CLI tool to disable encryption.

Method 2: Modify the felixconfiguration configuration file to disable encryption.

1. Execute the following command to open the felixconfiguration configuration file.

2. Set wireguardEnabled  and wireguardEnabledV6  parameters to false to

disable WireGuard encryption.

kubectl patch felixconfiguration default --type='merge' -p '{"spec":

{"wireguardEnabledV6":true}}'

kubectl patch felixconfiguration default --type='merge' -p '{"spec":

{"wireguardEnabled":true,"wireguardEnabledV6":true}}'

kubectl patch felixconfiguration default --type='merge' -p '{"spe

c":{"wireguardEnabled":false,"wireguardEnabledV6":false}}'

kubectl get felixconfiguration -o yaml default

Calico Network Supports WireGuard Encryption - Alauda Container Platform



2. After completing the Calico WireGuard encryption configuration, execute the following

command to confirm the WireGuard encryption status. If both IPv4 and IPv6 encryption are

enabled, the presence of wireguardPublicKey  or wireguardPublicKeyV6  under the

Status  field indicates successful activation; if both IPv4 and IPv6 encryption are

disabled, these fields will not contain wireguardPublicKey  or wireguardPublicKeyV6 ,

indicating successful deactivation.

Output:

Result Verification

apiVersion: crd.projectcalico.org/v1

kind: FelixConfiguration

metadata:

  annotations:

    projectcalico.org/metadata: '{"uid":"f5facabd-8304-46d6-81c1

-f1816235b487","creationTimestamp":"2024-08-06T03:46:51Z"}'

  generation: 2

  name: default

  resourceVersion: "890216"

spec:

  bpfLogLevel: ""

  floatingIPs: Disabled

  logSeverityScreen: Info

  reportingInterval: 0s

  wireguardEnabled: false # Change to true to enable IPv4 encryp

tion

  wireguardEnabledV6: false # Change to true to enable IPv6 encr

yption

calicoctl get node <NODE-NAME> -o yaml # Replace <NODE-NAME> with the n

ame of the node.

Status:

    wireguardPublicKey: L/MUP9+Yxx/xxxxxxxxxxxx/xxxxxxxxxx =

Calico Network Supports WireGuard Encryption - Alauda Container Platform



This document uses IPv4 traffic verification as an example; IPv6 traffic verification is similar to

IPv4 and will not be repeated here.

IPv4 Traffic Verification

1. After configuring WireGuard encryption, check the routing information, where traffic

between nodes preferentially uses the wireguard.cali interface for message forwarding.

Calico Network Supports WireGuard Encryption - Alauda Container Platform



Calico Network Supports WireGuard Encryption - Alauda Container Platform



root@test:~# ip rule   # View current routing rules

     0: from all lookup local

     99:  not from all fwmark 0x100000/0x100000 lookup 1    # For all p

ackets not marked as 0x100000, use routing table 1 for routing lookup

     32766:  from all lookup main

     32767 :  from all lookup default

root@test:~# ip route show table 1    # Display routing entries for tab

le 1.

    10.3.138.0 dev wireguard.cali scope link

    10.3.138.0/26 dev wireguard.cali scope link

    throw 10.3.231.192

    10.3.236.128 dev wireguard.cali scope link     # Traffic to reach I

P address 10.3.236.128 will be sent through the wireguard.cali interfac

e

    10.3.236.128/26 dev wireguard.cali scope link

    throw 10.10.10.124/30

    10.10.10.200/30 dev wireguard.cali scope link

    throw 10.10.20.124/30

    10.10.20.200/30 dev wireguard.cali scope link

    throw

    10.13.138.0 dev wireguard.cali scope link

    10.13.138.0/26 dev wireguard.cali scope link

    throw 10.13.231.192/26

    10.13.236.128 dev wireguard.cali scope link

    10.13.236.128/26 dev wireguard.cali scope link

root@test:~# ip r get 10.10.10.202    # Routing path from the current n

ode to the target IP address 10.10.10.202

    10.10.10.202 dev wireguard.cali table 1 src 10.10.10.127 uid 0  cac

he   # When accessing the target IP address 10.10.10.202 from the curre

nt node, the packet will be sent through the wireguard.cali interface, 

using routing table 1, and the source address will be set to 10.10.10.1

27

root@test:~# ip route    # Show the main routing table

    default via 192.168.128.1 dev eth0 proto static

    10.3.138.0/26 via 10.3.138.0 dev vxlan.

    blackhole 10.3.231.193

    10.3.231.194

    10.3.231.195

    10.3.231.196

    10.3.231.197

/

Calico Network Supports WireGuard Encryption - Alauda Container Platform



2. Capture packets on the node to observe cross-node traffic.

3. Testing shows that IPv4 type traffic is forwarded via the wireguard.cali interface.

    3.231.192/26 proto 80

    dev cali8dcd31cIdOO scope link

    dev cali3012b5b29b scope link

    dev calibeefea2ff87 scope link

    dev cali2b27d5e4053 scope link

    dev cali1a35dbdd639 scope link

    calico on link

root@test:~# ip a s wireguard.cali    # View detailed information about 

the wireguard.cali network interface

    30: wireguard.cali: <POINTOPOINT,NOARP,UP,LOWER_UP> mtu 1440 qdisc 

noqueue state UNKNOWN group default qlen 1000

    link/none

    inet 10.10.10.127/32 scope global wireguard.cali   # The IP address 

assigned to wireguard.cali interface is 10.10.10.127

    valid_lft forever preferred_lft forever

root@test:~# tcpdump -i wireguard.cali -nnve icmp   # Capture and displ

ay ICMP packets through wireguard.cali

    tcpdump: listening on wireguard.cali, link-type RAW (Raw IP), captu

re size 262144 bytes

    08:58:36.987559 ip: (tos 0x0, ttl 63, id 29731, offset 0, flags [D

F], proto ICMP (1), length 84)

    10.10.10.125 > 10.10.10.202: ICMP echo request, id 1110, seq 0, len

gth 64

    08:58:36.988683 ip: (tos 0x0, ttl 63, id 1800, offset 0, flags [non

e], proto ICMP (1), length 84)

    10.10.10.202 > 10.10.10.125: ICMP echo reply, id 1110, seq 0, lengt

h 64

    2 packets captured

    2 packets received by filter

    0 packets dropped by kernel

Calico Network Supports WireGuard Encryption - Alauda Container Platform



Kube-OVN Overlay Network Supports IPsec
Encryption

This document provides a detailed guide on enabling and disabling IPsec encrypted tunnel

traffic in the Kube-OVN Overlay network. Since OVN tunnel traffic is transmitted through

physical routers and switches, which may be located in untrusted public networks or at risk of

attacks, enabling IPsec encryption can effectively prevent traffic data from being monitored

and tampered with.

TOC

Terminology

IPsec A protocol and technology used to protect and validate data transmitted over the

internet. It provides secure communication at the IP layer and is primarily used to

Terminology

Notes

Prerequisites

Procedure

Enable IPsec

Disable IPsec

Term Explanation

Alauda Container Platform

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

http://localhost:4173/container_platform/


create virtual private networks (VPNs) and protect the transmission of IP packets.

IPsec ensures data security primarily through the following methods:

Data Encryption: Through encryption technology, IPsec can ensure that data is not

stolen or altered during transmission. Common encryption algorithms include AES,

3DES, etc.

Data Integrity Check: IPsec uses hash functions (such as SHA-1, SHA-256) to

verify the integrity of data, ensuring that data has not been modified during

transmission.

Authentication: IPsec can verify the identity of both parties involved in

communication using various methods (such as pre-shared keys, digital

certificates) to prevent unauthorized access.

Key Management: IPsec uses the Internet Key Exchange (IKE) protocol to

negotiate and manage encryption keys.

Notes

Enabling IPsec may cause a few seconds of network interruption.

If the kernel version is 3.10.0-1160.el7.x86_64, enabling the IPsec feature of Kube-OVN

may encounter compatibility issues.

Prerequisites

Please execute the following command to check whether the current operating system kernel

supports IPsec-related modules. If the output shows that all XFRM-related modules are y  or

m , it indicates support for IPsec.

Output:

Term Explanation

cat /boot/config-$(uname -r) | grep CONFIG_XFRM

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



Procedure

Note: Unless otherwise specified, the following commands must be executed in the CLI tool

on the cluster Master node.

Enable IPsec

1. Modify the configuration file of kube-ovn-controller.

1. Execute the following command to edit the YAML configuration file of kube-ovn-

controller.

2. Modify the specified fields according to the following instructions.

Field explanations:

spec.template.spec.containers[0].args: Add - --enable-ovn-ipsec=true  under

this field.

CONFIG_XFRM_ALGO=y

CONFIG_XFRM_USER=y

CONFIG_XFRM_SUB_POLICY=y

CONFIG_XFRM_MIGRATE=y

CONFIG_XFRM_STATISTICS=y

CONFIG_XFRM_IPCOMP=m

kubectl edit deploy kube-ovn-controller -n kube-system

spec:

  template:

    spec:

      containers:

        - args:

            - --enable-ovn-ipsec=true # Add this field

          securityContext:

            runAsUser: 0 # Change the value to 0

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



spec.template.spec.containers[0].securityContext.runAsUser: Change the value

of this field to 0.

3. Save the changes.

2. Modify the kube-ovn-cni configuration file.

1. Execute the following command to edit the YAML configuration file of kube-ovn-cni.

2. Modify the specified fields according to the following instructions.

Field explanations:

spec.template.spec.containers[0].args: Add - --enable-ovn-ipsec=true  under

this field.

spec.template.spec.containers[0].volumeMounts: Add the mount path and mount

the volume named ovs-ipsec-keys to the container.

spec.template.spec.volumes: Add a volume named ovs-ipsec-keys of type hostPath

under this field.

3. Save the changes.

kubectl edit ds kube-ovn-cni -n kube-system

spec:

  template:

    spec:

      containers:

        - args:

            - --enable-ovn-ipsec=true # Add this field

          volumeMounts: # Add mount path, mount the volume named ovs-

ipsec-keys to the container

            - mountPath: /etc/ovs_ipsec_keys

              name: ovs-ipsec-keys

      volumes: # Add a volume named ovs-ipsec-keys of type hostPath

        - name: ovs-ipsec-keys

          hostPath:

            path: /etc/origin/ovs_ipsec_keys

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



3. Verify whether the feature has been successfully enabled.

1. Execute the following command to enter the kube-ovn-cni Pod.

2. Execute the following command to check the number of Security Associations

connections. If there are (number of nodes - 1) up, it indicates a successful enablement.

Output:

Disable IPsec

1. Modify the configuration file of kube-ovn-controller.

1. Execute the following command to edit the YAML configuration file of kube-ovn-

controller.

2. Modify the specified fields according to the following instructions.

kubectl exec -it -n kube-system $(kubectl get pods -n kube-system -l 

app=kube-ovn-cni -o=jsonpath='{.items[0].metadata.name}') -- /bin/bas

h

ipsec status | grep "Security"

Security Associations (2 up, 0 connecting):  # Since there are 3 node

s in this cluster, you can see that the number of connections is 2 up

kubectl edit deploy kube-ovn-controller -n kube-system

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



Field explanations:

spec.template.spec.containers[0].args: Change the value of this field enable-

ovn-ipsec  to false.

spec.template.spec.containers[0].securityContext.runAsUser: Change the value

of this field to 65534.

3. Save the changes.

2. Modify the kube-ovn-cni configuration file.

1. Execute the following command to edit the YAML configuration file of kube-ovn-cni.

2. Modify the specified fields according to the following instructions.

Configuration before modification

spec:

  template:

    spec:

      containers:

        - args:

            - --enable-ovn-ipsec=false # Change to false

          securityContext:

            runAsUser: 65534 # Change the value to 65534

kubectl edit ds kube-ovn-cni -n kube-system

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



Field explanations:

spec.template.spec.containers[0].args: Change the value of this field enable-

ovn-ipsec  to false.

spec.template.spec.containers[0].volumeMounts: Remove the mount path

named ovs-ipsec-keys under this field.

spec.template.spec.volumes: Remove the volume named ovs-ipsec-keys, type

hostPath under this field.

Configuration after modification

3. Save the changes.

3. Verify whether the feature has been successfully disabled.

spec:

  template:

    spec:

      containers:

        - args:

            - --enable-ovn-ipsec=true # Change to false

          volumeMounts: # Remove the mount path named ovs-ipsec-ke

ys

            - mountPath: /etc/ovs_ipsec_keys

              name: ovs-ipsec-keys

      volumes: # Remove the volume named ovs-ipsec-keys, type host

Path

        - name: ovs-ipsec-keys

          hostPath:

            path: /etc/origin/ovs_ipsec_keys

spec:

  template:

    spec:

      containers:

        - args:

            - --enable-ovn-ipsec=false

          volumeMounts:

      volumes:

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



1. Execute the following command to enter the kube-ovn-cni Pod.

2. Execute the following command to check the connection status. If there is no output, it

indicates successful disabling.

kubectl exec -it -n kube-system $(kubectl get pods -n kube-system -l 

app=kube-ovn-cni -o=jsonpath='{.items[0].metadata.name}') -- /bin/bas

h

ipsec status

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform



ALB Monitoring

TOC

Terminology

ALB A self-developed layer-7 load balancer by the platform.

Procedure

1. Go to Platform Management.

2. In the left navigation bar, click on Operation Center > Monitoring > Monitoring

Dashboard.

Terminology

Procedure

Monitoring Metrics

ALB Traffic Monitoring

ALB Resource Usage

Ingress, HTTPRoute, Rule Traffic Monitoring

Term Description

Alauda Container Platform

ALB Monitoring - Alauda Container Platform

http://localhost:4173/container_platform/


3. Click on Cluster at the top of the page to switch to the cluster you want to monitor.

4. Click on Switch in the upper right corner of the page.

5. You can enter the ALB Status monitoring dashboard through the following two methods:

Method 1: Click on the container-platform card to expand the monitoring directory, then

click on the ALB Status name to enter the monitoring dashboard. You can set this

monitoring dashboard as the main dashboard if needed.

Method 2: Enter a keyword (e.g., alb) in the search box and search, then click on the

ALB Status name to enter the monitoring dashboard. You can set this monitoring

dashboard as the main dashboard if needed.

6. View various monitoring metrics through the dashboard.

Select the namespace to monitor: Click on the namespace at the top of the page to

select the namespace to monitor, defaulting to all, meaning monitoring all namespaces.

Select the ALB to monitor: Click on the name at the top of the page to select the ALB

to monitor, defaulting to all, meaning monitoring all ALBs.

Monitoring Metrics

Displays the monitoring metrics of total traffic, resource usage, Ingress (inbound rules),

HTTPRoute (routing rules of type HTTPRoute), and Rule (rules that are neither Ingress nor

HTTPRoute) for the selected ALB within the last 5 minutes.

Note: All data are monitoring data collected in the last 5 minutes.

ALB Traffic Monitoring

Active
Connections

The number of active connections on the selected ALB.

Monitoring Metric Description

ALB Monitoring - Alauda Container Platform



Requests Per
Second

The total number of requests received per second on the selected ALB.

Error Rate
The proportion of 4XX (such as 404) and 5XX error requests occurring

per second on the selected ALB.

Latency The average latency of requests on the selected ALB.

ALB Resource Usage

CPU Usage The CPU usage of the selected ALB.

Memory Usage The memory usage of the selected ALB.

Network Receive/Transmit The network I/O throughput of the selected ALB.

Disk Read/Write Rate The disk I/O throughput of the selected ALB.

Ingress, HTTPRoute, Rule Traffic Monitoring

QPS (Queries
Per Second)

The number of requests received per second by the

Ingress/HTTPRoute/Rule on the selected ALB, with the default unit being

req/s.

Request BPS
(Bytes Per
Second)

The total size of requests received per second by the

Ingress/HTTPRoute/Rule on the selected ALB.

Response BPS
(Bytes Per
Second)

The total size of responses sent by the Ingress/HTTPRoute/Rule on the

selected ALB.

Monitoring Metric Description

Monitoring Metric Description

Monitoring
Metric

Description

ALB Monitoring - Alauda Container Platform



Error Rate
The percentage of errors that occurred when processing requests by the

Ingress/HTTPRoute/Rule on the selected ALB.

P50, P90, P99

The response times for requests on the selected ALB, specifically the

median response time. It indicates that 50%, 90%, and 99% of requests

have a response time less than or equal to this value.

Note: The principle of P50, P90, and P99 is to sort the collected data from

smallest to largest and take the data values at the 50%, 90%, and 99%

positions; thus, 50%, 90%, and 99% of the data collected are below this

value. Percentiles help analyze the distribution of the data and identify

various extreme situations.

Upstream P50,
Upstream P90,
Upstream P99

The request response times for upstream services. It indicates that 50%,

90%, and 99% of requests sent to upstream services have response times

less than or equal to this value.

Monitoring
Metric

Description

ALB Monitoring - Alauda Container Platform



Trouble Shooting

How to Solve Inter-node Communication Issues in ARM Environments?Find Who Cause the Error

Alauda Container Platform

Trouble Shooting - Alauda Container Platform

http://localhost:4173/container_platform/


How to Solve Inter-node Communication
Issues in ARM Environments?

When using lower kernel versions and certain domestic network cards, there may be an issue

where the network card computes checksums incorrectly after enabling Checksum Offload.

This can lead to communication failures between nodes in the Kube-OVN Overlay network.

The specific solutions are as follows:

Solution 1: Upgrade the Kernel Version. It is recommended to upgrade the kernel

version to 4.19.90-25.16.v2101 or a higher version.

Solution 2: Disable Checksum Offload. If it is not possible to immediately upgrade the

kernel version and inter-node communication issues occur, you can disable the Checksum

Offload for the physical network card using the following command.

ethtool -K eth0 tx off

Alauda Container Platform

How to Solve Inter-node Communication Issues in ARM Environments? - Alauda Container Platform

http://localhost:4173/container_platform/


Find Who Cause the Error

The X-ALB-ERR-REASON  field in the response header of the error request will indicate the

reason for the error.

The error reason might be:

InvalidBalancer : no balancer found for xx # it means no endpoint found f

or the service

BackendError : read xxx byte data from backend # it means the backend did 

give response, the error code is not cause by alb.

InvalidUpstream : no rule match # it means the request does not match any 

rule, so alb return 404.

Alauda Container Platform

Find Who Cause the Error - Alauda Container Platform

http://localhost:4173/container_platform/

	Networking
	Introduction
	Architecture
	Concepts
	Guides
	How To
	Trouble Shooting

	Introduction
	Advantages
	Application Scenarios
	Usage Limitations

	Architecture
	Understanding Kube-OVN
	Upstream OVN/OVS Components
	ovn-central
	ovs-ovn

	Core Controller and Agent
	kube-ovn-controller
	kube-ovn-cni

	Monitoring, Operation and Maintenance Tools and Extension Components
	kube-ovn-speaker
	kube-ovn-pinger
	kube-ovn-monitor
	kubectl-ko


	Understanding ALB
	Core components
	Quick Start
	Deploy the ALB Operator
	Deploy an ALB Instance
	Run a demo application

	ALB Common Concepts
	Auth
	Network Mode
	Host Network Mode
	Advantages:
	Disadvantages:

	Container Network Mode
	Advantages:
	Disadvantages:


	Frontend
	Additional resources

	Rules
	dslx

	Project Isolation
	Project Mode
	Port Project Mode


	Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project
	Ingress
	Ingress Controller
	ALB
	ALB Instance
	ALB-Operator
	Frontend (abbreviation: FT)
	RULE

	ALB Leader
	Project

	Additional resources:

	Understanding MetalLB
	Terminology
	Principles of High Availability in MetalLB
	MetalLB's Algorithm for Selecting VIP Host Nodes
	External Address Pools and Number of Nodes
	Calculation Formula
	Application Example

	Additional resources

	Concepts
	Auth
	Basic Concept
	What is Auth
	Supported Auth Methods
	Auth Configuration Methods
	Auth Result Handling

	Quick Start
	Deploy ALB
	Configure Secret and Ingress
	Verify

	Related Ingress Annotations
	forward-auth
	Construct Related Annotations
	auth-url
	auth-method
	auth-proxy-set-headers

	Construct app-request related annotations
	auth-response-headers

	cookie handling
	Redirect sign related configuration
	auth-signin
	auth-signin-redirect-param
	auth-request-redirect


	basic-auth
	auth-realm
	auth-type
	auth-secret
	auth-secret-type

	CR
	ALB Special Ingress Annotation
	Auth-Enable

	Ingress-Nginx Auth Related Other Features
	Global-Auth
	No-Auth-Locations

	Note: Incompatible Parts with Ingress-Nginx
	Troubleshooting

	Ingress-nginx Annotation Compatibility
	Basic concepts
	Supported ingress-nginx annotations

	TCP/HTTP Keepalive
	Basic Concept
	CRD

	ModSecurity
	Terminology
	Procedure to Operate
	Method One: Add Annotations
	Method Two: Configure CR

	Related Explanations
	Override

	Configuration Example

	Comparison Among Different Ingress Method
	For L4(TCP/UDP) Traffic
	For L7(HTTP/HTTPS) Traffic
	Ingress
	GatewayAPI
	ALB Rule


	HTTP Redirect
	Basic Concept
	CRD
	Ingress Annotation
	SSL-Redirect

	Port Level Redirect
	Rule Level Redirect

	L4/L7 Timeout
	Basic Concept
	CRD
	What Timeout Means
	Ingress Annotation
	Port Level Timeout

	GatewayAPI
	OTel
	Terminology
	Prerequisites
	Procedure
	Update ALB Configuration

	Related Operations
	Configuring OTel in Ingress
	Using OTel in Applications
	Inheritance

	Additional Notes
	Sampling Strategies
	Attributes

	Configuration Example

	Guides
	Creating Services
	Why Service is Needed
	Example ClusterIP type Service:
	Headless Services
	Creating a service by using the web console
	Creating a service by using the CLI
	Example: Accessing an Application Within the Cluste
	Example: Accessing an Application Outside the Cluste
	Example: ExternalName type of Servce
	LoadBalancer Type Service Annotations
	AWS EKS Cluster
	Huawei Cloud CCE Cluster
	Azure AKS Cluster
	Google GKE Cluster


	Creating Ingresses
	Implementation Method
	Quick Start

	Prerequisites
	Example Ingress:
	Creating a Ingress by using the web console
	Creating a Ingress by using the CLI

	Configure Gateway
	Terminology
	Prerequisites
	Example Gateway and Alb2 custom resource (CR)
	Creating Gateway by using the web console
	Creating Gateway by using the CLI
	Viewing Resources Created by the Platform
	Updating Gateways
	Updating Gateway by using the web console
	Add Listener
	Prerequisites

	Add Listener by using the web console
	Add Listener by using the CLI
	Creating Route Rules
	Example HTTPRoute custom resource (CR)
	Creating Route by using the web console
	Creating Route by using the CLI

	Creating a Domain Name
	Example Domain custom resource (CR)
	Creating Domain by using the web console
	Creating Domain by using the CLI
	Subsequent Actions
	Additional resources

	Creating Certificates
	Creating a certificate by using the web console

	Creating External IP Address Pool
	Prerequisites
	Constraints and Limitations
	Deploying the MetalLB Plugin
	Example IPAddressPool custom resource (CR)
	Creating an External IP Address Pool by using the web console
	Creating an External IP Address Pool by using the CLI
	View Alarm Policy

	Creating BGP Peers
	Terminology
	Prerequisites
	Example BGPPeer custom resource (CR)
	Creating a BGPPeer by using the web console.
	Creating a BGPPeer by using the CLI

	Configure Subnets
	IP Allocation Rules
	Calico Network
	Constraints and Limitations
	Example Subnet custom resource (CR) with Calico Network
	Creating a Subnet in the Calico network by using the web console
	Creating a Subnet in the Calico network by using the CLI
	Reference Content

	Kube-OVN Network
	Example Subnet custom resource (CR) with Kube-OVN Overlay Network
	Creating a Subnet in the Kube-OVN Overlay Network by using the web console
	Creating a Subnet in the Kube-OVN Overlay Network by using the the CLI
	Underlay Network
	Usage Instructions
	Add Bridge Network by using the web console (Optional)
	Add Bridge Network by using the CLI
	Add VLAN by using the web console (Optional)
	Add VLAN by using the CLI
	Example Subnet custom resource (CR) with Kube-OVN Underlay Network
	Creating a Subnet in the Kube-OVN Underlay Network by using the web console
	Creating a Subnet in the Kube-OVN Underlay Network by using the CLI
	Related Operations

	Subnet Management
	Updating Gateway by using the web console
	Updating Gateway by using the CLI
	Updating Reserved IPs by using the web console
	Updating Reserved IPs by using the CLI
	Assigning Projects by using the web console
	Assigning Projects by using the CLI
	Assigning Namespaces by using the web console
	Assigning Namespaces by using the CLI
	Expanding Subnets by using the web console
	Expanding Subnets by using the CLI
	Managing Calico Networks
	Delete Subnet by using the web console
	Delete Subnet by using the CLI


	Creating Network Policies
	Creating NetworkPolicy by using the web console
	Creating NetworkPolicy by using the CLI
	Reference

	Creating Admin Network Policies
	Notes
	Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console
	Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI
	Additional resource

	Configure Cluster Network Policies
	Notes
	Procedure

	How To
	Deploy High Available VIP for ALB
	Method 1: Use LoadBalancer type internal routing to provide VIP
	Method 2: Use external load balancer device to provide VIP

	Soft Data Center LB Solution (Alpha)
	Prerequisites
	Procedure
	Verification

	Preparing Kube-OVN Underlay Physical Network
	Usage Instructions
	Terminology Explanation
	Environment Requirements
	Configuration Example
	Switch Configuration
	Check Network Connectivity
	Platform Configuration


	Automatic Interconnection of Underlay and Overlay Subnets
	Procedure

	Use OAuth Proxy with ALB
	Overview
	Procedure
	Result

	Creating GatewayAPI Gateway
	Requirements
	Deploy MetalLB
	Set Pod Security Policies to Privileged Mode

	Procedure
	Configure a Load Balancer
	Prerequisites
	Example ALB2 custom resource (CR)
	Creating a Load Balancer by using the web console.
	Creating a Load Balancer by using the CLI.
	Update Load Balancer by using the web console
	Delete Load Balancer by using the web console
	Delete Load Balancer by using the CLI
	Configure Listener Ports (Frontend)
	Prerequisites
	Example Frontend custom resource (CR)
	Creating Listener Ports (Frontend) by using the web console
	Creating Listener Ports (Frontend) by using the CLI
	Subsequent Actions
	Related Operations

	Configure Rules
	Example Rule custom resource (CR)
	dslx

	Creating Rule by using web console
	Creating Rule by using the CLI
	Logs and Monitoring
	Viewing Logs
	Monitoring Metrics
	Additional resources

	How to properly allocate CPU and memory resources
	Small Production Environment
	Medium Production Environment
	Large Production Environment
	Special Scenario Deployment Recommendations
	Load Balancer Usage Mode Selection

	Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster
	Configuration Method
	Result Verification

	Calico Network Supports WireGuard Encryption
	Installation Status
	Default Installation
	Not Installed by Default

	Terminology
	Notes
	Prerequisites
	Procedure
	Result Verification
	IPv4 Traffic Verification


	Kube-OVN Overlay Network Supports IPsec Encryption
	Terminology
	Notes
	Prerequisites
	Procedure
	Enable IPsec
	Disable IPsec


	ALB Monitoring
	Terminology
	Procedure
	Monitoring Metrics
	ALB Traffic Monitoring
	ALB Resource Usage
	Ingress, HTTPRoute, Rule Traffic Monitoring


	Trouble Shooting
	How to Solve Inter-node Communication Issues in ARM Environments?
	Find Who Cause the Error

