Networking - Alauda Container Platform

Q Alauda Container Platform

Networking

Introduction

Introduction

Advantages
Application Scenarios

Usage Limitations

Architecture

Understanding Kube-OVN

Upstream OVN/OVS Components
Core Controller and Agent

Monitoring, Operation and Maintenance Tc

Understanding ALB

Core components

Quick Start

ALB Common Concepts

Relationship between ALB, ALB Instance,
ALB Leader

Additional resources:

Understand

Terminology

Principles of Hir
MetalLB's Algotl
External Addres

Additional resot

http://localhost:4173/container_platform/

Networking - Alauda Container Platform

Concepts
Auth Ingress-nginx Annotation Comj TCP/HTTP |
Basic Concept Basic concepts Basic Concept
Quick Start Supported ingress-nginx annotations CRD

Related Ingress Annotations

forward-auth

basic-auth ModSecurit
CR

Comparison Among Different Ingress Method
ALB Special Ingress Annotation

Ingress-Nginx Auth Related Other Feature ~ FOr L4(TCP/UDP) Traffic

Note: Incompatible Parts with Ingress-Ngit ~ FOF L7(HTTP/HTTPS) Traffic

Troubleshooting

L4/L7 Timeout

GatewayAPI

OTel

Terminology
Prerequisites
Procedure

Related Operations
Additional Notes

Configuration Example

Guides

Networking - Alauda Container Platform

Creating Services Creating Ingresses
Why Service is Needed Implementation Method
Example ClusterlP type Service: Prerequisites

Headless Services Example Ingress:

Creating a service by using the web consc Creating a Ingress by using the web consc

Creating a service by using the CLI Creating a Ingress by using the CLI

Example: Accessing an Application Within v

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations
Creating a Domain Name
Example Domain custom resource (CR)
Creating Domain by using the web console
Creating Domain by using the CLI
Subsequent Actions

Additional resources

Creating Certificates

Creating a certificate by using the web console

Creating External IP Address Pool

Creating BGP Peers

Terminology

Prerequisites

Example BGPPeer custom resource (CR)
Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Configure C

Terminology

Prerequisites

Example Gatev
Creating Gatew
Creating Gatew
Viewing Resoul
Updating Gatev

Updating Gatev

Configure €

IP Allocation Rt
Calico Network
Kube-OVN Net

Subnet Manage

e

Networking - Alauda Container Platform

Creating Admin Network Policie

Notes
Creating AdminNetworkPolicy or Baseline,
Creating AdminNetworkPolicy or Baseline,

Additional resource

How To

Deploy High Available VIP for A

Method 1: Use LoadBalancer type internal

Method 2: Use external load balancer dev

Use OAuth Proxy with ALB

Overview
Procedure

Result

How to properly allocate CPU and memory resources

Small Production Environment

Medium Production Environment

Configure Cluster Network Policies

Notes

Procedure

Soft Data Center LB Solution (A Preparing K

Prerequisites Usage Instructir
Procedure Terminology Ex
Verification Environment R¢

Configuration E

Automatic Interconnection of Underlav and O

Creating Ge

Deploy MetalLE

Set Pod Securi

Configure a Load Balancer

Forwarding

Configuration N

Networking - Alauda Container Platform
Large Production Environment
Special Scenario Deployment Recommendations
Load Balancer Usage Mode Selection
Prerequisites
Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by usin

Kube-OVN Overlay Network Supports IPsec Encryption

Terminology
Notes
Prerequisites

Procedure
Viewing Logs

Monitoring Metrics

Additional resources

Trouble Shooting

Result Verificati

Calico Netw

Installation Stat

Terminology

Nntac

2S

icati

ALB Monitc

Terminology
Procedure

Monitoring Meti

Networking - Alauda Container Platform

How to Solve Inter-node Comm Find Who Cause the Error

Introduction - Alauda Container Platform

Q Alauda Container Platform Q

Introduction

The container network is a comprehensive networking solution designed for cloud-native
applications, ensuring seamless east-west communication within clusters and efficient north-
south traffic management across external networks, while providing essential networking

functionalities. It consists of these core components:

Container Network Interfaces (CNIs) for east-west traffic management within the cluster.

Ingress Gateway Controller ALB for managing HTTPS ingress traffic.

MetalLB for handling LoadBalancer type Services.

Additionally, it provides robust network security and encryption features to ensure secure

communication.

TOC

Advantages
Application Scenarios

Usage Limitations

Advantages

The container network offers the following core advantages:

* Flexible Network Management

http://localhost:4173/container_platform/

Introduction - Alauda Container Platform

With support for multiple CNIs, he container network supports both overlay, underlay and
routing modes, providing flexibility to adapt to diverse network environments. It also offers
fine-grained IP allocation and robust egress management. As the founding team of Kube-
OVN, we bring extensive hands-on experience in building and maintaining large-scale

networks, ensuring reliable and performant connectivity.
+ Isolation, Multi-Tenant, and API Flexibility for Ingress Gateway

With the ALB operator, multiple ALB instances can be created and managed within one
cluster. Each tenant can have a dedicated group of ALB instances as ingress gateway,
ensuring effective isolation and resource management. Additionally, users can flexibly
choose between Ingress and Gateway API based on their preferences and operational
requirements, ensuring seamless traffic management and enhanced flexibility. As the

founding team of ALB, we can guaranteeing a robust and scalable solution.
o Comprehensive Network Security

Container network provides a multi-layered security framework to ensure protection across
all levels. In the CNI layer, we support multiple security policy models, including
NetworkPolicy and AdminNetworkPolicy, to enforce fine-grained network access controls.
For secure data transmission, the network incorporates robust traffic encryption. At the
Ingress Gateway layer, we provide advanced security mechanisms such as TLS
termination and support for ModSecurity, offering comprehensive protection for external-
facing applications. With built-in network policy enforcement, encryption, and traffic
monitoring, it ensures protection against unauthorized access and maintains compliance

with security standards.

Application Scenarios

The container network is particularly suitable for the following scenarios:
» East-West Traffic Management

Leveraging CNiIs to provide efficient pod-to-pod communication within clusters, with

support for both overlay and underlay network modes to meet different deployment needs.

¢ North-South Traffic Control

Introduction - Alauda Container Platform

Using ALB as the Ingress Gateway Controller to manage external HTTPS traffic, with

flexible API choices and multi-tenant isolation capabilities for different teams.
+ Load Balancer Service Exposure

Utilizing MetalLB to provide high availability for LoadBalancer type Services, enabling

reliable external access to cluster services through virtual IP addresses.
* Network Security and Encryption

Implementing comprehensive security through NetworkPolicy, AdminNetworkPolicy, and

traffic encryption to ensure secure communication across the network infrastructure.

Usage Limitations

While the container network provides extensive functionalities, the following limitations should

be noted:
¢ Underlay Network Requirement

Some underlay network capabilities, such as Kube-OVN Underlay Subnet, Egress IP, and
MetalLB, require underlying L2 network support. These features cannot be used in public

cloud providers and certain virtualized environments like AWS and GCP.

With its versatile design and comprehensive feature set, the container network empowers
organizations to build, scale, and manage secure, reliable, and high-performance

containerized applications.

Architecture - Alauda Container Platform

Q Alauda Container Platform

Architecture

Understanding Kube-OVN

Upstream OVN/OVS Components
Core Controller and Agent

Monitoring, Operation and Maintenance Tc

Understanding ALB

Core components

Quick Start

ALB Common Concepts

Relationship between ALB, ALB Instance,
ALB Leader

Additional resources:

Understand

Terminology

Principles of Hir
MetalLB's Algotl
External Addres

Additional resot

http://localhost:4173/container_platform/

Understanding Kube-OVN - Alauda Container Platform

Q Alauda Container Platform Q

Understanding Kube-OVN

This document describes the general architecture of Kube-OVN, the functionality of each

component and how they interact with each other.

Overall, Kube-OVN serves as a bridge between Kubernetes and OVN, combining proven SDN
with Cloud Native. This means that Kube-OVN not only implements network specifications
under Kubernetes, such as CNI, Service and Networkpolicy, but also brings a large number of
SDN domain capabilities to cloud-native, such as logical switches, logical routers, VPCs,

gateways, QoS, ACLs and traffic mirroring.

Kube-OVN also maintains a good openness to integrate with many technology solutions, such

as Cilium, Submariner, Prometheus, KubeVirt, etc.
The components of Kube-OVN can be broadly divided into three categories.

e Upstream OVN/OVS components.
o Core Controller and Agent.

» Monitoring, operation and maintenance tools and extension components.

http://localhost:4173/container_platform/

OVN

m&u-ovn

Controller

Understanding Kube-OVN - Alauda Container Platform

od/Node/Namespace/Service

Annotate P Watch
IP/MAC/Subnet/gw

Endpoint Update

—

Annotate
IP/MAC/Subnet/gw

T

Get
annotation

Node

Kube-ovn-cni

TOC

Upstream OVN/OVS Components

ovn-central

ovs-ovn

Core Controller and Agent

kube-ovn-controller

kube-ovn-cni

VPC1

VPC2

VPC3

Monitoring, Operation and Maintenance Tools and Extension Components

kube-ovn-speaker
kube-ovn-pinger
kube-ovn-monitor

kubectl-ko

Upstream OVN/OVS Components

<

Understanding Kube-OVN - Alauda Container Platform

This type of component comes from the OVN/OVS community with specific modifications for
Kube-OVN usage scenarios. OVN/OVS itself is a mature SDN system for managing virtual
machines and containers, and we strongly recommend that users interested in the Kube-OVN
implementation read ovn-architecture(7) ~ first to understand what OVN is and how to
integrate with it. Kube-OVN uses the northbound interface of OVN to create and coordinate

virtual networks and map the network concepts into Kubernetes.

All OVN/OVS-related components have been packaged into images and are ready to run in

Kubernetes.

ovn-central

The ovn-central Deployment runs the control plane components of OVN, including ovn-

nb , ovn-sb ,and ovn-northd .

e ovn-nb : Saves the virtual network configuration and provides an API for virtual network
management. kube-ovn-controller will mainly interact with ovn-nb to configure the

virtual network.

e ovn-sb : Holds the logical flow table generated from the logical network of ovn-nb , as

well as the actual physical network state of each node.

e ovn-northd : translates the virtual network of ovn-nb into a logical flow table in ovn-

sb .

Multiple instances of ovn-central will synchronize data via the Raft protocol to ensure high

availability.

ovs-0ovn

ovs-ovn runs as a DaemonSet on each node, with openvswitch , ovsdb ,and ovn-
controller running inside the Pod. These components act as agents for ovn-central to

translate logical flow tables into real network configurations.

Core Controller and Agent

https://www.mankier.com/7/ovn-architecture
https://www.mankier.com/7/ovn-architecture
https://www.mankier.com/7/ovn-architecture

Understanding Kube-OVN - Alauda Container Platform

This part is the core component of Kube-OVN, serving as a bridge between OVN and
Kubernetes, bridging the two systems and translating network concepts between them. Most

of the core functions are implemented in these components.

kube-ovn-controller

This component performs the translation of all resources within Kubernetes to OVN resources
and acts as the control plane for the entire Kube-OVN system. The kube-ovn-controller
listens for events on all resources related to network functionality and updates the logical

network within the OVN based on resource changes. The main resources listened including:
Pod, Service, Endpoint, Node, NetworkPolicy, VPC, Subnet, Vlan, ProviderNetwork.

Taking the Pod event as an example, kube-ovn-controller listens to the Pod creation
event, allocates the address via the built-in in-memory IPAM function, and calls ovn-
central to create logical ports, static routes and possible ACL rules. Next, kube-ovn-
controller writes the assigned address and subnet information such as CIDR, gateway,
route, etc. to the annotation of the Pod. This annotation is then read by kube-ovn-cni and

used to configure the local network.

kube-ovn-cni

This component runs on each node as a DaemonSet, implements the CNI interface, and

operates the local OVS to configure the local network.

This DaemonSet copies the kube-ovn binary to each machine as a tool for interaction
between kubelet and kube-ovn-cni . This binary sends the corresponding CNI request to
kube-ovn-cni for further operation. The binary will be copied to the /opt/cni/bin

directory by default.

kube-ovn-cni will configure the specific network to perform the appropriate traffic

operations, and the main tasks including:

1. Config ovn-controller and vswitchd .

2. Handle CNI Add/Del requests:

1. Create or delete veth pair and bind or unbind to OVS ports.

Understanding Kube-OVN - Alauda Container Platform

2. Configure OVS ports
3. Update host iptables/ipset/route rules.
3. Dynamically update the network QoS.

4. Create and configure the ovn® NIC to connect the container network and the host

network.
5. Configure the host NIC to implement Vlan/Underlay/EIP.

6. Dynamically config inter-cluster gateways.

Monitoring, Operation and Maintenance Tools and

Extension Components

These components provide monitoring, diagnostics, operations tools, and external interface to
extend the core network capabilities of Kube-OVN and simplify daily operations and

maintenance.

kube-ovn-speaker

This component is a DaemonSet running on a specific labeled nodes that publish routes to

the external, allowing external access to the container directly through the Pod IP.

kube-ovn-pinger

This component is a DaemonSet running on each node to collect OVS status information,

node network quality, network latency, etc.

kube-ovn-monitor

This component collects OVN status information and the monitoring metrics.

kubectl-ko

This component is a kubectl plugin, which can quickly run common operations.

Understanding Kube-OVN - Alauda Container Platform

Understanding ALB - Alauda Container Platform

0 Alauda Container Platform Q

Understanding ALB

ALB (Another Load Balancer) is a Kubernetes Gateway powered by OpenResty with years of

production experience from Alauda.

TOC

Core components
Quick Start
Deploy the ALB Operator
Deploy an ALB Instance
Run a demo application
ALB Common Concepts
Auth
Network Mode
Host Network Mode
Container Network Mode
Frontend
Additional resources
Rules
dslx
Project Isolation
Project Mode
Port Project Mode
Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project

Ingress

http://localhost:4173/container_platform/

Understanding ALB - Alauda Container Platform
Ingress Controller
ALB
ALB Instance
ALB-Operator
Frontend (abbreviation: FT)
RULE
ALB Leader
Project

Additional resources:

Core components

Tenant! Traffic Te—"“'\tln Traffic
I
(¥ £ o
”“MCSPGCQ 1 Namespace A S
m
Create/. Manage_
- Create/Ma hage
[Ingress j] Ingress Gateway
[Poo(] [PM)[Rule]
ALB & .
Operator

e ALB Operator: An operator that manage the lifecycle of ALB instances. It is responsible for

watching ALB CRs and then creating and updating ALB instances for different tenants.

o ALB Instance: The ALB instance includes an Openresty that act as the data plan and a Go
controller as the controller plan. The Go controller monitors various CRs (Ingress, Gateway,
Rule, etc.) and converts them into ALB-specific DSL rules. OpenResty then uses these

DSL rules to match and process incoming requests.

Understanding ALB - Alauda Container Platform

Quick Start

Deploy the ALB Operator

1. Create a cluster.

helm repo add alb https://alauda.github.io/alb/;helm repo update;helm
2. search repo|grep alb

3. helm install alb-operator alb/alauda-alb2

Deploy an ALB Instance

cat <<EOF | kubectl apply -f -
apiVersion: crd.alauda.io/v2betal
kind: ALB2
metadata:

name: alb-demo

namespace: kube-system
spec:

address: "172.20.0.5"

type: "nginx"

config:
networkMode: host
loadbalancerName: alb-demo
projects:
- ALL_ALL
replicas: 1

EOF

Run a demo application

Understanding ALB - Alauda Container Platform

Understanding ALB - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: apps/vil
kind: Deployment
metadata:
name: hello-world
labels:
k8s-app: hello-world
spec:
replicas: 1
selector:
matchLabels:
k8s-app: hello-world
template:
metadata:
labels:
k8s-app: hello-world
spec:
terminationGracePeriodSeconds: 60
containers:
- name: hello-world
image: docker.io/crccheck/hello-world: latest
imagePullPolicy: IfNotPresent
apiVersion: vi
kind: Service
metadata:
name: hello-world
labels:
k8s-app: hello-world

spec:
ports:
- name: http
port: 80

targetPort: 8000
selector:
k8s-app: hello-world
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: hello-world
spec:
rules:

Understanding ALB - Alauda Container Platform
- http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: hello-world
port:
number: 80
EOF

Now you can access the app via curl http://${ip}

ALB Common Concepts

The following defines common concepts in the ALB.

Auth

Auth is a mechanism that performs authentication before a request reaches the actual
service. It allows you to handle authentication at the ALB level uniformly, without implementing

authentication logic in each backend service.

Learn more about ALB Auth.

Network Mode

An ALB instance could be deployed in two modes: host network mode and container network

mode.

Host Network Mode

Directly use the node's network stack, sharing the IP address and port with the node.

In this mode, the load balancer instance directly binds to the node's port, without port mapping

or similar container network encapsulation conversion.

Understanding ALB - Alauda Container Platform

l NOTE

To avoid port conflicts, only one ALB instance is allowed to be deployed on a single node.

2)

User

External LoadBalancer

Business Cluster

LoadBalancer for
the business cluster

\ 4
LoadBalancer
Instance

\ 4
LoadBalancer

In host-network mode ALB instance will listen to all the NIC of the node by default.

Advantages:

1. Best network performance.

2. Could be accessed by node's IP address.

Disadvantages:

1. Only one ALB instance is allowed to be deployed on a single node.

2. Port might conflict with other processes.

Container Network Mode

Unlike host network mode, container network mode deploys ALB using container networking.

Understanding ALB - Alauda Container Platform

User

Y

Service of LoadBalancer type

Y
LoadBalancer LoadBalancer LoadBalancer
Instance Instance Instance

Nololvlvivlvlvlols

Advantages:

1. Supports deploying multiple ALB instances on a single node.
2. ALB provides integration with MetalLB, which can provide VIP for ALB.

3. Port will not conflict with other processes.

Disadvantages:

1. Slightly lower performance.

2. Must access ALB through LoadBalancer service.

Frontend

We define a resource called frontend (abbreviated as ft), which is used to declare all the ports

that all the alb should listen to.

Each frontend corresponds to a listening port on the load balancer (LB). A Frontend is

associated with the ALB via labels.

Understanding ALB - Alauda Container Platform

apiVersion: crd.alauda.io/v1l
kind: Frontend
metadata:
labels:
alb2.cpaas.io/name: alb—demoe
name: alb-demo-00080 @)

namespace: cpaas-system

spec:
backendProtocol: "http"
certificate_name: "" Q
port: 80

protocol: httpe
serviceGroup: e
services:
- name: hello-world
namespace: default
port: 80
weight: 100@

1. Required, indicate the ALB instance to which this Frontend belongs to.
2. Format as alb_name-port .
3. Format as $secret_ns/$secret_name .

4. Protocol of this Frontend itself.

e http|https|grpc|grpcs for |7 proxy.
e tcp|udp forl4 proxy.

5. For |14 proxy, serviceGroup is required. For |7 proxy, serviceGroup is. optional. When a
request arrives, ALB will first try to match it against rules associated with this Frontend.

Only if the request doesn't match any rule, ALB will then forward it to the default

serviceGroup specified in the Frontend configuration.

6. weight configuration applicable to Round Robin and Weighted Round Robin scheduling

algorithms.

l NOTE

ALB listens to ingress and automatically creates a Frontend or Rule. source field is defined as

follows:

Understanding ALB - Alauda Container Platform
1. spec.source.type currently only supports ingress .
2. spec.source.name isingress name.

3. spec.source.namespace IS ingress namespace.

Additional resources

e L4/L7 timeout

o Keepalive

Rules

We define a resource called rule, which is used to describe how an alb instance should handle

a 7-layer request.

Complex traffic matching and distribution patterns can be configured by Rule. When the traffic
arrives, it hits the traffic according to the internal rules and does the corresponding forwarding,

and provides some additional functions such as cors, url rewrite and so on.

Understanding ALB - Alauda Container Platform

Understanding ALB - Alauda Container Platform

apiVersion: crd.alauda.io/v1l
kind: Rule
metadata:
labels:
alb2.cpaas.io/frontend: alb-demo-OOOSOQ
alb2.cpaas.io/name: alb-demoe
name: alb-demo-00080-test
namespace: kube-system
spec:
backendProtocol: ""e
certificate_name: "" e
dslx:
type: METHOD
values:
- - EQ
- POST
- type: URL
values:
- - STARTS_WITH

- /app-a
- - STARTS_WITH
- /app-b
- type: PARAM
key: group
values:
- - EQ
- vip
- type: HOST
values:
- - ENDS_WITH
- .app.com

- type: HEADER
key: LOCATION
values:

- - IN
- east-1
- east-2

- type: COOKIE
key: uid
values:

- - EXIST

- type: SRC_IP

values:

Understanding ALB - Alauda Container Platform

- - RANGE

- "1.1.2.1"

- "1.1.1.100"
enableCORS: false
priority: 4 e
serviceGroup: 6

services:

- name: hello-world
namespace: default
port: 80
weight: 100

1. Required, indicate the Frontend to which this rule belongs.
2. Required, indicate the ALB to which this rule belongs.

3. As same as Frontend.

4. As same as Frontend.

5. The lower the number, the higher the priority.

6. As same as Frontend.

dsix
dslx is a domain specific language, it is used to describe the matching criteria.
For example, below rule matches a request that satisfies all the following criteria:

 url starts with /app-a or /app-b

¢ method is post

e url param's group is vip

¢ host is *.app.com

¢ header's location is east-1 or east-2
¢ has a cookie name is uid

e source IPs come from 1.1.1.1-1.1.1.100

Understanding ALB - Alauda Container Platform

dslx:
- type: METHOD
values:
- - EQ
- POST
- type: URL
values:
- - STARTS_WITH
- /app-a
- - STARTS_WITH
- /app-b
- type: PARAM
key: group
values:
- - EQ
- vip
- type: HOST
values:
- - ENDS_WITH
- .app.com

- type: HEADER
key: LOCATION
values:

- - IN
- east-1
- east-2

- type: COOKIE
key: uid
values:

- - EXIST

- type: SRC_IP
values:

- - RANGE
"1.1.1.1"
"1.1.1.100"

Project Isolation

For rule, default is project isolation, each user can only see the rule of their own project.

Understanding ALB - Alauda Container Platform

Project Mode

An ALB can be shared by multiple projects, and these projects can control this ALB. All ports

of the ALB are visible to these projects.

Port Project Mode

A port of a ALB can belong to different projects. This deployment mode is called Port Project
Mode. The administrator needs to specify the port segment that each project can use. The
users of this project can only create ports within this port segment, and can only see the ports

within this port segment.

Relationship between ALB, ALB Instance,

Frontend/FT, Rule, Ingress, and Project

LoadBalancer is a key component in modern cloud-native architectures, serving as an

intelligent traffic router and load balancer.

To understand how ALB works in a Kubernetes cluster, we need to understand several core

concepts and their relationships:

ALB itself

Frontend (FT)

Rules

Ingress resources

Projects

These components work together to enable flexible and powerful traffic management

capabilities.

Next introduces how these concepts work together and what roles they play in the request-

calling chain. Detailed introductions for each concept will be covered in other articles.

Understanding ALB - Alauda Container Platform

Kubernetes cluster
Svc-A

client —network-request——"| alb-instance —route to pod via ingress——® SvcAPod1

SvcAPod2

In a request-calling chain:

1. Aclient sends an HTTP/HTTPS/other protocol request, and finally the request will arrive

on a pod of ALB, and the pod (an ALB instance) will start to handle this request.
2. This ALB instance finds a rule which could match this request.
3. If needed, modify/redirect/rewrite the request based on the rule.

4. Find and select one pod IP from the services which the rule configured. And forward the

request to the pod.

Ingress

Ingress is a resource in Kubernetes, used to describe what request should be sent to which

service.

Ingress Controller

A program that understands Ingress resource and will proxy request to service.

ALB

ALB is an Ingress controller.

In Kubernetes cluster, we use the alb2 resource to operate an ALB. You could use kubectl

get alb2 -A to view all the ALBs in the cluster.

ALBs are created by users manually. Each ALB has its own IngressClass. When you create

an Ingress, you can use .spec.ingressClassName field to indicate which Ingress controller

Understanding ALB - Alauda Container Platform

should handle this Ingress.

ALB Instance

ALB also is a Deployment (bunch of pods) running in the cluster. Each pod is called an ALB

instance.

Each ALB instance handles requests independently, but all instances share Frontend (FT),

Rule, and other configurations belonging to the same ALB.

ALB-Operator

ALB-Operator, a default component deployed in the cluster, is an operator for ALB. It will
create/update/delete Deployment and other related resources for each ALB according to the

ALB resource.

Frontend (abbreviation: FT)

FT is a resource defined by ALB itself. It is used to represent the ALB instance listening ports.
FT could be created by ALB-Leader or user manually.
Cases of FT created by ALB-Leader:

1. If Ingress has certificate, we will create FT 443 (HTTPS).

2. If Ingress has no certificate, we will create FT 80 (HTTP).

RULE

RULE is a resource defined by ALB itself. It takes the same role as the Ingress, but it is more

specific. A RULE is uniquely associated with a FT.
RULE could be created by ALB-Leader or user manually.
Cases of RULE created by ALB-Leader:

1. Sync Ingress to RULE.

Understanding ALB - Alauda Container Platform

ALB Leader

In multiple ALB instances, one will be elected as leader. The leader is responsible for:

1. Translating the Ingress into Rules. We will create Rule for each path in the Ingress.

2. Creating FT needed by Ingress. For example, if Ingress has certificate we will create FT
443 (HTTPS), if Ingress has no certificate we will create FT 80 (HTTP).

Project

From the perspective of ALB, Project is a set of namespaces.

You could configure one or more Projects in an ALB. When ALB Leader translates the Ingress

into Rules, it will ignore Ingress in namespaces which do not belong to the Project.

Additional resources:

o Configure a Load Balancer

Understanding MetalLB - Alauda Container Platform

Q Alauda Container Platform Q

Understanding MetalLB

TOC

Terminology
Principles of High Availability in MetalLB
MetalLB's Algorithm for Selecting VIP Host Nodes
External Address Pools and Number of Nodes
Calculation Formula
Application Example

Additional resources

Terminology

Term Description

A Virtual IP Address (VIP) is the IP address assigned by MetalLB for the
VIP LoadBalancer type internal routing, providing a unified access point for external

traffic to access services within the cluster.

ARP The Address Resolution Protocol (ARP) is utilized to map network layer IP
addresses to data link layer MAC addresses.

http://localhost:4173/container_platform/

Term

GARP

ARP
Responder

Controller

Speaker

Understanding MetalLB - Alauda Container Platform

Description

Gratuitous ARP (GARP) is a special ARP request used to inform other nodes in
the network about the binding of an IP address to a MAC address. Unlike
normal ARP requests, GARP does not wait for responses but actively sends

information across the network.

A component of MetalLB responsible for responding to ARP requests by
mapping the VIP to the node's MAC address. When a node needs to
communicate with the VIP, it sends ARP requests to retrieve the MAC address
corresponding to the VIP. Each available node has an ARP Responder that

responds to these requests, mapping the VIP to the node's MAC address.

A component of MetalLB that dynamically allocates VIPs from the external
address pool for LoadBalancer type internal routing. The Controller listens for
creation and deletion events of internal routes in the cluster to allocate or free
VIPs as required.

A component of MetalLB that determines, based on policies or algorithms,
whether nodes should host a VIP and send GARP. It ensures a certain level of
balance among nodes, and when a node becomes unavailable, other nodes
can take over the VIP and send GARP, thereby achieving high availability.

Principles of High Availability in MetalLB

Understanding MetalLB - Alauda Container Platform

Other subnets or
extranets

Accessing
VIP

A 4

Kubernetes Cluster

MetalLB

Gateway

Node establish a mapping
relationship between VIP and MAC

Select IP
Address External IP
Pool

2

MAC Address Table Controller Component

Available VIP MAC address of Access from other
Node 1 Node 1 subnets or extranets Assigning VIP to Service
Node establish a mapping Speaker proactively >LoadbalancertypeSen/|ce vIP)
relationship between VIP and MAC sends GARP | I I VA& S
Load VIP
through
Igorithm
ARP Speé.ker ARP Speaker ARP Speaker
Responder Responder [; Responder [;
¥ H
' M
Nodes in the same subnet < MAC MAC MAC
Access from :
MAC Address Table same subnet Kube-Proxy Kube-Proxy Kube-Proxy
Available |, MAC address of :
Node 1 Node 1 1 @ @
J | Cpos
3 Available Node 1 Available Node 2 Available Node 3

By default, the platform uses MetalLB's ARP mode, and the specific implementation process

and principles are as follows:

e The Controller component of MetalLB selects an IP address from the external address pool

and allocates it to the LoadBalancer type internal routing as a VIP.

* MetalLB selects an available node to host the VIP based on the algorithm, which then

forwards the traffic.

+ The Speaker component on this node actively sends GARP, establishing a mapping

relationship between the VIP and MAC address across all nodes.

» Nodes within the same subnet, upon learning the mapping between the VIP and the
available node's MAC address, will communicate directly with this node when accessing
the VIP.

» Nodes in different subnets will route traffic to the gateway of their subnet first, which will

then forward the traffic to the node hosting the VIP.

¢ When this node encounters a failure, MetalLB selects another available node to host the

VIP, thereby ensuring high availability.

¢ Upon reaching the node, Kube-Proxy forwards the traffic to the corresponding Pod.

Understanding MetalLB - Alauda Container Platform

MetalLB's Algorithm for Selecting VIP Host Nodes

MetalLB hashes all available nodes corresponding to the external address pool with the VIP
and sorts them according to a specific algorithm, choosing the first available node as the host
for the VIP.

External Address Pools and Number of Nodes

Create an external address pool and add available nodes. All available nodes maintain a
backup relationship, meaning only the node hosting the VIP can forward traffic, requiring it to

handle all traffic for the VIPs in the external address pool.

Calculation Formula

The formula is: Number of external address pools = ceil(n-vip / n-node), where ceil rounds

up.

Note: If using virtual machines, the number of virtual machines = Number of external address

pools * n. Here, n must be greater than 2, with a maximum of one node failure allowed.
e n-vip: Represents the number of VIPs.

e n-node: Represents the number of VIPs a single node can handle.

Application Example

If a company has 10 VIPs, and each available node can handle 5 VIPs, allowing for one node
failure, how should the company plan the number of external address pools and available

nodes?
Analysis:
A total of two external address pools and four available nodes are needed.

e Each available node can handle a maximum of 5 VIPs, meaning one external address pool

can accommodate 5 VIPs, so two external address pools are required for 10 VIPs.

Understanding MetalLB - Alauda Container Platform

+ Allowing one node failure means that each address pool must include one node hosting the
VIP and one backup node, resulting in two available nodes for each of the two external

address pools.

Additional resources

¢ Creating External IP Address Pool

e Creating BGP Peers

Concepts - Alauda Container Platform

Q Alauda Container Platform

Concepts

Auth

Basic Concept

Quick Start

Related Ingress Annotations

forward-auth

basic-auth

CR

ALB Special Ingress Annotation
Ingress-Nginx Auth Related Other Feature
Note: Incompatible Parts with Ingress-Ngil

Troubleshooting

GatewayAPI

OTel

Terminology
Prerequisites
Procedure

Related Operations

Additional Notes

Ingress-nginx Annotation Comj TCP/HTTP |

Basic concepts Basic Concept
Supported ingress-nginx annotations CRD
ModSecurit

Comparison Among Different Ingress Method

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic

L4/L7 Timeout

http://localhost:4173/container_platform/

Concepts - Alauda Container Platform

Configuration Example

Auth - Alauda Container Platform

Q Alauda Container Platform

Auth

TOC

Basic Concept
What is Auth
Supported Auth Methods
Auth Configuration Methods
Auth Result Handling
Quick Start
Deploy ALB
Configure Secret and Ingress
Verify
Related Ingress Annotations
forward-auth
Construct Related Annotations
auth-url
auth-method
auth-proxy-set-headers
Construct app-request related annotations
auth-response-headers
cookie handling
Redirect sign related configuration
auth-signin
auth-signin-redirect-param

auth-request-redirect

http://localhost:4173/container_platform/

Auth - Alauda Container Platform
basic-auth
auth-realm
auth-type
auth-secret
auth-secret-type
CR
ALB Special Ingress Annotation
Auth-Enable
Ingress-Nginx Auth Related Other Features
Global-Auth
No-Auth-Locations
Note: Incompatible Parts with Ingress-Nginx

Troubleshooting

Basic Concept

What is Auth

Auth is a mechanism that performs authentication before a request reaches the actual
service. It allows you to handle authentication at the ALB level uniformly, without implementing

authentication logic in each backend service.

Supported Auth Methods

ALB supports two main authentication methods:
1. Forward Auth (External Authentication)

e Send a request to an external authentication service to verify the user's identity
o Applicable scenarios: Need complex authentication logic, such as OAuth, SSO, etc.

o Workflow:

Auth - Alauda Container Platform
1. User request arrives at ALB
2. ALB forwards the authentication information to the authentication service
3. The authentication service returns the verification result

4. Based on the authentication result, decide whether to allow access to the backend

service
2. Basic Auth (Basic Authentication)

e Asimple authentication mechanism based on username and password
¢ Applicable scenarios: Simple access control, development environment protection

o Workflow:

1. User request arrives at ALB
2. ALB checks the username and password in the request
3. Compare with the configured authentication information

4. If the verification passes, forward to the backend service

Auth Configuration Methods

1. Global Auth

o Configure at the ALB level, applicable to all services

e Configure at the ALB or FT CR
2. Path-level Auth

o Configure at the specific Ingress path
o Configure at the specific Rule

e Can override the global auth configuration
3. Disable Auth

¢ Disable auth for a specific path

o Configure at the Ingress with annotation: alb.ingress.cpaas.io/auth-enable:

"false"

Auth - Alauda Container Platform

o Configure at the Rule with CR

Auth Result Handling

¢ Auth success: Request will be forwarded to the backend service
¢ Auth failed: Return 401 unauthorized error

+ Can configure the redirect behavior after auth failed (applicable to Forward Auth)

Quick Start

Configure Basic Auth with ALB

Deploy ALB

cat <<EOF | kubectl apply -f -
apiVersion: crd.alauda.io/v2
kind: ALB2
metadata:
name: auth
namespace: cpaas-system
spec:
config:
networkMode: container
projects:
- ALL_ALL
replicas: 1
vip:
enablelLbSvc: false
type: nginx
EOF
export ALB_IP=$(kubectl get pods -n cpaas-system -1 service_name=alb2-aut
h -o jsonpath="'{.items[*].status.podIP}');echo $ALB_IP

Configure Secret and Ingress

Auth - Alauda Container Platform

echo "Zm9vOiRhcHIXJHFJQO5aNjFRJIDJIpb29pS1ZvVQU1tcHIXMjU4LONOUDE=" | base6
4 -d # fo0:$apri1$qICNZ61Q$2i00iIVUAMmMprg258/ChP1

openssl passwd -aprl -salt gICNZ61Q bar # $apri1$qICNzZ61Q$2i00iJVUAMmprq
258/ChP1

kubectl apply -f - <<'END'
apiVersion: vi
kind: Secret
metadata:
name: auth-file
type: Opaque
data:
auth: Zm9vOiRhcHIXJHFJQ05aNjFRJIDJIpb29pS1ZvQU1tcHIXMjU4LONOUDE=
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: auth-file
annotations:
"nginx.ingress.kubernetes.io/auth-type": "basic"
"nginx.ingress.kubernetes.io/auth-secret": "default/auth-file"
"nginx.ingress.kubernetes.io/auth-secret-type": "auth-file"
spec:
rules:
- http:
paths:
- path: /app-file
pathType: Prefix
backend:
service:
name: app-server
port:
number: 80
END

Verify

Auth - Alauda Container Platform
curl -v -X GET -H "Authorization: Basic Zm9vOmJhcg==" http://$ALB_IP:80/a
pp-file

curl -v -X GET -H "Authorization: Basic XXXXOmJhcg==" http://$ALB_IP:80/a
pp-file

Related Ingress Annotations

Ingress-nginx defines a series of annotations to configure the specific details of the
authentication process. Below is a list of annotations that ALB supports, where "v" indicates

support and "X" indicates no support.

support type note

forward auth by
forward-auth)
sending http request

nginx.ingress.kubernetes.io/auth-url % string

nginx.ingress.kubernetes.io/auth-

% string
method
nginx.ingress.kubernetes.io/auth-)
o v string
signin
nginx.ingress.kubernetes.io/auth-)
o) v string
signin-redirect-param
nginx.ingress.kubernetes.io/auth-)
v string
response-headers
nginx.ingress.kubernetes.io/auth-)
v string
proxy-set-headers
nginx.ingress.kubernetes.io/auth- .
v string

request-redirect

nginx.ingress.kubernetes.io/auth-

always-set-cookie

nginx.ingress.kubernetes.io/auth-

shippet

basic-auth

nginx.ingress.kubernetes.io/auth-
realm

nginx.ingress.kubernetes.io/auth-

secret

nginx.ingress.kubernetes.io/auth-

secret-type

nginx.ingress.kubernetes.io/auth-type

auth-cache

nginx.ingress.kubernetes.io/auth-

cache-key

nginx.ingress.kubernetes.io/auth-

cache-duration

auth-keepalive

nginx.ingress.kubernetes.io/auth-

keepalive

nginx.ingress.kubernetes.io/auth-
keepalive-share-vars

Auth - Alauda Container Platform

support

type

boolean

string

string

string

string

"basic" or

"digest"

string

string

number

"true" or
"false"

hote

auth by username and

password secret

basic: supports aprl

digest: not supported

keepalive when
sending request.
specify keepalive
behavior through a

series of annotations

Auth - Alauda Container Platform

support type note
nginx.ingress.kubernetes.io/auth-
_ X number
keepalive-requests
nginx.ingress.kubernetes.io/auth-
X number

keepalive-timeout
when request is https,
auth-tls ~ extra verify the

certificate.

nginx.ingress.kubernetes.io/auth-tls-

X string
secret
nginx.ingress.kubernetes.io/auth-tls-
] X number
verify-depth
nginx.ingress.kubernetes.io/auth-tls-)
_ _ X string
verify-client
nginx.ingress.kubernetes.io/auth-tls-]
X string
error-page
nginx.ingress.kubernetes.io/auth-tls- "true" or
X
pass-certificate-to-upstream "false"
nginx.ingress.kubernetes.io/auth-tls- .
X string

match-cn

forward-auth

https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication
https://github.com/kubernetes/ingress-nginx/blob/main/docs/user-guide/nginx-configuration/annotations.md#client-certificate-authentication

Auth - Alauda Container Platform

client alb auth-server app

client request (cli-request)

»

alb request to auth-server (auth-request)

»

auth-server reply 200 (auth-response)

A

app-request

\ 4

app-response

A

cli-response

A

client alb auth-server app

Related annotations:

e nginx.ingress.kubernetes.io/auth-url

¢ nginx.ingress.kubernetes.io/auth-method

e nginx.ingress.kubernetes.io/auth-signin

¢ nginx.ingress.kubernetes.io/auth-signin-redirect-param
e nginx.ingress.kubernetes.io/auth-response-headers

¢ nginx.ingress.kubernetes.io/auth-proxy-set-headers

e nginx.ingress.kubernetes.io/auth-request-redirect

¢ nginx.ingress.kubernetes.io/auth-always-set-cookie

These annotations describe the modifications made to auth-request, app-request, and cli-

response in the above diagram.

Construct Related Annotations

auth-url

Auth-request's URL, value can be a variable.

auth-method

Auth-request's method.

auth-proxy-set-headers

Auth - Alauda Container Platform

The value is a ConfigMap reference in the format ns/name . By default, all headers from the
cli-request will be sent to the auth-server. Additional headers can be configured through

proxy_set _header. The following headers are sent by default:

X-0riginal-URI $request_uri;

X-Scheme $pass_access_scheme;
X-0riginal-URL $scheme://$http_host$request_uri;
X-0riginal-Method $request_method;

X-Sent-From "alb";

X-Real-IP $remote_addr;

X-Forwarded-For $proxy_add_x_forwarded_for;

X-Auth-Request-Redirect $request_uri;

Construct app-request related annotations

auth-response-headers

Value is a comma-separated string, allowing us to bring specific headers from auth-response

to app-request. example:

nginx.ingress.kubernetes.io/auth-response-headers: Remote-User,Remote-Nam
e

When ALB initiates an app-request, it will include the Remote-User and Remote-Name from

the auth-response headers.

cookie handling

auth-response and app-response can both set cookies. By default, only when app-

response.success, the auth-response.set-cookie will be merged into cli-response.set-cookie.

Auth - Alauda Container Platform

Redirect sign related configuration

When the auth-server returns 401, we can set the redirect header in the cli-response to

instruct the browser to redirect to the url specified by auth-signin for verification.

client alb auth-server

client request (cli-request)

v

alb request to auth-server (auth-request)

>

auth-server reply not 200 (auth-response)

<

in case of auth failed, alb reply cli-response (with location header to redirect)

client alb auth-server

auth-signin

Value is a url, specify the location header in cli-response.

auth-signin-redirect-param

The name of the query parameter in the signin-url, default is rd. if the signin-url does not

contain the auth-signin-redirect-param specified parameter name, alb will automatically

add the parameter. The parameter value will be set to
$pass_access_scheme://$http_host$escaped_request_uri , used to record the original

request URL.

auth-request-redirect

Setthe x-auth-request-redirect header in auth-request.

basic-auth

basic-auth is the authentication process described in RFC 7617 7. The interaction process is

as follows:

https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617

Auth - Alauda Container Platform

client alb

client request (cli-request)

check the username and password in the request

<

cli-response
<

client alb

auth-realm

description of the protected area ~ Which is the realm value in the www-Authenticate

header of cli-response. WWW-Authenticate: Basic realm="$realm"

auth-type

The type of the authentication scheme, currently only supports basic

auth-secret

The secret refs of the username and password, format is ns/name

auth-secret-type

Secret supports two types:

1. auth-file: secret's data only contains one key "auth", and its value is the string of Apache

htpasswd format. for example:

data:

auth: "userl:$apri$xyz..."

https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm
https://developer.mozilla.org/zh-CN/docs/Web/HTTP/Headers/WWW-Authenticate#realm

Auth - Alauda Container Platform

2. auth-map: secret's data each key represents a username, and the corresponding value is

the password hash (without the username in htpasswd format). for example:

data:
userl: "$apri$xyz...."
user2: "$aprisgabc...."

Note: Currently, only htpasswd format password hashes generated using the aprl algorithm

are supported.

CR

ALB CR has added auth-related configuration items that can be configured on

ALB/Frontend/Rule CRs. During runtime, ALB will convert the annotations on Ingress into

rules.

Auth - Alauda Container Platform

auth:
Basic authentication configuration
basic:
string; corresponding to nginx.ingress.kubernetes.io/auth-type: ba
sic
auth_type: "basic"
string; corresponding to nginx.ingress.kubernetes.io/auth-realm
realm: "Restricted Access"
string; corresponding to nginx.ingress.kubernetes.io/auth-secret
secret: "ns/name"
string; corresponding to nginx.ingress.kubernetes.io/auth-secret-t
ype
secret_type: "auth-map|auth-file"
Forward authentication configuration
forward:
boolean; corresponding to nginx.ingress.kubernetes.io/auth-always-
set-cookie
always_set_cookie: true
string; corresponding to nginx.ingress.kubernetes.io/auth-proxy-se
t-headers
auth_headers_cm_ref: '"ns/name"
string; corresponding to nginx.ingress.kubernetes.io/auth-request-
redirect
auth_request_redirect: "/login"
string; corresponding to nginx.ingress.kubernetes.io/auth-method
method: "GET"
string; corresponding to nginx.ingress.kubernetes.io/auth-signin
signin: "/signin"
string; corresponding to nginx.ingress.kubernetes.io/auth-signin-r
edirect-param
signin_redirect_param: "redirect_to"
[]string; corresponding to nginx.ingress.kubernetes.io/auth-respon
se-headers
upstream_headers:
"X-User-ID"
"X-User-Name"
"X-User-Email"
string; corresponding to nginx.ingress.kubernetes.io/auth-url

url: "http://auth-service/validate"

Auth supports configuration on:

Auth - Alauda Container Platform
e Alb CR's .spec.config.auth
e Frontend CR's .spec.config.auth

e Rule CR's .spec.config.auth

The inheritance order is Alb > Frontend > Rule. If a child cr is not configured, the configuration

of the parent cr will be used.

ALB Special Ingress Annotation

In the process of handling Ingress, ALB determines the priority based on the prefix of the

annotation. The priority from high to low is:

e index.$rule_index-$path_index.alb.ingress.cpaas.io
e alb.ingress.cpaas.io

e nginx.ingress.kubernetes.io

This can handle the compatibility problem with ingress-nginx and specify the auth

configuration on a specific Ingress path.

Auth-Enable

alb.ingress.cpaas.io/auth-enable: "false"

A new annotation added by ALB, used to specify whether to enable authentication

functionality for the Ingress.

Ingress-Nginx Auth Related Other Features

Global-Auth

In ingress-nginx, you can set a global auth through the ConfigMap. This is equivalent to

configuring auth for all Ingresses. In ALB, you can configure auth on the ALB2 and FT CRs.

Auth - Alauda Container Platform

The rules under them will inherit these configurations.

No-Auth-Locations

In ALB, you can disable the auth function of this Ingress by configuring the annotation:

alb.ingress.cpaas.io/auth-enable: "false" on the Ingress.

Note: Incompatible Parts with Ingress-Nginx

1. Does not support auth-keepalive

2. Does not support auth-snippet

3. Does not support auth-cache

4. Does not support auth-tls

5. Basic-auth only supports basic, does not support digest

6. Basic-auth basic only supports aprl algorithm, does not support bcrypt sha256, etc.

Troubleshooting

1. Check ALB pod Nginx container log

2. Check the X-ALB-ERR-REASON header in the return

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Q Alauda Container Platform Q

Ingress-nginx Annotation Compatibility

TOC

Basic concepts

Supported ingress-nginx annotations

Basic concepts

ingress-nginx is a commonly used Ingress Controller in Kubernetes, and defines many

annotations to implement various functions beyond the official ingress definition.

Supported ingress-nginx annotations

Support (v supports x
does not support o

Name type partially supports or can
be achieved by

configuration)
nginx.ingress.kubernetes.io/app-root string X

o0 ingress does not
nginx.ingress.kubernetes.io/affinity cookie support. alb rule can
configure cookie hash

http://localhost:4173/container_platform/

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/use-regex

nginx.ingress.kubernetes.io/affinity-mode

nginx.ingress.kubernetes.io/affinity-canary-

behavior

nginx.ingress.kubernetes.io/auth-realm

nginx.ingress.kubernetes.io/auth-secret

nginx.ingress.kubernetes.io/auth-secret-type

nginx.ingress.kubernetes.io/auth-type

nginx.ingress.kubernetes.io/auth-tls-secret

nginx.ingress.kubernetes.io/auth-tls-verify-
depth

nginx.ingress.kubernetes.io/auth-tls-verify-

client

nginx.ingress.kubernetes.io/auth-tls-error-

page

nginx.ingress.kubernetes.io/auth-tls-pass-

certificate-to-upstream

nginx.ingress.kubernetes.io/auth-tls-match-cn

type

bool

"balanced"
or

"persistent"

"sticky" or

"legacy"”

string

string

string

"basic" or
"digest”

string

number

string

string

"true" or

"false"

string

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

0 ingress does not
support. alb rule can
configure session

persistence
0 ingress does not
support. alb rule can

configure session
persistence

v auth

v auth

v auth

v auth

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/auth-url

nginx.ingress.kubernetes.io/auth-cache-key

nginx.ingress.kubernetes.io/auth-cache-
duration

nginx.ingress.kubernetes.io/auth-keepalive

nginx.ingress.kubernetes.io/auth-keepalive-

share-vars

nginx.ingress.kubernetes.io/auth-keepalive-
requests

nginx.ingress.kubernetes.io/auth-keepalive-

timeout

nginx.ingress.kubernetes.io/auth-proxy-set-

headers

nginx.ingress.kubernetes.io/auth-snippet

nginx.ingress.kubernetes.io/enable-global-

auth

nginx.ingress.kubernetes.io/backend-protocol

nginx.ingress.kubernetes.io/canary

nginx.ingress.kubernetes.io/canary-by-header

nginx.ingress.kubernetes.io/canary-by-header-

value

type

string

string

string

number

"true" or

"false"

number

number

string

string

"true" or

"false"

string

"true" or
"false"

string

string

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

o auth

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/canary-by-header-

pattern

nginx.ingress.kubernetes.io/canary-by-cookie

nginx.ingress.kubernetes.io/canary-weight

nginx.ingress.kubernetes.io/canary-weight-

total

nginx.ingress.kubernetes.io/client-body-buffer-

size

nginx.ingress.kubernetes.io/configuration-

shippet

nginx.ingress.kubernetes.io/custom-http-errors

nginx.ingress.kubernetes.io/custom-headers

nginx.ingress.kubernetes.io/default-backend

nginx.ingress.kubernetes.io/enable-cors

nginx.ingress.kubernetes.io/cors-allow-origin

nginx.ingress.kubernetes.io/cors-allow-
methods

nginx.ingress.kubernetes.io/cors-allow-

headers

nginx.ingress.kubernetes.io/cors-expose-

headers

type

string

string

number

number

string

string

[Jint

string

string

"true" or

"false"

string

string

string

string

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

0 can use ingress's

default-backend

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/cors-allow-

credentials

nginx.ingress.kubernetes.io/cors-max-age

nginx.ingress.kubernetes.io/force-ssl-redirect

nginx.ingress.kubernetes.io/from-to-www-
redirect

nginx.ingress.kubernetes.io/http2-push-
preload

nginx.ingress.kubernetes.io/limit-connections

nginx.ingress.kubernetes.io/limit-rps

nginx.ingress.kubernetes.io/global-rate-limit

nginx.ingress.kubernetes.io/global-rate-limit-

window

nginx.ingress.kubernetes.io/global-rate-limit-

key

nginx.ingress.kubernetes.io/global-rate-limit-

ignored-cidrs

nginx.ingress.kubernetes.io/permanent-

redirect

nginx.ingress.kubernetes.io/permanent-

redirect-code

nginx.ingress.kubernetes.io/temporal-redirect

type

"true" or

"false"

number

"true" or

"false"

"true" or

"false"

"true" or

"false"

number

number

number

duration

string

string

string

number

string

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

v redirect

v redirect

v redirect

v redirect

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Support (v supports x
does not support o

Name type partially supports or can
be achieved by

configuration)

nginx.ingress.kubernetes.io/preserve-trailing- "true" or
X
slash "false”
nginx.ingress.kubernetes.io/proxy-body-size string X
nginx.ingress.kubernetes.io/proxy-cookie-)
) string X
domain
nginx.ingress.kubernetes.io/proxy-cookie-path string X
nginx.ingress.kubernetes.io/proxy-connect-)
_ number v timeout
timeout
nginx.ingress.kubernetes.io/proxy-send-)
_ number v timeout
timeout
nginx.ingress.kubernetes.io/proxy-read-)
) number v timeout
timeout
nginx.ingress.kubernetes.io/proxy-next-)
string X
upstream
nginx.ingress.kubernetes.io/proxy-next-
) number X
upstream-timeout
nginx.ingress.kubernetes.io/proxy-next-
) number X
upstream-tries
nginx.ingress.kubernetes.io/proxy-request-)
) string X
buffering
nginx.ingress.kubernetes.io/proxy-redirect-)
string X

from

nginx.ingress.kubernetes.io/proxy-redirect-to string X

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/proxy-http-version

nginx.ingress.kubernetes.io/proxy-ssl-secret

nginx.ingress.kubernetes.io/proxy-ssl-ciphers

nginx.ingress.kubernetes.io/proxy-ssl-name

nginx.ingress.kubernetes.io/proxy-ssl-

protocols

nginx.ingress.kubernetes.io/proxy-ssl-verify

nginx.ingress.kubernetes.io/proxy-ssl-verify-
depth

nginx.ingress.kubernetes.io/proxy-ssl-server-

name

nginx.ingress.kubernetes.io/enable-rewrite-log

nginx.ingress.kubernetes.io/rewrite-target

nginx.ingress.kubernetes.io/satisfy

nginx.ingress.kubernetes.io/server-alias

nginx.ingress.kubernetes.io/server-snippet

nginx.ingress.kubernetes.io/service-upstream

nginx.ingress.kubernetes.io/session-cookie-

change-on-failure

type

"1.0"or "1.1"

string

string

string

string

string

number

string

"true" or

"false"

URI

string

string

string

"true" or

"false"

"true" or

"false"

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/session-cookie-

conditional-samesite-none

nginx.ingress.kubernetes.io/session-cookie-
domain

nginx.ingress.kubernetes.io/session-cookie-

expires

nginx.ingress.kubernetes.io/session-cookie-

max-age

nginx.ingress.kubernetes.io/session-cookie-

name

nginx.ingress.kubernetes.io/session-cookie-

path

nginx.ingress.kubernetes.io/session-cookie-
samesite

nginx.ingress.kubernetes.io/session-cookie-

secure

nginx.ingress.kubernetes.io/ssl-redirect

nginx.ingress.kubernetes.io/ssl-passthrough

nginx.ingress.kubernetes.io/stream-snippet

nginx.ingress.kubernetes.io/upstream-hash-by

nginx.ingress.kubernetes.io/x-forwarded-prefix

type

"true" or

"false"

string

string

string

string

string

string

string

"true" or

"false"

"true" or

"false"

string

string

string

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Name

nginx.ingress.kubernetes.io/load-balance

nginx.ingress.kubernetes.io/upstream-vhost

nginx.ingress.kubernetes.io/denylist-source-

range

nginx.ingress.kubernetes.io/whitelist-source-

range

nginx.ingress.kubernetes.io/proxy-buffering

nginx.ingress.kubernetes.io/proxy-buffers-

number

nginx.ingress.kubernetes.io/proxy-buffer-size

nginx.ingress.kubernetes.io/proxy-max-temp-

file-size

nginx.ingress.kubernetes.io/ssl-ciphers

nginx.ingress.kubernetes.io/ssl-prefer-server-

ciphers

nginx.ingress.kubernetes.io/connection-proxy-

header

nginx.ingress.kubernetes.io/enable-access-log

nginx.ingress.kubernetes.io/enable-
opentelemetry

type

string

string

CIDR

CIDR

string

number

string

string

string

"true" or

"false"

string

"true" or

"false"

"true" or
"false"

Support (v supports x
does not support o
partially supports or can
be achieved by

configuration)

0 can achieve similar
effect through
modsecurity

0 can achieve similar
effect through

modsecurity

o default enable
access_log, format is

fixed

v otel

Ingress-nginx Annotation Compatibility - Alauda Container Platform

Support (v supports x
does not support o

Name type partially supports or can
be achieved by

configuration)

nginx.ingress.kubernetes.io/opentelemetry- "true" or el
v ote
trust-incoming-span "false"
nginx.ingress.kubernetes.io/enable- .
] bool v modsecurity
modsecurity
nginx.ingress.kubernetes.io/enable-owasp-)
bool v modsecurity
core-rules
nginx.ingress.kubernetes.io/modsecurity-))
- string v modsecurity
transaction-id
nginx.ingress.kubernetes.io/modsecurity-))
) string v modsecurity
snippet
nginx.ingress.kubernetes.io/mirror-request-)
string X
body
nginx.ingress.kubernetes.io/mirror-target string X

nginx.ingress.kubernetes.io/mirror-host string X

TCP/HTTP Keepalive - Alauda Container Platform

Q Alauda Container Platform Q

TCPIHTTP Keepalive

TOC

Basic Concept

CRD

Basic Concept

1. ALB supports keepalive configuration at the port level. It can be configured on the frontend.
2. Keepalive is between the client and ALB, not between ALB and the backend.

3. It is implemented through the Nginx configuration, and Nginx needs and will

automatically reload when the configuration is changed.
4. TCP keepalive and HTTP keepalive are two different concepts:

1. TCP keepalive is a TCP protocol feature that sends periodic probe packets to check if
the connection is still alive when there is no data transmission. It helps detect and clean

up dead connections.

2. HTTP keepalive (also known as persistent connections) allows multiple HTTP requests
to reuse the same TCP connection, avoiding the overhead of establishing new

connections. This improves performance by reducing latency and resource usage.

CRD

http://localhost:4173/container_platform/

TCP/HTTP Keepalive - Alauda Container Platform

keepalive:
properties:
http:
description: Downstream L7 keepalive
properties:
header_timeout:
description: Keepalive header timeout. Default is not set.
type: string
requests:
description: Keepalive requests. Default is 1000.
type: integer
timeout:
description: Keepalive timeout. Default is 75s.
type: string
type: object
tep:
description: TCPKeepAlive defines TCP keepalive parameters (SO_KEEP
ALIVE)
properties:
count:
description: The TCP_KEEPCNT socket option.
type: integer
idle:
description: The TCP_KEEPIDLE socket option.
type: string
interval:
description: The TCP_KEEPINTVL socket option.
type: string
type: object
type: object

It can only be configured on the Frontend .spec.config.keepalive .

ModSecurity - Alauda Container Platform

Q Alauda Container Platform Q

ModSecurity

ModSecurity is an open-source Web Application Firewall (WAF) designed to protect web
applications from malicious attacks. It is maintained by the open-source community and
supports various programming languages and web servers. The platform Load Balancer
(ALB) supports configuring ModSecurity, allowing for individual configurations at the Ingress

level.

TOC

Terminology
Procedure to Operate
Method One: Add Annotations
Method Two: Configure CR
Related Explanations
Override

Configuration Example

Terminology
Term Explanation
owasp-core- The OWASP Core Rule Set is an open-source ruleset used to detect and

rules prevent common web application attacks.

http://localhost:4173/container_platform/

ModSecurity - Alauda Container Platform

Procedure to Operate

Configure ModSecurity by adding annotations to the corresponding resource's YAML file or by

configuring CR.

Method One: Add Annotations

Add the following annotations to the metadata.annotations field of the corresponding YAML file

to configure ModSecurity.

* Ingress-Nginx Compatible Annotations

Applicable
Annotation Type Explanation
Object
nginx.ingress.kubernetes.io/enable- Enable
bool Ingress
modsecurity ModSecurity.
Enable the
nginx.ingress.kubernetes.iolenable-
bool Ingress OWASP Core
owasp-core-rules
Rule Set.
Used to
identify unique
transaction
nginx.ingress.kubernetes.io/modsecurity- IDs for each
string Ingress
transaction-id request,
aiding in
logging and
debugging.
nginx.ingress.kubernetes.io/modsecurity- string Ingress, Allows users
snippet ALB, FT, to insert
Rule custom
ModSecurity
configurations

to meet

ModSecurity - Alauda Container Platform

Annotation

e ALB Special Annotations

Annotation Type

alb.modsecurity.cpaas.ioluse-
bool
recommend

alb.modsecurity.cpaas.iolcmref string

Method Two: Configure CR

Applicable

Type

Explanation

Object

Applicable
Object

Ingress

Ingress

specific
security

requirements.

Explanation

Enable or disable
recommended
ModSecurity rules; set to
true toapply a
predefined set of security

rules.

Reference specific
configurations, e.g.,
custom security
configurations can be
loaded by specifying the
ConfigMap's reference
path

($ns/$name#$section).

1. Open the ALB, FT, or Rule configuration file that needs to be configured.

2. Add the following fields under spec.config as required.

ModSecurity - Alauda Container Platform

{ "modsecurity": {
"enable": true,
"transactionId": "$xx",
"useCoreRules": true,

"useRecommend": true,

"cmRef": "$ns/$name#$section”,

I

3. Save and apply the configuration file.

Related Explanations

Override

If ModSecurity is not configured in the Rule, it will attempt to find the configuration in FT; if

there is no configuration in FT, it will use the configuration from ALB.

Configuration Example

The following example deploys an ALB named waf-alb and a demo backend application
named hello . Additionally, an Ingress named ing-waf-enable is deployed, which defines
the /waf-enable route and configures ModSecurity rules. Any request containing the query

parameter test , where the value includes the string test , will be blocked.

ModSecurity - Alauda Container Platform

ModSecurity - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: crd.alauda.io/v2
kind: ALB2
metadata:
name: waf-alb
namespace: cpaas-system
spec:
config:
loadbalancerName: waf-alb
projects:
- ALL_ALL
replicas: 1
type: nginx
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/enable-modsecurity: "true"
nginx.ingress.kubernetes.io/modsecurity-transaction-id: "$request_id"
nginx.ingress.kubernetes.io/modsecurity-snippet: |
SecRuleEngine On
SecRule ARGS:test "@contains test" "id:1234,deny, log"
name: ing-waf-enable
spec:
ingressClassName: waf-alb
rules:
- http:
paths:
- backend:
service:
name: hello
port:
number: 80
path: /waf-enable
pathType: ImplementationSpecific

Comparison Among Different Ingress Method - Alauda Container Platform

Q Alauda Container Platform Q

Comparison Among Different Ingress
Method

The Alauda Container Platform supports multiple ingress traffic specifications in Kubernetes
ecosystem. This document compares them (Service, Ingress, Gateway API, and ALB Rule) to

help users make the right choice.

TOC

For L4(TCP/UDP) Traffic

For L7(HTTP/HTTPS) Traffic
Ingress
GatewayAPI

ALB Rule

For L4(TCP/UDP) Traffic

Services of type LoadBalancer, Gateway API, and ALB Rules can all expose L4 traffic
externally. Here we recommend using the LoadBalancer type Service approach. Both
Gateway APl and ALB Rules are implemented by ALB, which is a userspace proxy, and their
performance degrades significantly when handling L4 traffic compared to LoadBalancer type

Services.

http://localhost:4173/container_platform/

Comparison Among Different Ingress Method - Alauda Container Platform

For L7Z(HTTP/HTTPS) Traffic

While Ingress, GatewayAPI, and ALB Rules can all expose L7 traffic externally, they differ in

their capabilities and isolation models.

Ingress

Ingress is the standard specification adopted by the Kubernetes community and are
recommended for default use. The Ingress is handled by ALB instances that are managed by

the platform administrator.

GatewayAPI

GatewayAPI provides more flexible isolation mode, however they are not as mature as
Ingress. By using GatewayAPI developer can create their own isolated ALB instances to
handle GatewayAPI rules. Therefore, if you need to delegate the creation and management of

ALB instances to developers, you need to choose to use GatewayAPI.

ALB Rule

ALB Rule(Load Balancer in the Ul) provides the most flexible traffic match rules and the most
capabilities. In fact, both Ingress and GatewayAPI are implemented by translating them to
ALB Rules. However, the ALB Rule is more complex than Ingress and GatewayAPI and is not
a community-standard API. Therefore, we recommend using it only when Ingress and

GatewayAPI don't meet your needs.

HTTP Redirect - Alauda Container Platform

Q Alauda Container Platform Q

HTTP Redirect

TOC

Basic Concept

CRD

Ingress Annotation
SSL-Redirect

Port Level Redirect

Rule Level Redirect

Basic Concept

HTTP redirect is a feature provided by ALB. It will directly return a 30x HTTP code for the
request that matches the rule. The Location header will be used to instruct the client to

redirect to the new URL.

ALB supports redirect configuration at the port and rule levels.

CRD

http://localhost:4173/container_platform/

HTTP Redirect - Alauda Container Platform

redirect:
properties:
code:
type: integer
host:
type: string
port:
type: integer
prefix_match:
type: string
replace_prefix:
type: string
scheme:
type: string
url:
type: string
type: object

Redirect could be configured on:

e Frontend: .spec.config.redirect

e Rule: .spec.config.redirect

Ingress Annotation

Annotation
nginx.ingress.kubernetes.io/permanent-redirect

nginx.ingress.kubernetes.io/permanent-
redirect-code

nginx.ingress.kubernetes.io/temporal-redirect

nginx.ingress.kubernetes.io/temporal-redirect-
code

Description

Corresponds to URL in CR, will set code to
301 by default

Corresponds to code in CR

Corresponds to URL in CR, will set code to
302 by default

Corresponds to code in CR

HTTP Redirect - Alauda Container Platform

Annotation Description

Corresponds to scheme in CR, will set

nginx.ingress.kubernetes.io/ssl-redirect
scheme to HTTPS by default

Corresponds to scheme in CR, will set

nginx.ingress.kubernetes.io/force-ssl-redirect
scheme to HTTPS by default

SSL-Redirect

1. SSL-redirect and force-ssl-redirect differ in that SSL-redirect only takes effect when the
ingress has a certificate for the corresponding domain, while force-ssl-redirect takes effect

regardless of whether there is a certificate.

2. For HTTPS ports, if only SSL-redirect is configured, the redirect will not be set.

Port Level Redirect

When redirect is configured at the port level, all requests to this port will be redirected

according to the redirect configuration.

Rule Level Redirect

When redirect is configured at the rule level, the request matching this rule will be redirected

according to the redirect configuration.

L4 /L7 Timeout - Alauda Container Platform

Q Alauda Container Platform Q

L4/L7 Timeout

TOC

Basic Concept

CRD

What Timeout Means
Ingress Annotation

Port Level Timeout

Basic Concept

L4/L7 timeout is a feature provided by ALB. It is used to configure the timeout time for L4/L7

proxy.

Timeout is implemented through a Lua script, and Nginx does not need to reload when it is

changed.

CRD

http://localhost:4173/container_platform/

L4 /L7 Timeout - Alauda Container Platform

timeout:
properties:
proxy_connect_timeout_ms:
type: integer
proxy_read_timeout_ms:
type: integer
proxy_send_timeout_ms:
type: integer
type: object

Config can be configured on:

e Frontend: .spec.config.timeout

e Rule: .spec.config.timeout

What Timeout Means

There are three types of timeouts:

1. proxy_connect_timeout_ms: Defines the timeout for establishing a connection with the
upstream server. If the connection cannot be established within this time, the request will

fail.

2. proxy_read_timeout_ms: Defines the timeout for reading a response from the upstream
server. The timeout is set between two successive read operations, not for the entire

response. If no data is received within this time, the connection is closed.

3. proxy_send_timeout_ms: Defines the timeout for sending a request to the upstream
server. Similar to the read timeout, this is set between two successive write operations. If

no data can be sent within this time, the connection is closed.

Ingress Annotation

L4 /L7 Timeout - Alauda Container Platform

Annotation

nginx.ingress.kubernetes.io/proxy-connect-
timeout

nginx.ingress.kubernetes.io/proxy-read-timeout

nginx.ingress.kubernetes.io/proxy-send-
timeout

Port Level Timeout

Description

Corresponds to proxy_connect_timeout_ms
in CR

Corresponds to proxy_read_timeout_ms in
CR

Corresponds to proxy_send_timeout_ms in
CR

You can configure timeout on a port directly, which is used as an L4 timeout.

GatewayAPI| - Alauda Container Platform

Q Alauda Container Platform Q

GatewayAPI

GatewayAPI 7 is a new standard for Kubernetes ingress.

ALB supports GatewayAPI as well. Each Gateway resource will be translated into an ALB

resource.

Listener and Router will be handled in ALB directly. They will not be translated into Frontend

and Rule .

https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
https://gateway-api.sigs.k8s.io/
http://localhost:4173/container_platform/

OTel - Alauda Container Platform

Q Alauda Container Platform Q

OTel

OpenTelemetry (OTel) is an open-source project aimed at providing a vendor-neutral standard
for collecting, processing, and exporting telemetry data in distributed systems, such as
microservices architectures. It helps developers analyze the performance and behavior of

software more easily, thus facilitating the diagnosis and resolution of application issues.

TOC

Terminology

Prerequisites

Procedure
Update ALB Configuration

Related Operations
Configuring OTel in Ingress
Using OTel in Applications
Inheritance

Additional Notes
Sampling Strategies
Attributes

Configuration Example

Terminology

http://localhost:4173/container_platform/

Term

Trace

Span

OTel Server

Jaeger

Attributes

Sampler

ALB
(Another
Load

Balancer)

FT

(Frontend)

Rule

HotROD

(Rides on

Demand)

hotrod-with-
proxy

OTel - Alauda Container Platform

Explanation

The data submitted to the OTel Server, which is a collection of related events
or operations used to track the flow of requests in distributed systems; each
Trace consists of multiple Spans.

An independent operation or event within a Trace that includes start time,

duration, and other relevant information.

An OTel server capable of receiving and storing Trace data, such as Jaeger,

Prometheus, etc.

An open-source distributed tracing system used for monitoring and
troubleshooting microservices architectures, supporting integration with

OpenTelemetry.

Key-value pairs attached to a Trace or Span to provide additional contextual
information. This includes Resource Attributes and Span Attributes; see
Attributes for more information.

A strategy component that determines whether to sample and report a Trace.
Different sampling strategies can be configured, such as full sampling,

proportional sampling, etc.

A software or hardware device that distributes network requests across
available nodes in a cluster; the load balancer (ALB) used in the platform is a
layer 7 software load balancer, which can be configured to monitor traffic with
OTel. ALB supports submitting Traces to a specified Collector and allows
different sampling strategies; it also supports configuring whether to submit

Traces at the Ingress level.

The port configuration for ALB, specifying port-level configurations.

Routing rules on the port (FT) used to match specific routes.

A sample application provided by Jaeger to demonstrate the use of distributed
tracing; refer to Hot R.O.D. - Rides on Demand -~ for more details.

Specifies the addresses of HotROD's internal microservices via environment

variables; refer to hotrod-with-proxy ~ for more details.

https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/jaegertracing/jaeger/tree/main/examples/hotrod
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53
https://github.com/woodgear/hotrod-with-proxy/blob/master/services/frontend/best_eta.go#L53

OTel - Alauda Container Platform

Prerequisites

+ Ensure that an operable ALB exists: Create or use an existing ALB, where the name of
the ALB is replaced with <otel-alb> in this document. For instructions on creating an

ALB, refer to Creating Load Balancer.

+ Ensure that there is an OTel data reporting server address: This address will

hereinafter be referred to as <jaeger-server> .

Procedure

Update ALB Configuration

1. On the Master node of the cluster, use the CLI tool to execute the following command to

edit the ALB configuration.

kubectl edit alb2 -n cpaas-system <otel-alb> # Replace <otel-alb> with
the actual ALB name

2. Add the following fields under the spec.config section.

otel:
enable: true
exporter:
collector:

address: "<jaeger-server>"

request_timeout: 1000

Example configuration once completed:

OTel - Alauda Container Platform

spec:
address: 192.168.1.1
config:
otel:
enable: true
exporter:
collector:
address: "http://jaeger.default.svc.cluster.local:4318"
request_timeout: 1000
antiAffinityKey: system
defaultSSLCert: cpaas-system/cpaas-system
defaultSSLStrategy: Both

gateway:
type: nginx
3. Execute the following command to save the updates. After the update, the ALB will default

to enabling OpenTelemetry, and all request Trace information will be reported to the Jaeger

Server.

wq

Related Operations

Configuring OTel in Ingress

+ Enable or Disable OTel on Ingress

By configuring whether to enable OTel on Ingress, you can better monitor and debug the
request flow of applications, identifying performance bottlenecks or errors by tracing

requests as they propagate between different services.
Procedure

Add the following configuration under the metadata.annotations field of Ingress:

OTel - Alauda Container Platform

nginx.ingress.kubernetes.io/enable-opentelemetry: "true"

Parameter Explanation:

¢ nginx.ingress.kubernetes.iolenable-opentelemetry: When setto true , it indicates
that the Ingress controller enables OpenTelemetry functionality while processing
requests through this Ingress, which means request Trace information will be collected
and reported. When setto false or this annotation is removed, it means that request

Trace information will not be collected or reported.

Enable or Disable OTel Trust on Ingress

OTel Trust determines whether Ingress trusts and uses the Trace information (e.g., trace

ID) from incoming requests.

Procedure

Add the following configuration under the metadata.annotations field of Ingress:

nginx.ingress.kubernetes.io/opentelemetry-trust-incoming-span: "true"

Parameter Explanation:

e nginx.ingress.kubernetes.iolopentelemetry-trust-incoming-span: When set to
true , the Ingress continues to use already existing Trace information, helping maintain
consistency in cross-service tracing, allowing the entire request chain to be fully traced
and analyzed in the distributed tracing system. When setto false , it will generate new
tracing information for the request, which may cause the request to be treated as part of

a new tracing chain after entering the Ingress, interrupting cross-service trace continuity.

Add Different OTel Configurations on Ingress

This configuration allows you to customize OTel's behavior and data export methodology
for different Ingress resources, enabling fine-grained control over each service's tracing

strategy or target.

Procedure

OTel - Alauda Container Platform

Add the following configuration under the metadata.annotations field of Ingress:

apiVersion: networking.k8s.io/vi1
kind: Ingress
metadata:

annotations:

alb.ingress.cpaas.io/otel: >

{
"enable": true,
"exporter": {
"collector": {
"address'": "<jaeger-server>", # Replace <jaeger-server
> with the actual 0Tel data reporting server address, e.g., "address":

"http://128.0.0.1:4318"

"request_timeout": 1000

Parameter Explanation:

o exporter: Specifies how the collected Trace data is sent to the OTel Collector (the OTel

data reporting server).
» address: Specifies the address of the OTel Collector.

e request_timeout: Specifies the request timeout.

Using OTel in Applications

The following configuration shows the complete OTel configuration structure, which can be

used to define how to enable and use OTel features in applications.

On the cluster Master node, use the CLI tool to execute the following command to get the

complete OTel configuration structure.

kubectl get crd alaudaloadbalancer2.crd.alauda.io -o json|jg ".spec.versi
ons[2].schema.openAPIV3Schema.properties.spec.properties.config.propertie
s.otel"

OTel - Alauda Container Platform

Echoed Result:

{
"otel": {
"enable": true
}
"exporter": {
"collector": {
"address": ""
3
3
"flags": {
"hide_upstream_attrs": false
"notrust_incoming_span": false
"report_http_request_header": false
"report_http_response_header": false
3
"sampler": {
"name": "",
"options": {
"fraction": ""
"parent_name": ""
I
I
}

Parameter Explanation:

Parameter Description

otel.enable Whether to enable OTel functionality.

The address of the OTel data reporting server,

exporter.collector.address))
supporting http/https protocols and domain names.

flags.hide_upstream_attrs Whether to report information about upstream rules.

. . Whether to trust and use the OTel Trace information
flag.notrust_incoming_span))
(e.g., trace ID) from incoming requests.

flags.report_http_request_header Whether to report request headers.

OTel - Alauda Container Platform

Parameter Description
flags.report_http_response_header Whether to report response headers.

Sampling strategy name; see Sampling Strategies for
sampler.name detall
etails.

sampler.options.fraction Sampling rate.

) The parent strategy for parent_base sampling
sampler.options.parent_name .
strategies.

Inheritance

By default, if the ALB configures certain OTel parameters and FT is not configured, FT will
inherit the parameters from the ALB as its own configuration; that is, FT inherits the ALB

configuration, while Rule can inherit configurations from both ALB and FT.

¢ ALB: The configuration on the ALB is typically global and default. You can configure global
parameters such as Collector addresses here, which will be inherited by the lower-level FT

and Rule.

e FT: FT can inherit configurations from ALB, meaning that certain OTel parameters that are
not configured on FT will use the configuration from ALB. However, FT can also be refined
further; for instance, you can choose to selectively enable or disable OTel on FT without

affecting other FT or the global settings of ALB.

¢ Rule: Rule can inherit configurations from both ALB and FT. However, Rule can also be
refined further; for instance, a specific Rule can choose not to trust the incoming OTel

Trace information or to adjust the sampling strategies.
Procedure

By configuring the spec.config.otel field in the YAML files of ALB, FT, and Rule, you can

add OTel-related configuration.

Additional Notes

OTel - Alauda Container Platform

Sampling Strategies

Parameter

always on

always off

traceid-

ratio

parent-

base

Attributes

Explanation

Always report all tracing data.

Never report tracing data.

Decide whether to report based on traceid . The format of traceparent is
xx-traceid-xx-flag , where the first 16 characters of traceid representa
32-bit hexadecimal integer. If this integer is less than fraction multiplied by
4294967295 (i.e., (2732-1)), it will be reported.

Decide whether to report based on the flag part of the traceparent in the request.
When the flag is 01, it will be reported; for example: curl -v
"http://$ALB_IP/" -H 'traceparent: 00-xx-xx-01' ; when the flag is 02, it
will not be reported; for example: curl -v "http://$ALB_IP/" -H

'traceparent: 00-xx-xx-02' .

e Resource Attributes

These attributes are reported by default.

Parameter

hostname

service.name

Description

The hostname of the ALB Pod

The name of the ALB

service.namespace The namespace where the ALB resides

service.type

Default is ALB

service.instance.id The name of the ALB Pod

¢ Span Attributes

OTel - Alauda Container Platform

 Attributes reported by default:

Parameter Description
http.status_code Status code
http.request.resend_count Retry count
alb.rule.rule_name The name of the rule matched by this request

The type of the rule matched by this request, currently
alb.rule.source_type

only Ingress
alb.rule.source_name The name of the Ingress
alb.rule.source_ns The namespace where the Ingress resides

o Attributes reported by default but can be excluded by modifying the

flag.hide_upstream_attrs field:

Parameter Description

The name of the Service (internal route) to which traffic is
alb.upstream.svc_name
forwarded

The namespace where the Service (internal route) being
alb.upstream.svc_ns
forwarded resides

alb.upstream.peer The IP address and port of the Pod being forwarded to

 Attributes not reported by default but can be reported by modifying the
flag.report_http_request_header field:

Parameter Description

http.request.header.<header> Request Header

OTel - Alauda Container Platform

 Attributes not reported by default but can be reported by modifying the

flag.report_http_response_header field:

Parameter Description

http.response.header.<header> Response Header

Configuration Example

The following YAML configuration deploys an ALB and uses Jaeger as the OTel server, with
Hotrod-proxy as the demonstration backend. By configuring Ingress rules, when clients
request the ALB, the traffic will be forwarded to HotROD. Additionally, the communication

between internal microservices of HotROD is also routed through the ALB.

1. Save the following YAML as a file named all.yaml.

OTel - Alauda Container Platform

OTel - Alauda Container Platform

apiVersion: apps/vi
kind: Deployment
metadata:
name: hotrod
spec:
replicas: 1
selector:
matchLabels:
service.cpaas.io/name: hotrod
service_name: hotrod
template:
metadata:

labels:
service.cpaas.io/name: hotrod

service_name: hotrod
spec:
containers:
- name: hotrod
env:
- name: PROXY_PORT
value: "80"
- name: PROXY_ADDR
value: "otel-alb.default.svc.cluster.local:"
- name: OTEL_EXPORTER_OTLP_ENDPOINT
value: "http://jaeger.default.svc.cluster.local:4318"
image: theseedoaa/hotrod-with-proxy:latest
imagePullPolicy: IfNotPresent
command: ["/bin/hotrod", "all", "-v"]
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: hotrod-frontend
spec:
ingressClassName: otel-alb
rules:
- http:
paths:
- backend:
service:
name: hotrod
port:
number: 8080

OTel - Alauda Container Platform

path: /dispatch
pathType: ImplementationSpecific
- backend:
service:
name: hotrod
port:
number: 8080
path: /frontend
pathType: ImplementationSpecific
apiVersion: networking.k8s.io/vi1
kind: Ingress
metadata:
name: hotrod-customer
spec:
ingressClassName: otel-alb
rules:
- http:
paths:
- backend:
service:
name: hotrod
port:
number: 8081
path: /customer
pathType: ImplementationSpecific
apiVersion: networking.k8s.io/vi1
kind: Ingress
metadata:
name: hotrod-route
spec:
ingressClassName: otel-alb
rules:
- http:
paths:
- backend:
service:
name: hotrod
port:
number: 8083
path: /route
pathType: ImplementationSpecific

apiVersion: vi

kind: Service

metadata:
name: hotrod

spec:

OTel - Alauda Container Platform

internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack
ports:
- name: frontend
port: 8080
protocol: TCP
targetPort: 8080
- name: customer
port: 8081
protocol: TCP
targetPort: 8081
- hame: router
port: 8083
protocol: TCP
targetPort: 8083
selector:
service_name: hotrod
sessionAffinity: None

type: ClusterIP

apiVersion: apps/vi

kind: Deployment
metadata:
name: jaeger

spec:

replicas: 1
selector:
matchLabels:
service.cpaas.io/name: jaeger
service_name: jaeger
template:
metadata:
labels:
service.cpaas.io/name: jaeger
service_name: jaeger
spec:
containers:

OTel - Alauda Container Platform

- name: jaeger
env:
- name: LOG_LEVEL
value: debug
image: jaegertracing/all-in-one:1.58.1
imagePullPolicy: IfNotPresent
hostNetwork: true
tolerations:
- operator: Exists
apiVersion: vi1i
kind: Service
metadata:
name: jaeger
spec:
internalTrafficPolicy: Cluster
ipFamilies:
- IPv4
ipFamilyPolicy: SingleStack

ports:
- name: http
port: 4318

protocol: TCP
targetPort: 4318
selector:
service_name: jaeger
sessionAffinity: None
type: ClusterIP
apiVersion: crd.alauda.io/v2
kind: ALB2
metadata:
name: otel-alb
spec:
config:
loadbalancerName: otel-alb
otel:
enable: true
exporter:
collector:
address: "http://jaeger.default.svc.cluster.local:4318"
request_timeout: 1000
projects:
- ALL_ALL

OTel - Alauda Container Platform

replicas: 1
resources:
alb:
limits:
cpu: 200m
memory: 2G1i
requests:
cpu: 50m
memory: 128Mi
limits:
cpu: "1"
memory: 1Gi
requests:
cpu: 50m
memory: 128Mi
type: nginx

. In the CLI tool, execute the following command to deploy Jaeger, ALB, HotROD, and all

necessary CRs for testing.

kubectl apply ./all.yaml

. Execute the following command to get the access address of Jaeger.

export JAEGER_IP=$(kubectl get po -A -o wide |grep jaeger | awk '{print
$7}');echo "http://$IJAEGER_IP:16686"

. Execute the following command to obtain the access address of otel-alb.

export ALB_IP=$(kubectl get po -A -0 wide|grep otel-alb | awk '{print
$7}');echo $ALB_IP

. Execute the following command to send a request to HotROD via ALB. Here, ALB will

report the Trace to Jaeger.

curl -v "http://<$ALB_IP>:80/dispatch?customer=567&nonse=" # Replace <
$ALB_IP> in the command with the access address of otel-alb obtained in

the previous procedure

OTel - Alauda Container Platform
6. Open the access address of Jaeger obtained in Step 3 to view the results.

Search Upload

Service ops

-500000ps
Time
Qperstion 06:13:20 am 08:00:00 am 09:46:40 am
all
Tags @ 1 Trace Sort: Most Recent Download Results Deep Dependency Graph
. Compare traces by selecting result items
Last Hour
otel-alb: GET /dispatch?customer=567&nonse= c6294a7 I 689.87ms
Max Duration Min Duration
52Spans | 3 Errors B customer (1) ariver (1) [J] frontend (13) mysql (1) otel-alb (12) © redis-manual (14) route (10) Today 12:08:39 pm

afew seconds ago

Limit Results

20 <

OTel - Alauda Container Platform

JAEGER Ul Search Compare System Architecture Monitor

otel-alb: GET /dispatch?customer=567&nonse=

€« A4
Trace Start August 12 2024, 12:08:39 Duration 689.87ms = Services 7 Depth 6 Total Spans 52
Ops 172.47ms 344.93ms
Service & Operation v > ¥ » Ops 172.47ms

v | otel-alb GET /dispatch?customer=567&nonse=

VI frontend /dispatch

7 | frontend HTTP GET

Vv | otel-alb GET /customer?customer=567

v I customer /customer

mysql & = mysql saL SELECT

vI frontend driver.DriverService/FindNearest

v driver driver.DriverService/FindNearest

I redis-manual FindDriverlDs
O redis-manual Getbriver
redis-manual Getbriver
redis-manual Getbriver
redis-manual Getbriver
redis-manual Getbriver

O redis-manual GetDriver

I
I
I
I
I
I
I redis-manual Getbriver
I redis-manual Getbriver
I redis-manual Getbriver
I redis-manual Getbriver
I O redis-manual Geidriver
| redis-manual GetDriver
I redis-manual GetDriver
V| frontend HTTP GET
V | otel-alb GET /route?dropoff=211%2C653&pickup=947%...
route /route
VI frontend HTTP GET

v 1 otel-alb GET /route?dronoff=211%2C653&bickun=320%...

Guides - Alauda Container Platform

0 Alauda Container Platform Q

Guides

Creating Services

Why Service is Needed

Example ClusterlP type Service:
Headless Services

Creating a service by using the web consc

Creating a service by using the CLI

Example: Accessing an Application Within v

Creating Ingresses

Implementation Method

Prerequisites

Example Ingress:

Creating a Ingress by using the web consc

Creating a Ingress by using the CLI

Example: Accessing an Application Outside the Cluste

Example: ExternalName type of Servce

LoadBalancer Type Service Annotations

Creating a Domain Name

Example Domain custom resource (CR)
Creating Domain by using the web console
Creating Domain by using the CLI
Subsequent Actions

Additional resources

Configure C

Terminology

Prerequisites

Example Gatev
Creating Gatew
Creating Gatew
Viewing Resoul
Updating Gatev

Updating Gatev

Creating Certificates

Creating a certificate by using the web console

Creating External IP Address Pool

Creating BGP Peers

Terminology

Prerequisites

http://localhost:4173/container_platform/

Guides - Alauda Container Platform
Example BGPPeer custom resource (CR)
Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Creating Admin Network Policies

Configure €

IP Allocation Rt
Calico Network
Kube-OVN Net

Subnet Manage

e N

Notes Configure Cluster Network Policies
Creating AdminNetworkPolicy or Baseline, Notes
Creating AdminNetworkPolicy or Baseline, Procedure

Additional resource

Creating Services - Alauda Container Platform

0 Alauda Container Platform Q

Creating Services

In Kubernetes, a Service is a method for exposing a network application that is running as one

or more Pods in your cluster.

TOC

Why Service is Needed
Example ClusterlP type Service:
Headless Services
Creating a service by using the web console
Creating a service by using the CLI
Example: Accessing an Application Within the Cluste
Example: Accessing an Application Outside the Cluste
Example: ExternalName type of Servce
LoadBalancer Type Service Annotations

AWS EKS Cluster

Huawei Cloud CCE Cluster

Azure AKS Cluster

Google GKE Cluster

Why Service is Needed

1. Pods have their own IPs, but:

http://localhost:4173/container_platform/

Creating Services - Alauda Container Platform

e Pod IPs are not stable (they change if the Pod is recreated).
o Directly accessing Pods becomes unreliable.

2. Service solves this by providing:
o Astable IP and DNS name.

e Automatic load balancing to the matching Pods.

Example ClusterIP type Service:

apiVersion: vi
kind: Service
metadata:
name: my-service
spec:
type: ClusterIPe
selector: e
app.kubernetes.io/name: MyApp
ports:

- protocol: TCP

port: 80 @

targetPort: 80 @)

1. The available type values and their behaviors are ClusterIP , NodePort ,

LoadBalancer , ExternalName
2. The set of Pods targeted by a Service is usually determined by a selector that you define.
3. Service port.

4. Bind targetPort of the Service to the Pod containerpPort . In addition, you can

reference port.name under the pod container.

Headless Services

Creating Services - Alauda Container Platform

Sometimes you don't need load-balancing and a single Service IP. In this case, you can

create what are termed headless Services:

spec:

clusterIP: None

Headless Services are useful when:
¢ You want to discover individual Pod IPs, not just a single service IP.

¢ You need direct connections to each Pod (e.g., for databases like Cassandra or
StatefulSets).

e You're using StatefulSets where each Pod must have a stable DNS name.

Creating a service by using the web console

1. Go to Container Platform.
2. In the left navigation bar, click Network > Services.

3. Click Create Service.

4. Refer to the following instructions to configure the relevant parameters.

Parameter Description

If enabled, a ClusterlP will be allocated for this Service, which can be used
Virtual IP for service discovery within the cluster.
Address If disabled, a Headless Service will be created, which is usually used by

StatefulSet.

Type
o ClusterlP: Exposes the Service on a cluster-internal IP. Choosing this

value makes the Service only reachable from within the cluster.

» NodePort: Exposes the Service on each Node's IP at a static port (the

NodePort).

Creating Services - Alauda Container Platform

Parameter Description

« ExternalName: Maps the Service to the contents of the externalName

field (for example, to the hostname api.foo.bar.example).

« LoadBalancer: Exposes the Service externally using an external load
balancer. Kubernetes does not directly offer a load balancing
component; you must provide one, or you can integrate your Kubernetes

cluster with a cloud provider.

« Workload: The Service will forward requests to a specific workload,

which matches the labels like project.cpaas.io/name: projectname

and service.cpaas.io/name: deployment-name .

Target

« Virtualization: The Service will forward requests to a specific virtual
Component

machine or virtual machine group.

« Label Selector: The Service will forward requests to a certain type of

workload with specified labels, for example, environment: release .

Creating Services - Alauda Container Platform

Parameter Description

Used to configure the port mapping for this Service. In the following
example, other podss within the cluster can call this Service via the virtual
IP (if enabled) and TCP port 80; the access requests will be forwarded to
the externally exposed TCP port 6379 or redis of the target component's

pods.

« Protocol: The protocol used by the Service, supported protocols
include: TCP , UDP , HTTP , HTTP2 , HTTPS , gRPC .

Port . . . -
« Service Port: The service port number exposed by the Service within

the cluster, that is, Port, e.g., 80.

« Container Port: The target port number (or name) that the service port

maps to, that is, targetPort, e.g., 6379 or redis.

« Service Port Name: Will be generated automatically. The format is

<protocol>-<service port>-<container port> , for example: tcp-

80-6379 or tcp-80-redis.

Session affinity based on the source IP address (ClientIP). If enabled, all
Session access requests from the same IP address will be kept on the same server
Affinity during load balancing, ensuring that requests from the same client are

forwarded to the same server for processing.

5. Click Create.

Creating a service by using the CLI

kubectl apply -f simple-service.yaml

Create a service based on an existing deployment resource my-app .

Creating Services - Alauda Container Platform

kubectl expose deployment my-app \
--port=80 \
--target-port=8080 \
--name=test-service \
--type=NodePort \
-n pl-1

Example: Accessing an Application Within the

Cluste

Creating Services - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

app: nginx

spec:
containers:

- name: nginx
image: nginx:1.25
ports:

- containerPort: 80
apiVersion: vi
kind: Service
metadata:
name: nginx-clusterip
spec:
type: ClusterIP
selector:
app: nginx
ports:
- port: 80
targetPort: 80

1. Apply this YAML.:

kubectl apply -f access-internal-demo.yaml

2. Starting another Pod:

Creating Services - Alauda Container Platform

kubectl run test-pod --rm -it --image=busybox -- /bin/sh
3. Accessing the nginx-clusterip servicein test-pod Pod:

wget -gO- http://nginx-clusterip

wget -gO- http://nginx-clusterip.default.svc.cluster.local

You should see a HTML response containing text like "Welcome to nginx!".

Example: Accessing an Application Outside the

Cluste

Creating Services - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:

- name: nginx
image: nginx:1.25
ports:

- containerPort: 80
apiVersion: vi
kind: Service
metadata:
name: nginx-nodeport
spec:
type: NodePort
selector:
app: nginx
ports:
- port: 80
targetPort: 80
nodePort: 30080

1. Apply this YAML:

kubectl apply -f access-external-demo.yaml

2. Checking Pods:

Creating Services - Alauda Container Platform

kubectl get pods -1 app=nginx -o wide

3. curl Service:

curl http://{NodeIP}:{nodePort}

You should see a HTML response containing text like "Welcome to nginx!".

Of course, it is also possible to access the application from outside the cluster by creating a

Service of type LoadBalancer.

Note: Please configure the LoadBalancer service beforehand.

Creating Services - Alauda Container Platform

apiVersion: apps/vil
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 2
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

app: nginx

spec:
containers:

- name: nginx
image: nginx:1.25
ports:

- containerPort: 80
apiVersion: vi
kind: Service
metadata:
name: nginx-1lb-service
spec:
type: LoadBalancer
selector:
app: nginx
ports:
- port: 80
targetPort: 80

1. Apply this YAML.:

kubectl apply -f access-external-demo-with-loadbalancer.yaml

2. Get external ip address:

Creating Services - Alauda Container Platform

kubectl get svc nginx-1lb-service

NAME TYPE CLUSTER-IP EXTERNAL-IP
AGE

nginx-service LoadBalancer 10.0.2.57 34.122.45.100
5/TCP 30s

EXTERNAL-IP is the address you access from your browser.

curl http://34.122.45.100

You should see a HTML response containing text like "Welcome to nginx!".

PORT(S)

80:3000

If EXTERNAL-IP is pending , the Loadbalancer service is not currently deployed on the

cluster.

Example: ExternalName type of Servce

apivVersion: vi

kind: Service

metadata:
name: my-external-service
namespace: default

spec:
type: ExternalName

externalName: example.com

1. Apply this YAML:

kubectl apply -f external-service.yaml

2. Try to resolve inside a Pod in the cluster:

Creating Services - Alauda Container Platform

kubectl run test-pod --rm -it --image=busybox -- sh

then:

nslookup my-external-service.default.svc.cluster.local

You'll see that it resolves to example.com .

LoadBalancer Type Service Annotations

AWS EKS Cluster

For detailed explanations of the EKS LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation - .

Key Value Description

Specifies the controller for
the LoadBalancer type.
external: Use the

service.beta.kubernetes.io/aws- official AWS Note: Please contact the
load-balancer-type LoadBalancer platform administrator in
Controller. advance to deploy the

AWS LoadBalancer
Controller.

https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/
https://kubernetes-sigs.github.io/aws-load-balancer-controller/v2.5/guide/service/annotations/

Creating Services - Alauda Container Platform

Key Value Description

« instance: Traffic will
be sent to the pods

via NodePort.

service.beta.kubernetes.io/aws- « ip: Traffic routes Specifies how traffic

load-balancer-nlb-target-type reaches the pods.

directly to the pods
(the cluster must
use Amazon VPC

CNI).

¢ internal: Private

service.beta.kubernetes.io/aws- network. Specifies whether to use a

private network or a public

load-balancer-scheme « internet-facing: Setwork.

Public network.

o IPv4

service.beta.kubernetes.io/aws- Specifies the supported IP

load-balancer-ip-address-type address stack.

o dualstack

Huawei Cloud CCE Cluster

For detailed explanations of the CCE LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation -~ .

Key Value

kubernetes.io/elb.id

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html

Key

kubernetes.io/elb.autocreate

kubernetes.io/elb.subnet-id

kubernetes.io/elb.class

Creating Services - Alauda Container Platform

Value

Example: {"type":"public", "bandwidth_name":"cce-bandwidtf
1551163379627", "bandwidth_chargemode": "bandwidth", "bandwi

["cn-north-4b"],"14_flavor_name":"L4_flavor.elb.sl.small"

Note: Please read the Filling Instructions - first and adjust the exarn

» union: Shared load balancing.

» performance: Exclusive load balancing, only supported in Kuberr

https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8
https://support.huaweicloud.com/intl/zh-cn/usermanual-cce/cce_10_0385.html#section8

Creating Services - Alauda Container Platform

Key Value

kubernetes.io/elb.enterpriselD

Azure AKS Cluster

For detailed explanations of the AKS LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation -~ .

Key Value Description

o true: Private

Specifies whether to use a
service.beta.kubernetes.io/azure-load- network.

private network or a public

balancer-internal

o false: Public network.

network.

Google GKE Cluster

For detailed explanations of the GKE LoadBalancer Service annotations, please refer to the

Annotation Usage Documentation -~ .

https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud-provider-azure.sigs.k8s.io/topics/loadbalancer/#loadbalancer-annotations
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer-parameters?hl=zh-cn

Key

networking.gke.io/load-

balancer-type

loud.google.com/I4-rbs

Creating Services

Value

Internal

enabled

- Alauda Container Platform

Description

Specifies the use of a private network.

Defaults to public. If this parameter is

configured, traffic will route directly to the pods.

Creating Ingresses - Alauda Container Platform

Q Alauda Container Platform Q

Creating Ingresses

Ingress rules (Kubernetes Ingress) expose HTTP/HTTPS routes from outside the cluster to
internal routing (Kubernetes Service), enabling control of external access to computing

components.

Create an Ingress to manage the external HTTP/HTTPS access to a Service.

I WARNING

When creating multiple ingresses within the same namespace, different ingresses MUST NOT have

the same Domain, Protocol, and Path (i.e., duplicate access points are not allowed).

TOC

Implementation Method
Quick Start
Prerequisites
Example Ingress:
Creating a Ingress by using the web console

Creating a Ingress by using the CLI

Implementation Method

http://localhost:4173/container_platform/

Creating Ingresses - Alauda Container Platform

Ingress rules depend on the implementation of the Ingress Controller, which is responsible for
listening to changes in Ingress and Service. After a new Ingress rule is created, a forwarding
rule matching the Ingress rule is automatically generated within the Ingress Controller. When
the Ingress Controller receives a request, it matches the forwarding rule from the Ingress rule

and distributes the traffic to the specified internal routes, as shown in the diagram below.

Ingress Controller

Ingress A Ingress B Ingress...

Service A Service B Service...

©00

WorkLoad A WorkLoad B

Kubernetes Cluster

(0

l NOTE

For the HTTP protocol, Ingress only supports the 80 port as the external port. For the HTTPS
protocol, Ingress only supports the 443 port as the external port. The platform's load balancer will

automatically add the 80 and 443 listening ports.

Quick Start

Next, we will use the community version of Ingress-NGINX to demonstrate how to access your

own application using the NGINX controller.

1. deploy Ingress-NGINX controller.

Creating Ingresses - Alauda Container Platform

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-n

ginx/controller-vi1.12.2/deploy/static/provider/cloud/deploy.yaml

The following resources are automatically created after using this command:

Kind Name Description

Resources for Isolating

Namespace ingress-nginx

Controllers

Service account for the
ServiceAccount ingress-nginx

controller
ClusterRole ingress-nginx Cluster-wide permissions
ClusterRoleBinding ingress-nginx Bind ClusterRole to SA

_ _ Configure controller behaviour
ingress-nginx-
ConfigMap (e.g. logging levels, proxy
controller
timeout, etc.)

_ _ Webhook to verify Ingress
ingress-nginx-
ValidatingWebhookConfig configuration legitimacy
admission
(optional)

The type defaults to
ingress-nginx-
Service (TCP/UDP) LoadBalancer and can be
controller
changed to NodePort .

ingress-nginx-
Deployment
controller

ingress-nginx-
Pod
controller-xxx

Role / RoleBinding admission #H3 Support for webhook

Creating Ingresses - Alauda Container Platform

Kind Name Description

ingress-nginx-
Job webhook Registration
admission-create

If you want to change the default registry address, you can use curl to download the
YAML file, change it, and then apply the YAML file.

curl -0 https://raw.githubusercontent.com/kubernetes/ingress-nginx/cont
roller-v1i.12.2/deploy/static/provider/cloud/deploy.yaml

Waiting for the ingress-nginx-controller-xxx Pod to run

. Local testing

Creating a simple web server and the associated service:

kubectl create deployment demo --image=nginx --port=80

kubectl expose deployment demo

Creating an ingress resource. This example uses a host that maps to localhost :

kubectl create ingress demo-localhost --class=nginx \

--rule="demo. local/*=demo:80"

Forward a local port to the ingress controller:

kubectl port-forward --namespace=ingress-nginx service/ingress-nginx-
controller 8080:80

Accessing your deployment using curl:

curl --resolve demo.local:8080:127.0.0.1 http://demo. local:8080

Creating Ingresses - Alauda Container Platform

Note: This parameter temporarily resolves the domain name demo.local to IP 127.0.0.1
and is used on port 8080. When you visit http://demo.local:8080 -, you are actually

visiting http://127.0.0.1:8080 . On the other hand, you should configure hosts :

echo "127.0.0.1 demo.local" | sudo tee -a /etc/hosts

Final you should see a HTML response containing text like "Welcome to nginx!".

Then you can access website http://demo.local:8080/ .

INFO

ingress-nginx-controller defaulttypeis LoadBalancer , If EXTERNAL-IP field shows

pending , this means that your Kubernetes cluster wasn't able to provision the load balancer.

If you're integrating with a provider that supports specifying the load balancer IP address(es) for
a Service via a (provider specific) annotations, you should switch to doing that.
3. Online testing

When your ingress-nginx-controller (Service of LoadBalancer type) exists an
EXTERNAL-IP , Then you can create an ingress resource. The following example assumes

that you have set up a DNS record for www.developer.io :

kubectl create ingress demo --class=nginx \

--rule="www.developer.io/*=demo:80"

You can access http://www.developer.io to see the same output.

Prerequisites

¢ There must be an available Service in the current namespace.

¢ Please confirm with the administrator that a usable domain name has been allocated for

the project associated with the current namespace.

http://demo.local:8080/
http://demo.local:8080/
http://demo.local:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/
http://127.0.0.1:8080/

Creating Ingresses - Alauda Container Platform

¢ To access the domain via HTTPS, you need to first save the HTTPS certificate as a TLS

secret.

Example Ingress:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: nginx-ingress
namespace: k-1
annotations:
nginx.ingress.kubernetes.io/rewrite—target:,/e’
spec:

ingressClassName: nginx e

rules:
- host: demo. local e
http:
paths:

- path: /
pathType: Prefix
backend:

service:

name: nginx-service
port:

number: 80

1. To see more configurations please refer to nginx-configuration .
2. Using ingress-nginx controller.

3. If you only want to run ingress locally, configure the hosts beforehand.

Creating a Ingress by using the web console

1. Access the Container Platform.

2. In the left navigation bar, click Network > Ingress.

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/

3. Click Create Ingress.

Creating Ingresses - Alauda Container Platform

4. Reference the instructions below to configure certain parameters.

Parameter

Ingress Class

Domain Name

Certificates

Match Type
and Path

Service

Service Port

5. Click Create.

Description

Ingresses can be implemented by different controllers with different

IngressClass name. If multiple ingress controllers are available on the

platform, the user can select which one to use with this option.

Hosts can be precise matches (for example foo.bar.com) or a wildcard
(for example *.foo.com). The domain names available are allocated by

platform administrator.

TLS secret or Certificates allocated by platform administrator.

o Prefix: Matches path prefixes, e.g., /abcd can match /abcd/efg

or /abcde .
« Exact: Matches exact paths, e.g., /abcd .

« Implementation specific: If you are using a custom Ingress controller
to manage the Ingress rules, you may choose to have the controller

decide.

External traffic will be forwarded to this Service.

Specify which Service port the traffic will be forwarded to.

Creating a Ingress by using the CLI

kubectl apply -f nginx-ingress.yaml

Creating Ingresses - Alauda Container Platform

l NOTE

If the ingress has no Ingress Class, all the ALB instances that are allocated to this project will

handle this ingress.

Configure Gateway - Alauda Container Platform

0 Alauda Container Platform Q

Configure Gateway

An inbound gateway (Gateway) is an instance deployed from the Gateway Class. It creates
listeners to capture external traffic on specified domain names and ports. Together with

routing rules, it can route the specified external traffic to the corresponding backend instances.

Create an inbound gateway to enable more granular allocation of network resources.

TOC

Terminology
Prerequisites
Example Gateway and Alb2 custom resource (CR)
Creating Gateway by using the web console
Creating Gateway by using the CLI
Viewing Resources Created by the Platform
Updating Gateways
Updating Gateway by using the web console
Add Listener

Prerequisites
Add Listener by using the web console
Add Listener by using the CLI
Creating Route Rules
Example HTTPRoute custom resource (CR)
Creating Route by using the web console

Creating Route by using the CLI

http://localhost:4173/container_platform/

Configure Gateway - Alauda Container Platform

Terminology
Resource .
Overview
Name

In the standard Gateway API| documentation, the
Gateway Class is defined as a template for creating
Gateway))
cl gateways. Different templates can create inbound
ass
gateways for different business scenarios, facilitating

rapid traffic management.

The inbound gateway corresponds to specific

resource instances, and users can exclusively utilize

all listening and computing resources of this inbound
Inbound)])))

gateway. It is a configuration of routing rules effective
Gateway i o

for the listener. When external traffic is detected by

the gateway, it will be distributed to backend

instances according to the routing rules.

Route rules define a series of guidelines for traffic

distribution from the gateway to services. The
Route

Rul currently standard supported types of routing rules in
ule

the Gateway API include HTTPRoute, TCPRoute,
UDPRoute, etc.

Prerequisites

Usage Instructions

The platform
includes dedicated

Gateway Classes.

It can be viewed as a
load balancer

instance.

The platform
currently supports
listening to HTTP,
HTTPS, TCP, and
UDP protocols.

The platform administrator must ensure that the cluster supports LoadBalancer type internal

routing. For public cloud clusters, the LoadBalancer Service Controller must be installed. In

non-public cloud clusters, the platform provides the external address pool feature, which

allows LoadBalancer type internal routing to automatically obtain an IP from the external

address pool for external access after configuration is complete.

Example Gateway and Alb2 custom resource (CR)

Configure Gateway - Alauda Container Platform

Configure Gateway - Alauda Container Platform

apiVersion: gateway.networking.k8s.io/vilbetal
kind: Gateway
metadata:
namespace: k-1
name: test
annotations:
cpaas.io/display-name: ces
listeners.cpaas.io/creationTimestamp: '["2025-05-26T02:05:56.135Z"]"
listeners.cpaas.io/display-name: '[""]'
labels:
alb.cpaas.io/alb-ref: test-093q7
spec:
gatewayClassName: exclusive-gatewaya
listeners:
- allowedRoutes:
namespaces:
from: All
name: gateway-metric
protocol: TCP
port: 11782
apiVersion: crd.alauda.io/v2betal
kind: ALB2
metadata:
namespace: k-1
name: test—093q7e
spec:
type: nginx
config:
enableAlb: false

networkMode: container

resources:
limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 200m

memory: 256Mi
vip:
enablelLbSvc: true
lbSvcAnnotations: {}
gateway:

Configure Gateway - Alauda Container Platform

mode: standalone

name: teste

1. See Gateway Class introduction below.

2. alb2 name is formatted as {gatewayName}-{random} .

3. gateway name.

Creating Gateway by using the web console

1. Go to Container Platform.

2. In the left navigation bar, click Network > Inbound Gateway.

3. Click Create Inbound Gateway.

4. Refer to the following instructions to configure specific parameters.

Parameter

Name

Gateway Class

Specification

Access Address

Internal Routing

Annotation

Description

The name of the inbound gateway.

The gateway class defines the behavior of the gateway, similar to the
concept of storage classes (StorageClasses); it is a cluster resource.
Dedicated: The inbound gateway will correspond to a specific
resource instance, and the user can utilize all listeners and computing

resources of this gateway.

You can choose the recommended usage scenario based on your

needs or customize the resource limits.

The address of the inbound gateway, which is automatically obtained

by default.

Used to declare the configuration or capabilities for LoadBalancer type
internal routing. For specific annotation information, please refer to

LoadBalancer type internal routing annotation instructions.

Configure Gateway - Alauda Container Platform

5. Click Create.

Creating Gateway by using the CLI

kubectl apply -f demo-gateway.yaml

Viewing Resources Created by the Platform

After the inbound gateway is created, the platform automatically creates many resources. Do

not delete the resources below.

Default Created Resources Name
ALB2 Type Resource name-Ib-random
Deployment name-Ib-random

e name-lb-random
Internal Routing
o name-lb-random-Ib-random

e name-lb-random-port-info
Configuration Dictionary
e name-lb-random

Service Account name-Ib-random-serviceaccount

Updating Gateways

l NOTE

Configure Gateway - Alauda Container Platform

Updating the inbound gateway will cause a service interruption of 3-5 minutes. Please choose an

appropriate time for this operation.

Updating Gateway by using the web console

1. Access the Container Platform.
2. In the left navigation bar, click Network > Inbound Gateway.
3. Click : > Update.
4. Update the inbound gateway configuration as needed.
Note: Please set the specifications reasonably based on business requirements.

5. Click Update.

Add Listener

Monitor traffic under specified domain names and forward it to backend instances according to

the bound routing rules.

Prerequisites

e If you need to monitor HTTP protocol, please contact the administrator in advance to

prepare the domain name.

» If you need to monitor HTTPS protocol, please contact the administrator in advance to

prepare the domain name and certificate.

Add Listener by using the web console

1. In the left navigation bar, click Network > Inbound Gateway.

Configure Gateway - Alauda Container Platform

2. Click Inbound Gateway Name.
3. Click Add Listener.

4. Refer to the following instructions to configure specific parameters.

Parameter Description

Currently supports monitoring HTTP, HTTPS, TCP, and UDP
protocols, and you can custom input the port to be monitored, for

example: 80 .

Listener Protocol Note:

and Port)
e When the ports are the same, HTTP, HTTPS, and TCP listener

types cannot coexist; you can only select one of the protocols.

e When using HTTP or HTTPS protocaol, if the ports are the same,

the domain names must be different.

Select an available domain name in the current namespace, used to
Domain Name monitor network traffic accessing this domain name.

Hint: TCP and UDP protocols do not support selecting domain names.

5. Click Create.

Add Listener by using the CLI

Configure Gateway - Alauda Container Platform

kubectl patch gateway test \
-n k-1 \
--type=merge \
-p '{
"metadata": {

"annotations": {

"listeners.cpaas.io/creationTimestamp": "[\"2025-05-26T02:05:56.1
35Z\",\"2025-05-26T03:33:52.4312\"]",
"listeners.cpaas.io/display-name": "[\"\",\"\" "
}
3
"spec": {
"listeners": [
{
"allowedRoutes": {
"namespaces": {
"from": "ALLl"
}
3
"name": '"gateway-metric",
"protocol": "TCP",
"port": 11782
3
{
"allowedRoutes": {
"namespaces": {
"from": "ALLl"
¥
3
"name": "demo-listener",
"protocol": "HTTP",
"port": 8088,
"hostname": "developer.test.cn"
}
1
}

Creating Route Rules

Configure Gateway - Alauda Container Platform

Route rules provide routing policies for incoming traffic, similar to inbound rules (Kubernetes
Ingress). They expose network traffic monitored by the gateway to the internal routing of the
cluster (Kubernetes Service), facilitating routing forwarding strategies. The key difference is
that they target different service objects: inbound rules serve the Ingress Controller, while

route rules serve the Ingress Gateway.

Once the listening is set up in the ingress gateway, the gateway will monitor traffic from
specified domains and ports in real-time. The route rules can forward the incoming traffic to

backend instances as desired.

Example HTTPRoute custom resource (CR)

Configure Gateway - Alauda Container Platform

apiVersion: gateway.networking.k8s.io/vlbetal
kind: HTTPRoute @
metadata:
namespace: k-1
name: example-http-route
annotations:
cpaas.io/display-name: ""
spec:
hostnames:
- developer.test.cn
parentRefs:
- kind: Gateway
namespace: k-1
name: test
sectionName: demo-listenere
rules:
- matches:
- path:
type: Exact
value: "/demo"
filters: []
backendRefs:
- kind: Service
name: test-service
namespace: k-1
port: 80
weight: 100

1. The available types are: HTTPRoute , TCPRoute , UDPRoute .

2. Gateway listener name.

l NOTE

If there is no matching rule for the Path object in the HTTPRoute type route rule, a matching rule

with PathPrefix mode and a value of / will be automatically added.

Creating Route by using the web console

Configure Gateway - Alauda Container Platform

1. Access the Container Platform.

2. In the left navigation bar, click Network > Route Rules.

3. Click Create Route Rule.

4. Follow the instructions below to configure some parameters.

Parameter Description

The currently supported route types are: HTTPRoute, TCPRoute,
UDPRoute.

Route Type
Tip: HTTPRoute supports publishing to HTTP and HTTPS protocol

listeners.

In the left selection box, select the created Ingress Gateway, and in the
right selection box, select the created Listener. The platform will publish the
created route rules to the listener below, enabling the gateway to forward
Publish to
captured traffic to specified backend instances.
Listener
Note: It is not allowed to publish route rules to a listener that is on port

11782 or has already mounted TCP or UDP routes.

Match You can add one or more matching rules to capture traffic that meets the
requirements. For example, capture traffic with specified Path, capture

traffic with specified method, etc.

Note:

Click Add; when adding multiple route rules, the relationship between

the rules is 'AND’, and all rules must be matched to be effective.

e Click Add Match; when adding multiple groups of route rules, the
relationship between the groups is 'OR’, and any group matching can be

effective.
» TCPRoute and UDPRoute do not support configuring match rules.

« When the matching object is path, and the matching method is Exact or

PathPrefix, the input value must start with "/* and disallow characters

Parameter

Action

Backend

Instance

Configure Gateway - Alauda Container Platform

Description

like “/I", "[.I", "1.I", "%2f", "%2F", "#", "[..", "|." etc.

You can add one or more actions to process the captured traffic.

» Header: The header of the HTTP message contains much metadata that
provides additional information about the request or response. By
modifying header fields, the server can influence how the request and

response are processed.

» Redirect: The matched URL will be processed in the specified manner,

then the request will be initiated again.

» Rewrite: The matched URL will be processed in the specified manner,
then the request will be redirected to a different resource path or

filename.

Note:

» Click Add; when adding multiple action rules, the platform will execute all

actions in order based on the displayed sequence of the rules.
» TCPRoute and UDPRoute do not support configuring action rules.

« Within the same route rule, there cannot be multiple Header type actions

with the same value.

« Within the same route rule, only one type of either Redirect or Rewrite,

and only one mode of either FullPath or PrefixPath can exist.

« If you wish to use the PrefixPath operation, please first add a matching

rule of PathPrefix mode.

After the rule takes effect, it will forward to the backend instance according

to the selected internal routes and ports in the current namespace. You can
also set weights, with higher weight values resulting in a higher probability

of being polled.

Tip: The percentage next to the weight indicates the probability of

Configure Gateway - Alauda Container Platform

Parameter Description

forwarding to that instance, calculated as the ratio of the current weight

value to the sum of all weight values.

5. Click Create.

Creating Route by using the CLI

kubectl apply -f example-httproute.yaml

Creating a Domain Name - Alauda Container Platform

Q Alauda Container Platform Q

Creating a Domain Name

Add domain name resources to the platform and allocate domains for use by all projects
under a cluster or resources under a specific project. When creating a domain name, binding

a certificate is supported.

l NOTE

The domain names created on the platform should be resolved to the cluster's load balancing
address before they can be accessed via the domain name. Therefore, you need to ensure that the
domain names added on the platform have been successfully registered and that the domain

names resolve to the cluster's load balancing address.

Successfully created and allocated domain names on the platform can be utilized in the

following features of Container Platform:
e Create Inbound Rules: Network Management > Inbound Rules > Create Inbound Rule

o Create Native Applications: Application Management > Native Applications > Create

Native Application > Add Inbound Rule

+ Add Listening Ports for Load Balancing: Network Management > Load Balancer
Details > Add Listening Port

Once the domain name is bound to a certificate, application developers can simply select the
domain name when configuring the load balancer and inbound rules, allowing the use of the

certificate that comes with the domain name for https support.

TOC

http://localhost:4173/container_platform/

Creating a Domain Name - Alauda Container Platform
Example Domain custom resource (CR)
Creating Domain by using the web console
Creating Domain by using the CLI
Subsequent Actions

Additional resources

Example Domain custom resource (CR)

apiVersion: crd.alauda.io/v2
kind: Domain
metadata:
name: "OOOOOOOO0O3075575260129686e67ed4-917a-454a-8553-d55Fc4030181"
annotations:
cpaas.io/secret-ref: developer.test.cn-xfd8x e
labels:
cluster.cpaas.io/name: global
project.cpaas.io/name: cong
spec:
name: developer.test.cn
kind: full

1. If certificates are enabled, an LTS-type Secret must be created in advance. The secret-

ref IS secret name.

Creating Domain by using the web console

1. Go to Platform Management.
2. In the left navigation bar, click Network Management > Domain Names.
3. Click Create Domain Name.

4. Configure the relevant parameters according to the following instructions.

Creating a Domain Name - Alauda Container Platform

Parameter Description

« Domain: A complete domain name, e.g., developer.test.cn .

T e Wildcard Domain: A wildcard domain with a wildcard (*) character, e.g.,
ype
* . test.cn , which includes all subdomains under the domain

test.cn .

Enter a complete domain name or domain suffix based on the selected
Domain
domain name type.

Allocate If a cluster is allocated, you also need to select a project associated with the

Cluster allocated cluster, such as all projects associated with the cluster.

Includes the public key (tls.crt) and private key (tls.key) for creating a
domain name-bound certificate. The project to which the certificate is
allocated is the same as the bound domain name.

Notes:

« Binary file imports are not supported.

e The bound certificate should meet the conditions of correct format, within

the validity period, and signed for the domain name, etc.

Certificate
» After creating the bound certificate, the name format of the bound

certificate is: domain name - random characters.

» After creating the bound certificate, the bound certificate can be viewed
in the certificate list, but updates and deletions of the bound certificate

are only supported on the domain detail page.

« After creating the bound certificate, updating the certificate content is

supported, but replacing other certificates is not supported.

5. Click Create.

Creating Domain by using the CLI

Creating a Domain Name - Alauda Container Platform

kubectl apply -f test-domain.yaml

Subsequent Actions

« Domain Registration: Register the domain if the created domain has not been registered.

+ Domain Resolution: Perform domain resolution if the domain does not point to the

platform cluster's load balancing address.

Additional resources

¢ Configure Certificate

Creating Certificates - Alauda Container Platform

Q Alauda Container Platform Q

Creating Certificates

After the platform administrator imports the TLS certificate and assigns it to a specified
project, developers with corresponding project permissions can use the certificate imported
and assigned by the platform administrator when using inbound rules and load balancing
functionalities. Subsequently, in scenarios such as certificate expiration, the platform

administrator can update the certificate centrally.

l NOTE

The certificate functionality is currently not supported for use in public cloud clusters. You can

create TLS type secret dictionaries as needed within the specified namespace.

TOC

Creating a certificate by using the web console

Creating a certificate by using the web console

1. Go to Platform Management.
2. In the left navigation bar, click Network Management > Certificates.
3. Click Create Certificate.

4. Refer to the instructions below to configure the relevant parameters.

http://localhost:4173/container_platform/

Parameter

Assign

Project

Public Key

Private Key

5. Click Create.

Creating Certificates - Alauda Container Platform

Description

» All Projects: Assign the certificate for use in all projects associated with

the current cluster.
» Specified Project: Assign the certificate for use in the specified project.

» No Assignment: Do not assign a project for now. After the certificate
creation is completed, you can update the projects that can use the

certificate through the Update Project operation.

This refers to tls.crt. When importing the public key, binary files are not

supported.

This refers to tls.key. When importing the private key, binary files are not

supported.

Creating External IP Address Pool - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

Creating External IP Address Pool

An external IP address pool is a collection of IPs that MetalLB utilizes to obtain external

access IPs for LoadBalancer type internal routes.

TOC

Prerequisites

Constraints and Limitations

Deploying the MetalLB Plugin

Example IPAddressPool custom resource (CR)

Creating an External IP Address Pool by using the web console
Creating an External IP Address Pool by using the CLI

View Alarm Policy

Prerequisites

If you need to use a BGP type external IP address pool, please contact the administrator to

enable the relevant features.

Constraints and Limitations

The IP resources for the external address must meet the following conditions:

http://localhost:4173/container_platform/

Creating External IP Address Pool - Alauda Container Platform

e The external address pool must be layer 2 (L2) interconnected with available nodes.

e The IPs must be usable by the platform and cannot include IPs already in use by the

physical network, such as gateway IPs.

e There must be no overlap with the networks used by the cluster, including Cluster CIDR,

Service CIDR, subnets, etc.

 In a dual-stack environment, ensure that both IPv4 and IPv6 addresses exist
simultaneously in the same external address pool, and their counts are both greater than 0.
Otherwise, dual-stack LoadBalancer type internal routes will not be able to obtain external

access addresses.

e In an IPv6 environment, nodes' DNS must support IPv6; otherwise, the MetalLB plugin

cannot be successfully deployed.

Deploying the MetalLB Plugin

Using the external address pool relies on the MetalLB plugin.

1. Go to Platform Management.

2. In the left navigation bar, click Marketplace > Cluster Plugin.
3. Search MetalLB, click on MetalLB to the right of : > Deploy.

4. Wait until the deployment status shows Deployment Successful to complete the

deployment.

Example IPAddressPool custom resource (CR)

Creating External IP Address Pool - Alauda Container Platform

kind: IPAddressPool
apiVersion: metallb.io/vilbetal
metadata:
name: test-ippool
namespace: metallb-system
spec:
addresses:
- 13.1.1.1/24
avoidBuggyIPs: true
kind: L2Advertisement
apiVersion: metallb.io/vilbetal
metadata:
name: test-ippool
namespace: metallb-system
spec:
ipAddressPools:
- test-ippool
nodeSelectors:
- matchLabels: {}
matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:
- 192.168.66.210

BGP mode:

Creating External IP Address Pool - Alauda Container Platform

kind: IPAddressPool
apiVersion: metallb.io/vilbetal
metadata:
name: test-pool-bgp
namespace: metallb-system
spec:
addresses:
- 4.4.4.3/23
avoidBuggyIPs: true
kind: BGPAdvertisement
apiVersion: metallb.io/vilbetal
metadata:
name: test-pool-bgp
namespace: metallb-system
spec:
ipAddressPools:
- test-pool-bgp
nodeSelectors:
- matchLabels:
alertmanager: "true"
peers:
- test-bgp-example

1. Ip pool reference.

l INFO

Q: What is L2Advertisement ?

A:

1. L2Advertisement is a Custom Resource (CRD) provided by the MetalLB to control which IP

address pool addresses should be broadcast via ARP (IPv4) or NDP (IPv6) in Layer 2 mode.

Q: What is the purpose of L2Advertisement ?

A:

1. Specifying which IP addresses in the IPAddressPool to L2 broadcast to (ARP/NDP

advertisements);

Creating External IP Address Pool - Alauda Container Platform
2. Control broadcast behaviour to prevent IP conflicts or cross-segment broadcasts;

3. Restricting the broadcast range in multi-NIC, multi-network environments.

In short, it tells MetalLB: which IPs can broadcast and to whom (e.g., which nodes).

Without defining a L2Advertisement in Layer2 mode, MetalLB will not advertise any addresses.
Q: What is BGPAdvertisement in MetalLB?

A:

BGPAdvertisement is a Kubernetes Custom Resource Definition (CRD) used in MetalLB 7, a

load-balancer implementation for bare-metal Kubernetes clusters. It controls how IP address

ranges (defined in IPAddressPool) are advertised to external networks via BGP (Border Gateway

Protocaol).
Q: Why is BGPAdvertisement Important?
A:

In MetalLB's BGP mode, the controller peers with external routers using BGP and advertises the

IPs assigned to Kubernetes Service objects. The BGPAdvertisement resource allows you to:

« Control which address pools are advertised

» Customize route advertisement settings like:

« Route aggregation
o BGP communities

« Local preference (BGP priority)

Without defining a BGPAdvertisement , MetalLB will not advertise any addresses, even if you

have configured BGP peers.

Creating an External IP Address Pool by using the

web console

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > External IP Address Pool.

https://metallb.io/
https://metallb.io/
https://metallb.io/

Creating External IP Address Pool - Alauda Container Platform

3. Click Create External IP Address Pool.

4. Refer to the following instructions to configure certain parameters.

Parameter Description

e L2: Communication and forwarding based on MAC addresses, suitable
for small-scale or local area networks that require simple and fast layer 2

switching, with advantages in simple configuration and low latency.

Type « BGP (Alpha): Routing and forwarding based on IP addresses, using BGP
protocol to exchange routing information, suitable for large-scale
networks requiring complex routing across multiple autonomous systems,

with advantages in high scalability and reliability.

Support input in CIDR and IP range formats. Click Add to support multiple
IP entries, examples as follows:

Resources CIDR: 192.168.1.1/24 .

IP Range: 192.168.2.1 ~ 192.168.2.255 .

In L2 mode, available nodes are those used to carry all VIP traffic; in BGP
mode, available nodes are those used to carry VIPs, establish BGP

connections with peers, and announce routes externally.

« Node Name: Select available nodes based on node names.
o Label Selector: Select available nodes based on labels.

¢ Show Node Details: View final available nodes in a list format.
Available

Note:
Nodes

» When using BGP type, the available nodes are the next-hop nodes;
ensure that the selected available nodes are a subset of the BGP

Connection Nodes.

» You can configure either the label selector or the node name separately
to choose available nodes; if both are configured simultaneously, the final

available nodes are the intersection of both.

Creating External IP Address Pool - Alauda Container Platform

Parameter Description

BGP Peers Select BGP peers; please refer to BGP Peers for specific configurations.

5. Click Create.

Creating an External IP Address Pool by using the
CLI

kubectl apply -f ippool-with-L2advertisement.yaml -f ippool-with-bgpadver

tisement.yaml

View Alarm Policy

1. Go to Platform Management.
2. In the left navigation bar, click Network Management > External IP Address Pool.

3. Click View Alarm Policy in the upper right corner of the page to view the general alarm

policy for MetalLB.

Creating BGP Peers - Alauda Container Platform

Q Alauda Container Platform Q

Creating BGP Peers

Nodes that establish connections to exchange routing information either between different AS

or within the same AS, which communicate via the BGP protocol.

TOC

Terminology

Prerequisites

Example BGPPeer custom resource (CR)
Creating a BGPPeer by using the web console.

Creating a BGPPeer by using the CLI

Terminology
Term Explanation
AS AS refers to a collection of routers managed by the same technical administrative
Number organization that use a unified routing policy. Each AS in a BGP network is

assigned a unigue AS number to distinguish it from different ASs. AS numbers are

divided into 2-byte AS numbers and 4-byte AS numbers.

* The range of 2-byte AS numbers is 1~65535, where 1~64511 are registered
public AS numbers on the Internet, similar to public IP addresses; 64512~65535

are private AS numbers, similar to private IP addresses.

e The range of 4-byte AS numbers is 1~4294967295.

http://localhost:4173/container_platform/

Creating BGP Peers - Alauda Container Platform

Term Explanation

Devices that support 4-byte AS numbers can be compatible with devices that
support 2-byte AS numbers.

Prerequisites

Please contact the administrator to enable the relevant features.

Example BGPPeer custom resource (CR)

apiVersion: metallb.io/vilbeta2
kind: BGPPeer
metadata:
name: example
namespace: metallb-system
spec:
myASN: 64512
peerASN: 64512
peerAddress: 172.30.0.3
peerPort: 180
nodeSelectors:
- matchLabels:

alertmanager: "true"

Creating a BGPPeer by using the web console.

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > BGP Peers.

3. Click Create BGP Peer.

4. Refer to the instructions below to configure the parameters.

Parameter

Local AS

Number

Peer AS

Number

Peer IP

Local IP

Peer Port

BGP

Connected

Node

eBGP Multi-

Hop

RouterID

5. Click Create.

Creating BGP Peers - Alauda Container Platform

Description

The AS number of the AS where the BGP connected node resides.

Note: If there are no special requirements, it is recommended to use an
IBGP configuration, meaning the local AS number should be consistent

with the peer AS number.

The AS number of the AS where the BGP peer resides.

The IP address of the BGP peer, which must be a valid IP address capable

of establishing a BGP connection.

The IP address of the BGP connected node. When the BGP connected
node has multiple IPs, select the specified local IP to establish a BGP

connection with the peer.

The port number of the BGP peer.

The node that establishes the BGP connection. If this parameter is not

configured, all nodes will establish BGP connections.

Allows the establishment of BGP sessions between BGP routers that are
not directly connected. When this feature is enabled, the default TTL value
of BGP packets is 5, allowing the establishment of BGP peer relationships
across multiple intermediate network devices, making network design more

flexible.

A 32-bit numeric value (usually represented in dotted-decimal format,
similar to IPv4 address format) used to uniquely identify a BGP router in the
BGP network, generally used for establishing BGP neighbor relationships,
detecting routing loops, selecting optimal paths, and troubleshooting

network issues.

Creating BGP Peers - Alauda Container Platform

Creating a BGPPeer by using the CLI

kubectl apply -f test-bgb-example.yaml

Configure Subnets - Alauda Container Platform

Q Alauda Container Platform

Configure Subnets

TOC

IP Allocation Rules

Calico Network
Constraints and Limitations
Example Subnet custom resource (CR) with Calico Network
Creating a Subnet in the Calico network by using the web console
Creating a Subnet in the Calico network by using the CLI
Reference Content

Kube-OVN Network
Example Subnet custom resource (CR) with Kube-OVN Overlay Network
Creating a Subnet in the Kube-OVN Overlay Network by using the web console
Creating a Subnet in the Kube-OVN Overlay Network by using the the CLI
Underlay Network
Usage Instructions
Add Bridge Network by using the web console (Optional)
Add Bridge Network by using the CLI
Add VLAN by using the web console (Optional)
Add VLAN by using the CLI
Example Subnet custom resource (CR) with Kube-OVN Underlay Network
Creating a Subnet in the Kube-OVN Underlay Network by using the web console
Creating a Subnet in the Kube-OVN Underlay Network by using the CLI
Related Operations

Subnet Management

http://localhost:4173/container_platform/

Configure Subnets - Alauda Container Platform
Updating Gateway by using the web console
Updating Gateway by using the CLI
Updating Reserved IPs by using the web console
Updating Reserved IPs by using the CLI
Assigning Projects by using the web console
Assigning Projects by using the CLI
Assigning Namespaces by using the web console
Assigning Namespaces by using the CLI
Expanding Subnets by using the web console
Expanding Subnets by using the CLI
Managing Calico Networks
Delete Subnet by using the web console

Delete Subnet by using the CLI

IP Allocation Rules

l NOTE

If a project or namespace is assigned multiple subnets, an IP address will be randomly selected

from one of the subnets.

¢ Project Allocation:

 If a project is not bound to a subnet, Pods in all namespaces under that project can only
use IP addresses from the default subnet. If there are insufficient IP addresses in the

default subnet, the Pods will not be able to start.

o If a project is bound to a subnet, Pods in all namespaces under that project can only use

IP addresses from that specific subnet.

+ Namespace Allocation:

Configure Subnets - Alauda Container Platform

 If a namespace is not bound to a subnet, Pods in that namespace can only use IP
addresses from the default subnet. If there are insufficient IP addresses in the default

subnet, the Pods will not be able to start.

¢ If a namespace is bound to a subnet, Pods in that namespace can only use IP

addresses from that specific subnet.

Calico Network

Creating subnets in the Calico network to achieve finer granularity of network isolation for

resources within the cluster.

Constraints and Limitations

In an IPv6 cluster environment, the subnets created within the Calico network, by default, use
VXLAN encapsulation. The ports required for VXLAN encapsulation differ from those of IPIP

encapsulation. You need to ensure that UDP port 4789 is open.

Example Subnet custom resource (CR) with Calico

Network

apiVersion: kubeovn.io/vi1l
kind: Subnet
metadata:
name: test-calico
spec:
cidrBlock: 10.1.1.1/24
default: falsee
ipipMode: Always @
natOutgoing: truee
private: false
protocol: Dual
v4dblockSize: 30

1. When default If true, use VXLAN encapsulation.

Configure Subnets - Alauda Container Platform
2. See Encapsulation Mode parameters and Encapsulation Protocol parameters.

3. See Outbound Traffic NAT parameters.

Creating a Subnet in the Calico network by using the web

console

1. Go to Platform Management.

2. In the left navigation bar, click Network Management > Subnets.
3. Click Create Subnet.

4. Refer to the following instructions to configure the relevant parameters.

Parameter Description

After allocating the subnet to a project or namespace, the container

groups within the namespace will randomly use IP addresses within this
CIDR CIDR for communication.

Note: For the correspondence between CIDR and BlockSize, please

refer to Reference Content.

Select the encapsulation protocol. IPIP is not supported in dual-stack

mode.

« IPIP: Implements inter-segment communication using the IPIP
Encapsulation

protocol.
Protocol
« VXLAN (Alpha): Implements inter-segment communication using
the VXLAN protocol.
* No Encapsulation: Directly connected through routing forwarding.
Encapsulation When the encapsulation protocol is IPIP or VXLAN, the encapsulation
Mode mode must be set, defaulting to Always.

» Always: Always enable IPIP / VXLAN tunnels.

Configure Subnets - Alauda Container Platform

Parameter Description

« Cross Subnet: Enable IPIP / VXLAN tunnels only when the host is
in different subnets; direct connection via routing forwarding when

the host is in the same subnet.

Choose whether to enable outbound traffic NAT (Network Address
Translation), which is enabled by default.
It is primarily used to set the access addresses exposed to the external

network when the subnet container group accesses the external
Outbound

network.
Traffic NAT

When outbound traffic NAT is enabled, the host IP will be used as the

access address for the current subnet container group; when not
enabled, the IPs of the container groups in the subnet will be directly

exposed to the external network.

5. Click Confirm.
6. On the subnet details page, select Actions > Allocate Project / Allocate Namespace.

7. Complete the configuration and click Allocate.

Creating a Subnet in the Calico network by using the CLI

kubectl apply -f test-calico-subnet.yaml

Reference Content

The dynamic matching relationship between CIDR and blockSize is shown in the table below.

CIDR blockSize Size Number of Hosts Size of a Single IP Pool
prefix<=16 26 1024+ 64

16<prefix<=19 27 256~1024 32

CIDR

prefix=20

prefix=21

prefix=22

prefix=23

prefix=24

prefix=25

prefix=26

prefix=27

prefix=28

prefix=29

prefix=30

prefix=31

l NOTE

Subnet configurations with prefixes greater than 31 are not supported.

Configure Subnets - Alauda Container Platform

blockSize Size

28

29

30

30

30

30

31

31

31

31

31

31

Kube-OVN Network

Number of Hosts

256

256

256

128

64

32

32

16

Size of a Single IP Pool

16

Creating a subnet in the Kube-OVN Overlay Network to achieve more granular network

isolation of resources in the cluster.

l NOTE

Configure Subnets - Alauda Container Platform

The platform has a built-in join subnet for communication between nodes and Pods; please avoid

conflicts in network segments between join and newly created subnets.

Example Subnet custom resource (CR) with Kube-OVN

Overlay Network

apiversion: kubeovn.io/v1l
kind: Subnet
metadata:
name: test-overlay-subnet
spec:
default: false
protocol: Dual
cidrBlock: 10.1.0.0/23
natOutgoing: truec
excludelps: e
- 10.1.1.2

gatewayType: distributed e

gatewayNode: "" e
private: false

enableEcmp: false e

1. See Outbound Traffic NAT parameters.
2. See Reserved IP parameters.

3. See Gateway Type parameters. The available values are distributed or

centralized .
4. See Gateway Nodes parameters.

5. See ECMP parameters. Provided that you contact the administrator to enable the feature

gate.

Creating a Subnet in the Kube-OVN Overlay Network by

using the web console

1. Go to Platform Management.

Configure Subnets - Alauda Container Platform

2. In the left navigation bar, click on Network Management > Subnet.

3. Click on Create Subnet.

4. Refer to the following instructions to configure the related parameters.

Parameter Description

Network After assigning the subnet to the project or namespace, IPs within this

Segment segment will be randomly allocated for use by Pods.

The set reserved IP will not be automatically allocated. For example, it can

Reserved IP
be used as the IP address for computing components' fixed IP.

Select the type of gateway for the subnet to control the outbound traffic.
- Distributed: Each host in the cluster can act as an outbound node for

Gateway Pods on the current host, enabling distributed egress.

Type - Centralized: All Pods in the cluster use one or more specific hosts as
outbound nodes, facilitating external auditing and firewall control. Setting
multiple centralized gateway nodes can achieve high availability.

When choosing a Centralized gateway, the ECMP feature can be used. By
default, the gateway operates in master-slave mode, with only the master
gateway processing traffic. When enabling ECMP (Equal-Cost Multipath

ECMP Routing), outbound traffic will be routed through multiple equal-cost paths to

(Alpha) all available gateway nodes, thereby increasing the total throughput of the
gateway.

Note: Please enable ECMP-related features in advance.

Gateway When using a Centralized gateway, select one or more specific hosts as

Nodes gateway nodes.

Outbound Choose whether to enable outbound traffic NAT (Network Address

Traffic NAT Translation). By default, it is enabled.

It is mainly used to set the access address exposed to the external network
when the Pods in the subnet access the internet.

When outbound traffic NAT is enabled, the host IP will be used as the

Configure Subnets - Alauda Container Platform

Parameter Description

access address for the Pods in the current subnet; when not enabled, the
IPs of the Pods within the subnet will be directly exposed to the external

network. In this case, using a centralized gateway is recommended.

5. Click Confirm.
6. On the subnet details page, select Actions > Allocate Project / Namespace.

7. Complete the configuration and click Allocate.

Creating a Subnet in the Kube-OVN Overlay Network by
using the the CLI

kubectl apply -f test-overlay-subnet.yaml

Underlay Network

Creating subnets in the Kube-OVN Underlay network not only enables finer-grained network

isolation for resources but also provides a better performance experience.

I INFO

The container network in Kube-OVN Underlay requires support from the physical network. Please

refer to the best practices Preparing the Kube-OVN Underlay Physical Network to ensure network

connectivity.

Usage Instructions

The general process for creating subnets in the Kube-OVN Underlay network is: Add Bridge
Network > Add VLAN > Create Subnet.

1. Default Network Card Name.

Configure Subnets - Alauda Container Platform

2. Configure Network Card by Node.

Add Bridge Network by using the web console (Optional)

kind: ProviderNetwork
apiVersion: kubeovn.io/v1l
metadata:
name: test-provider-network
spec:
defaultInterface: ethi o
customInterfaces: @
- interface: eth2
nodes:
- nodel
excludeNodes:
- node2

1. Default Network Card Name.
2. Configure Network Card by Node.

A bridge network refers to a bridge, and after binding the network card to the bridge, it can

forward container network traffic, achieving intercommunication with the physical network.
Procedure:
1. Go to Platform Management.
2. In the left navigation bar, click Network Management > Bridge Network.
3. Click Add Bridge Network.
4. Configure the relevant parameters based on the following instructions.
Note:

e Target Pod refers to all Pods scheduled on the current node or Pods in namespaces
bound to specific subnets scheduled to the current node. This depends on the scope of

the subnet under the bridge network.

Configure Subnets - Alauda Container Platform

e The nodes in the Underlay subnet must have multiple network cards, and the network

card used by the bridge network must be exclusively assigned to the Underlay and

cannot carry other traffic, such as SSH. For example, if the bridge network has three

nodes planning for ethO, eth0, ethl for exclusive use by the Underlay, then the default

network card can be set as ethO, and the network card for node three can be ethl.

Parameter

Default Network

Card Name

Configure
Network Card by
Node

Exclude Nodes

5. Click Add.

Description

By default, the target Pod will use this as the bridge network card for

intercommunication with the physical network.

The target Pods on the configured nodes will bridge to the specified

network card instead of the default network card.

When nodes are excluded, all Pods scheduled to these nodes will not

bridge to any network card on these nodes.

Note: Pods on excluded nodes will not be able to communicate with
the physical network or cross-node container networks, and care

should be taken to avoid scheduling related Pods to these nodes.

Add Bridge Network by using the CLI

kubectl apply -f test-provider-network.yaml

Add VLAN by using the web console (Optional)

Configure Subnets - Alauda Container Platform

kind: Vlan
apiVersion: kubeovn.io/vi1l
metadata:

name: test-vlan

provider: test—provider—networke
1. VLAN ID.
2. Bridge network reference.

The platform has a pre-configured ovn-vlan virtual LAN, which will connect to the provider
bridge network. You can also configure a new VLAN to connect to other bridge networks,

thereby achieving network isolation between VLANS.

Procedure:

1. Navigate to Platform Management.

2. In the left navigation bar, click Network Management > VLAN.
3. Click Add VLAN.

4. Configure the relevant parameters based on the following instructions.

Parameter Description

The unique identifier for this VLAN, which will be used to differentiate

VLAN ID
different virtual LANSs.
Bridge The VLAN will connect to this bridge network for intercommunication with
Network the physical network.
5. Click Add.

Add VLAN by using the CLI

Configure Subnets - Alauda Container Platform

kubectl apply -f test-vlan.yaml

Example Subnet custom resource (CR) with Kube-OVN

Underlay Network

apiVersion: kubeovn.io/vi1l
kind: Subnet
metadata:
name: test-underlay-network
spec:
default: false
protocol: Dual
cidrBlock: 11.1.0.0/23
gateway: 11.1.0.1
excludelps:
- 11.1.0.3
private: false
allowSubnets: []
vlan: test-vlane
enableEcmp: false

1. VLAN reference.

Creating a Subnet in the Kube-OVN Underlay Network by

using the web console

l NOTE

The platform also pre-configures a join subnet for communication between nodes and Pods in
Overlay transport mode. This subnet will not be used in Underlay transport mode, so it is crucial to

avoid IP segment conflicts between join and other subnets.

Procedure:

Configure Subnets - Alauda Container Platform

1. Navigate to Platform Management.
2. In the left navigation bar, click Network Management > Subnet.
3. Click Create Subnet.

4. Configure the relevant parameters based on the following instructions.

Parameter Description

VLAN The VLAN to which the subnet belongs.

After assigning the subnet to a project or namespace, |Ps within the physical

Subnet
subnet will be randomly allocated for use by Pods.
Gateway The physical gateway within the above subnet.
Reserved The specified reserved IP will not be automatically assigned. For example, it
IP can be used as the IP for the compute component fixed IP.

5. Click Confirm.
6. On the subnet details page, select Action > Assign Project / Namespace.

7. Complete the configuration and click Assign.

Creating a Subnet in the Kube-OVN Underlay Network by
using the CLI

kubectl apply -f test-underlay-network.yaml

Related Operations

When both Underlay and Overlay subnets exist in a cluster, you can configure the Automatic

Intercommunication Between Underlay and Overlay Subnets as needed.

Configure Subnets - Alauda Container Platform

Subnet Management

Updating Gateway by using the web console

This includes changing the outbound traffic method, gateway nodes, and NAT configuration.
1. Go to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Update Gateway.

5. Update the parameter configurations; refer to the Parameter Description for details.

6. Click OK.

Updating Gateway by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[
{"op": "replace", "path": "/spec/gatewayType", "value": "centralized"},
{"op": "replace", "path": "/spec/gatewayNode", '"value": "192.168.66.21
0"},
{"op": "replace", "path": "/spec/natOutgoing", "value": true},
{"op": "replace", "path": "/spec/enableEcmp", "value": true}

] 1

Updating Reserved IPs by using the web console

The gateway IP cannot be removed from the reserved IPs, while other reserved IPs can be

edited, deleted, or added freely.
1. Go to Platform Management.
2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

Configure Subnets - Alauda Container Platform

4. Select Action > Update Reserved IP.

5. After completing the updates, click Update.

Updating Reserved IPs by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[
{

"op": "replace",
"path": "/spec/excludelIps",
"value": ["10.1.0.1", "10.1.1.2", "10.1.1.4"]

Assigning Projects by using the web console

Assigning subnets to specific projects helps teams better manage and isolate network traffic

for different projects, ensuring that each project has sufficient network resources.
1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Assign Project.

5. After adding or removing projects, click Assign.

Assigning Projects by using the CLI

Configure Subnets - Alauda Container Platform

kubectl patch subnet test-overlay-subnet --type=json -p='[

{
"op": "replace",
"path": "/spec/namespaceSelectors",
"value": [
{
"matchLabels": {
"cpaas.io/project": "cong"
}
}
]
}

Assigning Namespaces by using the web console

Assigning subnets to specific namespaces allows for finer network isolation.

Note: The assignment process will rebuild the gateway, and outbound data packets will be

discarded! Please ensure no business applications are currently accessing external clusters.
1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.

3. Click the name of the subnet.

4. Select Action > Assigh Namespace.

5. After adding or removing namespaces, click Assign.

Assighing Namespaces by using the CLI

Configure Subnets - Alauda Container Platform

kubectl patch subnet test-overlay-subnet --type=json -p='[
{

"op": "replace",
"path": "/spec/namespaces",

"value": ["cert-manager"]

Expanding Subnets by using the web console

When the reserved IP range of a subnet reaches its usage limit or is about to be exhausted, it
can be expanded based on the original subnet range without affecting the normal operation of

existing services.

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Subnets.
3. Click the name of the subnet.

4. Select Action > Expand Subnet.

5. Complete the configuration and click Update.

Expanding Subnets by using the CLI

kubectl patch subnet test-overlay-subnet --type=json -p='[
{

"op": "replace",
"path": "/spec/cidrBlock",
"value": "10.1.0.0/22"

Managing Calico Networks

Configure Subnets - Alauda Container Platform

Support for assigning projects and namespaces; for details, please refer to the project

assignment and namespace assignment.

Delete Subnet by using the web console

l NOTE

» When a subnet is deleted, if there are still container groups using the IPs within the subnet, the
container groups can continue to run and the IP addresses will remain unchanged, but they will
be unable to communicate over the network. The container groups can be rebuilt to use IPs
within the default subnet, or assign a new subnet to the namespace where the container groups

reside for usage.

o The default subnet cannot be deleted.

1. Go to Platform Management.
2. In the left navigation bar, click Network Management > Subnets.

3. Click : > Delete, and proceed with the deletion.

Delete Subnet by using the CLI

kubectl delete subnet test-overlay-subnet

Configure Network Policies - Alauda Container Platform

Q Alauda Container Platform Q

Creating Network Policies

I INFO

The platform now provides two different Uls for Network Policies. The old one is maintained for
compatibility reasons, while the new one is more flexible and provides a native YAML editor. We

recommend using the new version.

Please contact the platform administrator to enable the network-policy-next feature gate to

access the new Ul.

NetworkPolicy is a namespace-scoped Kubernetes resource and implemented by CNI
plugins. Through network policies, you can control network traffic of Pods, achieving network

isolation and reducing the risk of attacks.

By default, all Pods can communicate freely, allowing ingress and egress traffic from any
source. When a NetworkPolicy is applied, the targeted Pods will only accept traffic that

matches the spec.

I WARNING

Network policies only apply to container traffic. They don't affect Pods running in hostNetwork

mode.

Example NetworkPolicy:

http://localhost:4173/container_platform/

Configure Network Policies - Alauda Container Platform

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: example

namespace: demo-1

annotations:

cpaas.io/display-name: test

spec:
podSelector:
matchLabels:
pod-template-hash: 55c84b59bb
ingress:
- ports:
- protocol: TCP
port: 8989
from: e
- podSelector:
matchLabels:
kubevirt.io/vm: test
egress:
- ports:
- protocol: TCP
port: 80
to:
- ipBlock:
cidr: 192.168.66.221/23
except: []
policyTypes:
- Ingress
- Egress

1. from and 'to' peer support namespaceSelector , podSelector , ‘'ipBlock’

TOC

Creating NetworkPolicy by using the web console

Creating NetworkPolicy by using the CLI

Configure Network Policies - Alauda Container Platform

Reference

Creating NetworkPolicy by using the web console

1. Enter Container Platform.
2. In the left navigation bar, click Network > Network Policies.
3. Click Create Network Policy.

4. Refer to the following instructions to complete the relevant configuration.

Area Parameter Description

Enter the labels of the target Pods in

Pod Selector key-value form; if not set, it will apply to
Target all Pods in the current namespace.
Pod
Preview of Target Pods Affected by Click Preview to see the target Pods
Current Policy affected by this network policy.
Ingress Block all ingress traffic Block all ingress traffic to the target Pod.
Note:

 If Ingress is added to the
spec.policyTypes field in YAML
without configuring specific rules, the
Block all ingress traffic option will
automatically be checked when

switching back to the form.

o Ifthe spec.ingress ,
spec.egress , and
spec.policyTypes fields are

simultaneously deleted in YAML, the

Block all ingress traffic option will

Area

Parameter

Rules

Description: If
multiple sources
are added in the
rules, there is a
logical OR
relationship

between them.

Configure Network Policies - Alauda Container Platform

Pods in
Current

Namespace

Pods in
Current

Cluster

Description

automatically be checked when

switching back to the form.

Match Pods with specified labels in the
current namespace; only matched Pods
can access the target Pod. You can click
Preview to see the Pods affected by the
current rule. If this item is not
configured, all Pods in the current
namespace are allowed to access the
target Pod by default.

Match namespaces or Pods with
specified labels in the cluster; only
matched Pods can access the target
Pod. You can click Preview to see the
Pods affected by the current rule.

 If both namespace and Pod selectors
are configured, it will take the
intersection of the two, meaning
Pods with specified labels will be
selected from the specified

namespace.

« If this item is not configured, all Pods
from all namespaces in the cluster

can access the target Pod by default.

Configure Network Policies - Alauda Container Platform

Area Parameter

IP Range

Port

Block all egress traffic

Egress

Other Parameters

5. Click Create.

Description

Enter the CIDR that can access the
target Pod and can exclude CIDR
ranges that are not allowed to access
the target Pod. If this item is not
configured, any traffic can access the
target Pod.

Description: You can add exclusion
items in the form of example_ip/32 to

exclude a single IP address.

Match traffic on specified protocols and
ports; numeric ports or port names on
Pods can be added. If this item is not

configured, all ports will be matched.

Block all egress traffic to the target Pod.

Note:

« If Egress is added to the
spec.policyTypes field in YAML
without configuring specific rules, the
Block all egress traffic option will
automatically be checked when

switching back to the form.

Similar to the Ingress parameters, this

will not be elaborated on here.

Creating NetworkPolicy by using the CLI

kubectl apply -f example-network-policy.yaml

Configure Network Policies - Alauda Container Platform

Reference

If you want more details, check out the official docs on Network Policies 7.

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

Creating Admin Network Policies - Alauda Container Platform

Q Alauda Container Platform Q

Creating Admin Network Policies

I INFO

The platform now provides two different Uls for Cluster Network Policies. The old one is maintained
for compatibility reasons, while the new one is more flexible and provides a native YAML editor. We

recommend using the new version.

Please contact the platform administrator to enable the cluster-network-policy and cluster-

network-policy-next feature-gate to access the new Ul.

The new cluster network policy adopts the Kubernetes community's Admin Network Policy ~

standard design, providing more flexible configuration methods and rich configuration options.

When multiple network policies are applied, they follow a strict priority order: Admin Network
Policy takes precedence over Network Policy, which in turn takes precedence over Baseline

Admin Network Policy.

The procedure is as follows:

https://network-policy-api.sigs.k8s.io/api-overview/
https://network-policy-api.sigs.k8s.io/api-overview/
https://network-policy-api.sigs.k8s.io/api-overview/
http://localhost:4173/container_platform/

Creating Admin Network Policies - Alauda Container Platform

User

Evaluated First
om

Sys Admin

L §
Developer

Priority

-

om
Sys Admin

Evaluated Last
[[1 Existing NetworkPolicy API Object

O AdminNetworkPolicy API Object

TOC

Notes
Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console
Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI

Additional resource

Notes

¢ Only Kube-OVN CNI supports admin network policies.
¢ In Kube-OVN network mode, this feature is at Alpha maturity level.

¢ Only one Baseline Admin Network Policy can exist in the cluster.

Creating Admin Network Policies - Alauda Container Platform

AdminNetworkPolicy

apiVersion: policy.networking.k8s.io/vlalphal
kind: AdminNetworkPolicy
metadata:
name: example-anp
spec:
priority: 30
subject: e
pods:
namespaceSelector:
matchLabels: {}
podSelector:
matchLabels:
pod-template-hash: 55f66dd67d
ingress:
- name: ingressil
action: Allowe
ports:
- portNumber:
protocol: TCP
port: 8090
from: @
- pods:
namespaceSelector:
matchLabels: {}
podSelector:
matchLabels:
pod-template-hash: 55c84b59bb
egress:
- name: egressl
action: Allow
ports:
- portNumber:
protocol: TCP
port: 8080
to:qﬁ’
- networks:
- 10.1.1.1/23

1. The lower the number, the higher the priority.

Creating Admin Network Policies - Alauda Container Platform
2. subject : At most one of namespace selector or pod selector can be specified.

3. action : The available values are Allow, Deny, and Pass. Allow for allowing traffic access,
Deny for denying traffic access, Pass for allowing the traffic and skip subsequent low
priority cluster network policies and continue to have the traffic handled by other policies

(NetworkPolicy and BaselineAdminNetworkpolicy).
4. The available values are Namespace Selector, Pod Selector.

5. The available values are Namespace Selector, Pod Selector, Node Selector, IP Block.

BaselineAdminNetworkpolicy:

Creating Admin Network Policies - Alauda Container Platform

apiVersion: policy.networking.k8s.io/vlalphal
kind: BaselineAdminNetworkPolicy
metadata:
name: default 0
spec:
subject:
pods:
namespaceSelector:
matchLabels: {}
podSelector:
matchLabels:
pod-template-hash: 55c84b59bb
ingress:
- name: ingressil
action: Allow
ports:
- portNumber:
protocol: TCP

port: 8888
from:
- pods:
namespaceSelector:
matchLabels: {}
podSelector:
matchLabels:
pod-template-hash: 55f66dd67d
egress:

- name: egressl
action: Allow e

ports:
- portNumber:
protocol: TCP
port: 8080
to:
- networks:

- 3.3.3.3/23

1. Only one baseline admin network policy with metadata.name= default can be created in

the cluster.

2. The available values are Allow, Deny.

Creating Admin Network Policies - Alauda Container Platform

Creating AdminNetworkPolicy or

BaselineAdminNetworkPolicy by using the web

console

1. Go to Platform Management.

2. In the left navigation bar, click Network > Cluster Network Policies.

3. Click Create Admin Network Policies or Configure the Baseline Admin Network

Policy.

4. Follow the instructions below to complete the relevant configuration.

Area Parameter
Name
Basic
Information
Priority
Target Pod

Namespace Selector

Description

The name of the Admin Network
Policy or Baseline Admin Network

Policy.

Determines the order in which
policies are evaluated and
applied. Lower numerical values
indicate higher priority.

Note: The baseline admin
network policy does not have a

priority.

Enter the labels of the target
Namespaces in key-value form. If
not set, the policy will apply to all
Namespaces in the current
cluster. When specified, the
policy will only apply to pods
within the namespaces that

match these selectors.

Creating Admin Network Policies - Alauda Container Platform

Area Parameter Description

Click Preview to see the target
Preview of Target Pods Affected by

Pods affected by this network
Current Policy

policy.

Enter the labels of the target

Pods in key-value form. If not set,
Pod Selector

the policy will apply to all Pods in

the current namespace.

Click Preview to see the target
Preview of Target Pods Affected by

Pods affected by this network
Current Policy

policy.

Ingress Specifies how to handle incoming
traffic to target Pods. Has three
modes: Allow (permits traffic),
Deny (blocks traffic), and Pass
(skips all lower-priority admin
network policies, allowing the

Traffic Action traffic to be handled by Network
Policy, or if no Network Policy
exists, by Baseline Admin
Network Policy).

Note: The baseline admin

network policy does not have

action Pass.
Rule Pod Matches namespaces or Pods
Selector with specified labels in the
Description: If cluster; only matching Pods can
multiple sources access the target Pod. You can
are added in the click Preview to see the Pods
rule, there is a affected by the current rule.

logical OR

Area

Egress

Creating Admin Network Policies - Alauda Container Platform

Parameter

relationship

between them.

Namespace
Selector
Ports
Rule Node
Selector

Description: If

multiple sources

Description

 If both namespace and Pod
selectors are configured, their
intersection will be taken,
meaning Pods with specified
labels will be selected from

the specified namespaces.

« If this item is not configured,
all Pods in all namespaces in
the cluster can access the

target Pod by default.

Matches Pods with specified
labels in the current namespace;
only matching Pods can access
the target Pod. You can click
Preview to see the Pods affected
by the current rule. If this item is
not configured, all Pods in the
current namespace are allowed
to access the target Pod by

default.

Matches traffic on specified
protocols and ports; you can add
numeric ports or port names on
Pods. If this item is not
configured, all ports will be

matched.

Specifies which node IPs the
target Pods are allowed to

access. You can select nodes by

Area

Creating Admin Network Policies - Alauda Container Platform

Parameter

are added in the
rule, there is a
logical OR
relationship

between them.

IP Range

Other

Parameters

Description

their labels to control which node

IPs are accessible from the Pods.

Specify CIDR ranges that target
Pods are allowed to connect to. If
this item is not configured, target
Pods can connect to any IP by

default.

Similar to the Ingress
parameters, with the same
configuration options and

behavior.

Creating AdminNetworkPolicy or

BaselineAdminNetworkPolicy by using the CLI

kubectl apply -f example-anp.yaml -f default.yaml

Additional resource

o Configure Cluster Network Policies

Configure Cluster Network Policies - Alauda Container Platform

Q Alauda Container Platform Q

Configure Cluster Network Policies

Cluster network policies are responsible for managing project-level access control rules.
When this feature is enabled, different projects are isolated from each other by default, and
compute components in different projects cannot access each other over the network.
Communication can be achieved by adding single project access or IP segment access

rules.

Once configured, the cluster network policies will be synchronized to the namespaces under
the cluster, and can be viewed in the Network Policies feature module of the container

platform.

TOC

Notes

Procedure

Notes

* The effectiveness of the cluster network policies depends on whether the network plugin

used by the cluster supports network policies.

¢ Kube-OVN and Calico support network policies.
» Flannel does not support network policies.

¢ When accessing the cluster or using a custom network plugin, you can refer to the

relevant documentation to confirm support.

http://localhost:4173/container_platform/

Configure Cluster Network Policies - Alauda Container Platform

¢ The functionality is in Alpha maturity under the Kube-OVN network mode.

Procedure

1. Go to Platform Management.

2. In the left navigation bar, click on Network Management > Cluster Network Policies.

3. Click Configure Now.

4. Follow the instructions below to complete the relevant configuration.

Configuration

Item

Complete
Isolation
Between

Projects

Single Project

Access

IP Segment

Access

Description

Whether to enable the complete isolation switch between projects,
which is enabled by default and can be turned off by clicking. When
enabled, network isolation is achieved between all projects in the
current cluster, and other resources are not allowed to access any
project within the cluster (e.g., external IPs, load balancers). This does

not affect projects' access to resources outside the cluster.

This parameter is only effective when the Complete Isolation
Between Projects switch is enabled.

Configure the source project and target project for one-way access.
Click Add to add a configuration record, supporting multiple records.
In the source project dropdown, select a project that will access the
target project or select all projects; in the target project dropdown,

select the target project to be accessed.

This parameter is only effective when the Complete Isolation
Between Projects switch is enabled.

Configure the specific IP/lsegment and target project for one-way
access.

Click Add to add a configuration record, supporting multiple records.

In the source IP segment input box, enter the IP or CIDR segment to

Configure Cluster Network Policies - Alauda Container Platform

Configuration
Description
Item

access the target project; in the target project dropdown, select the

target project to be accessed.

5. Click Configure.

How To - Alauda Container Platform

0 Alauda Container Platform Q

How To

Deploy High Available VIP for A

Method 1: Use LoadBalancer type internal

Method 2: Use external load balancer dev

Use OAuth Proxy with ALB

Overview
Procedure

Result

Soft Data Center LB Solution (A

Prerequisites
Procedure

Verification

Preparing K

Usage Instructir
Terminology Ex
Environment R«

Configuration E

Automatic Interconnection of Underlav and O

Configure a Load Balancer

How to properly allocate CPU and memory resources

Small Production Environment
Medium Production Environment

Large Production Environment

Special Scenario Deployment Recommendations

Load Balancer Usage Mode Selection

\/UIIIIHUIC LIDLTIITI T VI \I IUIILCIIU}

Prerequisites
Example Frontend custom resource (CR)

Creating Listener Ports (Frontend) by usin

Creating Ge

Deploy MetalLE

Set Pod Securit

Forwarding

Configuration N

Result Verificati

Calico Netw

Installation Stat

Terminology

http://localhost:4173/container_platform/

How To - Alauda Container Platform

Creatina Listener Ports (Frontend) hv 1isin

Kube-OVN Overlay Network Supports IPsec Encryption

Terminology
Notes
Prerequisites

Procedure

Viewing Logs
Monitoring Metrics

Additional resources

Notes

S

icati

ALB Monitc

Terminology
Procedure

Monitoring Meti

Deploy High Available VIP for ALB - Alauda Container Platform

Q Alauda Container Platform Q

Deploy High Available VIP for ALB

The high availability of the Load Balancer requires a VIP. There are two ways to obtain a VIP.

TOC

Method 1: Use LoadBalancer type internal routing to provide VIP

Method 2: Use external load balancer device to provide VIP

Method 1: Use LoadBalancer type internal routing
to provide VIP

When creating a load balancer, the internal routing option is enabled, and the system
automatically creates a LoadBalancer type internal routing to provide a VIP for the load
balancer. Before using it, ensure that the current cluster supports LoadBalancer type internal
routing. You can use the platform's built-in LoadBalancer internal routing implementation, for
specific configuration, please refer to External Address Pool; if the internal routing option is

disabled, you need to configure an access address for the load balancer.

Method 2: Use external load balancer device to

provide VIP

http://localhost:4173/container_platform/

Deploy High Available VIP for ALB - Alauda Container Platform

* Please confirm with the network engineer the IP address (public IP, private IP, VIP) or

domain name of the load balancer service before deployment. If you want to use a domain

name as the address for external traffic to access the load balancer, you need to apply for

a domain name in advance and configure domain name resolution. It is recommended to

use a commercial load balancer device to provide a VIP, if not, you can use the Pure

Software Data Center LB Solution (Alpha)

¢ According to the business scenario, the external load balancer needs to configure health

checks for all the ports in use to reduce the downtime of ALB upgrade. The health check

configuration is as follows:

Health Check

Parameters

Port

Protocol

Response

Timeout

Check Interval

Unhealthy
Threshold

Description

» For global clusters, fill in: 11782.

o For business clusters, fill in: 1936.

The protocol type of the health check, it is recommended to use TCP.

The time required to receive the health check response, it is

recommended to configure it to 2 seconds.

The time interval for the health check, it is recommended to configure it

to 5 seconds.

The number of consecutive failures after which the health check status
of the backend server is determined to be failed, it is recommended to

configure it to 3 times.

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

Q Alauda Container Platform Q

Soft Data Center LB Solution (Alpha)

Deploy a pure software data center load balancer (LB) by creating a highly available load
balancer outside the cluster, providing load balancing capabilities for multiple ALBs to ensure
stable business operations. It supports configuration for IPv4 only, IPv6 only, or both IPv4 and
IPv6 dual stack.

TOC

Prerequisites
Procedure

Verification

Prerequisites

1. Prepare two or more host nodes as LB. It is recommended to install Ubuntu 22.04
operating system on LB nodes to reduce the time for LB to forward traffic to abnormal

backend nodes.

2. Pre-install the following software on all host nodes of the external LB (this chapter takes

two external LB host nodes as an example):
e ipvsadm

e Docker (20.10.7)

http://localhost:4173/container_platform/

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

3. Ensure that the Docker service starts on boot for each host using the following command:

sudo systemctl enable docker.service .
4. Ensure that the clock of each host node is synchronized.

5. Prepare the image for Keepalived, used to start the external LB service; the platform
already contains this image. The image address is in the following format: <image
repository address>/tkestack/keepalived:<version suffix> . The version suffix may
vary slightly among different versions. You can obtain the image repository address and
version suffix as follows. This document uses build-

harbor.alauda.cn/tkestack/keepalived:v3.16.0-beta.3.9g598ce923 as an example.

¢ In the global cluster, execute kubectl get prdb base -o json | jq

.spec.registry.address to getthe image repository address parameter.

 In the directory where the installation package is extracted, execute cat
./installer/res/artifacts.json |grep keepalived -C 2|grep tag|awk '{print

$2}'|awk -F '"' '"{print $2}' to getthe version suffix.

Procedure

Note: The following operations must be executed once on each external LB host node, and

the hostname of the host nodes must not be duplicated.

1. Add the following configuration information to the file /etc/modules-

load.d/alive.kmod.conf .

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

ip_vs

ip_vs_rr
ip_vs_wrr
ip_vs_sh
nf_conntrack_ipv4
nf_conntrack
ip6t_MASQUERADE
nf_nat_masquerade_ipv6
ip6table_nat
nf_conntrack_ipv6
nf_defrag_ipv6
nf_nat_ipv6

ip6_tables

2. Add the following configuration information to the file

/etc/sysctl.d/alive.sysctl.conf .

net.ipv4.ip_forward = 1
net.ipv4.conf.all.arp_accept = 1
net.ipv4.vs.conntrack = 1
net.ipv4.vs.conn_reuse_mode = 0
net.ipv4.vs.expire_nodest_conn = 1
net.ipv4.vs.expire_quiescent_template = 1

net.ipv6e.conf.all.forwarding=1

3. Restart using the reboot command.

4. Create a folder for the Keepalived configuration file.

mkdir -p /etc/keepalived
mkdir -p /etc/keepalived/kubecfg

5. Modify the configuration items according to the comments in the following file and save

them inthe /etc/keepalived/ folder, naming the file alive.yaml .

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

instances:
- vip: # Multiple VIPs can be configured
vip: 192.168.128.118 # VIPs must be different
id: 20 # Each VIP's ID must be unique, optional
interface: "eth@"
check_interval: 1 # optional, default 1: interval to execute chec
k script
check_timeout: 3 # optional, default 3: check script timeout per
iod
name: "vip-1" # Identifier for this instance, can only contain al
phanumeric characters and hyphens, cannot start with a hyphen
peer: ["192.168.128.116", "192.168.128.75"] # Keepalived node I
P, actual generated keepalived.conf will remove all IPs on the interfac
e https://github.com/osixia/docker-keepalived/issues/33
kube_lock:
kubecfgs: # The kube-config list used by kube-lock will sequent
ially attempt these kubecfgs for leader election in Keepalived
- "/live/cfg/kubecfg/kubecfgol.conf"
- "/live/cfg/kubecfg/kubecfg02.conf"
- "/live/cfg/kubecfg/kubecfg03.conf"
ipvs: # Configuration for option IPVS
ips: ["192.168.143.192", "192.168.138.100","192.168.129.100"] #
IPVS backend, change k8s master node IP to ALB node's node IP
ports: # Configure health check logic for each port on the VIP
- port: 80 # The port on the virtual server must match the real
server's port
virtual_server_config: |
delay_loop 10 # Interval for performing health checks on t
he real server
lb_algo rr
lb_kind NAT
protocol TCP
raw_check: |
TCP_CHECK {
connect_timeout 10

connect_port 1936

}
- vip:
vip: 2004::192:168:128:118
id: 102

interface: "etho"
peer: ["2004::192:168:128:75","2004::192:168:128:116"]
kube_Tlock:

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

kubecfgs: # The kube-config list used by kube-lock will sequent
ially attempt these kubecfgs for leader election in Keepalived
- "/live/cfg/kubecfg/kubecfgol.conf"
- "/live/cfg/kubecfg/kubecfg02.conf"
- "/live/cfg/kubecfg/kubecfg03.conf"
ipvs:
ips: ["2004::192:168:143:192","2004::192:168:138:100", '"2004: :19
2:168:129:100"]
ports:
- port: 80
virtual_server_config: |
delay_loop 10
lb_algo rr
1b_kind NAT
protocol TCP
raw_check: |
TCP_CHECK {
connect_timeout 1

connect_port 1936

6. Execute the following command in the business cluster to check the certificate expiration
date in the configuration file, ensuring that the certificate is still valid. The LB functionality
will become unavailable after the certificate expires, requiring contact with the platform

administrator for a certificate update.

openssl x509 -in <(cat /etc/kubernetes/admin.conf | grep client-certifi
cate-data | awk '{print $NF}' | base64 -d) -noout -dates

7. Copy the /etc/kubernetes/admin.conf file from the three Master nodes in the
Kubernetes cluster to the /etc/keepalived/kubecfg folder on the external LB nodes,
naming them with an index, e.g., kubecfg@i.conf , and modify the apiserver node

addresses in these three files to the actual node addresses of the Kubernetes cluster.

Note: After the platform certificate is updated, this step needs to be executed again,

overwriting the original files.

8. Check the validity of the certificates.

1. Copy /usr/bin/kubectl from the Master node of the business cluster to the LB node.

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

2. Execute chmod +x /usr/bin/kubectl to grant execution permissions.

3. Execute the following commands to confirm certificate validity.

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg@l.conf get node
kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg02.conf get node
kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg03.conf get node

If the following results are returned, the certificate is valid.

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg0l.conf get node

Output

NAME STATUS ROLES AGE VERSION
192.168.129.100 Ready <none> 7d22h v1.25.6
192.168.134.167 Ready control-plane, master 7d22h v1.25.6
192.168.138.100 Ready <none> 7d22h v1.25.6
192.168.143.116 Ready control-plane, master 7d22h v1.25.6
192.168.143.192 Ready <none> 7d22h v1.25.6
192.168.143.79 Ready control-plane, master 7d22h v1.25.6

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg02.conf get node

Output

NAME STATUS ROLES AGE VERSION
192.168.129.100 Ready <none> 7d22h v1.25.6
192.168.134.167 Ready control-plane, master 7d22h v1.25.6
192.168.138.100 Ready <none> 7d22h v1.25.6
192.168.143.116 Ready control-plane, master 7d22h v1l.25.6
192.168.143.192 Ready <none> 7d22h v1l.25.6
192.168.143.79 Ready control-plane, master 7d22h v1l.25.6

kubectl --kubeconfig=/etc/keepalived/kubecfg/kubecfg03.conf get node

Output

NAME STATUS ROLES AGE VERSION
192.168.129.100 Ready <none> 7d22h v1.25.6
192.168.134.167 Ready control-plane, master 7d22h v1.25.6
192.168.138.100 Ready <none> 7d22h v1.25.6
192.168.143.116 Ready control-plane, master 7d22h v1.25.6
192.168.143.192 Ready <none> 7d22h v1.25.6
192.168.143.79 Ready control-plane, master 7d22h v1.25.6

9. Upload the Keepalived image to the external LB node and run Keepalived using Docker.

Soft Data Center LB Solution (Alpha) - Alauda Container Platform
docker run -dt --restart=always --privileged --network=host -v /etc/kee

palived:/live/cfg build-harbor.alauda.cn/tkestack/keepalived:v3.16.0-be
ta.3.9598ce923

10. Run the following command on the node accessing keepalived : sysctl -w

net.ipv4.conf.all.arp_accept=1 .

Verification

1. Run the command ipvsadm -1n to view the IPVS rules, and you will see IPv4 and IPv6

rules applicable to the business cluster ALBs.

IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags

-> RemoteAddress:Port Forward Weight ActiveConn InAc
tConn
TCP 192.168.128.118:80 rr

-> 192.168.129.100:80 Masq 1 0 (C]

-> 192.168.138.100:80 Masq 1 0 (C]

-> 192.168.143.192:80 Masq 1 0 (C]

TCP [2004::192:168:128:118]:80 rr
-> [2004::192:168:129:100]:80 Masq 1
-> [2004::192:168:138:100]:80 Masq 1
-> [2004::192:168:143:192]:80 Masq 1

2. Shut down the LB node where the VIP is located and test whether the VIP of both IPv4 and

IPv6 can successfully migrate to another node, typically within 20 seconds.

3. Usethe curl command on a non-LB node to test if communication with the VIP is

normal.

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

curl 192.168.128.118

<!DOCTYPE html>

<htm1>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>

</head>

<body>

<hi>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed

and working. Further configuration is required.</p>

<p>For online documentation and support please refer to <a href="htt
p://nginx.org/">nginx.org.

Commercial support is available at nginx.co
m.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Soft Data Center LB Solution (Alpha) - Alauda Container Platform

curl -6 [2004::192:168:128:118]:80 -g

<!DOCTYPE html>

<htm1>

<head>

<title>Welcome to nginx!</title>

<style>

html { color-scheme: light dark; }

body { width: 35em; margin: 0 auto;

font-family: Tahoma, Verdana, Arial, sans-serif; }
</style>

</head>

<body>

<hi>Welcome to nginx!</h1>

<p>If you see this page, the nginx web server is successfully installed

and working. Further configuration is required.</p>

<p>For online documentation and support please refer to <a href="htt
p://nginx.org/">nginx.org.

Commercial support is available atnginx.com
.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

Q Alauda Container Platform Q

Preparing Kube-OVN Underlay Physical

Network

The container network under Kube-OVN Underlay transport mode relies on physical network
support. Before deploying the Kube-OVN Underlay network, please collaborate with the
network administrator to plan and complete the relevant configurations of the physical network

in advance, ensuring network connectivity.

TOC

Usage Instructions
Terminology Explanation
Environment Requirements
Configuration Example
Switch Configuration
Check Network Connectivity

Platform Configuration

Usage Instructions

Kube-OVN Underlay requires deployment with multiple network interface cards (NICs), and
the Underlay subnet must exclusively use one NIC. No other types of traffic, such as SSH,

should be on that NIC; they should utilize other NICs.

http://localhost:4173/container_platform/

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

Before use, ensure that the node server has at least a dual-NIC environment, and it is
recommended that the NIC speed is at least 10 Gbps or higher (e.g., 10 Gbps, 25 Gbps, 40
Gbps).

¢ NIC One: The NIC with the default route, configured with an IP address, interconnected

with the external switch interface, which is set to Access mode.

¢ NIC Two: The NIC without the default route and not configured with an IP address,
interconnected with the external switch interface, which is set to Trunk mode. The Underlay

subnet exclusively uses NIC Two.

Access

Switch w

Service Subnet: XXX XXX XXX XXX/ XX
Gateway: XXX XXX.XXX.XXX

Terminology Explanation

VLAN (Virtual Local Area Network) is a technology that logically divides a local area network

into multiple segments (or smaller LANS) to facilitate data exchange for virtual workgroups.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

The emergence of VLAN technology allows administrators to logically segment different users
within the same physical local area network into distinct broadcast domains based on actual
application needs. Each VLAN comprises a group of computer workstations with similar
requirements and possesses the same properties as a physically formed LAN. Since VLANs
are logically divided rather than physically, workstations within the same VLAN are not

confined to the same physical area; they can exist across different physical LAN segments.
The main advantages of VLANSs include:

¢ Port Segmentation. Even on the same switch, ports in different VLANs cannot
communicate with each other. A physical switch can function as multiple logical switches.
This is commonly used to control mutual access between different departments and sites in

a network.

¢ Network Security. Different VLANs cannot communicate directly, eliminating the insecurity
of broadcast information. Broadcast and unicast traffic within a VLAN will not be forwarded
to other VLANS, helping control traffic, reduce equipment investments, simplify network

management, and improve network security.

+ Flexible Management. When changing a user's network affiliation, there's no need to

replace ports or cables; it merely requires a software configuration change.

Environment Requirements

In Underlay mode, Kube-OVN bridges a physical NIC to OVS and sends packets directly to
the external through that physical NIC. The L2/L3 forwarding capability relies on the
underlying network devices. The corresponding gateway, VLAN, and security policies need to

be pre-configured on the underlying network devices.
+ Network Configuration Requirements

o Kube-OVN checks the gateway's connectivity via ICMP protocol when starting

containers; the underlying gateway must respond to ICMP requests.

e For service access traffic, Pods will first send packets to the gateway, which must have

the ability to forward packets back to the local subnet.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

e When the switch or bridge has Hairpin functionality enabled, Hairpin must be disabled.
If using a VMware virtual machine environment, set
Net.ReversePathFwdCheckPromisc on the VMware host to 1, and Hairpin does not

need to be disabled.
e The bridging NIC cannot be a Linux Bridge.

¢ NIC bonding modes support Mode 0O (balance-rr), Mode 1 (active-backup), Mode 4
(802.3ad), Mode 6 (balance-alb), with a recommendation to use 0 or 1. Other bonding

modes have not been tested; please use them with caution.
« laaS (Virtualization) Layer Configuration Requirements

¢ For OpenStack VM environments, the PortSecurity for the corresponding network port

needs to be disabled.

e For VMware's vSwitch network, MAC Address Changes, Forged Transmits, and

Promiscuous Mode Operation must all be set to Accept.

¢ For public clouds such as AWS, GCE, and Alibaba Cloud, Underlay mode networks

cannot be supported due to their lack of user-defined MAC address capabilities.

Configuration Example

The nodes in this example are dual-NIC physical machines. NIC One is the NIC with the
default route; NIC Two is the NIC without the default route and is not configured with an IP
address, exclusively used for the Underlay subnet. NIC Two is interconnected with the

external switch.

e On the switch side, the interface connected to NIC Two should be configured in Trunk

mode, allowing the corresponding VLANS to pass through.

+ Configure the gateway address of the cluster subnet on the corresponding vlan-interface
interface. If dual-stack is needed, the IPv6 gateway address can also be configured

simultaneously.

« If the gateway is behind a firewall, access from node nodes to the cluster-cidr network must

be permitted.

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

* No configuration is needed for server NICs.

Switch Configuration

Configure the VLAN Interface:

#

interface Vlan-interface74
ip address 192.168.74.254 255.255.255.0 //IPv4 gateway address
ipv6 address 2074::192:168:74:254/64 //IPv6 gateway address

Configure the interface connected to NIC Two:

#
interface Ten-GigabitEthernet1/0/19
port link mode bridge
port link-type trunk // Configure the interface to Trunk mode
undo port trunk permit vlan 1
port trunk permit vlan 74 // Allow the corresponding VLAN to pass thro
ugh
#

Check Network Connectivity

Test if NIC Two can communicate with the gateway address:

ip link add ens224.74 link ens224 type vlan id 74 // The NIC name is ens
224, and the VLAN ID is 74

ip link set ens224.74 up

ip addr add 192.168.74.200/24 dev ens224.74 // Select a test address wit
hin the Underlay subnet, here it's 192.168.74.200/24

ping 192.168.74.254 // If able to ping the gateway, it confirms that the
physical environment meets deployment requirements

ip addr del 192.168.74.200/24 dev ens224.74 // Delete the test address a
fter testing

ip link del ens224.74 // Delete the sub-interface after testing

Preparing Kube-OVN Underlay Physical Network - Alauda Container Platform

Platform Configuration

In the left navigation bar, click Cluster Management > Cluster, then click Create Cluster.
For specific configuration procedures, please refer to the Create Cluster document, with

container network configuration shown in the image below.

Note: The Join subnet has no practical significance in the Underlay environment and primarily
serves to create an Overlay subnet later, providing the IP address range necessary for

communication between nodes and container groups.

| Container Networking

IPv4 [IPv6 Dual
Stack” «©

Network Type: Kube—OVN Calico Custom (@

Default Subnet:

*IPv4: 192 v . . 74 . | 24 v F—— IPv4 subnet address of NIC Il
*|Pv6: 2074:/64 F—— IPv6 subnet address of NIC I
Transmit Mode: Overlay ®
Gateway: *IPv4 192.168.74.254 F—— IPv4 gateway address “|Pve 2074:192.168.74.254 F—— IPv6 gateway address

The default gateway IPv4/IPv6 value must be within the cluster CIDR address range

*VLANID: 74 F—— VLAN ID that the switch allows to pass through

Preserved IP: protocol stack IP Format * IP Address

If the IP in the subnet is occupied by the physical network, the cluster cannot be created successfully. Please set it as
reserved IP

@ Add

After the cluster is created, new subnets are supported.

* Service CIDR:
1Pva: K0 M s : ' e 7 Custom SVC, must not duplicate

with the internal network
*|Pv6: fd00:10:96::/112

* Join CIDR:

*1Pva: [[Cuctomid (RC0SL00/8 Address segment of the NIC used

F—— for communication on the Overlay
*1Pv6: fd00:100:64::/64 network

Automatic Interconnection of Underlay and Overlay Subnets - Alauda Container Platform

Q Alauda Container Platform Q

Automatic Interconnection of Underlay and

Overlay Subnets

If a cluster has both Underlay and Overlay subnets, by default, Pods under the Overlay
subnet can access Pods' IPs in the Underlay subnet through a gateway using NAT. However,
Pods in the Underlay subnet need to configure node routing to access Pods in the Overlay

subnet.

To achieve automatic interconnection between Underlay and Overlay subnets, you can
manually modify the YAML file of the Underlay subnet. Once configured, Kube-OVN will also
use an additional Underlay IP to connect the Underlay subnet and the ovn-cluster logical

router, setting the corresponding routing rules to enable interconnection.

TOC

Procedure

Procedure

1. Go to Platform Management.
2. In the left navigation bar, click on Cluster Management > Resource Management.
3. Enter Subnet to filter resource objects.

4. Click on : > Update next to the Underlay subnet to be modified.

http://localhost:4173/container_platform/

Automatic Interconnection of Underlay and Overlay Subnets - Alauda Container Platform
5. Modify the YAML file, adding the field u2oInterconnection: true inthe Spec .
6. Click Update.

Note: Existing compute components in the Underlay subnet need to be recreated for the

changes to take effect.

Use OAuth Proxy with ALB - Alauda Container Platform

Q Alauda Container Platform

Use OAuth Proxy with ALB

TOC

Overview
Procedure

Result

Overview

This document demonstrates how to use OAuth Proxy with ALB to implement external

authentication.

Procedure

Follow these steps to use the feature:

1. Deploy kind

kind create cluster --name alb-auth --image=kindest/node:v1.28.0

kind get kubeconfig --name=alb-auth > ~/.kube/config

2. Deploy alb

http://localhost:4173/container_platform/

Use OAuth Proxy with ALB - Alauda Container Platform

helm repo add alb https://alauda.github.io/alb/;helm repo update;helm s
earch repoj|grep alb
helm install alb-operator alb/alauda-alb2
alb_ip=%$(docker inspect -f '{{range.NetworkSettings.Networks}}{{.IPAddr
ess}}{{end}}' alb-auth-control-plane)
echo $alb_ip
cat <<EOF | kubectl apply -f -
apiVersion: crd.alauda.io/v2
kind: ALB2
metadata:
name: alb-auth
spec:
address: "$alb_ip"
type: "nginx"
config:
networkMode: host
loadbalancerName: alb-demo
projects:
- ALL_ALL
replicas: 1
EOF

3. Deploy test application

o Create github oauth app ~

Note that $GITHUB_CLIENT _ID $GITHUB_CLIENT_SECRET will be obtained in this

step, which needs to be set in the environment variable

o Configure dns

Here we use echo.com as the application domain, auth.alb.echo.com and

alb.echo.com

o Deploy oauth-proxy

oauth2-proxy needs to access github, which may require setting the HTTPS_PROXY

environment variable

https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app
https://docs.github.com/en/apps/oauth-apps/building-oauth-apps/creating-an-oauth-app

Use OAuth Proxy with ALB - Alauda Container Platform

Use OAuth Proxy with ALB - Alauda Container Platform

COOKIE_SECRET=$(python -c 'import os,base64; print(base64.urlsafe_b64en
code(os.urandom(32)).decode())")
OAUTH2_PROXY_IMAGE="quay.io/oauth2-proxy/oauth2-proxy:v7.7.1"
kind load docker-image $OAUTH2_PROXY_IMAGE --name alb-auth
cat <<EOF | kubectl apply -f -
apiVersion: apps/vi
kind: Deployment
metadata:
labels:
k8s-app: oauth2-proxy
name: oauth2-proxy
spec:
replicas: 1
selector:
matchLabels:
k8s-app: oauth2-proxy
template:
metadata:
labels:
k8s-app: oauth2-proxy

spec:
containers:
- args:
- --http-address=0.0.0.0:4180
- --redirect-url=http://auth.alb.echo.com/oauth2/callback
- --provider=github
- --whitelist-domain=.alb.echo.com
- --email-domain=*
- --upstream=file:///dev/null
- --cookie-domain=.alb.echo.com
- --cookie-secure=false
- --reverse-proxy=true
env

- name: OAUTH2_PROXY_CLIENT_ID
value: $GITHUB_CLIENT_ID
- name: OAUTH2_PROXY_CLIENT_SECRET
value: $GITHUB_CLIENT_SECRET
- name: OAUTH2_PROXY_COOKIE_SECRET
value: $COOKIE_SECRET
image: $0AUTH2_PROXY_IMAGE
imagePullPolicy: IfNotPresent
name: oauth2-proxy
ports:

Use OAuth Proxy with ALB - Alauda Container Platform

- containerPort: 4180
name: http
protocol: TCP

- containerPort: 44180
name: metrics
protocol: TCP

apiVersion: vi1i
kind: Service
metadata:
labels:
k8s-app: oauth2-proxy
name: oauth2-proxy
spec:
ports:
- appProtocol: http
name: http
port: 80
protocol: TCP
targetPort: http
- appProtocol: http
name: metrics
port: 44180
protocol: TCP
targetPort: metrics
selector:
k8s-app: oauth2-proxy
EOF

4. Configure ingress

We will configure two ingresses, auth.alb.echo.com and alb.echo.com

Use OAuth Proxy with ALB - Alauda Container Platform

Use OAuth Proxy with ALB - Alauda Container Platform

cat <<EOF | kubectl apply -f -
apiVersion: networking.k8s.io/vi1
kind: Ingress
metadata:
annotations:
nginx.ingress.kubernetes.io/auth-url: "https://auth.alb.echo.com/oa
uth2/auth"
nginx.ingress.kubernetes.io/auth-signin: "https://auth.alb.echo.co
m/oauth2/start?rd=http://\$host\$request_uri"
name: echo-resty
spec:
ingressClassName: alb-auth
rules:
- host: alb.echo.com

http:
paths:

- path: /
pathType: Prefix
backend:

service:

name: echo-resty
port:
number: 80
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: oauth2-proxy
spec:
ingressClassName: alb-auth
rules:
- host: auth.alb.echo.com

http:
paths:

- path: /
pathType: Prefix
backend:

service:

name: oauth2-proxy
port:
number: 80
EOF

Use OAuth Proxy with ALB - Alauda Container Platform

Result

o After the operation is complete, an alb, oauth-proxy, and test application will be deployed.

o After accessing alb.echo.com, you will be redirected to the github authentication page, and

after verification, you can see the output of the application

Creating GatewayAP| Gateway - Alauda Container Platform

Q Alauda Container Platform Q

Creating GatewayAPI Gateway

GatewayAPI is a new API for Kubernetes that provides a more flexible and extensible way to
manage ingress traffic. It allows you to define routing rules, traffic policies, and other
configurations in a more declarative manner.

This document provides a step-by-step guide on how to create a GatewayAPI gateway in the

Alauda Container Platform Kubernetes cluster.

Requirements

TOC

Deploy MetalLB

Set Pod Security Policies to Privileged Mode

Deploy MetalLB

The GatewayAPI gateway requires MetalLB to allocate an IP address. Please refer to Create

MetalLB for instructions on how to deploy MetalLB.

Set Pod Security Policies to Privileged Mode

If the namespace where you want to deploy the gateway is created via the Ul, you need to

update its Pod Security Policy (PSP) to privileged mode.

http://localhost:4173/container_platform/

Creating GatewayAP| Gateway - Alauda Container Platform

Q Project Management|::: & Project: kodao ¥ @ouofsenice < @ ﬁ admin@cpaas.io v

CPU Limits (Cores) 12 unlimited unlimited
Memory Requests (Gi) 113 unlimited unlimited
Memory Limits (Gi) 6.75 unlimited unlimited

Number of Pods. 4 1000 . 0.40%

A Notifications Container LimitRange Update Container LimitRange

Indicator Default Request Limit Max

Pod Security Policies

Security Mode secune/ itandard
| enrorce |

Audit Baseline

warn Baseline

Procedure

1. Navigate to Platform Management.
2. In the left sidebar, click on Network Management > Inbound Gateways.
3. Click on Create Inbound Gateways.

4. Follow the instructions below to complete the network configuration:

Parameter Description
Name The name of the gateway.

The embedded exclusive-gateway is provided by Alauda Container

GatewayClass Platform and backed by ALB. It will create a container-network-mode ALB

to implement the GatewayAP| gateway specification.
Set the specifications appropriately based on your business needs. You

Specification can also refer to How to properly allocate CPU and memory resources for

guidance.

5. Click Create. The creation process may take some time; please be patient.

0 Container Platform

Namespace Scoped
it Overview
8% Applications

i Workloads

#

Configuration

@ Networking
Services
Ingresses
Inbound Gateways
Route Rules
Load Balancers
Network Policies

£ Storage

© Observe

Creating GatewayAP| Gateway - Alauda Container Platform

@ Networking / Inbound Gateways / Create

Create Inbound Gateway

>
* Name:
>
Display Name:
>
v * yClass: exclusive-gats y
. Small scale
* Specification :
Cluster less than 5 nodes
Resource Limits: CPU
Access URL: Automatic acquisition
5 Service Annotations ¥
>

B3 Project: kkxiao [N Namespace: kkxiao-1 (Cluster: g2-cl-abcd... ¥

v
Medium scale Large scale
Cluster less than 30 nodes Cluster more than 30 nodes

m Memory

Custom

For professional use

Mi

Configure a Load Balancer - Alauda Container Platform

Q Alauda Container Platform Q

Configure a Load Balancer

A Load Balancer is a service that distributes traffic to container instances. By utilizing load
balancing functionality, it automatically allocates access traffic for computing components and
forwards it to the container instances of those components. Load balancing can improve the
fault tolerance of computing components, scale the external service capability of those

components, and enhance the availability of applications.

Platform administrators can create single-point or high-availability load balancers for any
cluster on the platform, and uniformly manage and allocate load balancer resources. For
example, load balancing can be assigned to projects, ensuring that only users with the

appropriate project permissions can utilize the load balancing.

Please refer to the table below for explanations of related concepts in this section.

Parameter Description

A software or hardware device that distributes network requests to available

Load

nodes in a cluster. The load balancer used in the platform is a Layer 7 software
Balancer

load balancer.

Virtual IP address (Virtual IP Address) is an IP address that does not correspond
VIP to a specific computer or a specific network interface card. When the load

balancer is of high-availability type, the access address should be the VIP.

TOC

Prerequisites
Example ALB2 custom resource (CR)

Creating a Load Balancer by using the web console.

http://localhost:4173/container_platform/

Configure a Load Balancer - Alauda Container Platform

Creating a Load Balancer by using the CLI.
Update Load Balancer by using the web console
Delete Load Balancer by using the web console
Delete Load Balancer by using the CLI
Configure Listener Ports (Frontend)
Prerequisites
Example Frontend custom resource (CR)
Creating Listener Ports (Frontend) by using the web console
Creating Listener Ports (Frontend) by using the CLI
Subsequent Actions
Related Operations
Example Rule custom resource (CR)

dslix
Creating Rule by using web console
Creating Rule by using the CLI
Logs and Monitoring
Viewing Logs
Monitoring Metrics

Additional resources

Prerequisites

The high availability of the Load Balancer requires a VIP. Please refer to Configure VIP.

Example ALB2 custom resource (CR)

Configure a Load Balancer - Alauda Container Platform

apiVersion: crd.alauda.io/v2betal
kind: ALB2
metadata:
name: alb-demo
namespace: cpaas-system
annotations:
cpaas.io/display-name: ""
spec:
address: 192.168.66.215

enableLbSvc: false
lbSvcAnnotations: {}
networkMode: host @@
enablePortProject: falsee
nodeSelector:
cpu-model.node.kubevirt.io/Nehalem: "true"
projects: @
- ALL_ALL
replicas: 1
resources: @
limits:
cpu: 200m
memory: 256Mi
requests:
cpu: 200m
memory: 256Mi
type: nginx

. When enablelLbSvc is true, it will create an internal LoadBalancer type service for the
load balancer's access address. 1bSvcAnnotations Configuration Reference

LoadBalancer Type Service Annotations.

. Check the Network Mode configuration below.
. Check the Resource Allocation Method below.
. Check the Assigned Project below.

. Check the Specification below.

Configure a Load Balancer - Alauda Container Platform

Creating a Load Balancer by using the web

console.

1. Navigate to Platform Management.

2. In the left sidebar, click on Network Management > Load Balancer.

3. Click on Create Load Balancer.

4. Follow the instructions below to complete the network configuration.

Parameter

Network Mode

Service and
Annotations

(Alpha)

Access

Address

Description

» Host Network Mode: Only one load balancer replica is allowed to be

deployed on a single node, with multiple services sharing one ALB,

resulting in superior network performance.

Container Network Mode: Multiple load balancer replicas can be
deployed on a single node to meet the requirements of separate

ALBs for each service, with slightly lower network performance.

Service: When enabled, it will create an internal LoadBalancer type
service for the load balancer's access address. Before use, ensure
that the current cluster supports LoadBalancer type service. You can
implement the platform's built-in LoadBalancer type service; when
disabled, you need to configure an External Address Pool for the load

balancer.

Annotations: Used to declare the configuration or capabilities of
Internal LoadBalancer type routing; for specifics, please refer to

Annotations for Internal LoadBalancer Type Routing.

The access address for load balancing, i.e., the service address of the
load balancer instance. After the load balancer is successfully created, it

can be accessed via this address.

Configure a Load Balancer - Alauda Container Platform

Parameter Description

 In host network mode, please fill out according to actual conditions; it

can be a domain name or an IP address (internal IP, external IP, VIP).

 In container network mode, it will be acquired automatically.

5. Follow the instructions below to complete the resource configuration.

Parameter Description

Please set the specifications reasonably according to business needs.
Specification You can also refer to How to properly allocate CPU and memory

resources for reference.

« Single Point: The container group of the load balancer is deployed
on a single node, which may result in the risk of load balancer

unavailability if a machine failure occurs.

Deployment

Type « High Availability: Multiple container groups of the load balancer are
deployed across the corresponding number of nodes, usually 3. This
satisfies the load balancing needs of large business volumes while

providing emergency disaster recovery capabilities.

The number of replicas is the number of container groups for the load
balancer.

Replicas
Tip: To ensure high availability of the load balancer, it is recommended

that the number of replicas be no less than 3.

Filter nodes using labels to deploy the load balancer.
Tip:

« |tis recommended that the number of nodes meeting the

Node Labels . .
requirements be greater than the number of load balancer replicas.

« A label with the same key can only select one (if multiple are

selected, no matching hosts will be available).

Configure a Load Balancer - Alauda Container Platform

Parameter Description

« Instance: Any port within the range of 1-65535 that the load

Resource balancer instance can listen on can be provided for project use.
Allocation Port (Alpha): Only ports within the specified range can be allocated
Method for project use. This method allows for finer-grained resource control

when port resources are limited.

« When Resource Allocation Method is set to Instance, the load
balancer can be allocated to all projects associated with the current
cluster or to specified projects. In allocated projects, all Pods in all

namespaces can receive requests distributed by the load balancer.

« All Projects: Allocates the load balancer for use by all projects

associated with the current cluster.

» Specified Projects (Alpha): Click the dropdown box under
Specified Projects and click the checkbox on the left of the
project name to select one or more projects, allocating the load
Assigned
balancer for use by those specified projects.
Project
Tip: You can filter projects by entering project names in the

dropdown box.

» No Allocation (Alpha): Temporarily does not allocate any
project. After the load balancer is created, you can use the
Update Project operation to update the allocation project

parameters for the created load balancer.

 When Resource Allocation Method is set to Port, this item does
not need to be configured. Please manually allocate port information

after creating the load balancer.

6. Click Create. The creation process will take some time; please be patient.

Creating a Load Balancer by using the CLLI.

Configure a Load Balancer - Alauda Container Platform

kubectl apply -f test-alb.yaml -n cpaas-system

Update Load Balancer by using the web console

l NOTE

Updating the load balancer will cause a service interruption for 3 to 5 minutes. Please choose an

appropriate time for this operation!

1. Enter Platform Management.

2. In the left navigation bar, click Network Management > Load Balancer.
3. Click : > Update.

4. Update the network and resource configuration as needed.

» Please set specifications reasonably according to business needs. You can also refer to

the relevant How to properly allocate CPU and memory resources for guidance.
 Internal routing only supports updating from Disabled state to Enabled state.

5. Click Update.

Delete Load Balancer by using the web console

l NOTE

After deleting the load balancer, the associated ports and rules will also be deleted and cannot be

restored.

1. Enter Platform Management.

2. In the left navigation bar, click Network Management > Load Balancer.

Configure a Load Balancer - Alauda Container Platform

3. Click : > Delete, and confirm.

Delete Load Balancer by using the CLI

kubectl delete alb2 test-alb -n cpaas-system

Configure Listener Ports (Frontend)

The load balancer supports receiving client connection requests through listener ports and
corresponding protocols, including HTTPS, HTTP, gRPC, TCP, and UDP.

Prerequisites

If you need to add an HTTPS listener port, you should also contact the administrator to assign

a TLS certificate to the current project for encryption.

Example Frontend custom resource (CR)

Configure a Load Balancer - Alauda Container Platform

apiVersion: crd.alauda.io/v1l
kind: Frontend
metadata:
labels:
alb2.cpaas.io/name: alb—demoe
name: alb-demo-00080 @

namespace: cpaas-system

spec:
backendProtocol: "http"
certificate_name: "" Q
port: 80

protocol: httpa
serviceGroup: @
services:
- name: hello-world
namespace: default
port: 80
weight: 100 @

1. Required, indicate the ALB instance to which this Frontend belongs to.
2. Format as alb_name-port .
3. Format as $secret_ns/$secret_name .

4. Protocol of this Frontend itself.

e http|https|grpc|grpcs for |7 proxy.
e tcp|udp forl4 proxy.

5. For 14 proxy, serviceGroup is required. For |7 proxy, serviceGroup is. optional. When a
request arrives, ALB will first try to match it against rules associated with this Frontend .

Only if the request doesn't match any rule, ALB will then forward it to the default

serviceGroup specified inthe Frontend configuration.

6. weight configuration applicable to Round Robin and Weighted Round Robin scheduling

algorithms.

l NOTE

Configure a Load Balancer - Alauda Container Platform

ALB listens to ingress and automatically creates a Frontend or Rule. source field is defined as

follows:

1. spec.source.type currently only supports ingress .
2. spec.source.name isingress name.

3. spec.source.namespace iSingress namespace.

Creating Listener Ports (Frontend) by using the

web console

1. Go to Container Platform.

2. In the left navigation bar, click Network > Load Balancing.
3. Click the name of the load balancer to enter the details page.
4. Click Add Listener Port.

5. Refer to the following instructions to configure the relevant parameters.

Parameter Description

Protocol Supported protocols include HTTPS, HTTP, gRPC, TCP, and UDP. When
selecting HTTPS, a certificate must be added; adding a certificate is

optional for the gRPC protocol.

Note:

» When selecting the gRPC protocol, the backend protocol defaults to

gRPC, which does not support session persistence.

« If a certificate is set for the gRPC protocol, the load balancer will
unload the gRPC certificate and forward the unencrypted gRPC traffic

to the backend service.

Parameter

Internal
Routing

Group

Session

Persistence

Backend

Protocol

6. Click OK.

Configure a Load Balancer - Alauda Container Platform

Description

« If using a Google GKE cluster, a load balancer of the same container
network type cannot have both TCP and UDP listener protocols

simultaneously.

- When the load balancing algorithm is set to Round Robin (RR), traffic
will be distributed to the internal routing ports in the order of the internal
routing group.

- When the load balancing algorithm is set to Weighted Round Robin
(WRR), internal routes with higher weight values have a higher probability
of being selected; traffic will be distributed to the internal routing ports
based on the configured weight.

Tip: The probability calculation is the ratio of the current weight value to

the sum of all weight values.

Always forward specific requests to the backend service corresponding to

the aforementioned internal routing group.

Specific requests include (choose one):

e Source Address Hash: All requests from the same |IP address.
Note: In public cloud environments, the source address often changes,
which may cause requests from the same client to have different
source |IP addresses at different times, leading to the source address

hash technique not achieving the expected effect.
» Cookie key: Requests that carry a specified cookie.

» Header name: Requests that carry a specified header.

The protocol used for forwarding traffic to the backend services. For
example, if forwarding to backend Kubernetes or dex services, the

HTTPS protocol must be selected.

Configure a Load Balancer - Alauda Container Platform

Creating Listener Ports (Frontend) by using the
CLI

kubectl apply -f alb-frontend-demo.yaml -n cpaas-system

Subsequent Actions

For traffic from HTTP, gRPC, and HTTPS ports, in addition to the default internal routing
group, you can set more varied back-end service matching rules. The load balancer will
initially match the corresponding backend service according to the set rules; if the rule match
fails, it will then match the backend services corresponding to the aforementioned internal

routing group.

Related Operations

You can click the : icon on the right side of the list page or click Actions in the upper right

corner of the details page to update the default route or delete the listener port as needed.

l NOTE

If the resource allocation method of the load balancer is Port, only administrators can delete the

related listener ports in the Platform Management view.

Configure Rules

Add forwarding rules for the listener ports of HTTPS, HTTP, and gRPC protocols. The load

balancer will match the backend services based on these rules.

l NOTE

Configure a Load Balancer - Alauda Container Platform

Forwarding rules cannot be added for TCP and UDP protocols.

Example Rule custom resource (CR)

Configure a Load Balancer - Alauda Container Platform

Configure a Load Balancer - Alauda Container Platform

apiVersion: crd.alauda.io/v1l
kind: Rule
metadata:
labels:
alb2.cpaas.io/frontend: alb-demo-OOOSOQ
alb2.cpaas.io/name: alb-demoe
name: alb-demo-00080-test
namespace: cpaas-system

spec:
backendProtocol: ""e
certificate_name: "" e
dslx:
- type: METHOD
values:
- - EQ
- POST
- type: URL
values:
- - STARTS_WITH
- /app-a
- - STARTS_WITH
- /app-b
- type: PARAM
key: group
values:
- - EQ
- vip
- type: HOST
values:
- - ENDS_WITH
- .app.com

- type: HEADER
key: LOCATION
values:

- - IN
- east-1
- east-2

- type: COOKIE
key: uid
values:

- - EXIST

- type: SRC_IP

Configure a Load Balancer - Alauda Container Platform

values:
- - RANGE

- "1.1.2.1"

- "1.1.1.100"
enableCORS: false
priority: 4 e
serviceGroup: 6

services:

- name: hello-world
namespace: default
port: 80
weight: 100

1. Required, indicate the Frontend to which this rule belongs.
2. Required, indicate the ALB to which this rule belongs.

3. As same as Frontend .

4. As same as Frontend .

5. The lower the number, the higher the priority.

6. As same as Frontend .

dslx

dslx is a domain specific language, it is used to describe the matching criteria.
For example, below rule matches a request that satisfies all the following criteria:

 url starts with /app-a or /app-b

¢ method is post

e url param's group is vip

¢ hostis *.app.com

+ header's location is east-1 or east-2
¢ has a cookie name is uid

e source IPs come from 1.1.1.1-1.1.1.100

Configure a Load Balancer - Alauda Container Platform

dslx:
- type: METHOD
values:
- - EQ
- POST
- type: URL
values:
- - STARTS_WITH
- /app-a
- - STARTS_WITH
- /app-b
- type: PARAM
key: group
values:
- - EQ
- vip
- type: HOST
values:
- - ENDS_WITH
- .app.com

- type: HEADER
key: LOCATION
values:

- - IN
- east-1
- east-2

- type: COOKIE
key: uid
values:

- - EXIST

- type: SRC_IP
values:

- - RANGE
"1.1.1.1"
"1.1.1.100"

Creating Rule by using web console

1. Go to Container Platform.

Configure a Load Balancer - Alauda Container Platform

2. Click on Network > Load Balancing in the left navigation bar.

3. Click on the name of the load balancer.

4. Click on the name of the listener port.

5. Click Add Rule.

6. Refer to the following descriptions to configure the relevant parameters.

Parameter Description

- When the load balancing algorithm selects Round Robin (RR), the

access traffic will be distributed to the ports of the internal routes in the

order of the internal route group.

- When the load balancing algorithm selects Weighted Round Robin
Internal Route (WRR), the higher the weight value of the internal route, the higher the
Group probability it will be polled, and the access traffic will be distributed to the

ports of the internal routes according to the probability calculated based

on the configured weight.

Tip: The calculation method for probability is the ratio of the current

weight value to the sum of all weight values.

Rule Refers to the criteria for the load balancer to match backend services,
including rule indicators and their values. The relationship between

different rule indicators is 'and'.

« Domain Name: Supports adding wildcard domains and exact
domain names. In cases of equal priority for the same rule, if both
wildcard and exact domain name rule configurations exist, the exact

domain name forwarding rule will take effect first.

* URL: RegEx corresponds to URL regular expressions starting with

/ ; StartsWith corresponds to URL prefixes starting with / .

« |P: Equal corresponds to a specific IP address; Range corresponds

to an IP address range.

» Header: In addition to entering the key of the header, matching rules

must also be set. Equal corresponds to the specific value of the

Parameter

Session

Persistence

URL Rewrite

Configure a Load Balancer - Alauda Container Platform

Description

header; Range corresponds to the range of the header value; RegEx

corresponds to the header's regular expression.

« Cookie: In addition to entering the key of the cookie, matching rules
must also be set. Equal corresponds to the specific value of the

cookie.

« URL Param: In matching rules, Equal corresponds to a specific URL

parameter; Range corresponds to the URL parameter range.

» Service Name: The Service Name refers to the name of the service
that uses the gRPC protocol. When using the gRPC protocol, this
item can be configured, enabling traffic to be forwarded to the
corresponding service based on the provided Service Name, for

example: /helloworld.Greeter .

Always forwards specific access requests to the backend services
corresponding to the aforementioned internal route group.

Specific access requests refer to (choose one):

e Source Address Hash: All access requests originating from the same

IP address.
« Cookie Key: Access requests carrying the specified cookie.

» Header Name: Access requests carrying the specified header.

Rewrites the accessed address to the address of the platform's backend
service. This feature requires the StartsWith rule indicator of the URL to

be configured, and the rewrite address (rewrite-target) must start with /.

For example: After setting the domain name to bar.example.com and the
starting path of the URL to / , enabling the URL Rewrite functionality
and setting the rewrite address to /test. The access to bar.example.com

will rewrite the URL to bar.example.com/test.

Parameter

Backend

Protocol

Redirection

Rule Priority

Cross-Origin
Resource
Sharing
(CORS)

Configure a Load Balancer - Alauda Container Platform

Description

The protocol used to forward access traffic to the backend service. For
example: If forwarding to the backend's Kubernetes or dex service,

choose HTTPS protocol.

Forwards access traffic to a new redirected address rather than the
backend services corresponding to the internal route group.

For example: When a page at the original access address is upgraded or
updated, to avoid users receiving a 404 or 503 error page, the traffic can

be redirected to the new address by configuration.

 HTTP Status Code: The status code presented to the user by the

browser before redirecting to the new address.

« Redirect Address: When entering a relative address (for example,
/index.html), the purpose of the forwarded traffic will be load balancer
address/index.html; when entering an absolute address (for example,

https://www.example.com "), the purpose of the forwarded traffic will

be the entered address.

The priority of rule matching: there are 10 levels from 1 to 10, with 1
being the highest priority, and the default priority is 5.

When two or more rules are satisfied at the same time, the higher priority
rule is selected and applied; if the priority is the same, the system uses

the default matching rule.

CORS (Cross-origin resource sharing) is a mechanism that utilizes
additional HTTP headers to instruct the browser that a web application
running on one origin (domain) is permitted to access specified
resources from a different origin server. When a resource requests
another resource that is from a server with a different domain, protocol,

or port than its own, it initiates a cross-origin HTTP request.

https://www.example.com/
https://www.example.com/
https://www.example.com/

Configure a Load Balancer - Alauda Container Platform

Parameter Description

Used to specify the origins that are allowed to access.

Allowed -
o *: Allows requests from any origin.
Origins

 Domain Name: Allows requests from the current domain.

Used to specify the HTTP request headers allowed in CORS (Cross-
Origin Resource Sharing) to avoid unnecessary preflight requests and
improve request efficiency. Example entries are as follows:

Note: Other commonly used or custom request headers will not be listed
one by one here; please fill in according to actual conditions.

« Origin: Indicates the origin of the request, i.e., the domain that sends
the request.

Allowed o . T .
« Authorization: Used to specify the authorization information for the
Headers . e . L
request, usually for identification, such as Basic Authentication or
Token.

« Content-Type: Used to specify the content type of the
request/response, such as application/json, application/x-www-form-
urlencoded, etc.

« Accept: Used to specify the content types that the client can accept,
typically used when the client hopes to receive a specific type of
response.

7. Click Add.

Creating Rule by using the CLI

kubectl apply -f alb-rule-demo.yaml -n cpaas-system

Configure a Load Balancer - Alauda Container Platform

Logs and Monitoring

By combining visualized logs and monitoring data, issues or failures with the load balancer

can be quickly identified and resolved.

Viewing Logs

1. Go to Platform Management.

2. In the left navigation bar, click on Network Management > Load Balancer.
3. Click on Load Balancer Name.

4. In the Logs tab, view the logs of the load balancer's runtime from the container's

perspective.

Monitoring Metrics

l NOTE

The cluster where the load balancer is located must deploy monitoring services.

1. Go to Platform Management.
2. In the left navigation bar, click on Network Management > Load Balancer.
3. Click on Load Balancer Name.

4. In the Monitoring tab, view the metric trend information of the load balancer from the

node's perspective.

e Usage Rate: The real-time usage of CPU and memory by the load balancer on the

current node.

o Throughput: The overall incoming and outgoing traffic of the load balancer instance.

Configure a Load Balancer - Alauda Container Platform

Additional resources

e ALB Monitoring

How to properly allocate CPU and memory resources - Alauda Container Platform

Jo
1l

Q Alauda Container Platform

How to properly allocate CPU and memory

resources

For the platform's proposed specifications for small, medium, large, and custom production
environments, as well as the resource allocation methods for instances and ports, the

following suggestions can be referenced for deployment.

TOC

Small Production Environment

Medium Production Environment

Large Production Environment

Special Scenario Deployment Recommendations

Load Balancer Usage Mode Selection

Small Production Environment

For smaller business scales, such as having no more than 5 nodes in the cluster and only
used for running standard applications, a single load balancer is sufficient. It is recommended
to use it in a high availability mode with at least 2 replicas to ensure stability in the

environment.

You can isolate the load balancer using port isolation, allowing multiple projects to share it.

http://localhost:4173/container_platform/

How to properly allocate CPU and memory resources - Alauda Container Platform

The peak QPS measured in a lab environment for this specification is approximately 300
requests per second.
Create Load Balancer

* Name: loadbalancer

Display Name:

Small scale Medium scale Large scale Custom

Cluster less than 5 nodes Cluster less than 30 nodes Cluster more than 30 nodes or professional use

* Specification:

Resource Limit: CPU m Memory Mi

Type: Standalone High availability ’

* Access URL: 192.168.1.10
* Replicas: 2 +

* Node Labels: kubernetes.iofarch:armé4 x -

3 nodes meet the conditions

Allocated By: Instance Port i @

Medium Production Environment

When the business volume reaches a certain scale, such as having no more than 30 nodes in
the cluster and needing to handle high-concurrency business alongside running standard
applications, a single load balancer will still be adequate. It is advisable to employ a high

availability mode with at least 3 replicas to maintain stability in the environment.

You can utilize either port isolation or instance allocation methods to share the load balancer
among multiple projects. Of course, you can also create new load balancers for dedicated use

by core projects.

The peak QPS measured in a lab environment for this specification is around 10,000 requests

per second.

How to properly allocate CPU and memory resources - Alauda Container Platform

Create Load Balancer

* Name: loadbalancer

Display Name:

Small scale Medium scale Large scale Custom

@
Cluster less than 5 nodes Cluster less than 30 nodes Cluster more than 30 nodes For professional use

* Specification:

Resource Limit: CPU Core Memory Gi

Type: Standalone High availability ’

* Access URL: 192.168.1.20

* Replicas: | = 3 + ‘

* MNode Labels: kubernetes.iofarch:arme4d x -

3 nodes meet the conditions

Allocated By: = Instance Port i @

Large Production Environment

For larger business volumes, such as having more than 30 nodes in the cluster and needing
to handle high-concurrency business as well as long-lived data connections, it is
recommended to use multiple load balancers, each in a high availability type with at least 3

replicas to ensure stability in the environment.

You can isolate the load balancer using either port isolation or instance allocation methods
for multiple projects to share it. You may also create new load balancers for exclusive use by

core projects.

The peak QPS measured in a lab environment for this specification is approximately 20,000

requests per second.

How to properly allocate CPU and memory resources - Alauda Container Platform

Create Load Balancer

* Mame:

Display Name:

* Specification:

Resource Limit:

Type:

* Access URL:

* Replicas:

* Node Labels:

Allocated By:

2 nodes meet the

loadbalancer

Custom
more than 30 nodes For professional use

Medium scale

Cluster les

Small scale

Cluster less than 5 nodes

Large scale
9 ©)
Cluste .

s than 30 nodes

CcPU Core Memory Gi

Standalone High availability ’
192.168.1.30
= 3 +

kubernetes.iofarch:armBd x -

conditions

Instance | Port i @

Special Scenario Deployment Recommendations

Scenario

Function
Testing

Testing
Environment

Core

Applications

Transferring
Large Scale
Data

Deployment Recommendations

It is advisable to deploy a single instance of the load balancer.

If the testing environment meets the definitions of small or medium as
stated above, using a single point load balancer is sufficient. The load

balancer instance can be shared among multiple projects.

It is recommended to use specific load balancers exclusively for core

applications.

Due to minimal memory consumption caused by the load balancer itself, it
is sufficient to reserve 2Gi of memory even for the large specification.
However, if the business requires transferring large-scale data, which will
lead to substantial memory consumption, the memory allocation for the load

balancer should be increased accordingly.

It is recommended to gradually expand the memory of the load balancer in

How to properly allocate CPU and memory resources - Alauda Container Platform

Scenario Deployment Recommendations

custom specification scenarios, closely monitoring memory usage to

ultimately arrive at an acceptable memory size for reasonable usage rates.

Load Balancer Usage Mode Selection

Usage Mode

(Recommended)
Allocate the load
balancer as an instance
resource to a single
project

Advantages

» Management is

relatively simple.

» Each project has its
own load balancer,
ensuring rule isolation
and resource
separation, with no

interference.

Disadvantages

In host network mode, the cluster
must possess a significant
number of nodes available for the
load balancer, resulting in high
resource consumption

requirements.

How to properly allocate CPU and memory resources - Alauda Container Platform

Usage Mode

Allocate the load
balancer as an instance
resource to multiple

projects

Dynamically allocate
load balancer resources
by port, with different
projects using different

ports

Advantages

Management is relatively

straightforward.

The rules between
projects isolate them,

ensuring no interference.

Disadvantages

Since all assigned projects hold
full permissions for the load
balancer instance, when one
project configures the ports and
rules of the load balancer, the

following situations may arise:

e The rules configured by that
project may affect other

projects.

o Mis-operations during load
balancer configuration might

alter other projects' settings.

 Traffic requests from a
particular business may
impact the overall availability

of the load balancer instance.

« Management complexity
increases. Platform
administrators must actively
plan and allocate ports for
projects and configure

external service mappings.

e The maturity of port-based
allocation is lower. Currently, it
is used by fewer clients and
requires further refining of

features.

» Resource conflicts. All
services using the same load
balancer may face scenarios

where a single service

How to properly allocate CPU and memory resources - Alauda Container Platform

Usage Mode Advantages Disadvantages

negatively impacts the entire

load balancer.

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster - Alauda Container Platform

0 Alauda Container Platform Q

Forwarding IPv6 Traffic to IPv4 Addresses

within the Cluster

By configuring an external load balancer for the cluster, we can forward IPv6 traffic to the
internal IPv4 addresses within the cluster. This allows us to introduce IPv6 capabilities over
the existing IPv4 network, providing greater flexibility and scalability to our system

architecture, and better addressing diverse network demands.

User

External LoadBalancer

—IPv6

Internal LoadBalancer Internal LoadBalancer Internal LoadBalancer

TOC

Configuration Method

Result Verification

http://localhost:4173/container_platform/

Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster - Alauda Container Platform

Configuration Method

1. Configure the IPv6 address for the node where the load balancer is located.

2. Ensure that the external load balancer has an IPv6 address, and make sure that traffic
accessing the load balancer's IPv6 address can be forwarded to the IPv6 address of the

node where the load balancer resides.

Once the above configuration is completed, the IPv4 services mounted on the load balancer

can provide external IPv6 access capabilities through the load balancer.

Result Verification

After the configuration, accessing the IPv6 address of the external load balancer should allow

normal access to the application.

A " | [2004::192:168:128:156]

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

Calico Network Supports WireGuard Encryption - Alauda Container Platform

Q Alauda Container Platform

Calico Network Supports WireGuard
Encryption

Calico supports WireGuard encryption for both IPv4 and IPv6 traffic, which can be

independently enabled via parameters in the FelixConfiguration resource.

TOC

Installation Status
Default Installation
Not Installed by Default

Terminology

Notes

Prerequisites

Procedure

Result Verification

IPv4 Traffic Verification

Installation Status

Default Installation

http://localhost:4173/container_platform/

Calico Network Supports WireGuard Encryption - Alauda Container Platform

Operating System Kernel Version

Linux 5.6 and above are installed by default
Ubuntu 20.04 5.4.0-135-generic

Kylin Linux Advanced Server V10 - SP3 4.19.90-52.22.v2207.ky10.x86_64

Not Installed by Default

Operating System Kernel Version

openEuler 4.18.0-147.5.2.13.h996.eulerosv2rl0.x86_64

CentOS 7 3.10.0-1160.el7.x86_64

Redhat 8.7 4.18.0-425.3.1.el8.x86_64

Kylin Linux Advanced Server V10 - SP2 4.19.90-24.4.v2101.ky10.x86_64

Kylin Linux Advanced Server V10 - SP1 4.19.90-23.8.v2101.ky10.x86_64

Kylin Linux Advanced Server V10 4.19.90-11.ky10.x86_64
Terminology

Term Explanation

wireguardEnabled Enable encryption for IPv4 traffic over the IPv4 Underlay network.

wireguardEnabledV6 Enable encryption for IPv6 traffic over the IPv6 Underlay network.

Notes

Calico Network Supports WireGuard Encryption - Alauda Container Platform

1. When using the Calico network plugin, ensure that the natOutgoing parameter is set to
true to support WireGuard encryption. By default, this parameter is correctly configured

for the Calico subnet when creating the cluster, requiring no additional configuration.

2. WireGuard supports encryption for both IPv4 and IPv6 traffic; if you need to encrypt both
types of traffic, configuration must be done separately. For detailed parameter
configuration, refer to the Felix Configuration Documentation -, configuring both

wireguardEnabled and wireguardEnabledvé parameters.

3. If WireGuard is not installed by default, refer to the WireGuard Installation Guide -~ for
manual installation, although there may be cases where manual installation of the

WireGuard module fails.

4. Traffic between containers across nodes will be encrypted, including network traffic from
one host to another; however, communication between Pods on the same node and traffic

between a Pod and its host node will not be encrypted.

Prerequisites

o WireGuard must be installed on all nodes in the cluster beforehand. For details, refer to the
WireGuard Installation Documentation ~. Nodes without WireGuard installed do not support

encryption.

Procedure

1. Enable or disable IPv4 and IPv6 encryption.

Note: The following commands must be executed in the CLI tool on the Master node where

the node resides.

o Enable IPv4 encryption only

kubectl patch felixconfiguration default --type='merge' -p '{"spec":

{"wireguardEnabled":true}}'

https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://docs.tigera.io/calico/latest/reference/resources/felixconfig#felix-configuration-definition
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/
https://www.wireguard.com/install/

Calico Network Supports WireGuard Encryption - Alauda Container Platform

e Enable IPv6 encryption only

kubectl patch felixconfiguration default --type='merge' -p '{"spec":
{"wireguardEnabledVvé":true}}'

o Enable both IPv4 and IPv6 encryption

kubectl patch felixconfiguration default --type='merge' -p '{"spec":
{"wireguardEnabled":true, "wireguardEnabledv6é":true}}'

o Disable both IPv4 and IPv6 encryption

¢ Method 1: Execute the command in the CLI tool to disable encryption.

kubectl patch felixconfiguration default --type='merge' -p '{"spe

c":{"wireguardEnabled":false, "wireguardEnabledvé":false}}"'

+ Method 2: Modify the felixconfiguration configuration file to disable encryption.

1. Execute the following command to open the felixconfiguration configuration file.

kubectl get felixconfiguration -o yaml default

2. Set wireguardEnabled and wireguardEnabledvé parameters to false to

disable WireGuard encryption.

Calico Network Supports WireGuard Encryption - Alauda Container Platform

apiVersion: crd.projectcalico.org/vl
kind: FelixConfiguration
metadata:
annotations:
projectcalico.org/metadata: '{"uid":"f5facabd-8304-46d6-81c1l
-f1816235b487", "creationTimestamp":"2024-08-06T03:46:512"}"'
generation: 2
name: default
resourceVersion: '"890216"
spec:
bpfLogLevel: ""
floatingIPs: Disabled
logSeverityScreen: Info
reportingInterval: 0Os

wireguardEnabled: false

wireguardEnabledVv6: false

2. After completing the Calico WireGuard encryption configuration, execute the following
command to confirm the WireGuard encryption status. If both IPv4 and IPv6 encryption are
enabled, the presence of wireguardPublicKey or wireguardPublicKeyV6 under the

Status field indicates successful activation; if both IPv4 and IPv6 encryption are
disabled, these fields will not contain wireguardPublickKey or wireguardPublicKeyV6 |,

indicating successful deactivation.

calicoctl get node <NODE-NAME> -0 yaml # Replace <NODE-NAME> with the n
ame of the node.

Output:

Status:

wireguardPublicKey: L/MUP9+YXX/XXXXXXXXXXXX/XXXXXXXXXX =

Result Verification

Calico Network Supports WireGuard Encryption - Alauda Container Platform

This document uses IPv4 traffic verification as an example; IPv6 traffic verification is similar to

IPv4 and will not be repeated here.

IPv4 Traffic Verification

1. After configuring WireGuard encryption, check the routing information, where traffic

between nodes preferentially uses the wireguard.cali interface for message forwarding.

Calico Network Supports WireGuard Encryption - Alauda Container Platform

Calico Network Supports WireGuard Encryption - Alauda Container Platform

root@test:~# ip rule # View current routing rules
0: from all lookup local
99: not from all fwmark 0x100000/0x100000 lookup 1 # For all p
ackets not marked as 0x100000, use routing table 1 for routing lookup
32766: from all lookup main
32767 : from all lookup default

root@test:~# ip route show table 1 # Display routing entries for tab
le 1.

10.3.138.0 dev wireguard.cali scope link

10.3.138.0/26 dev wireguard.cali scope link

throw 10.3.231.192

10.3.236.128 dev wireguard.cali scope link # Traffic to reach I
P address 10.3.236.128 will be sent through the wireguard.cali interfac
e

10.3.236.128/26 dev wireguard.cali scope link

throw 10.10.10.124/30

10.10.10.200/30 dev wireguard.cali scope link

throw 10.10.20.124/30

10.10.20.200/30 dev wireguard.cali scope link

throw

10.13.138.0 dev wireguard.cali scope link

10.13.138.0/26 dev wireguard.cali scope link

throw 10.13.231.192/26

10.13.236.128 dev wireguard.cali scope link

10.13.236.128/26 dev wireguard.cali scope link

root@test:~# ip r get 10.10.10.202 # Routing path from the current n
ode to the target IP address 10.10.10.202

10.10.10.202 dev wireguard.cali table 1 src 10.10.10.127 uid 0 cac
he # When accessing the target IP address 10.10.10.202 from the curre
nt node, the packet will be sent through the wireguard.cali interface,
using routing table 1, and the source address will be set to 10.10.10.1
27

root@test:~# ip route # Show the main routing table
default via 192.168.128.1 dev eth® proto static
10.3.138.0/26 via 10.3.138.0 dev vxlan.
blackhole 10.3.231.193
10.3.231.194
10.3.231.195
10.3.231.196
10.3.231.197

Calico Network Supports WireGuard Encryption - Alauda Container Platform

3.231.192/26 proto 80

dev cali8dcd31cId00 scope 1link
dev cali3012b5b29b scope link
dev calibeefea2ff87 scope 1link
dev cali2b27d5e4053 scope link
dev calila35dbdd639 scope 1link

calico on link

2. Capture packets on the node to observe cross-node traffic.

root@test:~# ip a s wireguard.cali # View detailed information about

the wireguard.cali network interface

30: wireguard.cali: <POINTOPOINT, NOARP,UP,LOWER_UP> mtu 1440 qgdisc

nogqueue state UNKNOWN group default glen 1000

link/none

inet 10.10.10.127/32 scope global wireguard.cali # The IP address

assigned to wireguard.cali interface is 10.10.10.127

valid_1ft forever preferred_1ft forever

root@test:~# tcpdump -i wireguard.cali -nnve icmp # Capture and displ

ay ICMP packets through wireguard.cali

tcpdump: listening on wireguard.cali, link-type RAW (Raw IP), captu

re size 262144 bhytes

08:58:36.987559 ip: (tos OxO, ttl 63, id 29731, offset 0, flags [D

F], proto ICMP (1), length 84)
10.10.10.125 > 10.10.10.202: ICMP echo request, id 1110, seq O,
gth 64

08:58:36.988683 ip: (tos 0x0, ttl 63, id 1800, offset 0, flags [nhon

e], proto ICMP (1), length 84)

10.10.10.202 > 10.10.10.125: ICMP echo reply, id 1110, seq 0, lengt

h 64
2 packets captured
2 packets received by filter

0 packets dropped by kernel

3. Testing shows that IPv4 type traffic is forwarded via the wireguard.cali interface.

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Q Alauda Container Platform Q

Kube-OVN Overlay Network Supports IPsec
Encryption

This document provides a detailed guide on enabling and disabling IPsec encrypted tunnel
traffic in the Kube-OVN Overlay network. Since OVN tunnel traffic is transmitted through
physical routers and switches, which may be located in untrusted public networks or at risk of
attacks, enabling IPsec encryption can effectively prevent traffic data from being monitored

and tampered with.

TOC

Terminology
Notes
Prerequisites
Procedure
Enable IPsec

Disable IPsec

Terminology
Term Explanation
IPsec A protocol and technology used to protect and validate data transmitted over the

internet. It provides secure communication at the IP layer and is primarily used to

http://localhost:4173/container_platform/

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

Term Explanation

create virtual private networks (VPNs) and protect the transmission of IP packets.

IPsec ensures data security primarily through the following methods:

» Data Encryption: Through encryption technology, IPsec can ensure that data is not
stolen or altered during transmission. Common encryption algorithms include AES,

3DES, etc.

« Data Integrity Check: IPsec uses hash functions (such as SHA-1, SHA-256) to
verify the integrity of data, ensuring that data has not been modified during

transmission.

» Authentication: IPsec can verify the identity of both parties involved in
communication using various methods (such as pre-shared keys, digital

certificates) to prevent unauthorized access.

« Key Management: IPsec uses the Internet Key Exchange (IKE) protocol to

negotiate and manage encryption keys.

Notes

e Enabling IPsec may cause a few seconds of network interruption.

o If the kernel version is 3.10.0-1160.el7.x86_64, enabling the IPsec feature of Kube-OVN

may encounter compatibility issues.

Prerequisites

Please execute the following command to check whether the current operating system kernel
supports IPsec-related modules. If the output shows that all XFRM-related modules are y or

m , it indicates support for IPsec.

cat /boot/config-$(uname -r) | grep CONFIG_XFRM

Output:

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

CONFIG_XFRM_ALGO=y
CONFIG_XFRM_USER=y
CONFIG_XFRM_SUB_POLICY=y
CONFIG_XFRM_MIGRATE=y
CONFIG_XFRM_STATISTICS=y
CONFIG_XFRM_IPCOMP=m

Procedure

Note: Unless otherwise specified, the following commands must be executed in the CLI tool

on the cluster Master node.

Enable IPsec

1. Modify the configuration file of kube-ovn-controller.

1. Execute the following command to edit the YAML configuration file of kube-ovn-

controller.

kubectl edit deploy kube-ovn-controller -n kube-system

2. Modify the specified fields according to the following instructions.

spec:
template:
spec:
containers:
- args:
- --enable-ovn-ipsec=true
securityContext:

runAsUser: 0

Field explanations:

+ spec.template.spec.containers[0].args: Add - --enable-ovn-ipsec=true under
this field.

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

* spec.template.spec.containers[0].securityContext.runAsUser: Change the value
of this field to 0.

3. Save the changes.
2. Modify the kube-ovn-cni configuration file.

1. Execute the following command to edit the YAML configuration file of kube-ovn-cni.

kubectl edit ds kube-ovn-cni -n kube-system

2. Modify the specified fields according to the following instructions.

spec:
template:
spec:
containers:
- args:
- --enable-ovn-ipsec=true

volumeMounts:

- mountPath: /etc/ovs_ipsec_keys
name: ovs-ipsec-keys
volumes:
- name: ovs-ipsec-keys
hostPath:

path: /etc/origin/ovs_ipsec_keys

Field explanations:
+ spec.template.spec.containers[0].args: Add - --enable-ovn-ipsec=true under
this field.

+ spec.template.spec.containers[0].volumeMounts: Add the mount path and mount

the volume named ovs-ipsec-keys to the container.

« spec.template.spec.volumes: Add a volume named ovs-ipsec-keys of type hostPath
under this field.

3. Save the changes.

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

3. Verify whether the feature has been successfully enabled.

1. Execute the following command to enter the kube-ovn-cni Pod.

kubectl exec -it -n kube-system $(kubectl get pods -n kube-system -1
app=kube-ovn-cni -o=jsonpath='{.items[0].metadata.name}') -- /bin/bas
h

2. Execute the following command to check the number of Security Associations

connections. If there are (humber of nodes - 1) up, it indicates a successful enablement.

ipsec status | grep "Security"

Output:

Security Associations (2 up, O connecting): # Since there are 3 node

s in this cluster, you can see that the number of connections is 2 up

Disable IPsec

1. Modify the configuration file of kube-ovn-controller.

1. Execute the following command to edit the YAML configuration file of kube-ovn-

controller.

kubectl edit deploy kube-ovn-controller -n kube-system

2. Modify the specified fields according to the following instructions.

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

spec:
template:
spec:
containers:
- args:
- --enable-ovn-ipsec=false
securityContext:
runAsUser: 65534

Field explanations:

* spec.template.spec.containers[0].args: Change the value of this field enable-

ovn-ipsec to false.

* spec.template.spec.containers[0].securityContext.runAsUser: Change the value
of this field to 65534.

3. Save the changes.
2. Modify the kube-ovn-cni configuration file.

1. Execute the following command to edit the YAML configuration file of kube-ovn-cni.

kubectl edit ds kube-ovn-cni -n kube-system

2. Modify the specified fields according to the following instructions.

« Configuration before modification

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

spec:
template:
spec:
containers:
- args:
- --enable-ovn-ipsec=true

volumeMounts:

- mountPath: /etc/ovs_ipsec_keys
name: ovs-ipsec-keys

volumes:

- name: ovs-ipsec-keys
hostPath:

path: /etc/origin/ovs_ipsec_keys

Field explanations:

* spec.template.spec.containers[0].args: Change the value of this field enable-

ovn-ipsec to false.

* spec.template.spec.containers[0].volumeMounts: Remove the mount path

named ovs-ipsec-keys under this field.

¢ spec.template.spec.volumes: Remove the volume named ovs-ipsec-keys, type
hostPath under this field.

« Configuration after modification

spec:
template:
spec:
containers:
- args:
- --enable-ovn-ipsec=false
volumeMounts:

volumes:

3. Save the changes.

3. Verify whether the feature has been successfully disabled.

Kube-OVN Overlay Network Supports IPsec Encryption - Alauda Container Platform

1. Execute the following command to enter the kube-ovn-cni Pod.

kubectl exec -it -n kube-system $(kubectl get pods -n kube-system -1
app=kube-ovn-cni -o=jsonpath='{.items[0].metadata.name}') -- /bin/bas
h

2. Execute the following command to check the connection status. If there is no output, it

indicates successful disabling.

ipsec status

ALB Monitoring - Alauda Container Platform

Q Alauda Container Platform

ALB Monitoring

TOC

Terminology

Procedure

Monitoring Metrics
ALB Traffic Monitoring
ALB Resource Usage

Ingress, HTTPRoute, Rule Traffic Monitoring

Terminology

Term Description

ALB A self-developed layer-7 load balancer by the platform.

Procedure

1. Go to Platform Management.

2. In the left navigation bar, click on Operation Center > Monitoring > Monitoring
Dashboard.

http://localhost:4173/container_platform/

ALB Monitoring - Alauda Container Platform

3. Click on Cluster at the top of the page to switch to the cluster you want to monitor.
4. Click on Switch in the upper right corner of the page.
5. You can enter the ALB Status monitoring dashboard through the following two methods:

e Method 1: Click on the container-platform card to expand the monitoring directory, then
click on the ALB Status name to enter the monitoring dashboard. You can set this

monitoring dashboard as the main dashboard if needed.

e Method 2: Enter a keyword (e.g., alb) in the search box and search, then click on the
ALB Status name to enter the monitoring dashboard. You can set this monitoring

dashboard as the main dashboard if needed.
6. View various monitoring metrics through the dashboard.

+ Select the namespace to monitor: Click on the namespace at the top of the page to

select the namespace to monitor, defaulting to all, meaning monitoring all namespaces.

¢ Select the ALB to monitor: Click on the name at the top of the page to select the ALB

to monitor, defaulting to all, meaning monitoring all ALBs.

Monitoring Metrics

Displays the monitoring metrics of total traffic, resource usage, Ingress (inbound rules),
HTTPRoute (routing rules of type HTTPRoute), and Rule (rules that are neither Ingress nor

HTTPRoute) for the selected ALB within the last 5 minutes.

Note: All data are monitoring data collected in the last 5 minutes.

ALB Traffic Monitoring

Monitoring Metric Description

Active)]
The number of active connections on the selected ALB.

Connections

ALB Monitoring - Alauda Container Platform

Monitoring Metric Description

Requests Per .
The total number of requests received per second on the selected ALB.

Second

The proportion of 4XX (such as 404) and 5XX error requests occurring
Error Rate

per second on the selected ALB.
Latency The average latency of requests on the selected ALB.

ALB Resource Usage

Monitoring Metric Description

CPU Usage The CPU usage of the selected ALB.

Memory Usage The memory usage of the selected ALB.
Network ReceivelTransmit The network 1/O throughput of the selected ALB.
Disk Read/Write Rate The disk 1/0O throughput of the selected ALB.

Ingress, HTTPRoute, Rule Traffic Monitoring

Monitoring o
) Description
Metric

. The number of requests received per second by the
QPS (Queries

Ingress/HTTPRoute/Rule on the selected ALB, with the default unit being
Per Second)

reqg/s.

Request BPS))
The total size of requests received per second by the

(Bytes Per
Ingress/[HTTPRoute/Rule on the selected ALB.

Second)

Response BPS)
The total size of responses sent by the Ingress/HTTPRoute/Rule on the

(Bytes Per
selected ALB.

Second)

Monitoring

Metric

Error Rate

P50, P90, P99

Upstream P50,
Upstream P90,
Upstream P99

ALB Monitoring - Alauda Container Platform

Description

The percentage of errors that occurred when processing requests by the
Ingress/HTTPRoute/Rule on the selected ALB.

The response times for requests on the selected ALB, specifically the
median response time. It indicates that 50%, 90%, and 99% of requests

have a response time less than or equal to this value.

Note: The principle of P50, P90, and P99 is to sort the collected data from
smallest to largest and take the data values at the 50%, 90%, and 99%
positions; thus, 50%, 90%, and 99% of the data collected are below this
value. Percentiles help analyze the distribution of the data and identify

various extreme situations.

The request response times for upstream services. It indicates that 50%,
90%, and 99% of requests sent to upstream services have response times

less than or equal to this value.

Trouble Shooting - Alauda Container Platform

0 Alauda Container Platform

Trouble Shooting

How to Solve Inter-node Comm Find Who Cause the Error

http://localhost:4173/container_platform/

How to Solve Inter-node Communication Issues in ARM Environments? - Alauda Container Platform

Q Alauda Container Platform Q

How to Solve Inter-node Communication

Issues in ARM Environments?

When using lower kernel versions and certain domestic network cards, there may be an issue
where the network card computes checksums incorrectly after enabling Checksum Offload.
This can lead to communication failures between nodes in the Kube-OVN Overlay network.

The specific solutions are as follows:

+ Solution 1: Upgrade the Kernel Version. It is recommended to upgrade the kernel

version to 4.19.90-25.16.v2101 or a higher version.

e Solution 2: Disable Checksum Offload. If it is not possible to immediately upgrade the
kernel version and inter-node communication issues occur, you can disable the Checksum

Offload for the physical network card using the following command.

ethtool -K eth® tx off

http://localhost:4173/container_platform/

Find Who Cause the Error - Alauda Container Platform

0 Alauda Container Platform Q

Find Who Cause the Error

The X-ALB-ERR-REASON field in the response header of the error request will indicate the

reason for the error.

The error reason might be:

InvalidBalancer : no balancer found for xx
BackendError : read xxx byte data from backend

InvalidUpstream : no rule match

http://localhost:4173/container_platform/

	Networking
	Introduction
	Architecture
	Concepts
	Guides
	How To
	Trouble Shooting

	Introduction
	Advantages
	Application Scenarios
	Usage Limitations

	Architecture
	Understanding Kube-OVN
	Upstream OVN/OVS Components
	ovn-central
	ovs-ovn

	Core Controller and Agent
	kube-ovn-controller
	kube-ovn-cni

	Monitoring, Operation and Maintenance Tools and Extension Components
	kube-ovn-speaker
	kube-ovn-pinger
	kube-ovn-monitor
	kubectl-ko

	Understanding ALB
	Core components
	Quick Start
	Deploy the ALB Operator
	Deploy an ALB Instance
	Run a demo application

	ALB Common Concepts
	Auth
	Network Mode
	Host Network Mode
	Advantages:
	Disadvantages:

	Container Network Mode
	Advantages:
	Disadvantages:

	Frontend
	Additional resources

	Rules
	dslx

	Project Isolation
	Project Mode
	Port Project Mode

	Relationship between ALB, ALB Instance, Frontend/FT, Rule, Ingress, and Project
	Ingress
	Ingress Controller
	ALB
	ALB Instance
	ALB-Operator
	Frontend (abbreviation: FT)
	RULE

	ALB Leader
	Project

	Additional resources:

	Understanding MetalLB
	Terminology
	Principles of High Availability in MetalLB
	MetalLB's Algorithm for Selecting VIP Host Nodes
	External Address Pools and Number of Nodes
	Calculation Formula
	Application Example

	Additional resources

	Concepts
	Auth
	Basic Concept
	What is Auth
	Supported Auth Methods
	Auth Configuration Methods
	Auth Result Handling

	Quick Start
	Deploy ALB
	Configure Secret and Ingress
	Verify

	Related Ingress Annotations
	forward-auth
	Construct Related Annotations
	auth-url
	auth-method
	auth-proxy-set-headers

	Construct app-request related annotations
	auth-response-headers

	cookie handling
	Redirect sign related configuration
	auth-signin
	auth-signin-redirect-param
	auth-request-redirect

	basic-auth
	auth-realm
	auth-type
	auth-secret
	auth-secret-type

	CR
	ALB Special Ingress Annotation
	Auth-Enable

	Ingress-Nginx Auth Related Other Features
	Global-Auth
	No-Auth-Locations

	Note: Incompatible Parts with Ingress-Nginx
	Troubleshooting

	Ingress-nginx Annotation Compatibility
	Basic concepts
	Supported ingress-nginx annotations

	TCP/HTTP Keepalive
	Basic Concept
	CRD

	ModSecurity
	Terminology
	Procedure to Operate
	Method One: Add Annotations
	Method Two: Configure CR

	Related Explanations
	Override

	Configuration Example

	Comparison Among Different Ingress Method
	For L4(TCP/UDP) Traffic
	For L7(HTTP/HTTPS) Traffic
	Ingress
	GatewayAPI
	ALB Rule

	HTTP Redirect
	Basic Concept
	CRD
	Ingress Annotation
	SSL-Redirect

	Port Level Redirect
	Rule Level Redirect

	L4/L7 Timeout
	Basic Concept
	CRD
	What Timeout Means
	Ingress Annotation
	Port Level Timeout

	GatewayAPI
	OTel
	Terminology
	Prerequisites
	Procedure
	Update ALB Configuration

	Related Operations
	Configuring OTel in Ingress
	Using OTel in Applications
	Inheritance

	Additional Notes
	Sampling Strategies
	Attributes

	Configuration Example

	Guides
	Creating Services
	Why Service is Needed
	Example ClusterIP type Service:
	Headless Services
	Creating a service by using the web console
	Creating a service by using the CLI
	Example: Accessing an Application Within the Cluste
	Example: Accessing an Application Outside the Cluste
	Example: ExternalName type of Servce
	LoadBalancer Type Service Annotations
	AWS EKS Cluster
	Huawei Cloud CCE Cluster
	Azure AKS Cluster
	Google GKE Cluster

	Creating Ingresses
	Implementation Method
	Quick Start

	Prerequisites
	Example Ingress:
	Creating a Ingress by using the web console
	Creating a Ingress by using the CLI

	Configure Gateway
	Terminology
	Prerequisites
	Example Gateway and Alb2 custom resource (CR)
	Creating Gateway by using the web console
	Creating Gateway by using the CLI
	Viewing Resources Created by the Platform
	Updating Gateways
	Updating Gateway by using the web console
	Add Listener
	Prerequisites

	Add Listener by using the web console
	Add Listener by using the CLI
	Creating Route Rules
	Example HTTPRoute custom resource (CR)
	Creating Route by using the web console
	Creating Route by using the CLI

	Creating a Domain Name
	Example Domain custom resource (CR)
	Creating Domain by using the web console
	Creating Domain by using the CLI
	Subsequent Actions
	Additional resources

	Creating Certificates
	Creating a certificate by using the web console

	Creating External IP Address Pool
	Prerequisites
	Constraints and Limitations
	Deploying the MetalLB Plugin
	Example IPAddressPool custom resource (CR)
	Creating an External IP Address Pool by using the web console
	Creating an External IP Address Pool by using the CLI
	View Alarm Policy

	Creating BGP Peers
	Terminology
	Prerequisites
	Example BGPPeer custom resource (CR)
	Creating a BGPPeer by using the web console.
	Creating a BGPPeer by using the CLI

	Configure Subnets
	IP Allocation Rules
	Calico Network
	Constraints and Limitations
	Example Subnet custom resource (CR) with Calico Network
	Creating a Subnet in the Calico network by using the web console
	Creating a Subnet in the Calico network by using the CLI
	Reference Content

	Kube-OVN Network
	Example Subnet custom resource (CR) with Kube-OVN Overlay Network
	Creating a Subnet in the Kube-OVN Overlay Network by using the web console
	Creating a Subnet in the Kube-OVN Overlay Network by using the the CLI
	Underlay Network
	Usage Instructions
	Add Bridge Network by using the web console (Optional)
	Add Bridge Network by using the CLI
	Add VLAN by using the web console (Optional)
	Add VLAN by using the CLI
	Example Subnet custom resource (CR) with Kube-OVN Underlay Network
	Creating a Subnet in the Kube-OVN Underlay Network by using the web console
	Creating a Subnet in the Kube-OVN Underlay Network by using the CLI
	Related Operations

	Subnet Management
	Updating Gateway by using the web console
	Updating Gateway by using the CLI
	Updating Reserved IPs by using the web console
	Updating Reserved IPs by using the CLI
	Assigning Projects by using the web console
	Assigning Projects by using the CLI
	Assigning Namespaces by using the web console
	Assigning Namespaces by using the CLI
	Expanding Subnets by using the web console
	Expanding Subnets by using the CLI
	Managing Calico Networks
	Delete Subnet by using the web console
	Delete Subnet by using the CLI

	Creating Network Policies
	Creating NetworkPolicy by using the web console
	Creating NetworkPolicy by using the CLI
	Reference

	Creating Admin Network Policies
	Notes
	Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the web console
	Creating AdminNetworkPolicy or BaselineAdminNetworkPolicy by using the CLI
	Additional resource

	Configure Cluster Network Policies
	Notes
	Procedure

	How To
	Deploy High Available VIP for ALB
	Method 1: Use LoadBalancer type internal routing to provide VIP
	Method 2: Use external load balancer device to provide VIP

	Soft Data Center LB Solution (Alpha)
	Prerequisites
	Procedure
	Verification

	Preparing Kube-OVN Underlay Physical Network
	Usage Instructions
	Terminology Explanation
	Environment Requirements
	Configuration Example
	Switch Configuration
	Check Network Connectivity
	Platform Configuration

	Automatic Interconnection of Underlay and Overlay Subnets
	Procedure

	Use OAuth Proxy with ALB
	Overview
	Procedure
	Result

	Creating GatewayAPI Gateway
	Requirements
	Deploy MetalLB
	Set Pod Security Policies to Privileged Mode

	Procedure
	Configure a Load Balancer
	Prerequisites
	Example ALB2 custom resource (CR)
	Creating a Load Balancer by using the web console.
	Creating a Load Balancer by using the CLI.
	Update Load Balancer by using the web console
	Delete Load Balancer by using the web console
	Delete Load Balancer by using the CLI
	Configure Listener Ports (Frontend)
	Prerequisites
	Example Frontend custom resource (CR)
	Creating Listener Ports (Frontend) by using the web console
	Creating Listener Ports (Frontend) by using the CLI
	Subsequent Actions
	Related Operations

	Configure Rules
	Example Rule custom resource (CR)
	dslx

	Creating Rule by using web console
	Creating Rule by using the CLI
	Logs and Monitoring
	Viewing Logs
	Monitoring Metrics
	Additional resources

	How to properly allocate CPU and memory resources
	Small Production Environment
	Medium Production Environment
	Large Production Environment
	Special Scenario Deployment Recommendations
	Load Balancer Usage Mode Selection

	Forwarding IPv6 Traffic to IPv4 Addresses within the Cluster
	Configuration Method
	Result Verification

	Calico Network Supports WireGuard Encryption
	Installation Status
	Default Installation
	Not Installed by Default

	Terminology
	Notes
	Prerequisites
	Procedure
	Result Verification
	IPv4 Traffic Verification

	Kube-OVN Overlay Network Supports IPsec Encryption
	Terminology
	Notes
	Prerequisites
	Procedure
	Enable IPsec
	Disable IPsec

	ALB Monitoring
	Terminology
	Procedure
	Monitoring Metrics
	ALB Traffic Monitoring
	ALB Resource Usage
	Ingress, HTTPRoute, Rule Traffic Monitoring

	Trouble Shooting
	How to Solve Inter-node Communication Issues in ARM Environments?
	Find Who Cause the Error

